1
|
Liu X, Lin Y, Zhuang Q, Deng H, Liu A, Sun J. BTK inhibitors resistance in B cell malignancies: Mechanisms and potential therapeutic strategies. Blood Rev 2025; 71:101273. [PMID: 40000280 DOI: 10.1016/j.blre.2025.101273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 02/02/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025]
Abstract
Bruton tyrosine kinase inhibitors (BTKi) have shown prominent clinical efficacy in patients with B cell malignancies, such as chronic lymphocytic leukemia, mantle cell lymphoma, diffuse large B cell lymphoma, and Waldenström's macroglobulinemia. Nevertheless, numerous factors contribute to BTKi resistance, encompassing genetic mutations, chromosomal aberrations, dysregulation of protein expression, tumor microenvironment, and metabolic reprogramming. Accordingly, potential therapeutic strategies have been explored to surmount BTKi resistance, including noncovalent BTKi, BTK proteolysis-targeting chimeras, and combination therapies. Herein, we summarize the mechanisms responsible for BTKi resistance as well as the current preclinical and clinical strategies to address BTKi resistance in B cell malignancies treatment.
Collapse
Affiliation(s)
- Xin Liu
- Zhejiang Key Laboratory for Precision Diagnosis and Treatment of Hematological Malignancies, Hangzhou, China; Department of Hematology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yufan Lin
- Zhejiang Key Laboratory for Precision Diagnosis and Treatment of Hematological Malignancies, Hangzhou, China; Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiqi Zhuang
- Zhejiang Key Laboratory for Precision Diagnosis and Treatment of Hematological Malignancies, Hangzhou, China; Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haoren Deng
- Zhejiang Key Laboratory for Precision Diagnosis and Treatment of Hematological Malignancies, Hangzhou, China
| | - Aichun Liu
- Department of Hematology, Harbin Medical University Cancer Hospital, Harbin, China.
| | - Jie Sun
- Zhejiang Key Laboratory for Precision Diagnosis and Treatment of Hematological Malignancies, Hangzhou, China; Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou, China.
| |
Collapse
|
2
|
Pray B, Baiocchi E, Leon S, Barta B, Koirala S, Tsyba L, Hinterschied C, Carvajal-Moreno J, Hout I, Nishat S, Jindal U, Jain N, Singh S, Sehgal L, Chan WK, Hanel W, Yalowich J, Baiocchi RA, Alinari L. Targeting the DNA damage response through TBL1X in mantle cell lymphoma. Blood Adv 2025; 9:2006-2018. [PMID: 40009753 PMCID: PMC12034073 DOI: 10.1182/bloodadvances.2024015769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/10/2025] [Accepted: 02/11/2025] [Indexed: 02/28/2025] Open
Abstract
ABSTRACT Mantle cell lymphoma (MCL) is an incurable B-cell lymphoma characterized by significant genomic instability. Patients with MCL who progress on targeted therapies have a short survival; thus, novel therapeutic strategies are urgently needed. Overexpression of transducin β-like protein 1 X-linked (TBL1X) has been documented in several types of cancer and associated with poor prognosis. TBL1X is a critical regulator of multiple oncogenic networks; however, its function in MCL has not been explored. Our data show that, unlike normal B cells, MCL cells express abundant levels of TBL1X and that genetic knockdown of TBL1X and treatment with tegavivint (Iterion), a first-in-class small molecule targeting TBL1X, promote MCL cell death in vitro and in vivo. Moreover, TBL1X controls the stability of key MCL oncogenic drivers, cyclin D1 and RAD51; and targeting TBL1X results in significant DNA damage, cell cycle arrest, and ultimately cell death. Combining tegavivint with poly(adenosine 5'-diphosphate-ribose) polymerase-1/2 inhibitor talazoparib results in synergistic MCL cell death in vitro, and in vivo this combination significantly prolongs the survival of a patient-derived MCL xenograft. Together, our results define the role of TBL1X in maintaining genomic stability in MCL and establish targeting TBL1X as a novel therapeutic strategy for patients with this incurable disease.
Collapse
Affiliation(s)
- Betsy Pray
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH
| | - Ethan Baiocchi
- Division of Hematology, Department of Internal Medicine, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | - Sydney Leon
- Division of Hematology, Department of Internal Medicine, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | - Brian Barta
- Division of Hematology, Department of Internal Medicine, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | - Shirsha Koirala
- Division of Hematology, Department of Internal Medicine, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | - Liudmyla Tsyba
- Division of Hematology, Department of Internal Medicine, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | - Claire Hinterschied
- Division of Hematology, Department of Internal Medicine, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | - Jessika Carvajal-Moreno
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH
| | - Ian Hout
- Division of Hematology, Department of Internal Medicine, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | - Shamama Nishat
- Division of Hematology, Department of Internal Medicine, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | - Udita Jindal
- Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Neeraj Jain
- Division of Cancer Biology, Council of Scientific and Industrial Research-Central Drug Research Institute, Lucknow, India
| | - Satishkumar Singh
- Division of Hematology, Department of Internal Medicine, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | - Lalit Sehgal
- Division of Hematology, Department of Internal Medicine, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | - Wing Keung Chan
- Division of Hematology, Department of Internal Medicine, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | - Walter Hanel
- Division of Hematology, Department of Internal Medicine, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | - Jack Yalowich
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH
| | - Robert A. Baiocchi
- Division of Hematology, Department of Internal Medicine, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | - Lapo Alinari
- Division of Hematology, Department of Internal Medicine, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| |
Collapse
|
3
|
Tigu AB, Munteanu R, Moldovan C, Rares D, Kegyes D, Tomai R, Moisoiu V, Ghiaur G, Tomuleasa C, Einsele H, Gulei D, Croce CM. Therapeutic advances in the targeting of ROR1 in hematological cancers. Cell Death Discov 2024; 10:471. [PMID: 39551787 PMCID: PMC11570672 DOI: 10.1038/s41420-024-02239-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/04/2024] [Accepted: 11/07/2024] [Indexed: 11/19/2024] Open
Abstract
Receptor tyrosine kinases (RTKs) are key cell surface receptors involved in cell communication and signal transduction, with great importance in cell growth, differentiation, survival, and metabolism. Dysregulation of RTKs, such as EGFR, VEGFR, HER2 or ROR, could lead to various diseases, particularly cancers. ROR1 has emerged as a promising target in hematological malignancies. The development of ROR1 targeted therapies is continuously growing leading to remarkable novel therapeutical approaches using mAbs, antibody-drug conjugates, several small molecules or CAR T cells which have shown encouraging preclinical results. In the hematological field, mAbs, small molecules, BiTEs or CAR T cell therapies displayed promising outcomes with the clinical trials data encouraging the use of anti-ROR1 therapies. This paper aims to offer a comprehensive analysis of the current landscape of ROR1-targeted therapies in hematological malignancies marking the innovative approaches with promising preclinical and clinical. Offering a better understanding of structural and functional aspects of ROR1 could lead to new perspectives in targeting a wide spectrum of malignancies.
Collapse
Affiliation(s)
- Adrian-Bogdan Tigu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy Cluj Napoca, Cluj Napoca, Romania
| | - Raluca Munteanu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy Cluj Napoca, Cluj Napoca, Romania
| | - Cristian Moldovan
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy Cluj Napoca, Cluj Napoca, Romania
| | - Drula Rares
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David Kegyes
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy Cluj Napoca, Cluj Napoca, Romania
| | - Radu Tomai
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy Cluj Napoca, Cluj Napoca, Romania
| | - Vlad Moisoiu
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Gabriel Ghiaur
- Division of Hematological Malignancies, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Ciprian Tomuleasa
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy Cluj Napoca, Cluj Napoca, Romania.
| | - Hermann Einsele
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy Cluj Napoca, Cluj Napoca, Romania
- Department of Medicine, University of Würzburg, Würzburg, Germany
| | - Diana Gulei
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy Cluj Napoca, Cluj Napoca, Romania
| | - Carlo M Croce
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
4
|
Sloan SL, Brown F, Long M, Weigel C, Koirala S, Chung JH, Pray B, Villagomez L, Hinterschied C, Sircar A, Helmig-Mason J, Prouty A, Brooks E, Youssef Y, Hanel W, Parekh S, Chan WK, Chen Z, Lapalombella R, Sehgal L, Vaddi K, Scherle P, Chen-Kiang S, Di Liberto M, Elemento O, Meydan C, Foox J, Butler D, Mason CE, Baiocchi RA, Alinari L. PRMT5 supports multiple oncogenic pathways in mantle cell lymphoma. Blood 2023; 142:887-902. [PMID: 37267517 PMCID: PMC10517215 DOI: 10.1182/blood.2022019419] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 04/10/2023] [Accepted: 05/11/2023] [Indexed: 06/04/2023] Open
Abstract
Mantle cell lymphoma (MCL) is an incurable B-cell malignancy with an overall poor prognosis, particularly for patients that progress on targeted therapies. Novel, more durable treatment options are needed for patients with MCL. Protein arginine methyltransferase 5 (PRMT5) is overexpressed in MCL and plays an important oncogenic role in this disease via epigenetic and posttranslational modification of cell cycle regulators, DNA repair genes, components of prosurvival pathways, and RNA splicing regulators. The mechanism of targeting PRMT5 in MCL remains incompletely characterized. Here, we report on the antitumor activity of PRMT5 inhibition in MCL using integrated transcriptomics of in vitro and in vivo models of MCL. Treatment with a selective small-molecule inhibitor of PRMT5, PRT-382, led to growth arrest and cell death and provided a therapeutic benefit in xenografts derived from patients with MCL. Transcriptional reprograming upon PRMT5 inhibition led to restored regulatory activity of the cell cycle (p-RB/E2F), apoptotic cell death (p53-dependent/p53-independent), and activation of negative regulators of B-cell receptor-PI3K/AKT signaling (PHLDA3, PTPROt, and PIK3IP1). We propose pharmacologic inhibition of PRMT5 for patients with relapsed/refractory MCL and identify MTAP/CDKN2A deletion and wild-type TP53 as biomarkers that predict a favorable response. Selective targeting of PRMT5 has significant activity in preclinical models of MCL and warrants further investigation in clinical trials.
