1
|
You Y, Cai B, Zhu C, Zhou Z, Xu J, Huang L, Jie L, Du H. 3,3'-Diindolylmethane, from Cruciferous Vegetables, Ameliorates Cigarette Smoke-Induced Inflammatory Amplification in CIA model mice by Targeting the AhR/NF-κB crosstalk. J Nutr Biochem 2025:109953. [PMID: 40349797 DOI: 10.1016/j.jnutbio.2025.109953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 04/16/2025] [Accepted: 05/05/2025] [Indexed: 05/14/2025]
Abstract
Environmental factors are important inducement triggering Rheumatoid Arthritis (RA). Smoke exposure would worse RA by aggravating RA inflammation and bone damage. Previous studies have demonstrated that a plant-based diet can improve RA patients' clinical symptoms. 3,3'-Diindolylmethane (DIM), a phytochemical from cruciferous vegetables, has been proven to have anti-inflammatory effect. Here, we investigated the effects and potential mechanism of DIM on RA inflammation amplification induced by smoking. Our experiment in vivo confirmed the favorable effects of DIM in CIA mice with smoke exposure, including an improved inflammatory swelling and reduced synovial hyperplasia, in addition to a decrease in serum inflammatory cytokines. Additionally, various experiments demonstrated that DIM effectively inhibited RA fibroblast-like synoviocytes (RA-FLSs) abnormal proliferation, migration and invasion induced by Cigarette Smoke Extract, while reducing the expression of the pro-inflammatory cytokines, growth factors and MMPs in vitro. AhR is an important target for RA with smoking and smoke exposure. Immunohistochemistry verified that DIM may ameliorate inflammation amplification in mice with CIA by inhibiting AhR expression in synovium. Moreover, our findings indicated DIM and AhR have strong binding affinity and interference AhR expression with siRNA had similar effects to DIM in RA-FLSs. In summary, DIM can ameliorate RA inflammation amplification, which is through disrupting the AhR/NF-κB P65 interaction and inhibiting MAPK pathway activation. Our results provided novel insight into the molecular mechanism of DIM underlying the anti-inflammation effect by targeting the AhR/NF-κB crosstalk. Furthermore, DIM probably as a dietary supplement may improve life quality specially for RA with smoking and smoke exposure.
Collapse
Affiliation(s)
- Yizheng You
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, 510515, China; Guangdong Province Key Laboratory of Immune Regulation and Immunotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Bo Cai
- Department of Rheumatology and Clinical Immunology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510280, China
| | - Cheng Zhu
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, 510515, China; Guangdong Province Key Laboratory of Immune Regulation and Immunotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Zhou Zhou
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Junrui Xu
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Longbo Huang
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, 510515, China; Guangdong Province Key Laboratory of Immune Regulation and Immunotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Ligang Jie
- Department of Rheumatology and Clinical Immunology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510280, China.
| | - Hongyan Du
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, 510515, China; Department of Rheumatology and Clinical Immunology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510280, China; Guangdong Province Key Laboratory of Immune Regulation and Immunotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| |
Collapse
|
2
|
Wei Q, Jiang H, Zeng J, Xu J, Zhang H, Xiao E, Lu Q, Huang G. Quercetin protected the gut barrier in ulcerative colitis by activating aryl hydrocarbon receptor. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 140:156633. [PMID: 40088746 DOI: 10.1016/j.phymed.2025.156633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 02/25/2025] [Accepted: 03/08/2025] [Indexed: 03/17/2025]
Abstract
BACKGROUND Ulcerative colitis (UC) is characterized by abdominal pain and bloody diarrhoea and restoring the gut barrier is the core goal of UC treatment. Activation of aryl hydrocarbon receptor (Ahr) was reported to effectively alleviate symptoms and repair the gut barrier damage. Neutrophil extracellular traps (NETs) have been recognized as potential targets in the treatment of UC. Ahr activation has been found to be capable of upregulating Nqo1, thereby reducing the production of reactive oxygen species (ROS), which is important in the formation of NETs. Quercetin (QUE), which is derived from natural plants and herbs used in traditional Chinese medicine (TCM), is able to strengthen gut barrier function by activating Ahr. PURPOSE The aim of this study is to investigate how QUE suppresses NETs in UC and activates Ahr in neutrophils. METHODS In this study, the dextran sulfate sodium (DSS)-induced UC model was used. Histopathological assessments were performed in the paraffin slides of tissues after H&E, PAS, Masson and alcian blue staining. The concentration of cytokines was also detected using cytometric beads array kits. Based on the transcriptomic analysis of colon tissues, western blot (WB) analysis, immunohistochemistry (IHC) assays and immunofluorescence (IF) assays were conducted to validate the significantly regulated genes and pathways. In vitro, the binding of quercetin to Ahr was calculated by molecular dynamic simulations (MDS) and biolayer interferometry (BLI) analysis. Primary neutrophils isolated from mice were cocultured with LPS or PMA with or without quercetin. The regulated genes were detected using WB, real-time quantitative PCR, enzyme-linked immunosorbent assay (ELISA) and IF analysis. The agonists and antagonist of Ahr were used as the control. RESULTS After the administration of quercetin, colon inflammation and gut barrier disruption was significantly prevented through inhibiting the NF-κB pathway and upregulating the expression of Ahr/Arnt and Nqo1. The transcriptomic analysis and IHC assays showed that inflammation and NETs were greatly decreased by QUE treatment. In vitro, quercetin inhibited LPS-induced inflammatory responses through NF-κB pathway. Furthermore, MDS and BLI analysis revealed that QUE is an agonist of AHR. QUE activated Ahr translocation and reduced ROS production via regulation of Arnt and Nqo1. CONCLUSION This study proved that quercetin greatly improved gut barrier function in the DSS-induced colitis model by regulating NET formation and that quercetin was able to activate Ahr and upregulate Arnt in neutrophils to regulate NET formation.
Collapse
Affiliation(s)
- Qiuzhu Wei
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Haixu Jiang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China; School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Jia Zeng
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Jie Xu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Honglin Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Enfan Xiao
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Qingyi Lu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Guangrui Huang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China.
| |
Collapse
|
3
|
Gao A, Wu R, Mu Y, Jin R, Jiang S, Gao C, Li X, Wang C. Restoring immune tolerance in pre-RA: immunometabolic dialogue between gut microbiota and regulatory T cells. Front Immunol 2025; 16:1565133. [PMID: 40181974 PMCID: PMC11965651 DOI: 10.3389/fimmu.2025.1565133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 03/10/2025] [Indexed: 04/05/2025] Open
Abstract
Rheumatoid arthritis (RA) is a complex chronic autoimmune disease that remains incurable for most patients. With advances in our understanding of the disease's natural history, the concept of pre-RA has emerged as a window of opportunity to intervene before irreversible joint damage occurs. Numerous studies have indicated that the key step driving autoimmunity in early pre-RA lies at an extra-articular site, which is closely related to the regulatory T (Treg) cell-established immune tolerance to the gut microbiota. The intricate immunometabolic crosstalk between Treg cells and the gut microbiota is beginning to be understood, with the re-recognition of Treg cells as metabolic sensors in recent years. In the future, deciphering their immunometabolic dialogue may help to elucidate the underlying mechanisms of pre-RA. Identifying novel biological pathways in the pre-RA stage will bring insights into restoring immune tolerance, thereby potentially curing or preventing the onset of RA.
