1
|
Ucak S, Yegin Z, Yurt MNZ, Sudagidan M, Altunbas O, Ozalp VC. Bacterial Profiling of Brined Grapevine Leaves Collected From Different Local Markets in Türkiye. Chem Biodivers 2025:e202403049. [PMID: 39925312 DOI: 10.1002/cbdv.202403049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/28/2025] [Accepted: 02/07/2025] [Indexed: 02/11/2025]
Abstract
Microorganisms linked to the grapevine, Vitis vinifera, can impact crop quality, plant growth, and human and plant health. This study examined the bacterial community structures of brined grapevine leaves (n = 56) taken from seven distinct regions in Türkiye using next-generation sequencing technology. Investigations were also conducted into the samples' chemical properties. Firmicutes was the dominant phylum, followed by Proteobacteria, Actinobacteria, and Bacteroidetes. Bacillaceae was the predominant family in the analyzed samples, followed by Clostridiaceae, Peptostreptococcaceae, and Enterobacteriaceae. Bacillus was the dominant genus, followed by Lysinibacillus and Clostridium sensu stricto. The samples exhibited differences in terms of pH, total acidity, and salt content. The pH values of the brined grapevine leaves ranged from 2.31 to 6.91, the acidity levels ranged from 0.09% to 1.80%, and the salt percentages ranged from 3.39% to 49.14%. This research provides pioneering information for bacterial community analysis of brined grapevine leaves.
Collapse
Affiliation(s)
- Samet Ucak
- Department of Medical Biology and Genetics, Faculty of Medicine, Istanbul Aydın University, Istanbul, Türkiye
| | - Zeynep Yegin
- Medical Laboratory Techniques Program Vocational School of Health Services, Sinop University, Sinop, Türkiye
| | | | - Mert Sudagidan
- KIT-ARGEM R&D Center, Konya Food and Agriculture University, Meram, Türkiye
| | - Osman Altunbas
- SARGEM, Konya Food and Agriculture University, Meram, Türkiye
| | - Veli Cengiz Ozalp
- Medical School Department of Medical Biology, Atilim University, Ankara, Türkiye
| |
Collapse
|
2
|
Nagdiya D, Arora S, Kumar V, Kumar D, Singh A, Singh C. Application of Casein Micelles for Targeting Huntington's Disease in Experimental Zebrafish Model. Mol Neurobiol 2025; 62:2163-2179. [PMID: 39085678 DOI: 10.1007/s12035-024-04372-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 07/14/2024] [Indexed: 08/02/2024]
Abstract
Huntington's disease (HD) is an incorrigible neuropsychiatric disorder with reduced cognition and motor abnormalities. Piperine (PIP) is an alkaloid with antioxidant, anti-inflammatory, and neuroprotective activities; however, poor therapeutic efficacy limits its further use. The current study focuses on the enhanced therapeutic potential of PIP@CM against an experimental zebrafish model of HD. PIP@CM was fabricated using spray drying technology, followed by solid-state investigations. We performed in vitro release and in vitro antioxidant activity (DPPH assay) of PIP and PIP@CMs. In addition, in vivo studies were conducted on zebrafish using 3-nitropropionic acid (3-NPA) (60 mg/kg) as a neurotoxin and treated with PIP (5 mg/kg) and PIP@CM (25 mg/kg equivalent to 5 mg/kg PIP). After dosing, various in vivo studies (behavioral, biochemical, and histological) were conducted. The solid-state characterization techniques revealed the loss of crystallinity after micelles formation. In vitro release and antioxidant assays showed higher release and enhanced activity of PIP@CM. In vivo studies revealed that 3-NPA administration causes HD, as evidenced by the results of open field test (OFT) and novel tank diving test (NTD) tests. Moreover, 3-NPA causes an increase in oxidative stress, as confirmed by biochemical and histopathological studies. PIP@CM treatment significantly improved behavioral performance in OFT and NTD tests and reduced oxidative stress markers as compared to pure PIP and untreated HD model.
Collapse
Affiliation(s)
- Deepak Nagdiya
- Department of Quality Assurance, ISF College of Pharmacy, (I. K. Gujral Punjab Technical University, formerly Punjab Technical University, Kapurthala Jalandhar- 144603), Moga, Punjab, 142001, India
| | - Sanchit Arora
- Department of Pharmaceutics, ISF College of Pharmacy,, (I. K. Gujral Punjab Technical University, formerly Punjab Technical University, Kapurthala Jalandhar-144603), Moga, Punjab, 142001, India
| | - Vishal Kumar
- Department of Pharmacology ISF College of Pharmacy, (Affiliated to I. K. Gujral Punjab Technical University, formerly Punjab Technical University, Kapurthala Jalandhar-144603), Moga, Punjab, 142001, India
| | - Dinesh Kumar
- Department of Pharmaceutical Engineering, Indian Institute of Technology Banaras Hindu University Campus, Uttar Pradesh, 221005, India
| | - Arti Singh
- Department of Pharmacology ISF College of Pharmacy, (Affiliated to I. K. Gujral Punjab Technical University, formerly Punjab Technical University, Kapurthala Jalandhar-144603), Moga, Punjab, 142001, India.
- Department of Pharmaceutical Sciences, School of Health Science & Technology, UPES, Dehradun, India.
| | - Charan Singh
- Department of Pharmaceutics, ISF College of Pharmacy,, (I. K. Gujral Punjab Technical University, formerly Punjab Technical University, Kapurthala Jalandhar-144603), Moga, Punjab, 142001, India.
- Department of Pharmaceutical Sciences, HNB Garhwal University (A Central University) Chauras Campus, Srinagar Garhwal, Uttarakhand, 246174, India.
| |
Collapse
|
3
|
Bjørklund G, Oliinyk P, Khavrona O, Lozynska I, Lysiuk R, Darmohray R, Antonyak H, Dub N, Zayachuk V, Antoniv O, Rybak O, Peana M. The Effects of Fisetin and Curcumin on Oxidative Damage Caused by Transition Metals in Neurodegenerative Diseases. Mol Neurobiol 2025; 62:1225-1246. [PMID: 38970766 DOI: 10.1007/s12035-024-04321-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 06/19/2024] [Indexed: 07/08/2024]
Abstract
Neurodegenerative diseases pose a significant health challenge for the elderly. The escalating presence of toxic metals and chemicals in the environment is a potential contributor to central nervous system dysfunction and the onset of neurodegenerative conditions. Transition metals play a crucial role in various pathophysiological mechanisms associated with prevalent neurodegenerative diseases such as Alzheimer's and Parkinson's. Given the ubiquitous exposure to metals from diverse sources in everyday life, the workplace, and the environment, most of the population faces regular contact with different forms of these metals. Disturbances in the levels and homeostasis of certain transition metals are closely linked to the manifestation of neurodegenerative disorders. Oxidative damage further exacerbates the progression of neurological consequences. Presently, there exists no curative therapy for individuals afflicted by neurodegenerative diseases, with treatment approaches primarily focusing on alleviating pathological symptoms. Within the realm of biologically active compounds derived from plants, flavonoids and curcuminoids stand out for their extensively documented antioxidant, antiplatelet, and neuroprotective properties. The utilization of these compounds holds the potential to formulate highly effective therapeutic strategies for managing neurodegenerative diseases. This review provides a comprehensive overview of the impact of abnormal metal levels, particularly copper, iron, and zinc, on the initiation and progression of neurodegenerative diseases. Additionally, it aims to elucidate the potential of fisetin and curcumin to inhibit or decelerate the neurodegenerative process.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Toften 24, 8610, Mo I Rana, Norway.
| | - Petro Oliinyk
- Department of Disaster Medicine and Military Medicine, Danylo Halytsky Lviv National Medical University, Lviv, 79010, Ukraine
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, 79010, Ukraine
| | - Oksana Khavrona
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, 79010, Ukraine
- Department of Biological Chemistry, Danylo Halytsky Lviv National Medical University, Lviv, 79010, Ukraine
| | - Iryna Lozynska
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, 79010, Ukraine
- Department of Biological Chemistry, Danylo Halytsky Lviv National Medical University, Lviv, 79010, Ukraine
| | - Roman Lysiuk
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, 79010, Ukraine
- Department of Pharmacognosy and Botany, Danylo Halytsky Lviv National Medical University, Lviv, 79010, Ukraine
| | - Roman Darmohray
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, 79010, Ukraine
- Department of Pharmacognosy and Botany, Danylo Halytsky Lviv National Medical University, Lviv, 79010, Ukraine
| | - Halyna Antonyak
- Department of Ecology, Ivan Franko National University of Lviv, Lviv, 79005, Ukraine
| | - Natalia Dub
- Andrei Krupynskyi Lviv Medical Academy, Lviv, 79000, Ukraine
| | - Vasyl Zayachuk
- Department of Botany, Ukrainian National Forestry University, Wood Science and Non-Wood Forest Products, Lviv, 79057, Ukraine
| | - Olha Antoniv
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, 79010, Ukraine
- Department of Pharmacology, Danylo Halytsky Lviv National Medical University, Lviv, 79010, Ukraine
| | - Oksana Rybak
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, 79010, Ukraine
- Department of Pharmacognosy and Botany, Danylo Halytsky Lviv National Medical University, Lviv, 79010, Ukraine
| | - Massimiliano Peana
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, 07100, Sassari, Italy.