Collapse
Affiliation(s)
- Shelby L. Sloan
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH
| | - Fiona Brown
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| | - Mackenzie Long
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH
| | - Christoph Weigel
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| | - Shirsha Koirala
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| | - Ji-Hyun Chung
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| | - Betsy Pray
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH
| | - Lynda Villagomez
- Division of Hematology and Oncology, Department of Pediatrics, The Ohio State University and Nationwide Children’s Hospital, Columbus, OH
| | - Claire Hinterschied
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| | - Anuvrat Sircar
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| | - JoBeth Helmig-Mason
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| | - Alexander Prouty
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| | - Eric Brooks
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| | - Youssef Youssef
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| | - Walter Hanel
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| | - Samir Parekh
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Wing Keung Chan
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| | - Zhengming Chen
- Division of Biostatistics, Department of Population Health Sciences, Weill Cornell Medicine, New York, NY
| | - Rosa Lapalombella
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| | - Lalit Sehgal
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| | | | | | - Selina Chen-Kiang
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY
| | - Maurizio Di Liberto
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY
| | - Olivier Elemento
- Department of Physiology and Biophysics, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY
| | - Cem Meydan
- Department of Physiology and Biophysics, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY
| | - Jonathan Foox
- Department of Physiology and Biophysics, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY
| | - Daniel Butler
- Department of Physiology and Biophysics, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY
| | - Christopher E. Mason
- Department of Physiology and Biophysics, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY
| | - Robert A. Baiocchi
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| | - Lapo Alinari
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
| |
Collapse
|
5
|
Nakhoda S, Vistarop A, Wang YL. Resistance to Bruton tyrosine kinase inhibition in chronic lymphocytic leukaemia and non-Hodgkin lymphoma. Br J Haematol 2023; 200:137-149. [PMID: 36029036 PMCID: PMC9839590 DOI: 10.1111/bjh.18418] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/30/2022] [Accepted: 08/09/2022] [Indexed: 01/17/2023]
Abstract
Bruton tyrosine kinase inhibitors (BTKi) have transformed the therapeutic landscape of chronic lymphocytic leukaemia (CLL) and non-Hodgkin lymphoma. However, primary and acquired resistance to BTKi can be seen due to a variety of mechanisms including tumour intrinsic and extrinsic mechanisms such as gene mutations, activation of bypass signalling pathways and tumour microenvironment. Herein, we provide an updated review of the key clinical data of BTKi treatment in CLL, mantle cell lymphoma, and diffuse large B-cell lymphoma (DLBCL). We incorporate the most recent findings regarding mechanisms of resistance to covalent and non-covalent inhibitors, including ibrutinib, acalabrutinib, zanubrutinib and pirtobrutinib. We also cover the clinical sensitivity of certain molecular subtypes of DLBCL to an ibrutinib-containing regimen. Lastly, we summarise ongoing clinical investigations aimed at overcoming resistance via use of BTKi-containing combined therapies or the novel non-covalent BTKi. The review article targets an audience of clinical practitioners, clinical investigators and translational researchers.
Collapse
Affiliation(s)
- Shazia Nakhoda
- Department of Hematology, Fox Chase Cancer Center, Philadelphia, USA
| | - Aldana Vistarop
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, USA,Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, USA
| | - Y. Lynn Wang
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, USA,Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, USA
| |
Collapse
|
6
|
Al-Mansour M. Treatment Landscape of Relapsed/Refractory Mantle Cell Lymphoma: An Updated Review. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2022; 22:e1019-e1031. [PMID: 36068158 DOI: 10.1016/j.clml.2022.07.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/22/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Mantle cell lymphoma (MCL) accounts for nearly 2-6% of all non-Hodgkin lymphoma (NHL) cases, with a steady incidence increase over the past few decades. Although many patients achieve an adequate response to the upfront treatment, the short duration of remission with rapid relapse is challenging during MCL management. In this regard, there is no consensus on the best treatment options for relapsed/refractory (R/R) disease, and the international guidelines demonstrate wide variations in the recommended approaches. The last decade has witnessed the introduction of new agents in the treatment landscape of R/R MCL. Since the introduction of Bruton's tyrosine kinase (BTK) inhibitors, the treatment algorithm and response of R/R MCL patients have dramatically changed. Nevertheless, BTK resistance is common, necessitating further investigations to develop novel agents with a more durable response. Novel agents targeting the B-cell receptor (BCR) signaling have exhibited clinical activity and a well-tolerable safety profile. However, as the responses to these novel agents are still modest in most clinical trials, combination strategies were investigated in pre-clinical and early clinical settings to determine whether the combination of novel agents would exhibit a better durable response than single agents. In this report, we provide an updated literature review that covers recent clinical data about the safety and efficacy of novel therapies for the management of R/R MCL.
Collapse
Affiliation(s)
- Mubarak Al-Mansour
- Adult Medical Oncology, Princess Noorah Oncology Center, Jeddah, Saudi Arabia; College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia.
| |
Collapse
|
7
|
Duś-Szachniewicz K, Gdesz-Birula K, Rymkiewicz G. Development and Characterization of 3D Hybrid Spheroids for the Investigation of the Crosstalk Between B-Cell Non-Hodgkin Lymphomas and Mesenchymal Stromal Cells. Onco Targets Ther 2022; 15:683-697. [PMID: 35747403 PMCID: PMC9213039 DOI: 10.2147/ott.s363994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/27/2022] [Indexed: 12/12/2022] Open
Abstract
Purpose B-cell non-Hodgkin lymphomas (B-NHLs) are the most common lymphoproliferative malignancy. Despite targeted therapies, the bone marrow involvement remains a challenge in treating aggressive B-NHLs, partly due to the protective interactions of lymphoma cells with mesenchymal stromal cells (MSCs). However, data elucidating the relationship between MSCs and B-NHLs are limited and inconclusive due to the lack of reproducible in vitro three-dimensional (3D) models. Here, we developed and described a size-controlled and stable 3D hybrid spheroids of Ri-1 (diffuse large B-cell lymphoma, DLBCL) and RAJI (Burkitt lymphoma, BL) cells with HS-5 fibroblasts to facilitate research on the crosstalk between B-NHL cells and MSCs. Materials and Methods We applied the commercially available agarose hydrogel microwells for a fast, low-cost, and reproducible hybrid lymphoma/stromal spheroids formation. Standard histological automated procedures were used for formalin fixation and paraffin embedding (FFPE) of 3D models to produce good quality slides for histopathology and immunohistochemical staining. Next, we tested the effect of the anti-cancer drugs: doxorubicin (DOX) and ibrutinib (IBR) on mono-cultured and co-cultured B-NHLs with the use of alamarBlue and live/dead cell fluorescence based assays to confirm their relevancy for drug testing studies. Results We optimized the conditions for B-NHLs spheroid formation in both: a cell line-specific and application-specific manner. Lymphoma cells aggregate into stable spheroids when co-cultured with stromal cells, of which internal architecture was driven by self-organization. Furthermore, we revealed that co-culturing of lymphoma cells with stromal cells significantly reduced IBR-induced apoptosis compared to the 3D mono-culture. Conclusion This article provides details for generating 3D B-NHL spheroids for the studies on the lymphoma- stromal cells. This approach makes it suitable to assess in a relevant in vitro model the activity of new therapeutic agents in B-NHLs.