Collapse
Affiliation(s)
- Anqi Gao
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Rheumatology, Shanxi Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi, China
- Department of Rheumatology, Shanxi Precision Medical Engineering Research Center for Rheumatology, Taiyuan, Shanxi, China
| | - Ruihe Wu
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Rheumatology, Shanxi Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi, China
- Department of Rheumatology, Shanxi Precision Medical Engineering Research Center for Rheumatology, Taiyuan, Shanxi, China
| | - Yanfei Mu
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Rheumatology, Shanxi Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi, China
- Department of Rheumatology, Shanxi Precision Medical Engineering Research Center for Rheumatology, Taiyuan, Shanxi, China
| | - Ruqing Jin
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Rheumatology, Shanxi Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi, China
- Department of Rheumatology, Shanxi Precision Medical Engineering Research Center for Rheumatology, Taiyuan, Shanxi, China
| | - Saixin Jiang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Rheumatology, Shanxi Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi, China
- Department of Rheumatology, Shanxi Precision Medical Engineering Research Center for Rheumatology, Taiyuan, Shanxi, China
| | - Chong Gao
- Pathology, Joint Program in Transfusion Medicine, Brigham and Women’s Hospital/Children’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Xiaofeng Li
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Rheumatology, Shanxi Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi, China
- Department of Rheumatology, Shanxi Precision Medical Engineering Research Center for Rheumatology, Taiyuan, Shanxi, China
| | - Caihong Wang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Rheumatology, Shanxi Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi, China
- Department of Rheumatology, Shanxi Precision Medical Engineering Research Center for Rheumatology, Taiyuan, Shanxi, China
| |
Collapse
|
4
|
Husain I, Abdulrahman B, Dale OR, Katragunta K, Idrisi M, Gurley BJ, Ali Z, Avula B, Chittiboyina AG, Khan IA, Ujah FO, Khan SI. Interaction of Phyllanthus amarus extract and its lignans with human xenobiotic receptors, drug metabolizing enzymes and drug transporters. JOURNAL OF ETHNOPHARMACOLOGY 2025; 339:119142. [PMID: 39571700 DOI: 10.1016/j.jep.2024.119142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 11/17/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Phyllanthus amarus is ethnomedicinally used to treat gallbladder stones, kidney stones and chronic liver diseases. P. amarus is gaining popularity as an ingredient in many botanical dietary supplements. AIM OF THE STUDY To evaluate the interaction of P. amarus extract and its lignans with human xenobiotic sensing receptors (PXR and AhR) and their downstream genes. MATERIALS AND METHODS Activation of PXR and AhR was measured by reporter gene assays. Gene expression analysis was performed in hepatic (HepG2) and intestinal (LS174T) cells by RT-PCR. CYP inhibition assays were carried out in baculosomes. The inhibitory effect on the ABC transporters (P-gp and BCRP) was investigated via rhodamine-123 and Hoechst 33342 uptake assays in Caco-2 and MDR-MDCK cells. Effect on CYP3A4 and CYP1A2 enzyme activity was measured in primary human hepatocytes. RESULTS P. amarus extract and its lignans activated AhR and PXR in respective reporter cells. Tested extract and lignans significantly increased CYP3A4 mRNA but inhibited CYP3A4 enzyme activity when tested in primary human hepatocytes and CYP3A4-specific baculosomes. In contrast, increased CYP1A2 mRNA was associated with increased CYP1A2 enzyme activity in hepatocytes. No inhibition of CYP1A2 activity was detected in baculosomes. A weak inhibitory effect on ABC-transporters was observed. CONCLUSIONS Results suggest that overconsumption of P. amarus or P. amarus-containing botanical supplements may change CYP homeostasis which could alter the pharmacokinetics of substrate drugs, thereby elevating the risk of herb-drug interactions (HDIs) when taken concomitantly with conventional medications. Further studies are warranted to strengthen the clinical relevance of these findings.
Collapse
Affiliation(s)
- Islam Husain
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, MS, 38677, United States
| | - Balkisu Abdulrahman
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, MS, 38677, United States; Department of Biochemistry and Molecular Biology, Faculty of Life Sciences, Federal University Dutsin-Ma, Dutsin-Ma, Katsina State, 821101, Nigeria
| | - Olivia R Dale
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, MS, 38677, United States
| | - Kumar Katragunta
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, MS, 38677, United States
| | - Mantasha Idrisi
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, MS, 38677, United States
| | - Bill J Gurley
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, MS, 38677, United States
| | - Zulfiqar Ali
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, MS, 38677, United States
| | - Bharathi Avula
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, MS, 38677, United States
| | - Amar G Chittiboyina
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, MS, 38677, United States
| | - Ikhlas A Khan
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, MS, 38677, United States; Department of Bio-Molecular Sciences, School of Pharmacy, The University of Mississippi, MS, 38677, United States
| | - Frederick Oduh Ujah
- Department of Biochemistry, Faculty of Basic Medical Sciences, Bayero University, Kano, Kano State, 700241, Nigeria
| | - Shabana I Khan
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, MS, 38677, United States; Department of Bio-Molecular Sciences, School of Pharmacy, The University of Mississippi, MS, 38677, United States.
| |
Collapse
|
5
|
Chang F, Wang L, Kim Y, Kim M, Lee S, Lee SW. The Aryl Hydrocarbon Receptor Regulates Invasiveness and Motility in Acute Myeloid Leukemia Cells through Expressional Regulation of Non-Muscle Myosin Heavy Chain IIA. Int J Mol Sci 2024; 25:8147. [PMID: 39125717 PMCID: PMC11311371 DOI: 10.3390/ijms25158147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Acute myeloid leukemia (AML) is the most prevalent type of hematopoietic malignancy. Despite recent therapeutic advancements, the high relapse rate associated with extramedullary involvement remains a challenging issue. Moreover, therapeutic targets that regulate the extramedullary infiltration of AML cells are still not fully elucidated. The Aryl Hydrocarbon Receptor (AHR) is known to influence the progression and migration of solid tumors; however, its role in AML is largely unknown. This study explored the roles of AHR in the invasion and migration of AML cells. We found that suppressed expression of AHR target genes correlated with an elevated relapse rate in AML. Treatment with an AHR agonist on patient-derived AML cells significantly decreased genes associated with leukocyte trans-endothelial migration, cell adhesion, and regulation of the actin cytoskeleton. These results were further confirmed in THP-1 and U937 AML cell lines using AHR agonists (TCDD and FICZ) and inhibitors (SR1 and CH-223191). Treatment with AHR agonists significantly reduced Matrigel invasion, while inhibitors enhanced it, regardless of the Matrigel's stiffness. AHR agonists significantly reduced the migration rate and chemokinesis of both cell lines, but AHR inhibitors enhanced them. Finally, we found that the activity of AHR and the expression of NMIIA are negatively correlated. These findings suggest that AHR activity regulates the invasiveness and motility of AML cells, making AHR a potential therapeutic target for preventing extramedullary infiltration in AML.