| |
Collapse
|
4
|
Gali S, Kundu A, Sharma S, Ahn MY, Puia Z, Kumar V, Kim IS, Kwak JH, Palit P, Kim HS. Therapeutic potential of bark extracts from Macaranga denticulata on renal fibrosis in streptozotocin-induced diabetic rats. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024; 87:911-933. [PMID: 39306745 DOI: 10.1080/15287394.2024.2394586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
Macaranga denticulata (MD) bark is commonly utilized in traditional medicine for diabetes prevention and treatment. The bark extract of MD is rich in prenyl or farnesyl flavonoids and stilbenes, which possess antioxidant properties. Although data suggest the potential therapeutic benefits of the use of MD in treating diabetic nephropathy (DN), the precise mechanisms underlying MD-initiated protective effects against DN are not well understood. This study aimed to assess the renoprotective properties of MD extract by examining renofibrosis inhibition, oxidative stress, and inflammation utilizing streptozotocin-induced DN male Sprague - Dawley rats. Diabetic rats were intraperitoneally injected with streptozotocin (STZ) to induce diabetes. After 6 days, these rats were orally administered MD extract (200 mg/kg/day) or metformin (200 mg/kg/day) for 14 days. The administration of MD extract significantly lowered blood glucose levels, restored body weight, and reduced urine levels of various biomarkers associated with kidney functions. Histopathological analysis revealed protective effects in both kidneys and pancreas. Further, MD extract significantly restored abnormalities in advanced glycation end products, oxidative stress biomarkers, and proinflammatory cytokine levels in STZ-treated rats. MD extract markedly reduced renal fibrosis biomarker levels, indicating recovery from renal injury, and reversed dysregulation of sirtuins and claudin-1 in the kidneys of rats with STZ-induced diabetes. In conclusion, data demonstrated the renoprotective role of MD extract, indicating plant extract's ability to suppress oxidative stress and regulate proinflammatory pathways during pathological changes in diabetic nephropathy.
Collapse
Affiliation(s)
- Sreevarsha Gali
- School of Pharmacy, Sungkyunkwan University, School of Pharmacy University, Suwon, Republic of Korea
| | - Amit Kundu
- School of Pharmacy, Sungkyunkwan University, School of Pharmacy University, Suwon, Republic of Korea
- Department of Pharmacology, GITAM School of Pharmacy, GITAM Deemed to be University, Visakhapatnam, India
| | - Swati Sharma
- School of Pharmacy, Sungkyunkwan University, School of Pharmacy University, Suwon, Republic of Korea
| | - Mee-Young Ahn
- Department of Biochemistry and Health Science, Changwon National University, Changwon-si, Republic of Korea
| | - Zothan Puia
- Department of Pharmacy, Regional Institute of Paramedical & Nursing Sciences, Aizawl, India
| | - Vikas Kumar
- Natural Product Drug Discovery Laboratory, Department of Pharmaceutical Sciences, Faculty of Health Sciences, Sam Higginbottom Institute of Agriculture, Technology & Sciences, Allahabad, India
| | - In Su Kim
- School of Pharmacy, Sungkyunkwan University, School of Pharmacy University, Suwon, Republic of Korea
| | - Jeong Hwan Kwak
- School of Pharmacy, Sungkyunkwan University, School of Pharmacy University, Suwon, Republic of Korea
| | - Partha Palit
- Department of Pharmaceutical Sciences, Drug Discovery Research Laboratory, Assam University, Silchar, India
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, School of Pharmacy University, Suwon, Republic of Korea
| |
Collapse
|
5
|
Das G, Kameswaran S, Ramesh B, Bangeppagari M, Nath R, Das Talukdar A, Shin HS, Patra JK. Anti-Aging Effect of Traditional Plant-Based Food: An Overview. Foods 2024; 13:3785. [PMID: 39682858 DOI: 10.3390/foods13233785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/11/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
Aging is a complex process that involves many physiological mechanisms that gradually impair normal cellular and tissue function and make us more susceptible to diseases and death. It is influenced by intrinsic factors like cellular function and extrinsic factors like pollution and UV radiation. Recent scientific studies show that traditional plant-based foods and supplements can help mitigate the effects of aging. Nutraceuticals, which are dietary supplements with medicinal properties, have gained attention for their ability to prevent chronic and age-related diseases. Antioxidants like flavonoids, carotenoids, ascorbic acid, terpenes, tannins, saponins, alkaloids, minerals, etc. found in plants are key to managing oxidative stress, which is a major cause of aging. Well-known plant-based supplements from Bacopa monnieri, Curcuma longa, Emblica officinalis, Ginkgo biloba, Glycyrrhiza glabra, and Panax ginseng have been found to possess medicinal properties. These supplements have been shown to improve cognitive function, reduce oxidative stress, improve overall health, and potentially extend life and enhance the excellence of life. The obtained benefits from these plant species are due to the presence of their bioactive secondary metabolites, such as bacosides in Bacopa monnieri, curcumin in Curcuma longa, ginsenosides in Panax ginseng, and many more. These compounds not only protect against free radical damage but also modulate key biological pathways of aging. Also, traditional fermented foods (tempeh and kimchi), which are rich in probiotics and bioactive compounds, support gut health, boost immune function, and have anti-aging properties. The molecular mechanisms behind these benefits are the activation of nutrient-sensing pathways like AMPK, SIRT/NAD+, and mTOR, which are important for cellular homeostasis and longevity. This review shows the potential of traditional plant-based foods and dietary supplements for healthy aging, and more studies are needed to prove their efficacy and safety in humans. Incorporating these natural products into our diet may be a practical and effective way to counteract the effects of aging and overall well-being. The foremost goal of this review is to emphasize the importance of supporting the body's antioxidant system by consuming the right balance of natural ingredients in the diet.
Collapse
Affiliation(s)
- Gitishree Das
- Research Institute of Integrative Life Sciences, Dongguk University-Seoul, Goyang-si 10326, Republic of Korea
| | - Srinivasan Kameswaran
- Department of Botany, Vikrama Simhapuri University College, Kavali 524201, Andhra Pradesh, India
| | - Bellamkonda Ramesh
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Manjunatha Bangeppagari
- Department of Cell Biology and Molecular Genetics, Sri DevarajUrs Academy of Higher Education and Research (A Deemed to Be University), Tamaka, Kolar 563103, Karnataka, India
| | - Rajat Nath
- Department of Life Science and Bioinformatics, Assam University, Silchar 788011, Assam, India
- Department of Biotechnology and Microbiology, School of Natural Sciences, Techno India University, Agartala 799004, Tripura, India
| | - Anupam Das Talukdar
- Department of Life Science and Bioinformatics, Assam University, Silchar 788011, Assam, India
| | - Han-Seung Shin
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Goyang-si 10326, Republic of Korea
| | - Jayanta Kumar Patra
- Research Institute of Integrative Life Sciences, Dongguk University-Seoul, Goyang-si 10326, Republic of Korea
| |
Collapse
|
6
|
Theodoridis X, Chourdakis M, Papaemmanouil A, Chaloulakou S, Papageorgiou N, Georgakou AV, Chatzis G, Triantafyllou A. The Association between Food Groups, Nutraceuticals, and Food Supplements Consumption on Vascular Health Outcomes: A Literature Review. Life (Basel) 2024; 14:1210. [PMID: 39337992 PMCID: PMC11433244 DOI: 10.3390/life14091210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/29/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Vascular aging, marked by alterations in the structure and function of blood vessels, including heightened arterial stiffness and impaired endothelial function, is linked to a higher likelihood of developing cardiovascular and age-associated pathological conditions. Oxidative stress and inflammation are key stimulation factors in vascular aging. Engaging in healthy dietary habits could enhance the functioning of blood vessels. The aim of this study was to conduct a literature review of the evidence regarding the relationship between food regimens, nutraceuticals, and dietary supplements and vascular health. A search of electronic databases, including PubMed, Scopus, and Web of Science Core Collection, was performed. Experimental and observational studies evaluating the association between food groups, nutraceuticals, supplements, and endothelial function and/or arterial stiffness were deemed eligible for this narrative review. Based on the current body of the included studies, food groups, nutraceuticals, and dietary supplements may not demonstrate superiority over placebos in enhancing markers of vascular health. To obtain more reliable evidence on the effectiveness of interventions in vascular health, additional RCTs with larger sample sizes, extended follow-up periods, and multi-center participation are necessary. Enhancing the credibility of these RCTs requires better control of dietary variables and more precise measurement of vascular health markers.
Collapse
Affiliation(s)
- Xenophon Theodoridis
- Laboratory of Hygiene, Social and Preventive Medicine and Medical Statistics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece; (X.T.); (A.P.); (S.C.); (N.P.); (A.V.G.)