Collapse
Affiliation(s)
- Kamila Duś-Szachniewicz
- Institute of General and Experimental Pathology, Department of Clinical and Experimental Pathology, Wrocław Medical University, Wrocław, Poland
| | - Katarzyna Gdesz-Birula
- Institute of General and Experimental Pathology, Department of Clinical and Experimental Pathology, Wrocław Medical University, Wrocław, Poland
| | - Grzegorz Rymkiewicz
- Flow Cytometry Laboratory, Department of Cancer Pathomorphology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| |
Collapse
|
8
|
Montaño JL, Wang BJ, Volk RF, Warrington SE, Garda VG, Hofmann KL, Chen LC, Zaro BW. Improved Electrophile Design for Exquisite Covalent Molecule Selectivity. ACS Chem Biol 2022; 17:1440-1449. [PMID: 35587148 DOI: 10.1021/acschembio.1c00980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Covalent inhibitors are viable therapeutics. However, off-target reactivity challenges the field. Chemists have attempted to solve this issue by varying the reactivity attributes of electrophilic warheads. Here, we report the development of an approach to increase the selectivity of covalent molecules that is independent of warhead reactivity features and can be used in concert with existing methods. Using the scaffold of the Bruton's tyrosine kinase (BTK) inhibitor Ibrutinib for our proof-of-concept, we reasoned that increasing the steric bulk of fumarate-based electrophiles on Ibrutinib should improve selectivity via the steric exclusion of off-targets but retain rates of cysteine reactivity comparable to that of an acrylamide. Using chemical proteomic techniques, we demonstrate that elaboration of the electrophile to a tert-butyl (t-Bu) fumarate ester decreases time-dependent off-target reactivity and abolishes time-independent off-target reactivity. While an alkyne-bearing probe analogue of Ibrutinib has 247 protein targets, our t-Bu fumarate probe analogue has only 7. Of these 7 targets, BTK is the only time-independent target. The t-Bu inhibitor itself is also more selective for BTK, reducing off-targets by 70%. We investigated the consequences of treatment with Ibrutinib and our t-Bu analogue and discovered that only 8 proteins are downregulated in response to treatment with the t-Bu analogue compared to 107 with Ibrutinib. Of these 8 proteins, 7 are also downregulated by Ibrutinib and a majority of these targets are associated with BTK biology. Taken together, these findings reveal an opportunity to increase cysteine-reactive covalent inhibitor selectivity through electrophilic structure optimization.
Collapse
Affiliation(s)
- José L. Montaño
- Department of Pharmaceutical Chemistry and Cardiovascular Research Institute, University of California, San Francisco, California 94158, United States
| | - Brian J. Wang
- Department of Pharmaceutical Chemistry and Cardiovascular Research Institute, University of California, San Francisco, California 94158, United States
| | - Regan F. Volk
- Department of Pharmaceutical Chemistry and Cardiovascular Research Institute, University of California, San Francisco, California 94158, United States
| | - Sara E. Warrington
- Department of Pharmaceutical Chemistry and Cardiovascular Research Institute, University of California, San Francisco, California 94158, United States
| | - Virginia G. Garda
- Department of Pharmaceutical Chemistry and Cardiovascular Research Institute, University of California, San Francisco, California 94158, United States
| | - Katherine L. Hofmann
- Department of Pharmaceutical Chemistry and Cardiovascular Research Institute, University of California, San Francisco, California 94158, United States
| | - Leo C. Chen
- Department of Pharmaceutical Chemistry and Cardiovascular Research Institute, University of California, San Francisco, California 94158, United States
| | - Balyn W. Zaro
- Department of Pharmaceutical Chemistry and Cardiovascular Research Institute, University of California, San Francisco, California 94158, United States
| |
Collapse
|
9
|
A phase 1 trial of copanlisib plus ibrutinib in relapsed/refractory mantle cell lymphoma. Blood Adv 2022; 6:5262-5266. [PMID: 35171976 DOI: 10.1182/bloodadvances.2021006555] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/03/2022] [Indexed: 11/20/2022] Open
|
10
|
Vann KR, Pal D, Smith AL, Sahar NE, Krishnaiah M, El-Gamal D, Kutateladze TG. Combinatorial inhibition of BTK, PI3K-AKT and BRD4-MYC as a strategy for treatment of mantle cell lymphoma. MOLECULAR BIOMEDICINE 2022; 3:2. [PMID: 35031886 PMCID: PMC8760370 DOI: 10.1186/s43556-021-00066-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/17/2021] [Indexed: 11/10/2022] Open
Abstract
Mantle cell lymphoma (MCL) is a subtype of non-Hodgkin's lymphoma characterized by poor prognosis. The complexity of MCL pathogenesis arises from aberrant activities of diverse signaling pathways, including BTK, PI3K-AKT-mTOR and MYC-BRD4. Here, we report that MCL-related signaling pathways can be altered by a single small molecule inhibitor, SRX3305. Binding and kinase activities along with resonance changes in NMR experiments reveal that SRX3305 targets both bromodomains of BRD4 and is highly potent in inhibition of the PI3K isoforms α, γ and δ, as well as BTK and the drug-resistant BTK mutant. Preclinical investigations herein reveal that SRX3305 perturbs the cell cycle, promotes apoptosis in MCL cell lines and shows dose dependent anti-proliferative activity in both MCL and drug-resistant MCL cells. Our findings underscore the effectiveness of novel multi-action small molecule inhibitors for potential treatment of MCL.
Collapse
Affiliation(s)
- Kendra R Vann
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Dhananjaya Pal
- Molecular Targeted Therapeutics Laboratory, Levine Cancer Institute, Charlotte, NC, USA
- Division of Hematology and Oncology, Department of Pediatrics, Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Audrey L Smith
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Namood-E Sahar
- Division of Hematology and Oncology, Department of Pediatrics, Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Maddeboina Krishnaiah
- Molecular Targeted Therapeutics Laboratory, Levine Cancer Institute, Charlotte, NC, USA
| | - Dalia El-Gamal
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Tatiana G Kutateladze
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, USA.
| |
Collapse
|
11
|
Zhang Y, Lu P, Zhou Y, Zhang L. Inhibition of LINK-A lncRNA overcomes ibrutinib resistance in mantle cell lymphoma by regulating Akt/Bcl2 pathway. PeerJ 2021; 9:e12571. [PMID: 35003920 PMCID: PMC8686732 DOI: 10.7717/peerj.12571] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 11/08/2021] [Indexed: 12/15/2022] Open
Abstract
Ibrutinib, a bruton tyrosine kinase (BTK) inhibitor which suppresses B-cell receptor signaling, has remarkably improved the outcome of patients with mantle cell lymphoma (MCL). However, approximately 33% of MCL patients have primary Ibrutinib resistance, and acquired Ibrutinib resistance is nearly universal. Long intergenic non-coding RNA for kinase activation (LINK-A) exerts oncogenic role in different types of tumors, but the role of LINK-A in intrinsic ibrutinib resistance in MCL is still unclear. Here, LINK-A expression level was first assessed using quantitative Real-time PCR (qPCR) and immunofluorescence analysis in five MCL cell lines. The effect of LINK-A on regulating MCL cells viability and apoptosis was assayed using CCK-8 and TdT-mediated dUTP nick end labeling (TUNEL) assay, respectively. The association of LINK-A with AKT activation and B cell lymphoma 2 (Bcl2)expression was evaluated using qPCR and western blot analysis. We found that LINK-A level was elevated in Ibrutinib-resistant MCL cell lines (Mino, REC-1, MAVER-1, and Granta-519) compared to Ibrutinib-sensitive MCL cell lines (Jeko-1). Functionally, LINK-A overexpression in Jeko-1 cells enhanced cell viability and repressed Ibrutinib-induced cell apoptosis. LINK-A knockdown in MAVER-1 cells decreased cell viability and further accelerated Ibrutinib-induced cell apoptosis. LINK-A overexpression enhanced Bcl2 expression in Jeko-1 cells, and Bcl2 inhibition blocked the effect of LINK-A on increasing cell viability in the presence of Ibrutinib. On the contrary, LINK-A knockdown reduced Bcl2 expression in MAVER-1 cells, and Bcl2 overexpression damaged the role of LINK-A inhibition in regulating cell viability. Mechanistically, LINK-A positively regulated the activation of AKT signaling, and inhibition of AKT signaling destroyed LINK-A-induced increased of Bcl2 and resulted in a subsequent suppression of cell viability. Taken together, the current results demonstrate that LINK-A inhibition overcomes Ibrutinib resistance in MCL cells by regulating AKT/Bcl2 pathway.