Collapse
MESH Headings
- Receptors, Aryl Hydrocarbon/metabolism
- Receptors, Aryl Hydrocarbon/genetics
- Receptors, Aryl Hydrocarbon/agonists
- Humans
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/genetics
- Cell Movement
- Myosin Heavy Chains/metabolism
- Myosin Heavy Chains/genetics
- Neoplasm Invasiveness
- Nonmuscle Myosin Type IIA/metabolism
- Nonmuscle Myosin Type IIA/genetics
- Cell Line, Tumor
- Female
- Male
- Gene Expression Regulation, Leukemic
- Middle Aged
- Aged
- THP-1 Cells
- U937 Cells
- Adult
- Basic Helix-Loop-Helix Transcription Factors
Collapse
Affiliation(s)
- Fengjiao Chang
- School of Nursing, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Lele Wang
- Department of Physiology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 110460, Republic of Korea
| | - Youngjoon Kim
- Department of Physiology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 110460, Republic of Korea
| | - Minkyoung Kim
- Department of Physiology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 110460, Republic of Korea
| | - Sunwoo Lee
- Department of Physiology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 110460, Republic of Korea
| | - Sang-Woo Lee
- Department of Physiology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 110460, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
| |
Collapse
|
6
|
Sipos F, Műzes G. Colonic Tuft Cells: The Less-Recognized Therapeutic Targets in Inflammatory Bowel Disease and Colorectal Cancer. Int J Mol Sci 2024; 25:6209. [PMID: 38892399 PMCID: PMC11172904 DOI: 10.3390/ijms25116209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/02/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
Tuft cells are more than guardian chemosensory elements of the digestive tract. They produce a variety of immunological effector molecules in response to stimulation; moreover, they are essential for defense against protozoa and nematodes. Beyond the description of their characteristics, this review aims to elucidate the potential pathogenic and therapeutic roles of colonic tuft cells in inflammatory bowel disease and colorectal cancer, focusing on their primarily immunomodulatory action. Regarding inflammatory bowel disease, tuft cells are implicated in both maintaining the integrity of the intestinal epithelial barrier and in tissue repair and regeneration processes. In addition to maintaining intestinal homeostasis, they display complex immune-regulatory functions. During the development of colorectal cancer, tuft cells can promote the epithelial-to-mesenchymal transition, alter the gastrointestinal microenvironment, and modulate both the anti-tumor immune response and the tumor microenvironment. A wide variety of their biological functions can be targeted for anti-inflammatory or anti-tumor therapies; however, the adverse side effects of immunomodulatory actions must be strictly considered.
Collapse
Affiliation(s)
- Ferenc Sipos
- Immunology Division, Department of Internal Medicine and Hematology, Semmelweis University, 1088 Budapest, Hungary
| | - Györgyi Műzes
- Immunology Division, Department of Internal Medicine and Hematology, Semmelweis University, 1088 Budapest, Hungary
| |
Collapse
|
7
|
Vyavahare S, Ahluwalia P, Gupta SK, Kolhe R, Hill WD, Hamrick M, Isales CM, Fulzele S. The Role of Aryl Hydrocarbon Receptor in Bone Biology. Int J Tryptophan Res 2024; 17:11786469241246674. [PMID: 38757095 PMCID: PMC11097734 DOI: 10.1177/11786469241246674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 03/25/2024] [Indexed: 05/18/2024] Open
Abstract
Aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor, is crucial in maintaining the skeletal system. Our study focuses on encapsulating the role of AhR in bone biology and identifying novel signaling pathways in musculoskeletal pathologies using the GEO dataset. The GEO2R analysis identified 8 genes (CYP1C1, SULT6B1, CYB5A, EDN1, CXCR4B, CTGFA, TIPARP, and CXXC5A) involved in the AhR pathway, which play a pivotal role in bone remodeling. The AhR knockout in hematopoietic stem cells showed alteration in several novel bone-related transcriptomes (eg, Defb14, ZNF 51, and Chrm5). Gene Ontology Enrichment Analysis demonstrated 54 different biological processes associated with bone homeostasis. Mainly, these processes include bone morphogenesis, bone development, bone trabeculae formation, bone resorption, bone maturation, bone mineralization, and bone marrow development. Employing Functional Annotation and Clustering through DAVID, we further uncovered the involvement of the xenobiotic metabolic process, p450 pathway, oxidation-reduction, and nitric oxide biosynthesis process in the AhR signaling pathway. The conflicting evidence of current research of AhR signaling on bone (positive and negative effects) homeostasis may be due to variations in ligand binding affinity, binding sites, half-life, chemical structure, and other unknown factors. In summary, our study provides a comprehensive understanding of the underlying mechanisms of the AhR pathway in bone biology.
Collapse
Affiliation(s)
- Sagar Vyavahare
- Department of Medicine, Augusta University, Augusta, GA, USA
| | | | | | - Ravindra Kolhe
- Department of Pathology, Augusta University, Augusta, GA, USA
| | - William D Hill
- Department of Pathology, Medical University of South Carolina, Charleston, SC, USA
| | - Mark Hamrick
- Department of Cell Biology and Anatomy, Augusta University, Augusta, GA, USA
- Center for Healthy Aging, Augusta University, Augusta, GA, USA
| | - Carlos M Isales
- Department of Medicine, Augusta University, Augusta, GA, USA
- Center for Healthy Aging, Augusta University, Augusta, GA, USA
| | - Sadanand Fulzele
- Department of Medicine, Augusta University, Augusta, GA, USA
- Department of Cell Biology and Anatomy, Augusta University, Augusta, GA, USA
- Center for Healthy Aging, Augusta University, Augusta, GA, USA
| |
Collapse
|
8
|
Schustak J, Han H, Bond K, Huang Q, Saint-Geniez M, Bao Y. Phenotypic high-throughput screening identifies aryl hydrocarbon receptor agonism as common inhibitor of toxin-induced retinal pigment epithelium cell death. PLoS One 2024; 19:e0301239. [PMID: 38635505 PMCID: PMC11025755 DOI: 10.1371/journal.pone.0301239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 03/12/2024] [Indexed: 04/20/2024] Open
Abstract
The retinal pigment epithelium (RPE) is essential to maintain retinal function, and RPE cell death represents a key pathogenic stage in the progression of several blinding ocular diseases, including age-related macular degeneration (AMD). To identify pathways and compounds able to prevent RPE cell death, we developed a phenotypic screening pipeline utilizing a compound library and high-throughput screening compatible assays on the human RPE cell line, ARPE-19, in response to different disease relevant cytotoxic stimuli. We show that the metabolic by-product of the visual cycle all-trans-retinal (atRAL) induces RPE apoptosis, while the lipid peroxidation by-product 4-hydroxynonenal (4-HNE) promotes necrotic cell death. Using these distinct stimuli for screening, we identified agonists of the aryl hydrocarbon receptor (AhR) as a consensus target able to prevent both atRAL mediated apoptosis and 4-HNE-induced necrotic cell death. This works serves as a framework for future studies dedicated to screening for inhibitors of cell death, as well as support for the discussion of AhR agonism in RPE pathology.