- Third Department of Internal Medicine, Papageorgiou Hospital, Aristotle University of Thessaloniki, 56429 Thessaloniki, Greece
| | - Michail Chourdakis
- Laboratory of Hygiene, Social and Preventive Medicine and Medical Statistics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece; (X.T.); (A.P.); (S.C.); (N.P.); (A.V.G.)
| | - Androniki Papaemmanouil
- Laboratory of Hygiene, Social and Preventive Medicine and Medical Statistics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece; (X.T.); (A.P.); (S.C.); (N.P.); (A.V.G.)
| | - Stavroula Chaloulakou
- Laboratory of Hygiene, Social and Preventive Medicine and Medical Statistics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece; (X.T.); (A.P.); (S.C.); (N.P.); (A.V.G.)
| | - Niki Papageorgiou
- Laboratory of Hygiene, Social and Preventive Medicine and Medical Statistics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece; (X.T.); (A.P.); (S.C.); (N.P.); (A.V.G.)
| | - Athina Vasiliki Georgakou
- Laboratory of Hygiene, Social and Preventive Medicine and Medical Statistics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece; (X.T.); (A.P.); (S.C.); (N.P.); (A.V.G.)
| | - Georgios Chatzis
- School of Physical Education and Sports Science, Aristotle University of Thessaloniki, 57001 Thessaloniki, Greece;
| | - Areti Triantafyllou
- Third Department of Internal Medicine, Papageorgiou Hospital, Aristotle University of Thessaloniki, 56429 Thessaloniki, Greece
| |
Collapse
|
7
|
Silva AP, Cordeiro MLDS, Aquino-Martins VGDQ, de Moura Melo LF, Paiva WDS, Naliato GFDS, Theodoro RC, Meneses CHSG, Rocha HAO, Scortecci KC. Prospecting of the Antioxidant Activity from Extracts Obtained from Chañar ( Geoffroea decorticans) Seeds Evaluated In Vitro and In Vivo Using the Tenebrio molitor Model. Nutrients 2024; 16:2813. [PMID: 39275132 PMCID: PMC11396818 DOI: 10.3390/nu16172813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/17/2024] [Accepted: 08/19/2024] [Indexed: 09/16/2024] Open
Abstract
Geoffroea decorticans, commonly known as Chañar, is a native Chilean plant widely used in folk medicine for its expectorant, pain relief, and antinociceptive properties. This study explored the antioxidant, cytotoxic, and protective effects of its ethanolic (EE) and aqueous (EA) seed extracts against oxidative stress induced by copper sulfate, using both in vitro and in vivo approaches. Phytochemical analyses revealed the presence of phenolic compounds and flavonoids in the extracts. High-Performance Liquid Chromatography (HPLC) coupled with Gas Chromatography-Mass Spectrometry/Mass Spectrometry (GC-MS/MS) identified significant components such as phytol, alpha-tocopherol, vitexin, and rutin, with the EE being particularly rich in phytol and vitexin. Antioxidant assays-measuring the total antioxidant capacity (TAC), reducing power, DPPH radical scavenging, and copper and iron chelation-confirmed their potent antioxidant capabilities. Both extracts were non-cytotoxic and provided protection against CuSO4-induced oxidative stress in the 3T3 cell line. Additionally, the use of Tenebrio molitor as an invertebrate model underscored the extracts' antioxidant and protective potentials, especially that of the EE. In conclusion, this study highlights the significant antioxidant and protective properties of Chañar seed extracts, particularly the ethanolic extract, in both in vitro and in vivo models.
Collapse
Affiliation(s)
- Ariana Pereira Silva
- Laboratório de Transformação de Plantas e Análise em Microscopia (LTPAM), Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil
- Programa de Pós-Graduação em Bioquímica e Biologia Molecular, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil
| | - Maria Lucia da Silva Cordeiro
- Laboratório de Transformação de Plantas e Análise em Microscopia (LTPAM), Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil
- Programa de Pós-Graduação em Bioquímica e Biologia Molecular, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil
| | - Verônica Giuliani de Queiroz Aquino-Martins
- Laboratório de Transformação de Plantas e Análise em Microscopia (LTPAM), Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil
- Programa de Pós-Graduação em Bioquímica e Biologia Molecular, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil
| | - Luciana Fentanes de Moura Melo
- Laboratório de Transformação de Plantas e Análise em Microscopia (LTPAM), Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil
- Programa de Pós-Graduação em Bioquímica e Biologia Molecular, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil
| | - Weslley de Souza Paiva
- Laboratório de Biotecnologia de Polímeros Naturais (BIOPOL), Departamento de Bioquímica, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil
| | - Georggia Fatima da Silva Naliato
- Programa de Pós-Graduação em Bioquímica e Biologia Molecular, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil
- Instituto de Medicina Tropical, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59077-080, RN, Brazil
| | - Raquel Cordeiro Theodoro
- Programa de Pós-Graduação em Bioquímica e Biologia Molecular, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil
- Instituto de Medicina Tropical, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59077-080, RN, Brazil
| | - Carlos Henrique Salvino Gadelha Meneses
- Laboratório de Biotecnologia Vegetal (LBV), Departamento de Biologia, Centro de Ciências Biológicas e da Saúde, Universidade Estadual da Paraiba (UEPB), Campina Grande 58429-500, PB, Brazil
| | - Hugo Alexandre Oliveira Rocha
- Programa de Pós-Graduação em Bioquímica e Biologia Molecular, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil
- Laboratório de Biotecnologia de Polímeros Naturais (BIOPOL), Departamento de Bioquímica, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil
| | - Katia Castanho Scortecci
- Laboratório de Transformação de Plantas e Análise em Microscopia (LTPAM), Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil
- Programa de Pós-Graduação em Bioquímica e Biologia Molecular, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil
| |
Collapse
|
8
|
Andrés CMC, Pérez de la Lastra JM, Bustamante Munguira E, Andrés Juan C, Pérez-Lebeña E. Michael Acceptors as Anti-Cancer Compounds: Coincidence or Causality? Int J Mol Sci 2024; 25:6099. [PMID: 38892287 PMCID: PMC11172677 DOI: 10.3390/ijms25116099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/25/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Michael acceptors represent a class of compounds with potential anti-cancer properties. They act by binding to nucleophilic sites in biological molecules, thereby disrupting cancer cell function and inducing cell death. This mode of action, as well as their ability to be modified and targeted, makes them a promising avenue for advancing cancer therapy. We are investigating the molecular mechanisms underlying Michael acceptors and their interactions with cancer cells, in particular their ability to interfere with cellular processes and induce apoptosis. The anti-cancer properties of Michael acceptors are not accidental but are due to their chemical structure and reactivity. The electrophilic nature of these compounds allows them to selectively target nucleophilic residues on disease-associated proteins, resulting in significant therapeutic benefits and minimal toxicity in various diseases. This opens up new perspectives for the development of more effective and precise cancer drugs. Nevertheless, further studies are essential to fully understand the impact of our discoveries and translate them into clinical practice.
Collapse
Affiliation(s)
| | - José Manuel Pérez de la Lastra
- Institute of Natural Products and Agrobiology, CSIC-Spanish Research Council, Avda. Astrofísico Fco. Sánchez, 3, 38206 La Laguna, Spain
| | | | - Celia Andrés Juan
- Cinquima Institute and Department of Organic Chemistry, Faculty of Sciences, Valladolid University, Paseo de Belén, 7, 47011 Valladolid, Spain
| | | |
Collapse
|
9
|
Gasmi A, Asghar F, Zafar S, Oliinyk P, Khavrona O, Lysiuk R, Peana M, Piscopo S, Antonyak H, Pen JJ, Lozynska I, Noor S, Lenchyk L, Muhammad A, Vladimirova I, Dub N, Antoniv O, Tsal O, Upyr T, Bjørklund G. Berberine: Pharmacological Features in Health, Disease and Aging. Curr Med Chem 2024; 31:1214-1234. [PMID: 36748808 DOI: 10.2174/0929867330666230207112539] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 12/15/2022] [Accepted: 12/29/2022] [Indexed: 02/08/2023]
Abstract
BACKGROUND Berberine is the main active compound of different herbs and is defined as an isoquinoline quaternary botanical alkaloid found in barks and roots of numerous plants. It exhibits a wide range of pharmacological effects, such as anti-obesity and antidiabetic effects. Berberine has antibacterial activity against a variety of microbiota, including many bacterial species, protozoa, plasmodia, fungi, and trypanosomes. OBJECTIVE This review describes the role of berberine and its metabolic effects. It also discusses how it plays a role in glucose metabolism, fat metabolism, weight loss, how it modulates the gut microbiota, and what are its antimicrobial properties along with its potential side effects with maximal tolerable dosage. METHODS Representative studies were considered and analyzed from different scientific databases, including PubMed and Web of Science, for the years 1982-2022. RESULTS Literature analysis shows that berberine affects many biochemical and pharmacological pathways that theoretically yield a positive effect on health and disease. Berberine exhibits neuroprotective properties in various neurodegenerative and neuropsychological ailments. Despite its low bioavailability after oral administration, berberine is a promising tool for several disorders. A possible hypothesis would be the modulation of the gut microbiome. While the evidence concerning the aging process in humans is more limited, preliminary studies have shown positive effects in several models. CONCLUSION Berberine could serve as a potential candidate for the treatment of several diseases. Previous literature has provided a basis for scientists to establish clinical trials in humans. However, for obesity, the evidence appears to be sufficient for hands-on use.