Collapse
Affiliation(s)
- Ye Zhang
- Department of Hematology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Peng Lu
- Department of Neurosurgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yan Zhou
- Department of Hematology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Lifei Zhang
- Department of Hematology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
12
|
Ran F, Liu Y, Wang C, Xu Z, Zhang Y, Liu Y, Zhao G, Ling Y. Review of the development of BTK inhibitors in overcoming the clinical limitations of ibrutinib. Eur J Med Chem 2021; 229:114009. [PMID: 34839996 DOI: 10.1016/j.ejmech.2021.114009] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/18/2021] [Accepted: 11/20/2021] [Indexed: 12/16/2022]
Abstract
Bruton's tyrosine kinase (BTK) regulates multiple important signaling pathways and plays a key role in the proliferation, survival, and differentiation of B-lineage cells and myeloid cells. BTK is a promising target for the treatment of hematologic malignancies. Ibrutinib, the first-generation BTK inhibitor, was approved to treat several B-cell malignancies. Despite the remarkable potency and efficacy of ibrutinib against various lymphomas and leukemias in the clinics, there are also some clinical limitations, such as off-target toxicities and primary/acquired drug resistance. As strategies to overcome these challenges, second- and third-generation BTK inhibitors, BTK-PROTACs, as well as combination therapies have been explored. In this review, we summarize clinical developments of the first-, second- and third-generation BTK inhibitors, as well as recent advances in BTK-PROTACs and ibrutinib-based combination therapies.
Collapse
Affiliation(s)
- Fansheng Ran
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, China; Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, 250012, PR China
| | - Yun Liu
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, China
| | - Chen Wang
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, China
| | - Zhongyuan Xu
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, China
| | - Yanan Zhang
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, China
| | - Yang Liu
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Guisen Zhao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, 250012, PR China.
| | - Yong Ling
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, China.
| |
Collapse
|
13
|
Manni S, Fregnani A, Quotti Tubi L, Spinello Z, Carraro M, Scapinello G, Visentin A, Barilà G, Pizzi M, Dei Tos AP, Vianello F, Zambello R, Gurrieri C, Semenzato G, Trentin L, Piazza F. Protein Kinase CK1α Sustains B-Cell Receptor Signaling in Mantle Cell Lymphoma. Front Oncol 2021; 11:733848. [PMID: 34722279 PMCID: PMC8551451 DOI: 10.3389/fonc.2021.733848] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/06/2021] [Indexed: 12/25/2022] Open
Abstract
Mantle Cell Lymphoma (MCL) is still an incurable B-cell malignancy characterized by poor prognosis and frequent relapses. B Cell Receptor (BCR) signaling inhibitors, in particular of the kinases BTK and PI3Kγ/δ, have demonstrated clinically meaningful anti-proliferative effects in B cell tumors. However, refractoriness to these drugs may develop, portending a dismal prognosis. Protein kinase CK1α is an emerging pro-growth enzyme in B cell malignancies. In multiple myeloma, this kinase sustains β-catenin and AKT-dependent survival and is involved in the activation of NF-κB in B cells. In this study, we analyzed the role of CK1α on MCL cell survival and proliferation, on the regulation of BCR-related BTK, NF-κB, PI3K/AKT signaling cascades and the effects of CK1α chemical inhibition or gene silencing in association with the BTK inhibitor Ibrutinib or the PI3Kγ/δ inhibitor Duvelisib. CK1α was found highly expressed in MCL cells as compared to normal B cells. The inactivation/loss of CK1α caused MCL cell apoptosis and proliferation arrest. CK1α sustained BCR signaling, in particular the NF-κB, AKT and BTK pathways by modulating the phosphorylation of Ser 652 on CARD11, Ser 536 p65 on NF-κB, Ser 473 on AKT, Tyr 223 on BTK, as well as the protein levels. We also provided evidence that CK1α-mediated regulation of CARD11 and BTK likely implicates a physical interaction. The combination of CK1α inhibition with Ibrutinib or Duvelisib synergistically increased cytotoxicity, leading to a further decrease of the activation of BCR signaling pathways. Therefore, CK1α sustains MCL growth through the regulation of BCR-linked survival signaling cascades and protects from Ibrutinib/Duvelisib-induced apoptosis. Thus, CK1α could be considered as a rational molecular target for the treatment of MCL, in association with novel agents.
Collapse
Affiliation(s)
- Sabrina Manni
- Department of Medicine-DIMED, Hematology and Clinical Immunology Section, University of Padova, Padova, Italy.,Laboratory of Myeloma and Lymphoma Pathobiology, Veneto Institute of Molecular Medicine, Padova, Italy
| | - Anna Fregnani
- Department of Medicine-DIMED, Hematology and Clinical Immunology Section, University of Padova, Padova, Italy.,Laboratory of Myeloma and Lymphoma Pathobiology, Veneto Institute of Molecular Medicine, Padova, Italy
| | - Laura Quotti Tubi
- Department of Medicine-DIMED, Hematology and Clinical Immunology Section, University of Padova, Padova, Italy.,Laboratory of Myeloma and Lymphoma Pathobiology, Veneto Institute of Molecular Medicine, Padova, Italy
| | - Zaira Spinello
- Department of Medicine-DIMED, Hematology and Clinical Immunology Section, University of Padova, Padova, Italy.,Laboratory of Myeloma and Lymphoma Pathobiology, Veneto Institute of Molecular Medicine, Padova, Italy
| | - Marco Carraro
- Department of Medicine-DIMED, Hematology and Clinical Immunology Section, University of Padova, Padova, Italy.,Laboratory of Myeloma and Lymphoma Pathobiology, Veneto Institute of Molecular Medicine, Padova, Italy
| | - Greta Scapinello
- Department of Medicine-DIMED, Hematology and Clinical Immunology Section, University of Padova, Padova, Italy.,Laboratory of Myeloma and Lymphoma Pathobiology, Veneto Institute of Molecular Medicine, Padova, Italy
| | - Andrea Visentin
- Department of Medicine-DIMED, Hematology and Clinical Immunology Section, University of Padova, Padova, Italy.,Laboratory of Myeloma and Lymphoma Pathobiology, Veneto Institute of Molecular Medicine, Padova, Italy
| | - Gregorio Barilà
- Department of Medicine-DIMED, Hematology and Clinical Immunology Section, University of Padova, Padova, Italy.,Laboratory of Myeloma and Lymphoma Pathobiology, Veneto Institute of Molecular Medicine, Padova, Italy
| | - Marco Pizzi
- Department of Medicine-DIMED, Surgical Pathology and Cytopathology Unit, University of Padova, Padova, Italy
| | - Angelo Paolo Dei Tos
- Department of Medicine-DIMED, Surgical Pathology and Cytopathology Unit, University of Padova, Padova, Italy
| | - Fabrizio Vianello
- Department of Medicine-DIMED, Hematology and Clinical Immunology Section, University of Padova, Padova, Italy
| | - Renato Zambello
- Department of Medicine-DIMED, Hematology and Clinical Immunology Section, University of Padova, Padova, Italy.,Laboratory of Myeloma and Lymphoma Pathobiology, Veneto Institute of Molecular Medicine, Padova, Italy
| | - Carmela Gurrieri
- Department of Medicine-DIMED, Hematology and Clinical Immunology Section, University of Padova, Padova, Italy.,Laboratory of Myeloma and Lymphoma Pathobiology, Veneto Institute of Molecular Medicine, Padova, Italy
| | - Gianpietro Semenzato
- Department of Medicine-DIMED, Hematology and Clinical Immunology Section, University of Padova, Padova, Italy.,Laboratory of Myeloma and Lymphoma Pathobiology, Veneto Institute of Molecular Medicine, Padova, Italy
| | - Livio Trentin
- Department of Medicine-DIMED, Hematology and Clinical Immunology Section, University of Padova, Padova, Italy.,Laboratory of Myeloma and Lymphoma Pathobiology, Veneto Institute of Molecular Medicine, Padova, Italy
| | - Francesco Piazza
- Department of Medicine-DIMED, Hematology and Clinical Immunology Section, University of Padova, Padova, Italy.,Laboratory of Myeloma and Lymphoma Pathobiology, Veneto Institute of Molecular Medicine, Padova, Italy
| |
Collapse
|
14
|
Resistance to Bruton's Tyrosine Kinase Inhibitors: The Achilles Heel of Their Success Story in Lymphoid Malignancies. Blood 2021; 138:1099-1109. [PMID: 34320163 DOI: 10.1182/blood.2020006783] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 04/13/2021] [Indexed: 11/20/2022] Open
Abstract
Bruton's tyrosine kinase inhibitors (BTKi) have significantly changed the treatment landscape for patients with B-cell malignancies including chronic lymphocytic leukemia (CLL), Waldenstrom's macroglobulinemia (WM), mantle cell lymphoma (MCL), and marginal zone lymphoma (MZL). Unfortunately, patients with BTKi resistant disease have shortened survival. Clinical and molecular risk factors, such as number of prior therapies and presence of TP53 mutations, can be used to predict patients at the highest risk of developing BTKi resistance. Many mechanisms of BTKi resistance have been reported with mutations in BTK and phospholipase C g 2 supported with the most data. The introduction of venetoclax has lengthened the survival of patients with BTKi resistant disease. Ongoing clinical trials with promising treatment modalities such as next-generation BTKi and chimeric antigen receptor T-cell therapy have reported promising efficacy in patients with BTKi resistant disease. Continued research focusing on resistance mechanisms and methods of how to circumvent resistance is needed to further prolong the survival of patients with BTKi resistant B-cell malignancies.