Collapse
Affiliation(s)
- Joshua Schustak
- Department of Ophthalmology, BioMedical Research, Novartis, Cambridge, Massachusetts, United States of America
| | - Hongwei Han
- Department of Ophthalmology, BioMedical Research, Novartis, Cambridge, Massachusetts, United States of America
| | - Kyle Bond
- Department of Ophthalmology, BioMedical Research, Novartis, Cambridge, Massachusetts, United States of America
| | - Qian Huang
- Department of Ophthalmology, BioMedical Research, Novartis, Cambridge, Massachusetts, United States of America
| | - Magali Saint-Geniez
- Department of Ophthalmology, BioMedical Research, Novartis, Cambridge, Massachusetts, United States of America
| | - Yi Bao
- Department of Ophthalmology, BioMedical Research, Novartis, Cambridge, Massachusetts, United States of America
| |
Collapse
|
9
|
Li H, Zhou L, Zhou W, Zhang X, Shang J, Feng X, Yu L, Fan J, Ren J, Zhang R, Duan X. Decoding the mitochondrial connection: development and validation of biomarkers for classifying and treating systemic lupus erythematosus through bioinformatics and machine learning. BMC Rheumatol 2023; 7:44. [PMID: 38044432 PMCID: PMC10694981 DOI: 10.1186/s41927-023-00369-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 11/28/2023] [Indexed: 12/05/2023] Open
Abstract
BACKGROUND Systemic lupus erythematosus (SLE) is a multifaceted autoimmune disease characterized by clinical and pathological diversity. Mitochondrial dysfunction has been identified as a critical pathogenetic factor in SLE. However, the specific molecular aspects and regulatory roles of this dysfunction in SLE are not fully understood. Our study aims to explore the molecular characteristics of mitochondria-related genes (MRGs) in SLE, with a focus on identifying reliable biomarkers for classification and therapeutic purposes. METHODS We sourced six SLE-related microarray datasets (GSE61635, GSE50772, GSE30153, GSE99967, GSE81622, and GSE49454) from the Gene Expression Omnibus (GEO) database. Three of these datasets (GSE61635, GSE50772, GSE30153) were integrated into a training set for differential analysis. The intersection of differentially expressed genes with MRGs yielded a set of differentially expressed MRGs (DE-MRGs). We employed machine learning algorithms-random forest (RF), support vector machine (SVM), and least absolute shrinkage and selection operator (LASSO) logistic regression-to select key hub genes. These genes' classifying potential was validated in the training set and three other validation sets (GSE99967, GSE81622, and GSE49454). Further analyses included differential expression, co-expression, protein-protein interaction (PPI), gene set enrichment analysis (GSEA), and immune infiltration, centered on these hub genes. We also constructed TF-mRNA, miRNA-mRNA, and drug-target networks based on these hub genes using the ChEA3, miRcode, and PubChem databases. RESULTS Our investigation identified 761 differentially expressed genes (DEGs), mainly related to viral infection, inflammatory, and immune-related signaling pathways. The interaction between these DEGs and MRGs led to the identification of 27 distinct DE-MRGs. Key among these were FAM210B, MSRB2, LYRM7, IFI27, and SCO2, designated as hub genes through machine learning analysis. Their significant role in SLE classification was confirmed in both the training and validation sets. Additional analyses included differential expression, co-expression, PPI, GSEA, immune infiltration, and the construction of TF-mRNA, miRNA-mRNA, and drug-target networks. CONCLUSIONS This research represents a novel exploration into the MRGs of SLE, identifying FAM210B, MSRB2, LYRM7, IFI27, and SCO2 as significant candidates for classifying and therapeutic targeting.
Collapse
Affiliation(s)
- Haoguang Li
- Department of Rheumatology and Immunology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Lu Zhou
- Department of Rheumatology and Immunology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Wei Zhou
- Department of Rheumatology and Immunology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Xiuling Zhang
- Department of Rheumatology and Immunology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Jingjing Shang
- Department of Rheumatology and Immunology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Xueqin Feng
- Department of Rheumatology and Immunology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Le Yu
- Department of Rheumatology and Immunology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Jie Fan
- Department of Rheumatology and Immunology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Jie Ren
- Department of Rheumatology and Immunology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Rongwei Zhang
- Department of Rheumatology and Immunology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Xinwang Duan
- Department of Rheumatology and Immunology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China.
| |
Collapse
|
10
|
Yang X, Bao Z, Lei X, Wang X, Zhao S, Du F, Liu X, Dong W. Omeprazole activates aryl hydrocarbon receptor to reduce hyperoxia-induced oxidative stress in the peripheral blood mononuclear cells from premature infants. J Matern Fetal Neonatal Med 2023; 36:2272577. [PMID: 37884440 DOI: 10.1080/14767058.2023.2272577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 10/14/2023] [Indexed: 10/28/2023]
Abstract
OBJECTIVE To investigate the correlation between the aryl hydrocarbon receptor (AhR) and reactive oxygen species (ROS) in peripheral blood mononuclear cells (PBMCs) of premature infants, to demonstrate the protective role of AhR against hyperoxia-induced oxidative stress in premature infants and to provide a rational basis for the use of omeprazole (OM) as a new treatment for bronchopulmonary dysplasia (BPD). METHODS From January 2021 to June 2021, 1-3 ml of discarded peripheral blood was collected from premature infants of gestational age less than 32 weeks who were not taking inhaled oxygen and were admitted to the Department of Neonatology of the Affiliated Hospital of Southwest Medical University. Using a random number table, the PBMCs were randomly assigned to each of the following groups: the control group, air + OM group, hyperoxia group, and hyperoxia + OM group. After 48 h of in vitro modeling and culture, PBMCs and the culture medium of each group were collected. Immunofluorescence analysis was used to examine ROS levels in PBMCs. A full-spectrum spectrophotometer was used to examine malondialdehyde (MDA) levels in the culture medium. Enzyme-linked immunosorbent assay (ELISA) was used to examine monocyte chemotactic protein 1 (MCP-1) levels in culture medium. Immunofluorescence analysis was used to examine the intracellular localization of AhR. Western blotting was used to examine the expression level of AhR in PBMCs. RESULTS Compared with those in the control group, the levels of ROS, MDA, and MCP-1 and the cytoplasm-nuclear translocation rate of AhR in the air + OM group did not change significantly (p > 0.05), but the expression level of AhR increased significantly (p < 0.05). The levels of ROS, MDA, and MCP-1 and the cytoplasm-nuclear translocation rate of AhR significantly increased in the hyperoxia group (p < 0.05), and the expression level of AhR was significantly reduced (p < 0.05). Compared with those in the hyperoxia group, the levels of ROS, MDA, and MCP-1 in the hyperoxia + OM group were significantly reduced (p < 0.05), and the cytoplasm-nuclear translocation rate of AhR and the expression level of AhR were significantly increased (p < 0.05), but did not reach the level of the control group (p < 0.05). CONCLUSION OM can activate AhR to inhibit hyperoxia-induced oxidative stress in the PBMCs from premature infants.