Collapse
Affiliation(s)
- Amin Gasmi
- Société Francophone de Nutrithérapie et de Nutrigénétique Appliquée, Villeurbanne, France
| | - Farah Asghar
- Department of Microbiology and Molecular Genetics (MMG), University of the Punjab, Lahore, Pakistan
| | - Saba Zafar
- Department of Research, The Women University, Multan, Pakistan
| | - Petro Oliinyk
- Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Oksana Khavrona
- Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Roman Lysiuk
- Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Massimiliano Peana
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Sassari, Italy
| | - Salva Piscopo
- Société Francophone de Nutrithérapie et de Nutrigénétique Appliquée, Villeurbanne, France
| | - Halyna Antonyak
- Department of Ecology, Ivan Franko National University of Lviv, Lviv, Ukraine
| | - Joeri J Pen
- Diabetes Clinic, Department of Internal Medicine, UZ Brussel, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Department of Nutrition, UZ Brussel, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Iryna Lozynska
- Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Sadaf Noor
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
| | - Larysa Lenchyk
- Department of Research, National University of Pharmacy, Kharkiv, Ukraine
- CONEM Ukraine Pharmacognosy and Natural Product Chemistry Research Group, National University of Pharmacy, Kharkiv, Ukraine
| | - Akram Muhammad
- Department of Research, Government College University, Faisalabad, Pakistan
| | - Inna Vladimirova
- Department of Research, National University of Pharmacy, Kharkiv, Ukraine
- CONEM Ukraine Pharmacognosy and Natural Product Chemistry Research Group, National University of Pharmacy, Kharkiv, Ukraine
| | - Natalia Dub
- Andrei Krupynskyi Lviv Medical Academy, Lviv, Ukraine
| | - Olha Antoniv
- Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Oksana Tsal
- Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Taras Upyr
- Department of Research, National University of Pharmacy, Kharkiv, Ukraine
- CONEM Ukraine Pharmacognosy and Natural Product Chemistry Research Group, National University of Pharmacy, Kharkiv, Ukraine
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway
| |
Collapse
|
10
|
Jung J, Ku M, Jeong S, Yoon N, Park JH, Youn HS, Yang J, Seo S. Antioxidative Impact of Phenolics-Loaded Nanocarriers on Cytoskeletal Network Remodeling of Invasive Cancer Cells. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37438323 PMCID: PMC10375430 DOI: 10.1021/acsami.3c04693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Natural phenolic compounds have antioxidant properties owing to their free radical-scavenging capability. The combined effect of a mixture of phenolic compounds has been studied; however, the detailed investigation for finding a correlation between single phenolic molecules and antioxidant activity has not been explored. Herein, we revealed that the number of phenolic hydroxyl groups in phenolics played a central role in their antioxidant capacity. Based on the finding, tannic acid showed the most effective antioxidant potential, e.g., 76% in tannic acid versus 22% in vitamin C as a standard antioxidant component. Because cancer progression is closely related to oxidative processes at the cellular level, we further applied the surface treatment of tannic acid drug-delivery nanocarriers. Tannic acid-loaded nanocarriers reduced reactive oxygen species of cancer cells as much as 41% of vehicle treatment and remodeled cytoskeletal network. By a gelatin degradation study, TA-loaded nanocarrier-treated cells induced 44.6% reduction of degraded area than vehicle-treated cells, implying a potential of blocking invasiveness of cancer cells.
Collapse
Affiliation(s)
- Jaewon Jung
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea
| | - Minhee Ku
- Department of Radiology, College of Medicine, Seoul 03722, Republic of Korea
- Systems Molecular Radiology, Yonsei University, Seoul 03722, Republic of Korea
- Convergence Research Center for Systems Molecular Radiological Science, Yonsei University, Seoul 03722, Republic of Korea
| | - Suhui Jeong
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea
| | - Nara Yoon
- Department of Radiology, College of Medicine, Seoul 03722, Republic of Korea
- Systems Molecular Radiology, Yonsei University, Seoul 03722, Republic of Korea
- Convergence Research Center for Systems Molecular Radiological Science, Yonsei University, Seoul 03722, Republic of Korea
| | - Jae Hyun Park
- Young Chemical Co. Ltd., 80-93, Golden Root-ro, Juchon-myeon, Gimhae 50969, Republic of Korea
| | - Han Sung Youn
- Young Chemical Co. Ltd., 80-93, Golden Root-ro, Juchon-myeon, Gimhae 50969, Republic of Korea
| | - Jaemoon Yang
- Department of Radiology, College of Medicine, Seoul 03722, Republic of Korea
- Systems Molecular Radiology, Yonsei University, Seoul 03722, Republic of Korea
- Convergence Research Center for Systems Molecular Radiological Science, Yonsei University, Seoul 03722, Republic of Korea
| | - Sungbaek Seo
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea
| |
Collapse
|
11
|
Gasmi A, Gasmi Benahmed A, Shanaida M, Chirumbolo S, Menzel A, Anzar W, Arshad M, Cruz-Martins N, Lysiuk R, Beley N, Oliinyk P, Shanaida V, Denys A, Peana M, Bjørklund G. Anticancer activity of broccoli, its organosulfur and polyphenolic compounds. Crit Rev Food Sci Nutr 2023; 64:8054-8072. [PMID: 37129118 DOI: 10.1080/10408398.2023.2195493] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The use of natural bioactive constituents from various food sources for anticancer purposes has become increasingly popular worldwide. Broccoli (Brassica oleracea var. italica) is on the top of the consumed vegetables by the masses. Its raw matrix contains a plethora of phytochemicals, such as glucosinolates and phenolic compounds, along with rich amounts of vitamins, and minerals. Consumption of broccoli-derived phytochemicals provides strong antioxidant effects, particularly due to its sulforaphane content, while modulating numerous molecules involved in cell cycle regulation, control of apoptosis, and tuning enzyme activity. Thus, the inclusion of broccoli in the daily diet lowers the susceptibility to developing cancers. Numerous studies have underlined the undisputable role of broccoli in the diet as a chemopreventive raw food, owing to the content in sulforaphane, an isothiocyanate produced as a result of hydrolysis of precursor glucosinolates called glucoraphanin. This review will provide evidence supporting the specific role of fresh florets and sprouts of broccoli and its key bioactive constituents in the prevention and treatment of different cancers; a number of studies carried out in the in vitro and in vivo conditions as well as clinical trials were analyzed.
Collapse
Affiliation(s)
- Amin Gasmi
- Société Francophone de Nutrithérapie et de Nutrigénétique Appliquée, Villeurbanne, France
- International Congress of Nutritional Sciences, Casablanca, Morocco
- Société Marocaine de Micronutrition et de Nutrigénétique Appliquée, Casablanca, Morocco
| | | | - Mariia Shanaida
- I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
- CONEM Scientific Secretary, Verona, Italy
| | | | - Wajiha Anzar
- Dow University of Health Sciences, Karachi, Pakistan
| | - Mehreen Arshad
- National University of Sciences and Technology, Islamabad, Pakistan
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
- Institute of Research and Advanced Training in Health Sciences and Technologies (CESPU), Rua Central de Gandra, Gandra PRD, Portugal
- TOXRUN - Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, Gandra, Portugal
| | - Roman Lysiuk
- Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Nataliya Beley
- I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Petro Oliinyk
- Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Volodymyr Shanaida
- Design of Machine Tools, Instruments and Machines Department, Ternopil Ivan Puluj National Technical University, Ternopil, Ukraine
| | | | - Massimiliano Peana
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Sassari, Italy
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway
| |
Collapse
|
12
|
Wang Q, Liu Z, Wang R, Li R, Lian X, Yang Y, Yan J, Yin Z, Wang G, Sun J, Peng Y. Effect of Ginkgo biloba extract on pharmacology and pharmacokinetics of atorvastatin in rats with hyperlipidaemia. Food Funct 2023; 14:3051-3066. [PMID: 36916480 DOI: 10.1039/d2fo03238d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Ginkgo biloba extract (GBE) is a common dietary supplement used by people with dyslipidaemia worldwide to reduce the risk of cardiovascular disease. Many studies have found that GBE itself has a variety of pharmacological activities. However, the role of GBE as an adjunct to conventional therapy with chemical drugs remains controversial. Therefore, this study explored the additional benefits of GBE in the treatment of hyperlipidaemia with statins in terms of both pharmacodynamics and pharmacokinetics. A hyperlipidaemia model was established by feeding rats a high-fat diet for a long time. The animals were treated with atorvastatin only, GBE only, or a combination of atorvastatin and GBE. The results showed that statins combined with GBE could significantly improve the blood lipid parameters, reduce the liver fat content, and reduce the size of adipocytes in abdominal fat. The effect was superior to statin therapy alone. In addition, the combination has shown additional liver protection against possible pathological liver injury or statin-induced liver injury. A lipidomic study showed that GBE could regulate the abnormal lipid metabolism of the liver in hyperlipemia. When statins are combined with GBE, this callback effect introduced by GBE on endogenous metabolism has important implications for resistance to disease progression and statin resistance. Finally, in the presence of GBE, there was a significant increase in plasma statin exposure. These results all confirmed that GBE has incremental benefits as a dietary supplement of statin therapy for dyslipidaemia.