Collapse
|
15
|
Wu X, Nowakowski KE, Abeykoon JP, Manske M, Stenson MJ, Timm MM, Hanson CA, Van Dyke DL, Dasari S, Witzig TE. MCIR1: A patient-derived mantle cell lymphoma line for discovering new treatments for ibrutinib resistance. Eur J Haematol 2021; 107:458-465. [PMID: 34214199 DOI: 10.1111/ejh.13682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/17/2021] [Accepted: 06/30/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Despite the unprecedented success of ibrutinib in lymphoma therapy, the development of ibrutinib resistance due to acquired BTK or PLCγ2 mutations has become a new clinical problem. However, not all resistance is mediated by these mutations and these mechanisms are poorly understood due to a lack of study tools that truly recapitulate this clinical scenario. METHODS We established a novel patient-derived ibrutinib-resistant mantle cell lymphoma (MCL) line named MCIR1. Using immunological, molecular, and cytogenetic approaches, we comprehensively characterized MCIR1 and further demonstrated its utility in the study of resistance mechanisms and treatments to overcome this resistance. RESULTS We show that MCIR1 is a bona fide ibrutinib-resistant MCL cell line with normal BTK-/PLCγ2 but ibrutinib-resistant ERK1/2 and AKT1 signaling. RNA-Seq analysis revealed a robust non-canonical NF-kB signaling that drives the ibrutinib resistance. We also demonstrate the potential utility of a MCIR1-based cell and mouse model for the discovery of new treatments to overcome BTK inhibitor resistance. CONCLUSIONS We have established the first patient-derived ibrutinib-resistant MCL cell line MCIR1 that lacks BTK or PLCγ2 mutations but exhibits a hyperactive non-canonical NF-kB pathway. We further demonstrate its utility in the discovery and validation of new drugs to overcome this resistance.
Collapse
Affiliation(s)
- Xiaosheng Wu
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Kevin E Nowakowski
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Jithma P Abeykoon
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Michelle Manske
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Mary J Stenson
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Michael M Timm
- Department of Pathology and Laboratory Medicine, Mayo Clinic, Rochester, MN, USA
| | - Curtis A Hanson
- Department of Pathology and Laboratory Medicine, Mayo Clinic, Rochester, MN, USA
| | - Daniel L Van Dyke
- Department of Pathology and Laboratory Medicine, Mayo Clinic, Rochester, MN, USA
| | - Surendra Dasari
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Thomas E Witzig
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
16
|
Liu Z, Liu J, Zhang T, Li L, Zhang S, Jia H, Xia Y, Shi M, Zhang J, Yue S, Chen X, Yu J. Distinct BTK inhibitors differentially induce apoptosis but similarly suppress chemotaxis and lipid accumulation in mantle cell lymphoma. BMC Cancer 2021; 21:732. [PMID: 34174847 PMCID: PMC8235860 DOI: 10.1186/s12885-021-08475-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 06/04/2021] [Indexed: 11/10/2022] Open
Abstract
Background The more selective second-generation BTK inhibitors (BTKi) Acalabrutinib and Zanubrutinib and the first-generation BTKi Ibrutinib are highlighted by their clinical effectiveness in mantle cell lymphoma (MCL), however, similarities and differences of their biological and molecular effects on anti-survival of MCL cells induced by these BTKi with distinct binding selectivity against BTK remain largely unknown. Methods AlamarBlue assays were performed to define cytotoxicity of BTKi against MCL cells, Jeko-1 and Mino. Cleaved PARP and caspase-3 levels were examined by immunoblot analysis to study BTKi-induced apoptotic effects. Biological effects of BTKi on MCL-cell chemotaxis and lipid droplet (LD) accumulation were examined in Jeko-1, Mino and primary MCL cells via Transwell and Stimulated Raman scattering imaging analysis respectively. Enzyme-linked immunoassays were used to determine CCL3 and CCL4 levels in MCL-cell culture supernatants. RNA-seq analyses identified BTKi targets which were validated by quantitative RT-PCR (qRT-PCR) and immunoblot analysis. Results Acalabrutinib and Zanubrutinib induced moderate apoptosis in Ibrutinib high-sensitive JeKo-1 cells and Ibrutinib low-sensitive Mino cells, which was accompanied by cleaved PARP and caspase-3. Such effects might be caused by the stronger ability of Ibrutinib to upregulate the expression of pro-apoptotic genes, such as HRK, GADD45A, and ATM, in JeKo-1 cells than in Mino cells, and the expression of such apoptotic genes was slightly changed by Acalabrutinib and Zanubrutinib in both JeKo-1 and Mino cells. Further, Acalabrutinib, Zanubrutinib and Ibrutinib reduced MCL-cell chemotaxis with similar efficiency, due to their similar abilities to downmodulate chemokines, such as CCL3 and CCL4. Also, these three BTKi similarly suppressed MCL-cell LD accumulation via downregulating lipogenic factors, DGAT2, SCD, ENPP2 and ACACA without significant differences. Conclusion BTKi demonstrated differential capacities to induce MCL-cell apoptosis due to their distinct capabilities to regulate the expression of apoptosis-related genes, and similar biological and molecular inhibitory effects on MCL-cell chemotaxis and LD accumulation. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08475-3.
Collapse
Affiliation(s)
- Zhuojun Liu
- Interdisciplinary Institute of Cancer Diagnosis and Treatment, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beihang University, Beijing, 100083, China.,School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Jia Liu
- Interdisciplinary Institute of Cancer Diagnosis and Treatment, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beihang University, Beijing, 100083, China.,School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Tianming Zhang
- Interdisciplinary Institute of Cancer Diagnosis and Treatment, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beihang University, Beijing, 100083, China.,School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Lin Li
- Interdisciplinary Institute of Cancer Diagnosis and Treatment, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beihang University, Beijing, 100083, China.,School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Shuo Zhang
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Hao Jia
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Yuanshi Xia
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Mingxia Shi
- Department of Hematology, the First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jing Zhang
- Interdisciplinary Institute of Cancer Diagnosis and Treatment, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beihang University, Beijing, 100083, China.,School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Shuhua Yue
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Xiaofang Chen
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.
| | - Jian Yu
- Interdisciplinary Institute of Cancer Diagnosis and Treatment, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beihang University, Beijing, 100083, China. .,School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.
| |
Collapse
|
17
|
Inhibition of B-cell receptor signaling disrupts cell adhesion in mantle cell lymphoma via RAC2. Blood Adv 2021; 5:185-197. [PMID: 33570628 DOI: 10.1182/bloodadvances.2020001665] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 11/20/2020] [Indexed: 12/21/2022] Open
Abstract
Inhibition of the B-cell receptor (BCR) signaling pathway is highly effective in B-cell neoplasia through Bruton tyrosine kinase inhibition by ibrutinib. Ibrutinib also disrupts cell adhesion between a tumor and its microenvironment. However, it is largely unknown how BCR signaling is linked to cell adhesion. We observed that intrinsic sensitivities of mantle cell lymphoma (MCL) cell lines to ibrutinib correlated well with their cell adhesion phenotype. RNA-sequencing revealed that BCR and cell adhesion signatures were simultaneously downregulated by ibrutinib in the ibrutinib-sensitive, but not ibrutinib-resistant, cells. Among the differentially expressed genes, RAC2, part of the BCR signature and a known regulator of cell adhesion, was downregulated at both the RNA and protein levels by ibrutinib only in sensitive cells. RAC2 physically associated with B-cell linker protein (BLNK), a BCR adaptor molecule, uniquely in sensitive cells. RAC2 reduction using RNA interference and CRISPR impaired cell adhesion, whereas RAC2 overexpression reversed ibrutinib-induced cell adhesion impairment. In a xenograft mouse model, mice treated with ibrutinib exhibited slower tumor growth, with reduced RAC2 expression in tissue. Finally, RAC2 was expressed in ∼65% of human primary MCL tumors, and RAC2 suppression by ibrutinib resulted in cell adhesion impairment. These findings, made with cell lines, a xenograft model, and human primary lymphoma tumors, uncover a novel link between BCR signaling and cell adhesion. This study highlights the importance of RAC2 and cell adhesion in MCL pathogenesis and drug development.