Collapse
Affiliation(s)
- Xi Yang
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Clinical Research Centre for Birth Defects, Luzhou, China
| | - Zhengrong Bao
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Clinical Research Centre for Birth Defects, Luzhou, China
| | - Xiaoping Lei
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Clinical Research Centre for Birth Defects, Luzhou, China
| | - Xia Wang
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Clinical Research Centre for Birth Defects, Luzhou, China
| | - Shuai Zhao
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Clinical Research Centre for Birth Defects, Luzhou, China
| | - Fengling Du
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Clinical Research Centre for Birth Defects, Luzhou, China
| | - Xingling Liu
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Clinical Research Centre for Birth Defects, Luzhou, China
| | - Wenbin Dong
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Clinical Research Centre for Birth Defects, Luzhou, China
| |
Collapse
|
11
|
Li M, Tian F, Guo J, Li X, Ma L, Jiang M, Zhao J. Therapeutic potential of Coptis chinensis for arthritis with underlying mechanisms. Front Pharmacol 2023; 14:1243820. [PMID: 37637408 PMCID: PMC10450980 DOI: 10.3389/fphar.2023.1243820] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/01/2023] [Indexed: 08/29/2023] Open
Abstract
Arthritis is a common degenerative disease of joints, which has become a public health problem affecting human health, but its pathogenesis is complex and cannot be eradicated. Coptis chinensis (CC) has a variety of active ingredients, is a natural antibacterial and anti-inflammatory drug. In which, berberine is its main effective ingredient, and has good therapeutic effects on rheumatoid arthritis (RA), osteoarthritis (OA), gouty arthritis (GA). RA, OA and GA are the three most common types of arthritis, but the relevant pathogenesis is not clear. Therefore, molecular mechanism and prevention and treatment of arthritis are the key issues to be paid attention to in clinical practice. In general, berberine, palmatine, coptisine, jatrorrhizine, magnoflorine and jatrorrhizine hydrochloride in CC play the role in treating arthritis by regulating Wnt1/β-catenin and PI3K/AKT/mTOR signaling pathways. In this review, active ingredients, targets and mechanism of CC in the treatment of arthritis were expounded, and we have further explained the potential role of AHR, CAV1, CRP, CXCL2, IRF1, SPP1, and IL-17 signaling pathway in the treatment of arthritis, and to provide a new idea for the clinical treatment of arthritis by CC.
Collapse
Affiliation(s)
- Mengyuan Li
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Fei Tian
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jinling Guo
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Xiankuan Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lin Ma
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Miaomiao Jiang
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jing Zhao
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
- Department of Geriatric, Fourth Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
12
|
Accioli CDAF, da Silva MS, Santos BAMC, Rodrigues CR. Aryl Hydrocarbon Receptor as a Therapeutical Target of Environmentally Induced Skin Conditions. Mol Pharmacol 2023; 103:255-265. [PMID: 36732021 DOI: 10.1124/molpharm.122.000627] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/09/2023] [Accepted: 01/17/2023] [Indexed: 02/04/2023] Open
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor, expressed in several tissues and involved in the response to environmental stressors. Studies have already associated exposure to environmental factors, such as organic air pollutants, products of the skin microbiota, and solar radiation, with the development/worsening of skin conditions, mediated by AhR. On the other hand, recent studies have shown that synthetic and natural compounds are able to modulate the activation of some AhR signaling pathways, minimizing the harmful response of these environmental stressors in the skin. Thus, AhR constitutes a new therapeutic target for the prevention or treatment of skin conditions induced by the skin exposome. Herein, an overview of potential AhR ligands and their biologic effects in environmentally induced skin conditions are presented. The literature survey pointed out divergences in the mechanism of action from a therapeutic perspective. Although most studies point to the benefits of ligand downregulation of AhR signaling, counteracting the toxic effects of environmental factors on the skin, some studies suggest the AhR ligand activation as a therapeutical mechanism for some skin conditions. Furthermore, both agonist and antagonist profiles were identified in the AhR modulation by the synthetic and natural compounds raised. Despite that, this target is still little explored, and further studies are needed to elucidate the molecular mechanisms involved and identify new AhR ligands with therapeutic potential. SIGNIFICANCE STATEMENT: The aryl hydrocarbon receptor (AhR) is involved in different skin physiological and pathological processes, including toxic mechanisms of environmental factors. Synthetic and natural AhR ligands have demonstrated therapeutic potential for skin conditions induced by these agents. Thus, a comprehensive understanding of the skin toxicity mechanisms involving the AhR, as well as the use of AhR modulators from a therapeutic perspective, provides an alternative approach to the development of new treatments for skin disorders induced by the exposome.
Collapse
Affiliation(s)
- Caroline de Almeida Freitas Accioli
- Laboratório de Planejamento Farmacêutico e Simulação Computacional (LaPFarSC) (C.d.A.F.A., B.A.M.C.S.) and Laboratório de Modelagem Molecular & QSAR-3D (ModMolQSAR), Departamento de Fármacos e Medicamentos (DEFARMED) (C.R.R.), Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil and MEDCINVITRO, São Paulo, Brazil (M.S.d.S.)
| | - Michelle Sabrina da Silva
- Laboratório de Planejamento Farmacêutico e Simulação Computacional (LaPFarSC) (C.d.A.F.A., B.A.M.C.S.) and Laboratório de Modelagem Molecular & QSAR-3D (ModMolQSAR), Departamento de Fármacos e Medicamentos (DEFARMED) (C.R.R.), Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil and MEDCINVITRO, São Paulo, Brazil (M.S.d.S.)
| | - Bianca Aloise Maneira Corrêa Santos
- Laboratório de Planejamento Farmacêutico e Simulação Computacional (LaPFarSC) (C.d.A.F.A., B.A.M.C.S.) and Laboratório de Modelagem Molecular & QSAR-3D (ModMolQSAR), Departamento de Fármacos e Medicamentos (DEFARMED) (C.R.R.), Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil and MEDCINVITRO, São Paulo, Brazil (M.S.d.S.)
| | - Carlos Rangel Rodrigues
- Laboratório de Planejamento Farmacêutico e Simulação Computacional (LaPFarSC) (C.d.A.F.A., B.A.M.C.S.) and Laboratório de Modelagem Molecular & QSAR-3D (ModMolQSAR), Departamento de Fármacos e Medicamentos (DEFARMED) (C.R.R.), Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil and MEDCINVITRO, São Paulo, Brazil (M.S.d.S.)
| |
Collapse
|
13
|
Alvik K, Shao P, Hutin D, Baglole C, Grant DM, Matthews J. Increased sensitivity to chemically induced colitis in mice harboring a DNA-binding deficient aryl hydrocarbon receptor. Toxicol Sci 2023; 191:321-331. [PMID: 36519841 PMCID: PMC9936212 DOI: 10.1093/toxsci/kfac132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR), a transcription factor best known for mediating toxic responses of environmental pollutants, also integrates metabolic signals to promote anti-inflammatory responses, intestinal homeostasis, and maintain barrier integrity. AHR regulates its target genes through direct DNA-binding to aryl hydrocarbon response elements (AHREs) but also through tethering to other transcription factors in a DNA-binding independent manner. However, it is not known if AHR's anti-inflammatory role in the gut requires its ability to bind to AHREs. To test this, we determined the sensitivity of Ahrdbd/dbd mice, a genetically modified mouse line that express an AHR protein incapable of binding to AHREs, to dextran sulfate sodium (DSS)-induced colitis. Ahrdbd/dbd mice exhibited more severe symptoms of intestinal inflammation than Ahr+/+ mice. None of the Ahrdbd/dbd mice survived after the 5-day DSS followed by 7-day washout period. By day 6, the Ahrdbd/dbd mice had severe body weight loss, shortening of the colon, higher disease index scores, enlarged spleens, and increased expression of several inflammation genes, including interleukin 1b (Il-1b), Il-6, Il-17, C-x-c motif chemokine ligand 1 (Cxcl1), Cxcl2, Prostaglandin-endoperoxide synthase (Ptgs2), and lipocalin-2. Our findings show that AHR's DNA-binding domain and ability to bind to AHREs are required to reduce inflammation, maintain a healthy intestinal environment, and protect against DSS-induced colitis.