Collapse
Affiliation(s)
- Qingqing Wang
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, Research Unit of PK-PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, China.
| | - Zihou Liu
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, Research Unit of PK-PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, China.
| | - Rui Wang
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, Research Unit of PK-PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, China.
| | - Run Li
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, Research Unit of PK-PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, China.
| | - Xiaoru Lian
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, Research Unit of PK-PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, China.
| | - Yanquan Yang
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, Research Unit of PK-PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, China.
| | - Jiao Yan
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, Research Unit of PK-PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, China.
| | - Zhiqi Yin
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, China
| | - Guangji Wang
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, Research Unit of PK-PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, China.
| | - Jianguo Sun
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, Research Unit of PK-PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, China.
| | - Ying Peng
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, Research Unit of PK-PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, China.
| |
Collapse
|
13
|
Ibrahim TNBT, Feisal NAS, Kamaludin NH, Cheah WY, How V, Bhatnagar A, Ma Z, Show PL. Biological active metabolites from microalgae for healthcare and pharmaceutical industries: A comprehensive review. BIORESOURCE TECHNOLOGY 2023; 372:128661. [PMID: 36690215 DOI: 10.1016/j.biortech.2023.128661] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 06/17/2023]
Abstract
Microalgae are photoautotrophic microorganisms which comprise of species from several phyla. Microalgae are promising in producing a varieties of products, including food, feed supplements, chemicals, and biofuels. Medicinal supplements derived from microalgae are of a significant market in which compounds such as -carotene, astaxanthin, polyunsaturated fatty acids (PUFA) such as docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), and polysaccharides such as -glucan, are prominent. Microalgae species which are commonly applied for commercial productions include Isochrysis sp., Chaetoceros (Chlorella sp.), Arthrospira sp. (Spirulina Bioactive) and many more. In this present review, microalgae species which are feasible in metabolites production are being summarized. Metabolites produced by microalgae as well as their prospective applications in the healthcare and pharmaceutical industries, are comprehensively discussed. This evaluation is greatly assisting industrial stakeholders, investors, and researchers in making business decisions, investing in ventures, and moving the production of microalgae-based metabolites forward.
Collapse
Affiliation(s)
- Tengku Nilam Baizura Tengku Ibrahim
- Department of Environmental Health, Faculty of Health Sciences, Universiti Teknologi MARA, Cawangan Pulau Pinang, Kampus Bertam, 13200, Kepala Batas, Pulau Pinang, Malaysia
| | - Nur Azalina Suzianti Feisal
- Department of Environmental Health, Faculty of Health Sciences, MAHSA University, Bandar Saujana Putra, 42610 Jenjarom, Selangor, Malaysia
| | - Noor Haziqah Kamaludin
- Center of Environmental Health & Safety, Faculty of Health Sciences, Universiti Teknologi MARA, Puncak Alam 42300, Selangor, Malaysia
| | - Wai Yan Cheah
- Centre of Research in Development, Social and Environment (SEEDS), Faculty of Social Sciences and Humanities, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
| | - Vivien How
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Amit Bhatnagar
- Department of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, FI-50130 Mikkeli, Finland
| | - Zengling Ma
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| | - Pau Loke Show
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai 602105, India; Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Malaysia; Department of Chemical Engineering, Khalifa University, Shakhbout Bin Sultan St - Zone 1, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
14
|
The Role of Astaxanthin as a Nutraceutical in Health and Age-Related Conditions. Molecules 2022; 27:molecules27217167. [PMID: 36363994 PMCID: PMC9655540 DOI: 10.3390/molecules27217167] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 01/24/2023] Open
Abstract
The current review provides an up-to-date analysis of scientific data on astaxanthin (ASX) sources and experimental studies on its health benefits as a potent antioxidant in the aging process. ASX is a liposoluble carotenoid nutrient and reddish-orange pigment, naturally synthesized by numerous microalgae, yeasts, and bacteria as secondary metabolites. Provides a reddish hue to redfish and shellfish flesh that feed on ASX-producing microorganisms. The microalga Haematococcus pluvialis is the most important source for its industrial bioproduction. Due to its strong antioxidant properties, numerous investigations reported that natural ASX is a more significant antioxidant agent than other antioxidants, such as vitamin C, vitamin E, and β-carotene. Furthermore, several data show that ASX possesses important nutraceutical applications and health benefits, especially in healthy aging processes. However, further studies are needed for a deeper understanding of the potential mechanisms through which ASX could lead to its effective role in the healthy aging process, such as supporting brain health and skin homeostasis. This review highlights the current investigations on the effective role of ASX in oxidative stress, aging mechanisms, skin physiology, and central nervous system functioning, and shows the potential clinical implications related to its consumption.
Collapse
|
15
|
Bjørklund G, Shanaida M, Lysiuk R, Butnariu M, Peana M, Sarac I, Strus O, Smetanina K, Chirumbolo S. Natural Compounds and Products from an Anti-Aging Perspective. Molecules 2022; 27:7084. [PMID: 36296673 PMCID: PMC9610014 DOI: 10.3390/molecules27207084] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/11/2022] [Accepted: 10/14/2022] [Indexed: 11/17/2022] Open
Abstract
Aging is a very complex process that is accompanied by a degenerative impairment in many of the major functions of the human body over time. This inevitable process is influenced by hereditary factors, lifestyle, and environmental influences such as xenobiotic pollution, infectious agents, UV radiation, diet-borne toxins, and so on. Many external and internal signs and symptoms are related with the aging process and senescence, including skin dryness and wrinkles, atherosclerosis, diabetes, neurodegenerative disorders, cancer, etc. Oxidative stress, a consequence of the imbalance between pro- and antioxidants, is one of the main provoking factors causing aging-related damages and concerns, due to the generation of highly reactive byproducts such as reactive oxygen and nitrogen species during the metabolism, which result in cellular damage and apoptosis. Antioxidants can prevent these processes and extend healthy longevity due to the ability to inhibit the formation of free radicals or interrupt their propagation, thereby lowering the level of oxidative stress. This review focuses on supporting the antioxidant system of the organism by balancing the diet through the consumption of the necessary amount of natural ingredients, including vitamins, minerals, polyunsaturated fatty acids (PUFA), essential amino acids, probiotics, plants' fibers, nutritional supplements, polyphenols, some phytoextracts, and drinking water.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Toften 24, 8610 Mo i Rana, Norway
| | - Mariia Shanaida
- Department of Pharmacognosy and Medical Botany, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine
| | - Roman Lysiuk
- Department of Pharmacognosy and Botany, Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine
| | - Monica Butnariu
- Chemistry & Biochemistry Discipline, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timisoara, 300645 Timisoara, Romania
- CONEM Romania Biotechnology and Environmental Sciences Group, University of Life Sciences “King Mihai I” from Timisoara, 300645 Timisoara, Romania
| | - Massimiliano Peana
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, 07100 Sassari, Italy
| | - Ioan Sarac
- Chemistry & Biochemistry Discipline, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timisoara, 300645 Timisoara, Romania
- CONEM Romania Biotechnology and Environmental Sciences Group, University of Life Sciences “King Mihai I” from Timisoara, 300645 Timisoara, Romania
| | - Oksana Strus
- Department of Drug Technology and Biopharmaceutics, Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine
| | - Kateryna Smetanina
- Department of Organic Chemistry and Pharmacy, Lesya Ukrainka Volyn National University, 43025 Lutsk, Ukraine
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy
- CONEM Scientific Secretary, Strada Le Grazie 9, 37134 Verona, Italy
| |
Collapse
|
16
|
Polyphenols in Metabolic Diseases. Molecules 2022; 27:molecules27196280. [PMID: 36234817 PMCID: PMC9570923 DOI: 10.3390/molecules27196280] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 02/01/2023] Open
Abstract
Polyphenols (PPs) are a large group of phytochemicals containing phenolic rings with two or more hydroxyl groups. They possess powerful antioxidant properties, multiple therapeutic effects, and possible health benefits in vivo and in vitro, as well as reported clinical studies. Considering their free-radical scavenging and anti-inflammatory properties, these substances can be used to treat different kinds of conditions associated with metabolic disorders. Many symptoms of metabolic syndrome (MtS), including obesity, dyslipidemia, atherosclerosis, elevated blood sugar, accelerating aging, liver intoxication, hypertension, as well as cancer and neurodegenerative disorders, are substantially relieved by dietary PPs. The present study explores the bioprotective properties and associated underlying mechanisms of PPs. A detailed understanding of these natural compounds will open up new opportunities for producing unique natural PP-rich dietary and medicinal plans, ultimately affirming their health benefits.
Collapse
|
17
|
Bjørklund G, Antonyak H, Polishchuk A, Semenova Y, Lesiv M, Lysiuk R, Peana M. Effect of methylmercury on fetal neurobehavioral development: an overview of the possible mechanisms of toxicity and the neuroprotective effect of phytochemicals. Arch Toxicol 2022; 96:3175-3199. [PMID: 36063174 DOI: 10.1007/s00204-022-03366-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 08/17/2022] [Indexed: 11/25/2022]
Abstract
Methylmercury (MeHg) is a global environmental pollutant with neurotoxic effects. Exposure to MeHg via consumption of seafood and fish can severely impact fetal neurobehavioral development even when MeHg levels in maternal blood are as low as about 5 μg/L, which the mother tolerates well. Persistent motor dysfunctions and cognitive deficits may result from trans-placental exposure. The present review summarizes current knowledge on the mechanisms of MeHg toxicity during the period of nervous system development. Although cerebellar Purkinje cells are MeHg targets, the actions of MeHg on thiol components in the neuronal cytoskeleton as well as on mitochondrial enzymes and induction of disturbances of glutamate signaling can impair extra-cerebellar functions, also at levels well tolerated by adult individuals. Numerous herbal substances possess neuroprotective effects, predominantly represented by natural polyphenolic molecules that might be utilized to develop natural drugs to alleviate neurotoxicity symptoms caused by MeHg or other Hg compounds.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Toften 24, 8610, Mo i Rana, Norway.