Collapse
|
18
|
Kagiyama Y, Fujita S, Shima Y, Yamagata K, Katsumoto T, Nakagawa M, Honma D, Adachi N, Araki K, Kato A, Inaki K, Ono Y, Fukuhara S, Kobayashi Y, Tobinai K, Kitabayashi I. CDKN1C-mediated growth inhibition by an EZH1/2 dual inhibitor overcomes resistance of mantle cell lymphoma to ibrutinib. Cancer Sci 2021; 112:2314-2324. [PMID: 33792119 PMCID: PMC8177787 DOI: 10.1111/cas.14905] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/26/2021] [Accepted: 03/27/2021] [Indexed: 12/26/2022] Open
Abstract
Mantle cell lymphoma (MCL) is a rare subtype of non‐Hodgkin's lymphoma, which is characterized by overexpression of cyclin D1. Although novel drugs, such as ibrutinib, show promising clinical outcomes, relapsed MCL often acquires drug resistance. Therefore, alternative approaches for refractory and relapsed MCL are needed. Here, we examined whether a novel inhibitor of enhancer of zeste homologs 1 and 2 (EZH1/2), OR‐S1 (a close analog of the clinical‐stage compound valemetostat), had an antitumor effect on MCL cells. In an ibrutinib‐resistant MCL patient–derived xenograft (PDX) mouse model, OR‐S1 treatment by oral administration significantly inhibited MCL tumor growth, whereas ibrutinib did not. In vitro growth assays showed that compared with an established EZH2‐specific inhibitor GSK126, OR‐S1 had a marked antitumor effect on MCL cell lines. Furthermore, comprehensive gene expression analysis was performed using OR‐S1–sensitive or insensitive MCL cell lines and showed that OR‐S1 treatment modulated B‐cell activation, differentiation, and cell cycle. In addition, we identified Cyclin Dependent Kinase Inhibitor 1C (CDKN1C, also known as p57, KIP2), which contributes to cell cycle arrest, as a direct target of EZH1/2 and showed that its expression influenced MCL cell proliferation. These results suggest that EZH1/2 may be a potential novel target for the treatment of aggressive ibrutinib‐resistant MCL via CDKN1C‐mediated cell cycle arrest.
Collapse
Affiliation(s)
- Yuki Kagiyama
- Division of Haematological Malignancy, National Cancer Center Research Institute, Tokyo, Japan
| | - Shuhei Fujita
- Division of Haematological Malignancy, National Cancer Center Research Institute, Tokyo, Japan
| | - Yutaka Shima
- Division of Haematological Malignancy, National Cancer Center Research Institute, Tokyo, Japan
| | - Kazutsune Yamagata
- Division of Haematological Malignancy, National Cancer Center Research Institute, Tokyo, Japan
| | - Takuo Katsumoto
- Division of Haematological Malignancy, National Cancer Center Research Institute, Tokyo, Japan
| | - Makoto Nakagawa
- Division of Haematological Malignancy, National Cancer Center Research Institute, Tokyo, Japan
| | - Daisuke Honma
- Oncology Research Laboratories, Daiichi Sankyo Co., Ltd, Tokyo, Japan
| | - Nobuaki Adachi
- Oncology Research Laboratories, Daiichi Sankyo Co., Ltd, Tokyo, Japan
| | - Kazushi Araki
- Oncology Research Laboratories, Daiichi Sankyo Co., Ltd, Tokyo, Japan
| | - Ayako Kato
- Discovery Science and Technology Department, Daiichi Sankyo RD Novare Co., Ltd, Tokyo, Japan
| | - Koichiro Inaki
- Discovery Science and Technology Department, Daiichi Sankyo RD Novare Co., Ltd, Tokyo, Japan
| | - Yoshimasa Ono
- Discovery Science and Technology Department, Daiichi Sankyo RD Novare Co., Ltd, Tokyo, Japan
| | - Suguru Fukuhara
- Department of Haematology, National Cancer Center Hospital, Tokyo, Japan
| | - Yukio Kobayashi
- Department of Haematology, National Cancer Center Hospital, Tokyo, Japan
| | - Kensei Tobinai
- Department of Haematology, National Cancer Center Hospital, Tokyo, Japan
| | - Issay Kitabayashi
- Division of Haematological Malignancy, National Cancer Center Research Institute, Tokyo, Japan
| |
Collapse
|
19
|
Gu D, Tang H, Wu J, Li J, Miao Y. Targeting Bruton tyrosine kinase using non-covalent inhibitors in B cell malignancies. J Hematol Oncol 2021; 14:40. [PMID: 33676527 PMCID: PMC7937220 DOI: 10.1186/s13045-021-01049-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/18/2021] [Indexed: 12/14/2022] Open
Abstract
B cell receptor (BCR) signaling is involved in the pathogenesis of B cell malignancies. Activation of BCR signaling promotes the survival and proliferation of malignant B cells. Bruton tyrosine kinase (BTK) is a key component of BCR signaling, establishing BTK as an important therapeutic target. Several covalent BTK inhibitors have shown remarkable efficacy in the treatment of B cell malignancies, especially chronic lymphocytic leukemia. However, acquired resistance to covalent BTK inhibitors is not rare in B cell malignancies. A major mechanism for the acquired resistance is the emergence of BTK cysteine 481 (C481) mutations, which disrupt the binding of covalent BTK inhibitors. Additionally, adverse events due to the off-target inhibition of kinases other than BTK by covalent inhibitors are common. Alternative therapeutic options are needed if acquired resistance or intolerable adverse events occur. Non-covalent BTK inhibitors do not bind to C481, therefore providing a potentially effective option to patients with B cell malignancies, including those who have developed resistance to covalent BTK inhibitors. Preliminary clinical studies have suggested that non-covalent BTK inhibitors are effective and well-tolerated. In this review, we discussed the rationale for the use of non-covalent BTK inhibitors and the preclinical and clinical studies of non-covalent BTK inhibitors in B cell malignancies.
Collapse
Affiliation(s)
- Danling Gu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
- Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China
| | - Hanning Tang
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
- Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China
| | - Jiazhu Wu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
- Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China
| | - Jianyong Li
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China.
- Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China.
- Pukou CLL Center, Nanjing, 210000, China.
| | - Yi Miao
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China.
- Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China.
- Pukou CLL Center, Nanjing, 210000, China.
| |
Collapse
|
20
|
Fuhr V, Vafadarnejad E, Dietrich O, Arampatzi P, Riedel A, Saliba AE, Rosenwald A, Rauert-Wunderlich H. Time-Resolved scRNA-Seq Tracks the Adaptation of a Sensitive MCL Cell Line to Ibrutinib Treatment. Int J Mol Sci 2021; 22:ijms22052276. [PMID: 33668876 PMCID: PMC7956352 DOI: 10.3390/ijms22052276] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/16/2021] [Accepted: 02/23/2021] [Indexed: 12/11/2022] Open
Abstract
Since the approval of ibrutinib for relapsed/refractory mantle cell lymphoma (MCL), the treatment of this rare mature B-cell neoplasm has taken a great leap forward. Despite promising efficacy of the Bruton tyrosine kinase inhibitor, resistance arises inevitably and the underlying mechanisms remain to be elucidated. Here, we aimed to decipher the response of a sensitive MCL cell line treated with ibrutinib using time-resolved single-cell RNA sequencing. The analysis uncovered five subpopulations and their individual responses to the treatment. The effects on the B cell receptor pathway, cell cycle, surface antigen expression, and metabolism were revealed by the computational analysis and were validated by molecular biological methods. The observed upregulation of B cell receptor signaling, crosstalk with the microenvironment, upregulation of CD52, and metabolic reprogramming towards dependence on oxidative phosphorylation favor resistance to ibrutinib treatment. Targeting these cellular responses provide new therapy options in MCL.
Collapse
Affiliation(s)
- Viktoria Fuhr
- Institute of Pathology, University of Würzburg and Comprehensive Cancer Center (CCC) Mainfranken, 97080 Würzburg, Germany; (V.F.); (A.R.)
| | - Ehsan Vafadarnejad
- Helmholtz Institute for RNA-Based Infection Research (HIRI), Helmholtz-Center for Infection Research (HZI), 97080 Würzburg, Germany; (E.V.); (O.D.); (A.-E.S.)
| | - Oliver Dietrich
- Helmholtz Institute for RNA-Based Infection Research (HIRI), Helmholtz-Center for Infection Research (HZI), 97080 Würzburg, Germany; (E.V.); (O.D.); (A.-E.S.)
| | - Panagiota Arampatzi
- Core Unit Systems Medicine, University of Würzburg, 97080 Würzburg, Germany;
| | - Angela Riedel
- Mildred Scheel Early Career Center (MSNZ), University Hospital of Würzburg, 97080 Würzburg, Germany;
| | - Antoine-Emmanuel Saliba
- Helmholtz Institute for RNA-Based Infection Research (HIRI), Helmholtz-Center for Infection Research (HZI), 97080 Würzburg, Germany; (E.V.); (O.D.); (A.-E.S.)
| | - Andreas Rosenwald
- Institute of Pathology, University of Würzburg and Comprehensive Cancer Center (CCC) Mainfranken, 97080 Würzburg, Germany; (V.F.); (A.R.)
| | - Hilka Rauert-Wunderlich
- Institute of Pathology, University of Würzburg and Comprehensive Cancer Center (CCC) Mainfranken, 97080 Würzburg, Germany; (V.F.); (A.R.)