Collapse
Affiliation(s)
- Karoline Alvik
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Peng Shao
- Department of Pharmacology and Toxicology, University of Toronto, Toronto M5S1A8, Canada
| | - David Hutin
- Department of Pharmacology and Toxicology, University of Toronto, Toronto M5S1A8, Canada
| | - Carolyn Baglole
- Department of Medicine, McGill University, Montreal H4A3J1, Canada.,Department of Pathology, McGill University, Montreal H4A3J1, Canada.,Department of Pharmacology and Therapeutics, McGill University, Montreal H3G1Y6, Canada
| | - Denis M Grant
- Department of Pharmacology and Toxicology, University of Toronto, Toronto M5S1A8, Canada
| | - Jason Matthews
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.,Department of Pharmacology and Toxicology, University of Toronto, Toronto M5S1A8, Canada
| |
Collapse
|
14
|
Grishanova AY, Perepechaeva ML. Aryl Hydrocarbon Receptor in Oxidative Stress as a Double Agent and Its Biological and Therapeutic Significance. Int J Mol Sci 2022; 23:6719. [PMID: 35743162 PMCID: PMC9224361 DOI: 10.3390/ijms23126719] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/14/2022] [Accepted: 06/14/2022] [Indexed: 12/02/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR) has long been implicated in the induction of a battery of genes involved in the metabolism of xenobiotics and endogenous compounds. AhR is a ligand-activated transcription factor necessary for the launch of transcriptional responses important in health and disease. In past decades, evidence has accumulated that AhR is associated with the cellular response to oxidative stress, and this property of AhR must be taken into account during investigations into a mechanism of action of xenobiotics that is able to activate AhR or that is susceptible to metabolic activation by enzymes encoded by the genes that are under the control of AhR. In this review, we examine various mechanisms by which AhR takes part in the oxidative-stress response, including antioxidant and prooxidant enzymes and cytochrome P450. We also show that AhR, as a participant in the redox balance and as a modulator of redox signals, is being increasingly studied as a target for a new class of therapeutic compounds and as an explanation for the pathogenesis of some disorders.
Collapse
Affiliation(s)
| | - Maria L. Perepechaeva
- Federal Research Center of Fundamental and Translational Medicine, Institute of Molecular Biology and Biophysics, Timakova Str. 2, 630117 Novosibirsk, Russia;
| |
Collapse
|
15
|
Zhang TP, Li R, Li HM, Xiang N, Tan Z, Wang GS, Li XM. The Contribution of Genetic Variation and Aberrant Methylation of Aryl Hydrocarbon Receptor Signaling Pathway Genes to Rheumatoid Arthritis. Front Immunol 2022; 13:823863. [PMID: 35309329 PMCID: PMC8924038 DOI: 10.3389/fimmu.2022.823863] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 02/01/2022] [Indexed: 12/24/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR) signaling pathway participates in immune regulation of multiple autoimmune diseases, including rheumatoid arthritis (RA). We conducted this study to investigate the association of AHR signaling pathway genes (AHR, ARNT, AHRR) single nucleotide polymorphisms (SNPs), as well as their methylation levels, with RA susceptibility. Nine SNPs (AHR gene rs2066853, rs2158041, rs2282885, ARNT gene rs10847, rs1889740, rs11204735, AHRR gene rs2292596, rs2672725, rs349583) were genotyped via improved multiple ligase detection reaction (iMLDR) in 479 RA patients and 496 healthy controls. We used the Illumina Hiseq platform to detect methylation levels of these genes in 122 RA patients and 123 healthy controls. A significant increase in rs11204735 C allele frequency was observed in RA patients when compared to controls. Further, rs11204735 polymorphism was associated with a decreased risk of RA under the dominant model. ARNT CCC haplotype frequency was significantly increased in RA patients in comparison to controls. In the AHRR gene, rs2672725 GG genotype, G allele frequencies were significantly related to an increased risk of RA and rs2292596, rs2672725 polymorphism were significantly associated with an increased risk of RA under the dominant model, recessive model, respectively. However, no significant association was identified between AHR gene polymorphism and RA susceptibility. The AHR methylation level in RA patients was significantly higher than the controls, while AHRR methylation level was abnormally reduced in RA patients. In addition, AHRR rs2672725 genotype distribution was significantly associated with the AHRR methylation level among RA patients. In summary, ARNT rs11204735, AHRR rs2292596, and rs2672725 polymorphisms were associated with RA susceptibility and altered AHR, AHRR methylation levels were related to the risk of RA.
Collapse
Affiliation(s)
- Tian-Ping Zhang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Rui Li
- Department of Nosocomial Infection Management, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hong-Miao Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Anhui Provincial Laboratory of Inflammatory and Immune Diseases, Hefei, China
| | - Nan Xiang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zhen Tan
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Guo-Sheng Wang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xiao-Mei Li
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
16
|
Puccetti M, Pariano M, Costantini C, Giovagnoli S, Ricci M. Pharmaceutically Active Microbial AhR Agonists as Innovative Biodrugs in Inflammation. Pharmaceuticals (Basel) 2022; 15:ph15030336. [PMID: 35337134 PMCID: PMC8949935 DOI: 10.3390/ph15030336] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 12/11/2022] Open
Abstract
Alterations of the microbiome occur in inflammatory and autoimmune diseases, a finding consistent with the role of the microbiome in the maintenance of the immune system homeostasis. In this regard, L-tryptophan (Trp) metabolites, of both host and microbial origin, act as important regulators of host–microbial symbiosis by acting as aryl hydrocarbon receptor (AhR) ligands. The intestinal and respiratory barriers are very sensitive to AhR activity, suggesting that AhR modulation could be a therapeutic option to maintain the integrity of the epithelial barrier, which has substantial implications for health even beyond the mucosal site. A number of studies have highlighted the capacity of AhR to respond to indoles and indolyl metabolites, thus positioning AhR as a candidate indole receptor. However, the context-and ligand-dependent activity of AhR requires one to resort to suitable biopharmaceutical formulations to enable site-specific drug delivery in order to achieve therapeutic effectiveness, decrease unwanted toxicities and prevent off-target effects. In this review, we highlight the dual activity of the microbial metabolite indole-3-aldehyde at the host–microbe interface and its ability to orchestrate host pathophysiology and microbial symbiosis and discuss how its proper clinical development may turn into a valuable therapeutic strategy in local and distant inflammatory diseases.
Collapse
Affiliation(s)
- Matteo Puccetti
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy; (S.G.); (M.R.)