| | | | | | | | - Marta Lesiv
- Ivan Franko National University of Lviv, Lviv, Ukraine
| | - Roman Lysiuk
- Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Massimiliano Peana
- Department of Chemical, Physics, Mathematics and Natural Sciences, University of Sassari, Sassari, Italy
| |
Collapse
|
18
|
Ullah H, Khan A, Daglia M. The focus on foods for special medical purposes and food supplements in age‐related disorders. FOOD FRONTIERS 2022; 3:353-357. [DOI: 10.1002/fft2.163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
AbstractThe number of people over 60 years of age is increasing worldwide, representing a population of one billion in 2019, which is predicted to nearly double by 2050. In old age, people are more prone to the development of chronic disorders, mainly due to altered body responses to intracellular and extracellular stresses, where overactive oxidative stress and inflammatory processes initiate and stimulate degenerative processes in the body, resulting in metabolic diseases, loss of muscle strength, bone and joint disorders, neurodegenerative disorders, cardiovascular pathologies, and carcinogenesis. Moreover, treatment of patients of advanced age is more complex, due to the simultaneous involvement of multiple disease mechanisms, and the nonlinear association between disease risk factors and their disease endpoints. Most people in their old age are receiving treatment with two or more pharmacological drugs for the management of old age ailments, but on other hand, this increases the occurrence of adverse events in this population, attributed to their pharmacokinetic and pharmacodynamic alterations. One of the better approaches is primary prevention that may postpone the onset of morbidity with an improvement in general quality of life. The use of food supplements by old aged subjects is proportionally increasing for this purpose. This short commentary is focused on the basis of the use of foods for special medical purposes, and food supplements in the prevention of age‐related disorders.
Collapse
Affiliation(s)
- Hammad Ullah
- Department of Pharmacy University of Naples Federico II Naples Italy
| | - Ayesha Khan
- Department of Medicine Combined Military Hospital Nowshera Nowshera Pakistan
| | - Maria Daglia
- Department of Pharmacy University of Naples Federico II Naples Italy
- International Research Center for Food Nutrition and Safety Jiangsu University Zhenjiang China
| |
Collapse
|
19
|
Ameliorative Potential of Resveratrol in Dry Eye Disease by Restoring Mitochondrial Function. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1013444. [PMID: 35664941 PMCID: PMC9162831 DOI: 10.1155/2022/1013444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/29/2022] [Accepted: 04/18/2022] [Indexed: 11/30/2022]
Abstract
Methods The mitochondrial dysfunction of HCE-2 human corneal epithelial cells was induced by high osmotic pressure exposure and treated with resveratrol (50 μM). Western blotting was used to detect the expression of the antioxidant proteins SOD2, GPx, and SIRT1, and flow cytometry was used to detect cell apoptosis and ROS production. The DED mouse model was induced by 0.2% benzalkonium chloride (BAC) and treated with resveratrol. The tear yield was measured by the phenol cotton thread test, the density of cup cells in the conjunctiva was measured by periodic acid-Schiff (PAS) staining, and the expression levels of SIRT1, GPx, and SOD2 in lacrimal glands were detected by Western blotting. Results In hypertonic conditions, the apoptosis of HCE-2 cells increased, the expression of the antioxidant proteins SOD2 and GPx decreased, ROS production increased, and the expression of SIRT1 protein, an essential regulator of mitochondrial function, was downregulated. Treatment with resveratrol reversed the mitochondrial dysfunction mediated by high osmotic pressure. In the DED mouse model, resveratrol treatment promoted tear production and goblet cell number in DED mice, decreased corneal fluorescein staining, upregulated SIRT1 expression, and induced SOD2 and GPx expression in DED mice. Conclusion Resveratrol alleviates mitochondrial dysfunction by promoting SIRT1 expression, thus reducing ocular surface injury in mice with dry eye. This study suggests a new path against DED.
Collapse
|
20
|
Total flavonoid and ionic elements contents in 32 medicinal plants collected from natural habitats in Northern Ukraine. J Herb Med 2021. [DOI: 10.1016/j.hermed.2021.100492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
21
|
Bhattacharya T, Dey PS, Akter R, Kabir MT, Rahman MH, Rauf A. Effect of natural leaf extracts as phytomedicine in curing geriatrics. Exp Gerontol 2021; 150:111352. [PMID: 33894308 DOI: 10.1016/j.exger.2021.111352] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/22/2021] [Accepted: 04/08/2021] [Indexed: 12/19/2022]
Abstract
Old age is viewed as an unavoidable, undesirable, and problem-ridden phase of life. As people age, they become more susceptible to disease and disability due to various factors like low immunity, decreased functionality of cells, DNA damage, higher incidence of inflammation, etc. Healthy aging is very important. The nutrition and health of the elderly is often neglected. Nutritional interventions could play an important part in the prevention of degenerative conditions of the elderly and an improvement of their quality of life. The medicinal properties of plants are always believed for its therapeutic effect and its efficiency in treating many without adverse effects. The role of phytomedicine in aging is very crucial as it possesses important bioactive compounds and constituents (such as polyphenols, flavonoids, phenolic acids, and others) which are considered to provide anti-aging properties as well as helps in reducing age-associated problems. Some natural leaves such as Moringa oleifera, curry leaves, guava leaves, green tea, olive leaves, Ginkgo biloba, thankuni leaves, grape leaves, vasaka leaves, and kulekhara leaves are found to have therapeutic effects against diseases like cancer, diabetes, immunosuppression, hepatic damage, and neurodegenerative disorders. Hence, this review aims at understanding the effectiveness of these natural products in curing the geriatric population and the mechanism by which the therapeutic effects are exerted by them.
Collapse
Affiliation(s)
- Tanima Bhattacharya
- School of Chemistry & Chemical Engineering, Hubei University, Wuhan 430062, China; Department of Science & Engineering, Novel Global Community Educational Foundation, NSW, Australia
| | - Protity Shuvra Dey
- Department of Food Science & Nutrition Management, J.D.Birla Institute, Kolkata, West Bengal, India
| | - Rokeya Akter
- Department of Pharmacy, Jagannath University, Sadarghat, Dhaka-1100, Bangladesh
| | - Md Tanvir Kabir
- Department of Pharmacy, Brac University, 66 Mohakhali, Dhaka 1212, Bangladesh
| | - Md Habibur Rahman
- Department of Pharmacy, Southeast University, Banani, Dhaka 1213, Bangladesh.
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, Anbar 23430 KPK, Pakistan
| |
Collapse
|
22
|
Health Potential of Aloe vera against Oxidative Stress Induced Corneal Damage: An "In Vitro" Study. Antioxidants (Basel) 2021; 10:antiox10020318. [PMID: 33672553 PMCID: PMC7923787 DOI: 10.3390/antiox10020318] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/05/2021] [Accepted: 02/17/2021] [Indexed: 02/07/2023] Open
Abstract
Fuchs endothelial corneal dystrophy (FECD) is characterized by the gradual deterioration of corneal endothelial cells (CECs) and is the most common cause of corneal transplantation worldwide. CECs apoptosis caused by oxidative stress plays a pivotal role in the pathogenesis of FECD. Antioxidant compounds have been of considerable significance as a candidate treatment in the management of corneal diseases. Based on these findings, the objective of this study was to evaluate the effects of an aloe extract with antioxidant properties, in an “in vitro” model of FECD. Human corneal epithelial (HCE) cells were preincubated with aloe extract 100 μg/mL, two hours before hydrogen peroxide (H2O2) stimulus. H2O2 challenge significantly reduced the cell viability, increased the generation of Reactive Oxygen Species (ROS) and malondialdehyde levels. Moreover, m-RNA expression and activity of Nrf-2, Catalase and Superoxide dismutase (SOD) were reduced together with an enhanced expression of IL-1β, tumor necrosis factor-α (TNF-α), IL-6, and cyclooxygenase 2 (COX-2). Furthermore, Bcl-2, Caspase-3 and Caspase-8 expression were down-regulated while Bax was up-regulated by H2O2 stimulus. Aloe extract blunted the oxidative stress-induced inflammatory cascade triggered by H2O2 and modulated apoptosis. Aloe extract defends HCE cells from H2O2-induced injury possibly due its antioxidant and anti-inflammatory activity, indicating that eye drops containing aloe extract may be used as an adjunctive treatment for FECD.
Collapse
|
23
|
Doungtip P, Kim KT, Hong H, Ju SE, Choi JW, Siriwoharn T, Prinyawiwatkul W, Sriwattana S. Effects of immersion in fermented tea liquid and steam treatments on physicochemical properties and ginsenoside profiles of Korean ginseng. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Kyung Tack Kim
- Division of Strategic Food Technology Korea Food Research Institute Gyeonggi‐do Republic of Korea
| | - Hee‐Do Hong
- Division of Strategic Food Technology Korea Food Research Institute Gyeonggi‐do Republic of Korea
| | - Shin Eun Ju
- Division of Strategic Food Technology Korea Food Research Institute Gyeonggi‐do Republic of Korea
| | - Jae Woong Choi
- Division of Strategic Food Technology Korea Food Research Institute Gyeonggi‐do Republic of Korea
| | | | - Witoon Prinyawiwatkul
- School of Nutrition and Food Sciences Louisiana State University, Agricultural Center Baton Rouge LA USA
| | | |
Collapse
|
24
|
Li X, Lu L, Chen J, Zhang C, Chen H, Huang H. New Insight into the Mechanisms of Ginkgo Biloba Extract in Vascular Aging Prevention. Curr Vasc Pharmacol 2020; 18:334-345. [PMID: 31223090 DOI: 10.2174/1570161117666190621150725] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 05/07/2019] [Accepted: 05/14/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Aging-associated vascular dysfunction promotes cardiovascular diseases. Recently, Ginkgo biloba extract (GBE) has attracted considerable attention in the prevention of aged vasculature. METHODS This review discusses the pathophysiological alterations in aged vasculature and the underlying mechanisms of GBE in vascular aging suppression. RESULTS Both arterial stiffening and endothelial dysfunction are critical aging-related vascular phenotypes that result in the progression of cardiovascular diseases in the general population. Consistent oxidative stress and inflammatory reaction lead to vascular dysfunction. GBE ameliorates aging-related vascular dysfunction, due to its antioxidant and anti-inflammatory properties. The main effects of GBE in aged vasculature might be associated with the longevity signaling pathways. GBE also attenuates the progression of vascular aging in diabetes mellitus via regulation of glucose and lipid metabolism. CONCLUSION GBE plays an important role in the prevention of vascular aging process. It is a promising therapeutic approach to ameliorate aging-related vascular dysfunction and cardiovascular diseases.