- Correspondence:
| |
Collapse
|
21
|
Ibrutinib and venetoclax target distinct subpopulations of CLL cells: implication for residual disease eradication. Blood Cancer J 2021; 11:39. [PMID: 33602908 PMCID: PMC7893066 DOI: 10.1038/s41408-021-00429-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 12/21/2020] [Accepted: 01/25/2021] [Indexed: 12/12/2022] Open
Abstract
Ibrutinib inhibits Bruton tyrosine kinase while venetoclax is a specific inhibitor of the anti-apoptotic protein BCL2. Both drugs are highly effective as monotherapy against chronic lymphocytic leukemia (CLL), and clinical trials using the combination therapy have produced remarkable results in terms of rate of complete remission and frequency of undetectable minimal residual disease. However, the laboratory rationale behind the success of the drug combination is still lacking. A better understanding of how these two drugs synergize would eventually help develop other rational combination strategies. Using an ex vivo model that promotes CLL proliferation, we show that modeled ibrutinib proliferative responses, but not viability responses, correlate well with patients’ actual clinical responses. Importantly, we demonstrate for the first time that ibrutinib and venetoclax act on distinct CLL subpopulations that have different proliferative capacities. While the dividing subpopulation of CLL responds to ibrutinib, the resting subpopulation preferentially responds to venetoclax. The combination of these targeted therapies effectively reduced both the resting and dividing subpopulations in most cases. Our laboratory findings help explain several clinical observations and contribute to the understanding of tumor dynamics. Additionally, our proliferation model may be used to identify novel drug combinations with the potential of eradicating residual disease.
Collapse
|
22
|
Cancer cell death strategies by targeting Bcl-2's BH4 domain. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:118983. [PMID: 33549704 DOI: 10.1016/j.bbamcr.2021.118983] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 12/15/2022]
Abstract
The Bcl-2-family proteins have long been known for their role as key regulators of apoptosis. Overexpression of various members of the family is associated with oncogenesis. Its founding member, anti-apoptotic Bcl-2 regulates cell death at different levels, whereby Bcl-2 emerged as a major drug target to eradicate cancers through cell death. This resulted in the development of venetoclax, a Bcl-2 antagonist that acts as a BH3 mimetic. Venetoclax already entered the clinic to treat relapse chronic lymphocytic leukemia patients. Here, we discuss the role of Bcl-2 as a decision-maker in cell death with focus on the recent advances in anti-cancer therapeutics that target the BH4 domain of Bcl-2, thereby interfering with non-canonical functions of Bcl-2 in Ca2+-signaling modulation. In particular, we critically discuss previously developed tools, including the peptide BIRD-2 (Bcl-2/IP3R-disrupter-2) and the small molecule BDA-366. In addition, we present a preliminary analysis of two recently identified molecules that emerged from a molecular modeling approach to target Bcl-2's BH4 domain, which however failed to induce cell death in two Bcl-2-dependent diffuse large B-cell lymphoma cell models. Overall, antagonizing the non-canonical functions of Bcl-2 by interfering with its BH4-domain biology holds promise to elicit cell death in cancer, though improved tools and on-target antagonizing small molecules remain necessary and ought to be designed.
Collapse
|
23
|
Huang J, Huang S, Ma Z, Lin X, Li X, Huang X, Wang J, Ye W, Li Y, He D, Yang M, Pan J, Ling Q, Li F, Mao S, Wang H, Wang Y, Jin J. Ibrutinib Suppresses Early Megakaryopoiesis but Enhances Proplatelet Formation. Thromb Haemost 2021; 121:192-205. [PMID: 32961571 DOI: 10.1055/s-0040-1716530] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ibrutinib, an irreversible inhibitor of Bruton's tyrosine kinase, has a favorable safety profile in patients with B cell-related malignancies. A primary adverse effect of ibrutinib is thrombocytopenia in the early stages of treatment, but platelet counts increase or recover as treatment continues. Currently, the effects of ibrutinib on megakaryopoiesis remain unclear. In this study, we investigated the mechanism by which ibrutinib induces thrombocytopenia using cord blood CD34+ hematopoietic stem cells (HSCs), a human megakaryoblastic cell line (SET-2), and C57BL/6 mice. We show that treatment with ibrutinib can suppress CD34+ HSC differentiation into megakaryocytes (MKs) and decrease the number of colony-forming unit-MKs (CFU-MKs). The ibrutinib-dependent inhibition of early megakaryopoiesis seems to mainly involve impaired proliferation of progenitor cells without induction of apoptosis. The effects of ibrutinib on late-stage megakaryopoiesis, in contrast to early-stage megakaryopoiesis, include enhanced MK differentiation, ploidy, and proplatelet formation in CD34+ HSC-derived MKs and SET-2 cells. We also demonstrated that MK adhesion and spreading, but not migration, were inhibited by ibrutinib. Furthermore, we revealed that integrin αIIbβ3 outside-in signaling in MKs was inhibited by ibrutinib. Consistent with previous clinical observations, in C57BL/6 mice treated with ibrutinib, platelet counts decreased by days 2 to 7 and recovered to normal levels by day 15. Together, these results reveal the pathogenesis of ibrutinib-induced transient thrombocytopenia. In conclusion, ibrutinib suppresses early megakaryopoiesis, as evidenced by inhibition of MK progenitor cell proliferation and CFU-MK formation. Ibrutinib enhances MK differentiation, ploidy, and proplatelet formation, while it impairs integrin αIIbβ3 outside-in signaling.
Collapse
Affiliation(s)
- Jiansong Huang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang Province, China
- Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Shujuan Huang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang Province, China
- Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Zhixin Ma
- Clinical Prenatal Diagnosis Center, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Xiangjie Lin
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang Province, China
- Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Xia Li
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang Province, China
- Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Xin Huang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang Province, China
- Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Jinghan Wang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang Province, China
- Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Wenle Ye
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang Province, China
- Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Yang Li
- Department of Obstetrics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Daqiang He
- Department of Laboratory Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Min Yang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang Province, China
- Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Jiajia Pan
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang Province, China
- Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Qing Ling
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang Province, China
- Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Fenglin Li
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang Province, China
- Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Shihui Mao
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang Province, China
- Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Huafeng Wang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang Province, China
- Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Yungui Wang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang Province, China
- Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Jie Jin
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang Province, China
- Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| |
Collapse
|
24
|
Cuesta-Mateos C, Juárez-Sánchez R, Mateu-Albero T, Loscertales J, Mol W, Terrón F, Muñoz-Calleja C. Targeting cancer homing into the lymph node with a novel anti-CCR7 therapeutic antibody: the paradigm of CLL. MAbs 2021; 13:1917484. [PMID: 33944659 PMCID: PMC8098074 DOI: 10.1080/19420862.2021.1917484] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/29/2021] [Accepted: 04/12/2021] [Indexed: 11/25/2022] Open
Abstract
Lymph node (LN) is a key tissue in the pathophysiology of mature blood cancers, especially for chronic lymphocytic leukemia (CLL). Within the multiple de-regulated pathways affecting CLL homeostasis, the CC-chemokine receptor 7 (CCR7) grants homing of CLL cells into the LN where protective environments foster tumor progression. To cover the lack of specific therapies targeting the CCR7-dependence of CLL to enter into the LN, and aiming to displace the disease from LN, we generated CAP-100, an antibody that specifically binds to hCCR7 and neutralizes its ligand-binding site and signaling. In various in vitro and in vivo preclinical models CAP-100 strongly inhibited CCR7-induced migration, extravasation, homing, and survival in CLL samples. Moreover, it triggered potent tumor cell killing, mediated by host immune mechanisms, and was effective in xenograft models of high-risk disease. Additionally, CAP-100 showed a favorable toxicity profile on relevant hematopoietic subsets. Our results validated CAP-100 as a novel therapeutic tool to prevent the access of CLL cells, and other neoplasia with nodal-dependence, into the LN niches, thus hitting a central hub in the pathogenesis of cancer. The first-in-human clinical trial (NCT04704323), which will evaluate this novel therapeutic approach in CLL patients, is pending.