- Correspondence: ; Tel.: +39-075-585-5162
| | - Marilena Pariano
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (M.P.); (C.C.)
| | - Claudio Costantini
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (M.P.); (C.C.)
| | - Stefano Giovagnoli
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy; (S.G.); (M.R.)
| | - Maurizio Ricci
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy; (S.G.); (M.R.)
| |
Collapse
|
17
|
Salminen A. Role of indoleamine 2,3-dioxygenase 1 (IDO1) and kynurenine pathway in the regulation of the aging process. Ageing Res Rev 2022; 75:101573. [PMID: 35085834 DOI: 10.1016/j.arr.2022.101573] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/12/2022] [Accepted: 01/21/2022] [Indexed: 02/07/2023]
Abstract
Indoleamine 2,3-dioxygenase 1 (IDO1) is activated in chronic inflammatory states, e.g., in the aging process and age-related diseases. IDO1 enzyme catabolizes L-tryptophan (L-Trp) into kynurenine (KYN) thus stimulating the KYN pathway. The depletion of L-Trp inhibits the proliferation of immune cells in inflamed tissues and it also reduces serotonin synthesis predisposing to psychiatric disorders. Interestingly, IDO1 protein contains two immunoreceptor tyrosine-based inhibitory motifs (ITIM) which trigger suppressive signaling through the binding of PI3K p110 and SHP-1 proteins. This immunosuppressive activity is not dependent on the catalytic activity of IDO1. KYN and its metabolite, kynurenic acid (KYNA), are potent activators of the aryl hydrocarbon receptor (AhR) which can enhance immunosuppression. IDO1-KYN-AhR signaling counteracts excessive pro-inflammatory responses in acute inflammation but in chronic inflammatory states it has many harmful effects. A chronic low-grade inflammation is associated with the aging process, a state called inflammaging. There is substantial evidence that the activation of the IDO1-KYN-AhR pathway robustly increases with the aging process. The activation of IDO1-KYN-AhR signaling does not only suppress the functions of effector immune cells, probably promoting immunosenescence, but it also impairs autophagy, induces cellular senescence, and remodels the extracellular matrix as well as enhancing the development of osteoporosis and vascular diseases. I will review the function of IDO1-KYN-AhR signaling and discuss its activation with aging as an enhancer of the aging process.
Collapse
|
18
|
Jiang Z, Shao M, Dai X, Pan Z, Liu D. Identification of Diagnostic Biomarkers in Systemic Lupus Erythematosus Based on Bioinformatics Analysis and Machine Learning. Front Genet 2022; 13:865559. [PMID: 35495164 PMCID: PMC9047905 DOI: 10.3389/fgene.2022.865559] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 04/01/2022] [Indexed: 02/05/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a complex autoimmune disease that affects several organs and causes variable clinical symptoms. Exploring new insights on genetic factors may help reveal SLE etiology and improve the survival of SLE patients. The current study is designed to identify key genes involved in SLE and develop potential diagnostic biomarkers for SLE in clinical practice. Expression data of all genes of SLE and control samples in GSE65391 and GSE72509 datasets were downloaded from the Gene Expression Omnibus (GEO) database. A total of 11 accurate differentially expressed genes (DEGs) were identified by the "limma" and "RobustRankAggreg" R package. All these genes were functionally associated with several immune-related biological processes and a single KEGG (Kyoto Encyclopedia of Genes and Genome) pathway of necroptosis. The PPI analysis showed that IFI44, IFI44L, EIF2AK2, IFIT3, IFITM3, ZBP1, TRIM22, PRIC285, XAF1, and PARP9 could interact with each other. In addition, the expression patterns of these DEGs were found to be consistent in GSE39088. Moreover, Receiver operating characteristic (ROC) curves analysis indicated that all these DEGs could serve as potential diagnostic biomarkers according to the area under the ROC curve (AUC) values. Furthermore, we constructed the transcription factor (TF)-diagnostic biomarker-microRNA (miRNA) network composed of 278 nodes and 405 edges, and a drug-diagnostic biomarker network consisting of 218 nodes and 459 edges. To investigate the relationship between diagnostic biomarkers and the immune system, we evaluated the immune infiltration landscape of SLE and control samples from GSE6539. Finally, using a variety of machine learning methods, IFI44 was determined to be the optimal diagnostic biomarker of SLE and then verified by quantitative real-time PCR (qRT-PCR) in an independent cohort. Our findings may benefit the diagnosis of patients with SLE and guide in developing novel targeted therapy in treating SLE patients.
Collapse
Affiliation(s)
- Zhihang Jiang
- Department of Rheumatology and Immunology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Mengting Shao
- Computational Systems Biology Laboratory, Department of Bioinformatics, Shantou University Medical College (SUMC), Shantou, China
| | - Xinzhu Dai
- Department of Rheumatology and Immunology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Zhixin Pan
- Department of Rheumatology and Immunology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Dongmei Liu
- Department of Rheumatology and Immunology, Shengjing Hospital, China Medical University, Shenyang, China
- *Correspondence: Dongmei Liu,
| |
Collapse
|
19
|
Kim SY, Oh Y, Jo S, Ji JD, Kim TH. Inhibition of Human Osteoclast Differentiation by Kynurenine through the Aryl-Hydrocarbon Receptor Pathway. Cells 2021; 10:3498. [PMID: 34944003 PMCID: PMC8700497 DOI: 10.3390/cells10123498] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/22/2021] [Accepted: 12/07/2021] [Indexed: 02/06/2023] Open
Abstract
Aryl-hydrocarbon receptor (AhR) is a ligand-activated transcription factor and regulates differentiation and function of various immune cells such as dendritic cells, Th17, and regulatory T cells. In recent studies, it was reported that AhR is involved in bone remodeling through regulating both osteoblasts and osteoclasts. However, the roles and mechanisms of AhR activation in human osteoclasts remain unknown. Here we show that AhR is involved in human osteoclast differentiation. We found that AhR expressed highly in the early stage of osteoclastogenesis and decreased in mature osteoclasts. Kynurenine (Kyn), formylindolo[3,4-b] carbazole (FICZ), and benzopyrene (BaP), which are AhR agonists, inhibited osteoclast formation and Kyn suppressed osteoclast differentiation at an early stage. Furthermore, blockade of AhR signaling through CH223191, an AhR antagonist, and knockdown of AhR expression reversed Kyn-induced inhibition of osteoclast differentiation. Overall, our study is the first report that AhR negatively regulates human osteoclast differentiation and suggests that AhR could be good therapeutic molecule to prevent bone destruction in chronic inflammatory diseases such as rheumatoid arthritis (RA).
Collapse
Affiliation(s)
- So-Yeon Kim
- Institute for Rheumatology Research, Hanyang University, Seoul 04763, Korea; (S.-Y.K.); (Y.O.); (S.J.)
- Department of Translational Medicine, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea
| | - Younseo Oh
- Institute for Rheumatology Research, Hanyang University, Seoul 04763, Korea; (S.-Y.K.); (Y.O.); (S.J.)
- Department of Rheumatology, College of Medicine, Korea University, Seoul 02841, Korea
| | - Sungsin Jo
- Institute for Rheumatology Research, Hanyang University, Seoul 04763, Korea; (S.-Y.K.); (Y.O.); (S.J.)
| | - Jong-Dae Ji
- Department of Rheumatology, College of Medicine, Korea University, Seoul 02841, Korea
| | - Tae-Hwan Kim
- Institute for Rheumatology Research, Hanyang University, Seoul 04763, Korea; (S.-Y.K.); (Y.O.); (S.J.)