Collapse
Affiliation(s)
- Xiaoxue Li
- Department of Cardiology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Liuyi Lu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jie Chen
- Department of Radiation Oncology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Chao Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hong Chen
- Vascular Biology Program and Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Hui Huang
- Department of Cardiology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
25
|
Assessing the Impact of Purslane (Portulaca oleracea L.) on Growth Performance, Anti-Oxidative, and Immune Activities in Grass Carp (Ctenopharyngodon idella). ANNALS OF ANIMAL SCIENCE 2020. [DOI: 10.2478/aoas-2020-0042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Abstract
In this study, the basal diet was supplemented with ethanolic extract of purslane (Portulaca oleracea L.) and the possible effects on growth performance, anti-oxidative, and immune activities of grass carp were evaluated. Fish with initial weight 1.23 ± 0.11 g were randomly divided into four groups (triplicates) and fed purslane extract at 0% (T0), 0.5% (T1), 1% (T2), and 1.5% (T3) for 56 days. At the end of the feeding trial, the results showed that growth parameters were enhanced in T1 groups compared to the control group (P<0.05). Lipase activity in T1 and T2 groups increased, whereas no significant changes were noticed in cases of amylase and protease activities (P>0.05). Catalase and superoxide dismutase activities were enhanced in all groups fed the supplemented diets in comparison with the control group (P<0.05). However, no significant alteration was noticed in the case of glutathione peroxidase activity following the administration of purslane extract (P>0.05). A significant increase in total immunoglobulin level was noted in the T1 group, but lysozyme activity was higher in T1 and T2 groups compared to the control group (P<0.05). In conclusion, supplementation of grass carp diet with the purslane ethanolic extract, especially at 0.5%, can improve growth performance, lipase activity, the antioxidant enzyme activities as well as the immune response of grass carp fingerlings.
Collapse
|
26
|
Production of Vegetables and Artichokes Is Associated with Lower Cardiovascular Mortality: An Ecological Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17186583. [PMID: 32927601 PMCID: PMC7558224 DOI: 10.3390/ijerph17186583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/01/2020] [Accepted: 09/05/2020] [Indexed: 11/16/2022]
Abstract
Mortality due to cardiovascular disease (CVD), including cerebrovascular disease (CED) and ischaemic heart disease (IHD), was considerably different in eight municipalities of the province of Castellón, Community of Valencia (Spain) during the period of 1991-2011. In addition, these villages showed differences in agricultural practices and production. Since high vegetable consumption has been linked to decreased all-cause, CVD, and CED mortalities, we hypothesized that the diversity in vegetable and artichoke production, used as proxies for their consumption, could be associated with the diversity of mortality rates. In order to test our hypothesis, we estimated the smoothed standardized mortality ratios (SMRs) of CVD, CED, and IHD mortalities and a directed, age-adjusted mortality rate (AMR). We used a multilevel linear regression analysis to account for the ecological nature of our study. After adjustment, the CVD and CED SMRs were inversely associated with vegetable and artichoke production, with a reduction in SMRs for CVD: -0.19 (95% Confidence Interval [CI] -0.31 to -0.07) and -0.42 (95% CI -0.70 to -0.15) per hectare/103 inhabitants, respectively. The SMRs for CED also decreased: -0.68 (95% CI -1.61 to -0.19) and -1.47 (95% CI -2.57 to -0.36) per hectare/103 inhabitants, respectively. The SMRs for IHD were not associated with vegetal and artichoke production. When the directed AMR was used, CED mortality was consistent with the previous results, whereas the CVD mortality association was lost. Our results indicate that vegetable and artichoke production may act as protective factors of CED and CVD mortalities.
Collapse
|
27
|
Abstract
Arsenic (As) is widely used in the modern industry, especially in the production of pesticides, herbicides, wood preservatives, and semiconductors. The sources of As such as contaminated water, air, soil, but also food, can cause serious human diseases. The complex mechanism of As toxicity in the human body is associated with the generation of free radicals and the induction of oxidative damage in the cell. One effective strategy in reducing the toxic effects of As is the usage of chelating agents, which provide the formation of inert chelator–metal complexes with their further excretion from the body. This review discusses different aspects of the use of metal chelators, alone or in combination, in the treatment of As poisoning. Consideration is given to the therapeutic effect of thiol chelators such as meso-2,3-dimercaptosuccinic acid, sodium 2,3-dimercapto-1-propanesulfonate, 2,3-dimercaptopropanol, penicillamine, ethylenediaminetetraacetic acid, and other recent agents against As toxicity. The review also considers the possible role of flavonoids, trace elements, and herbal drugs as promising natural chelating and detoxifying agents.
Collapse
|
28
|
Doungtip P, Sriwattana S, Kim KT. Understanding Thai consumer attitudes and expectations of ginseng food products. J SENS STUD 2020. [DOI: 10.1111/joss.12553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | | | - Kyung T. Kim
- Division of Strategic Food TechnologyKorea Food Research Institute Seongnam‐si Republic of Korea
| |
Collapse
|
29
|
Kumar R, Akhtar F, Rizvi SI. Hesperidin attenuates altered redox homeostasis in an experimental hyperlipidaemic model of rat. Clin Exp Pharmacol Physiol 2020; 47:571-582. [DOI: 10.1111/1440-1681.13221] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 11/21/2019] [Accepted: 11/27/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Raushan Kumar
- Department of Biochemistry University of Allahabad Allahabad India
| | - Farhan Akhtar
- Department of Biochemistry University of Allahabad Allahabad India
| | | |
Collapse
|
30
|
Coman V, Teleky BE, Mitrea L, Martău GA, Szabo K, Călinoiu LF, Vodnar DC. Bioactive potential of fruit and vegetable wastes. ADVANCES IN FOOD AND NUTRITION RESEARCH 2019; 91:157-225. [PMID: 32035596 DOI: 10.1016/bs.afnr.2019.07.001] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Fruits and vegetables are essential for human nutrition, delivering a substantial proportion of vitamins, minerals, and fibers in our daily diet. Unfortunately, half the fruits and vegetables produced worldwide end up as wastes, generating environmental issues caused mainly by microbial degradation. Most wastes are generated by industrial processing, the so-called by-products. These by-products still contain many bioactive compounds post-processing, such as macronutrients (proteins and carbohydrates) and phytochemicals (polyphenols and carotenoids). Recently, the recovery of these bioactive compounds from industry by-products has received significant attention, mainly due to their possible health benefits for humans. This chapter focuses on the bioactive potential of fruit and vegetable by-products with possible applications in the food industry (functional foods) and in the health sector (nutraceuticals).
Collapse
Affiliation(s)
- Vasile Coman
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| | - Bernadette-Emőke Teleky
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| | - Laura Mitrea
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania; Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| | - Gheorghe Adrian Martău
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania; Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| | - Katalin Szabo
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| | - Lavinia-Florina Călinoiu
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania; Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| | - Dan Cristian Vodnar
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania; Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania.
| |
Collapse
|
31
|
Liu L, Anderson GA, Fernandez TG, Doré S. Efficacy and Mechanism of Panax Ginseng in Experimental Stroke. Front Neurosci 2019; 13:294. [PMID: 31068769 PMCID: PMC6491687 DOI: 10.3389/fnins.2019.00294] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 03/13/2019] [Indexed: 12/30/2022] Open
Abstract
Stroke is one of the leading causes of death and long-term disability worldwide. However, effective therapeutic approaches are still limited. The disruption of blood supply triggers complicated temporal and spatial events involving hemodynamic, biochemical, and neurophysiologic changes, eventually leading to pathological disturbance and diverse clinical symptoms. Ginseng (Panax ginseng), a popular herb distributed in East Asia, has been extensively used as medicinal and nutritional supplements for a variety of disorders worldwide. In recent years, ginseng has displayed attractive beneficial effects in distinct neurological disorders including stroke, involving multiple protective mechanisms. In this article, we reviewed the literature on ginseng studies in the experimental stroke field, particularly focusing on the in vivo evidence on the preventive or therapeutic efficacy and mechanisms of ginseng and ginsenosides in various stroke models of mice and rats. We also summarized the efficacy and underlying mechanisms of ginseng and ginsenosides on short- and long-term stroke outcomes.
Collapse
Affiliation(s)
- Lei Liu
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease and McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Gigi A Anderson
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease and McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Tyler G Fernandez
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease and McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Sylvain Doré
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease and McKnight Brain Institute, University of Florida, Gainesville, FL, United States.,Departments of Neurology, Psychiatry, Pharmaceutics, and Neuroscience, University of Florida, Gainesville, FL, United States
| |
Collapse
|
32
|
Przybylska A, Bazylak G, Kosicki R, Altyn I, Twaruzek M, Grajewski J, Soltys-Lelek A. Advantageous Extraction, Cleanup, and UHPLC-MS/MS Detection of Patulin Mycotoxin in Dietary Supplements and Herbal Blends Containing Hawberry from Crataegus spp. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2019; 2019:2159097. [PMID: 30881725 PMCID: PMC6381574 DOI: 10.1155/2019/2159097] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 12/21/2018] [Accepted: 01/13/2019] [Indexed: 06/09/2023]
Abstract
Patulin (PAT) is a highly genotoxic mycotoxin still found as the common contaminant of various kinds of spoiled fruits and related commodities which are often endorsed as the health-enhancing products. Thus, a fast and convenient liquid-solid extraction followed by a solid-phase cleanup with the MycoSep®228 AflaPat multifunctional column was used for the highly efficient isolation of PAT with an average recovery of 112.7% from commercial dietary supplements and herbal blends formulated with dried hawberry. Analysis of the PAT content was carried out using gradient elution with a Synergi Polar C18 column (150 × 2 mm, 4 μm) and UHPLC system equipped with a mass spectrometer. PAT was detected in all (n=14) commercial single-component dietary supplements formulated with dried hawberry belonging to Crataegus monogyna and/or Crataegus laevigata. Similarly, PAT was detected in 67% of the studied multicomponent commercial herbal blends (n=6) that contained-in addition to hawberry-different amounts of apple, chokeberry, elderberry, hibiscus, or mallow. Moreover, the PAT content was determined in the hawberry collected from the mature wild hawthorn trees belonging to three botanical species, Crataegus monogyna Jacq., Crataegus laevigata (Poiret) DC, and Crataegus rhipidophylla Gand, growing in the recreational forest areas and in the law-protected state national forest park in Poland. In conclusion, to prevent PAT accumulation and reduce the health risk of consumers in globalizing markets, the implementation of improved cultivation/processing practices of hawthorn trees and hawberry as well as increased analytical control related to the presence of PAT in dietary supplements and herbal blends formulated with fresh, dried, or frozen hawberry should be urgently recommended.
Collapse
Affiliation(s)
- Anna Przybylska
- Department of Pharmaco-Bromatology and Molecular Nutrition, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Jagiellonska 13, PL-85067 Bydgoszcz, Poland
| | - Grzegorz Bazylak
- Department of Pharmaco-Bromatology and Molecular Nutrition, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Jagiellonska 13, PL-85067 Bydgoszcz, Poland
| | - Robert Kosicki
- Department of Physiology and Toxicology, Institute of Experimental Biology, Faculty of Natural Sciences, Kazimierz Wielki University, Chodkiewicza 30, PL-85064 Bydgoszcz, Poland
| | - Iwona Altyn
- Department of Physiology and Toxicology, Institute of Experimental Biology, Faculty of Natural Sciences, Kazimierz Wielki University, Chodkiewicza 30, PL-85064 Bydgoszcz, Poland
| | - Magdalena Twaruzek
- Department of Physiology and Toxicology, Institute of Experimental Biology, Faculty of Natural Sciences, Kazimierz Wielki University, Chodkiewicza 30, PL-85064 Bydgoszcz, Poland
| | - Jan Grajewski
- Department of Physiology and Toxicology, Institute of Experimental Biology, Faculty of Natural Sciences, Kazimierz Wielki University, Chodkiewicza 30, PL-85064 Bydgoszcz, Poland
| | | |
Collapse
|
33
|
Liu Y, Li R, Xie J, Hu J, Huang X, Ren F, Li L. Protective Effect of Hydrogen on Sodium Iodate-Induced Age-Related Macular Degeneration in Mice. Front Aging Neurosci 2018; 10:389. [PMID: 30564112 PMCID: PMC6288204 DOI: 10.3389/fnagi.2018.00389] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 11/06/2018] [Indexed: 12/11/2022] Open
Abstract
Oxidative stress is one of the main causes of AMD. Hydrogen has anti-oxidative stress and apoptotic effects on retinal injury. However, the effect of hydrogen on AMD is not clear. In this study, fundus radiography, OCT, and FFA demonstrated that HRW reduced the deposition of drusen-like structures in RPE layer, prevented retina from thinning and leakage of ocular fundus vasculature induced by NaIO3. ERG analysis confirmed that HRW effectively reversed the decrease of a-wave and b-wave amplitude in NaIO3-mice. Mechanistically, HRW greatly reduced the oxidative stress reaction through decreased MDA levels, increased SOD production, and decreased ROS content. The OGG1 expression was downregulated which is a marker of oxidative stress. Involvement of oxidative stress was confirmed using oxidative stress inhibitor ALCAR. Moreover, oxidative stress reaction was associated with expression of Sirt1 level and HRW significantly inhibited the downregulation of Sirt1 expression. This result was further confirmed with AICAR which restore Sirt1 expression and activity. In addition, NaIO3-induced retinal damage was related to apoptosis via caspase 8 and caspase 9, but not the caspase 3 pathways, which led to upregulation of Bax and p53, downregulation of Bcl-2, and increase in Jc-1-positive cells in mice. However, HRW effectively reversed these effects that apoptosis induced. These results suggest that HRW protects retinal functions against oxidative stress injury through inhibiting downregulation of Sirt1 and reducing retinal apoptosis. Therefore, we speculated that hydrogen administration is a promising treatment for AMD therapy.
Collapse
Affiliation(s)
- Yanli Liu
- Department of Cell Biology, Taizhou University, Taizhou, China
| | - Ruichan Li
- Department of Cell Biology, Taizhou University, Taizhou, China
| | - Jing Xie
- Department of Cell Biology, Taizhou University, Taizhou, China
| | - Jiehua Hu
- Information Center, Logistics College, Naval University of Engineering, Tianjin, China
| | - Xudong Huang
- Chemistry and Life College, Chengdu Normal University, Chengdu, China
| | - Fu Ren
- Biological Anthropology Institute, Jinzhou Medical University, Jinzhou, China
| | - Lihua Li
- Department of Cell Biology, Taizhou University, Taizhou, China
| |
Collapse
|
34
|
Abdelazim A, Khater S, Ali H, Shalaby S, Afifi M, Saddick S, Alkaladi A, Almaghrabi OA. Panax ginseng improves glucose metabolism in streptozotocin-induced diabetic rats through 5' adenosine monophosphate kinase up-regulation. Saudi J Biol Sci 2018; 26:1436-1441. [PMID: 31762606 PMCID: PMC6864146 DOI: 10.1016/j.sjbs.2018.06.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 05/09/2018] [Accepted: 06/04/2018] [Indexed: 12/12/2022] Open
Abstract
5′ AMP-activated protein kinase (AMPK), insulin receptors and transporters are distorted in diabetes mellitus. In this study, the effect of Panax ginseng was assessed on glucose manipulating enzymes activities and gene expression of AMPK, IRA and GLUT2 in streptozotocin-induced diabetic male rats. Forty male albino rats were randomly divided to four groups 10 rats of each, group I, normal control group (received saline orally); group II, normal rats received 200 mg/kg of Panax ginseng orally; group III, Streptozotocin (STZ) –induced diabetic rats and group IV, STZ-induced diabetic rats received 200 mg/kg of Panax ginseng orally. The duration of experiment was 30 days. Results showed the ability of Panax ginseng to induce a significant decrease in the blood glucose and increase in the serum insulin levels, hepatic glucokinase (GK), and glycogen synthase (GS) activities with a modulation of lipid profile besides high expression levels of AMPK, insulin receptor A (IRA), glucose transporting protein-2 (GLUT-2) in liver of diabetic rats. In conclusion, the obtained results point to the ability of Panax ginseng to improve the glucose metabolism in diabetic models.
Collapse
Affiliation(s)
- Aaser Abdelazim
- Department of Biochemistry, Faculty of Vet. Medicine, Zagazig University, Zagazig, Egypt.,Department of Basic Medical Sciences, College of Applied Medical Sciences, University of Bisha, Bisha, Saudi Arabia
| | - Safaa Khater
- Department of Biochemistry, Faculty of Vet. Medicine, Zagazig University, Zagazig, Egypt
| | - Haytham Ali
- Department of Biochemistry, Faculty of Vet. Medicine, Zagazig University, Zagazig, Egypt.,Department of Biological Sciences, Faculty of Science, University of Jeddah, Saudi Arabia
| | - Shimaa Shalaby
- Department of Physiology, Faculty of Vet. Medicine, Zagazig University, Zagazig, Egypt
| | - Mohamed Afifi
- Department of Biochemistry, Faculty of Vet. Medicine, Zagazig University, Zagazig, Egypt.,Department of Biological Sciences, Faculty of Science, University of Jeddah, Saudi Arabia.,University of Jeddah Center for Scientific and Medical Research, University of Jeddah, Saudi Arabia
| | - Salina Saddick
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Ali Alkaladi
- Department of Biological Sciences, Faculty of Science, University of Jeddah, Saudi Arabia
| | - Omar A Almaghrabi
- Department of Biological Sciences, Faculty of Science, University of Jeddah, Saudi Arabia
| |
Collapse
|