- Department of Translational Medicine, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul 04763, Korea
| |
Collapse
|
20
|
Patidar V, Shah S, Kumar R, Singh PK, Singh SB, Khatri DK. A molecular insight of inflammatory cascades in rheumatoid arthritis and anti-arthritic potential of phytoconstituents. Mol Biol Rep 2021; 49:2375-2391. [PMID: 34817776 DOI: 10.1007/s11033-021-06986-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/18/2021] [Indexed: 02/08/2023]
Abstract
Rheumatoid arthritis (RA) is an auto-immune inflammatory disorder of the synovial lining of joints marked by immune cells infiltration and hyperplasia of synovial fibroblasts which results in articular cartilage destruction and bone erosion. The current review will provide comprehensive information and results obtained from the recent research on the phytochemicals which were found to have potential anti-arthritic activity along with the molecular pathway that were targeted to control RA progression. In this review, we have summarized the scientific data from various animal studies about molecular mechanisms, possible side effects, associations with conventional therapies, and the role of complementary and alternative medicines (CAM) for RA such as ayurvedic medicines in arthritis. In the case of RA, phytochemicals have been shown to act through different pathways such as regulation of inflammatory signaling pathways, T cell differentiation, inhibition of angiogenic factors, induction of the apoptosis of fibroblast-like synoviocytes (FLS), inhibition of autophagic pathway by inhibiting High-mobility group box 1 protein (HMGB-1), Akt/ mTOR pathway and HIF-1α mediated Vascular endothelial growth (VEGF) expression. Also, osteoclasts differentiation is inhibited by down-regulating the VEGF expression by decreasing the accumulation of the ARNT (Aryl Hydrocarbon Receptor Nuclear Translocator)-HIF-1α complex Although phytochemicals have shown to exert potential anti-arthritic activity in many animal models and further clinical data is needed to confirm their safety, efficacy, and interactions in humans.
Collapse
Affiliation(s)
- Vaibhav Patidar
- Department of Biological Science, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Shruti Shah
- Department of Biological Science, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Rahul Kumar
- Department of Biological Science, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Pankaj Kumar Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Shashi Bala Singh
- Department of Biological Science, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Dharmendra Kumar Khatri
- Department of Biological Science, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India.
| |
Collapse
|
21
|
Pernomian L, Duarte-Silva M, de Barros Cardoso CR. The Aryl Hydrocarbon Receptor (AHR) as a Potential Target for the Control of Intestinal Inflammation: Insights from an Immune and Bacteria Sensor Receptor. Clin Rev Allergy Immunol 2021; 59:382-390. [PMID: 32279195 DOI: 10.1007/s12016-020-08789-3] [Citation(s) in RCA: 152] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The aryl hydrocarbon receptor (AHR) is widely expressed in immune and non-immune cells of the gut and its activation has been correlated to the outcome of inflammatory bowel diseases (IBD). In ulcerative colitis and Crohn's disease, there is an excessive chronic inflammation with massive accumulation of leukocytes in the gut, in an attempt to constrain the invasion of pathogenic microorganisms on the damaged organ. Accordingly, it is known that dietary components, xenobiotics, and some chemicals or metabolites can activate AHR and induce the modulation of inflammatory responses. In fact, the AHR triggering by specific ligands during inflammatory conditions results in decreased IFNγ, IL-6, IL-12, TNF, IL-7, and IL-17, along with reduced microbial translocation and fibrosis in the gut. Moreover, upon AHR activation, there are increased regulatory mechanisms such as IL-10, IL-22, prostaglandin E2, and Foxp3, besides the production of anti-microbial peptides and epithelial repair. Most interestingly, commensal bacteria or their metabolites may also activate this receptor, thus contributing to the restoration of gut normobiosis and homeostasis. In line with that, Lactobacillus reuteri, Lactobacillus bulgaricus, or microbial products such as tryptophan metabolites, indole-3-pyruvic acid, urolithin A, short-chain fatty acids, dihydroxyquinoline, and others may regulate the inflammation by mechanisms dependent on AHR activation. Hence, here we discussed the potential modulatory role of AHR on intestinal inflammation, focused on the reestablishment of homeostasis through the receptor triggering by microbial metabolites. Finally, the development of AHR-based therapies derived from bacteria products could represent an important future alternative for controlling IBD.
Collapse
Affiliation(s)
- Larissa Pernomian
- Department of Clinical Analysis, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Murillo Duarte-Silva
- Department of Biochemistry and Immunology, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Cristina Ribeiro de Barros Cardoso
- Department of Clinical Analysis, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil.
| |
Collapse
|
22
|
Zhou H, Huang Z, Huang H, Song C, Chang J. Synthesis of bisindolylmethane, bispyrrolylmethane, and indolylpyrrolylmethane derivatives via reductive heteroarylation. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Taha M, Imran S, Salahuddin M, Iqbal N, Rahim F, Uddin N, Shehzad A, Khalid Farooq R, Alomari M, Mohammed Khan K. Evaluation and docking of indole sulfonamide as a potent inhibitor of α-glucosidase enzyme in streptozotocin -induced diabetic albino wistar rats. Bioorg Chem 2021; 110:104808. [PMID: 33756236 DOI: 10.1016/j.bioorg.2021.104808] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/25/2021] [Accepted: 03/02/2021] [Indexed: 12/14/2022]
Abstract
We have synthesized new hybrid class of indole bearing sulfonamide scaffolds (1-17) as α-glucosidase inhibitors. All scaffolds were found to be active except scaffold 17 and exhibited IC50 values ranging from 1.60 to 51.20 µM in comparison with standard acarbose (IC50 = 42.45 µM). Among the synthesized hybrid class scaffolds 16 was the most potent analogue with IC50 value 1.60 μM, showing many folds better potency as compared to standard acarbose. Whereas, synthesized scaffolds 1-15 showed good α-glucosidase inhibitory potential. Based on α-glucosidase inhibitory effect, Scaffold 16 was chosen due to highest activity in vitro for further evaluation of antidiabetic activity in Streptozotocin induced diabetic rats. The Scaffold 16 exhibited significant antidiabetic activity. All analogues were characterized through 1H, 13CNMR and HR MS. Structure-activity relationship of synthesized analogues was established and confirmed through molecular docking study.
Collapse
Affiliation(s)
- Muhammad Taha
- Department of Clinical Pharmacy Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 31441, Dammam, Saudi Arabia.
| | - Syahrul Imran
- Atta-ur-Rahman Institute for Natural Product Discovery, Universiti Teknologi MARA (UiTM), Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor, Malaysia
| | - Mohammed Salahuddin
- Department of Clinical Pharmacy Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 31441, Dammam, Saudi Arabia
| | - Naveed Iqbal
- Department of Chemistry University of Poonch, Rawalakot, AJK, Pakistan
| | - Fazal Rahim
- Department of Chemistry, Hazara University, Mansehra 21300, Khyber Pakhtunkhwa, Pakistan
| | - Nizam Uddin
- Department of Chemistry, University of Karachi, Karachi 75270, Pakistan
| | - Adeeb Shehzad
- Department of Clinical Pharmacy Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 31441, Dammam, Saudi Arabia
| | - Rai Khalid Farooq
- Department of Neuroscience Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Munther Alomari
- Department of Stem Cell Biology, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Khalid Mohammed Khan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| |
Collapse
|