Collapse
Affiliation(s)
- Carlos Cuesta-Mateos
- Immed S.L., Immunological and Medicinal Products, Madrid, Spain
- Catapult Therapeutics, Lelystad, The Netherlands
- Immunology Department, Hospital Universitario De La Princesa, IIS-IP, Madrid, Spain
| | - Raquel Juárez-Sánchez
- Immed S.L., Immunological and Medicinal Products, Madrid, Spain
- Immunology Department, Hospital Universitario De La Princesa, IIS-IP, Madrid, Spain
| | - Tamara Mateu-Albero
- Immunology Department, Hospital Universitario De La Princesa, IIS-IP, Madrid, Spain
| | - Javier Loscertales
- Hematology Department, Hospital Universitario De La Princesa, IIS-IP, Madrid, Spain
| | - Wim Mol
- Catapult Therapeutics, Lelystad, The Netherlands
- Pepscan, Lelystad, The Netherlands
| | - Fernando Terrón
- Immed S.L., Immunological and Medicinal Products, Madrid, Spain
- Catapult Therapeutics, Lelystad, The Netherlands
| | - Cecilia Muñoz-Calleja
- Immunology Department, Hospital Universitario De La Princesa, IIS-IP, Madrid, Spain
- Medicine Faculty, Universidad Autónoma De Madrid, Madrid, Spain
| |
Collapse
|
25
|
Cavallini C, Galasso M, Pozza ED, Chignola R, Lovato O, Dando I, Romanelli MG, Krampera M, Pizzolo G, Donadelli M, Scupoli MT. Effects of CD20 antibodies and kinase inhibitors on B-cell receptor signalling and survival of chronic lymphocytic leukaemia cells. Br J Haematol 2020; 192:333-342. [PMID: 33216963 DOI: 10.1111/bjh.17139] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 09/09/2020] [Indexed: 01/12/2023]
Abstract
Recently, clinical trial results have established inhibitors of B-cell receptor (BCR)-associated kinase (BAKi), with or without CD20 moniclonal antibodies (mAbs), as the preferred first-line treatment for most chronic lymphocytic leukaemia (CLL) patients. Using phosphospecific flow cytometry, we showed that in leukaemic cells from CLL patients the CD20 therapeutic antibodies - rituximab, ofatumumab, and obinutuzumab - inhibited BCR signalling pathways targeting preferentially pBTKY551 - but not BTKY223 - and pAKT. On the contrary, ibrutinib and idelalisib reduced pBTKY223 to a higher extent than pBTKY551 . The strong reduction of pAKT induced by idelalisib was enhanced by its combination with rituximab or ofatumumab. Moreover, CD20 mAbs and BAKi induced the death of leukaemia cells that was significantly potentiated by their combination. Analysis of the enhancement of cell death in these combinations revealed an approximately additive enhancement induced by rituximab or obinutuzumab combined with ibrutinib or idelalisib. Taken together, our data identified negative regulatory effects of CD20 mAbs and their combinations with BAKi on BCR signalling and cell survival in CLL. In conclusion, this study advances our understanding of mechanisms of action of CD20 mAbs as single agents or in combination with BAKi and could inform on the potential of combined therapies in ongoing and future clinical trials in patients with CLL.
Collapse
Affiliation(s)
- Chiara Cavallini
- Research Center LURM (Interdepartmental Laboratory of Medical Research), University of Verona, Verona, Italy
| | - Marilisa Galasso
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Elisa Dalla Pozza
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Roberto Chignola
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Ornella Lovato
- Research Center LURM (Interdepartmental Laboratory of Medical Research), University of Verona, Verona, Italy
| | - Ilaria Dando
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Maria G Romanelli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Mauro Krampera
- Department of Medicine, Section of Hematology, University of Verona, Verona, Italy
| | - Giovanni Pizzolo
- Department of Medicine, Section of Hematology, University of Verona, Verona, Italy
| | - Massimo Donadelli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Maria T Scupoli
- Research Center LURM (Interdepartmental Laboratory of Medical Research), University of Verona, Verona, Italy.,Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|
26
|
Ondrisova L, Mraz M. Genetic and Non-Genetic Mechanisms of Resistance to BCR Signaling Inhibitors in B Cell Malignancies. Front Oncol 2020; 10:591577. [PMID: 33154951 PMCID: PMC7116322 DOI: 10.3389/fonc.2020.591577] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 09/24/2020] [Indexed: 12/17/2022] Open
Abstract
The approval of BTK and PI3K inhibitors (ibrutinib, idelalisib) represents a revolution in the therapy of B cell malignancies such as chronic lymphocytic leukemia (CLL), mantle-cell lymphoma (MCL), diffuse large B cell lymphoma (DLBCL), follicular lymphoma (FL), or Waldenström's macroglobulinemia (WM). However, these "BCR inhibitors" function by interfering with B cell pathophysiology in a more complex way than anticipated, and resistance develops through multiple mechanisms. In ibrutinib treated patients, the most commonly described resistance-mechanism is a mutation in BTK itself, which prevents the covalent binding of ibrutinib, or a mutation in PLCG2, which acts to bypass the dependency on BTK at the BCR signalosome. However, additional genetic aberrations leading to resistance are being described (such as mutations in the CARD11, CCND1, BIRC3, TRAF2, TRAF3, TNFAIP3, loss of chromosomal region 6q or 8p, a gain of Toll-like receptor (TLR)/MYD88 signaling or gain of 2p chromosomal region). Furthermore, relative resistance to BTK inhibitors can be caused by non-genetic adaptive mechanisms leading to compensatory pro-survival pathway activation. For instance, PI3K/mTOR/Akt, NFkB and MAPK activation, BCL2, MYC, and XPO1 upregulation or PTEN downregulation lead to B cell survival despite BTK inhibition. Resistance could also arise from activating microenvironmental pathways such as chemokine or integrin signaling via CXCR4 or VLA4 upregulation, respectively. Defining these compensatory pro-survival mechanisms can help to develop novel therapeutic combinations of BTK inhibitors with other inhibitors (such as BH3-mimetic venetoclax, XPO1 inhibitor selinexor, mTOR, or MEK inhibitors). The mechanisms of resistance to PI3K inhibitors remain relatively unclear, but some studies point to MAPK signaling upregulation via both genetic and non-genetic changes, which could be co-targeted therapeutically. Alternatively, drugs mimicking the BTK/PI3K inhibition effect can be used to prevent adhesion and/or malignant B cell migration (chemokine and integrin inhibitors) or to block the pro-proliferative T cell signals in the microenvironment (such as IL4/STAT signaling inhibitors). Here we review the genetic and non-genetic mechanisms of resistance and adaptation to the first generation of BTK and PI3K inhibitors (ibrutinib and idelalisib, respectively), and discuss possible combinatorial therapeutic strategies to overcome resistance or to increase clinical efficacy.
Collapse
Affiliation(s)
- Laura Ondrisova
- Molecular Medicine, CEITEC Masaryk University, Brno, Czechia
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Marek Mraz
- Molecular Medicine, CEITEC Masaryk University, Brno, Czechia
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czechia
| |
Collapse
|
27
|
McCulloch R, Eyre TA, Rule S. What Causes Bruton Tyrosine Kinase Inhibitor Resistance in Mantle Cell Lymphoma and How Should We Treat Such Patients? Hematol Oncol Clin North Am 2020; 34:923-939. [PMID: 32861287 DOI: 10.1016/j.hoc.2020.06.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In this review, we explore insights into the pathophysiology of Bruton tyrosine kinase inhibitor (BTKi) resistance in mantle cell lymphoma, and consider potential therapeutic targets. We review the possible clinical benefits of giving BTKis alongside other novel therapies, and evaluate clinical data for treatment strategies post BTKi progression that may help guide current practice. We conclude by considering future approaches, including the potential role of chimeric antigen receptor T-cell therapy.
Collapse
Affiliation(s)
- Rory McCulloch
- Department of Haematology, Peninsula Medical School, University of Plymouth, Plymouth, UK
| | - Toby A Eyre
- Department of Haematology, Oxford University Hospitals, Oxford, UK
| | - Simon Rule
- Department of Haematology, Peninsula Medical School, University of Plymouth, John Bull Building, Plymouth PL6 8BU, UK.
| |
Collapse
|
28
|
Klener P. Mantle cell lymphoma: insights into therapeutic targets at the preclinical level. Expert Opin Ther Targets 2020; 24:1029-1045. [PMID: 32842810 DOI: 10.1080/14728222.2020.1813718] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Mantle cell lymphoma (MCL) is a chronically relapsing B-cell non-Hodgkin lymphoma characterized by recurrent molecular-cytogenetic aberrations that lead to deregulation of DNA damage response, cell cycle progression, epigenetics, apoptosis, proliferation, and motility. In the last 10 years, clinical approval of several innovative drugs dramatically changed the landscape of treatment options in the relapsed/refractory (R/R) MCL, which translated into significantly improved survival parameters. AREAS COVERED Here, up-to-date knowledge on the biology of MCL together with currently approved and clinically tested frontline and salvage therapies are reviewed. In addition, novel therapeutic targets in MCL based on the scientific reports published in Pubmed are discussed. EXPERT OPINION Bruton tyrosine-kinase inhibitors, NFkappaB inhibitors, BCL2 inhibitors, and immunomodulary agents in combination with monoclonal antibodies and genotoxic drugs have the potential to induce long-term remissions in majority of newly diagnosed MCL patients. Several other classes of anti-tumor drugs including phosphoinositole-3-kinase, cyclin-dependent kinase or DNA damage response kinase inhibitors have demonstrated promising anti-lymphoma efficacy in R/R MCL. Most importantly, adoptive immunotherapy with genetically modified T-cells carrying chimeric antigen receptor represents a potentially curative treatment approach even in the patients with chemotherapy and ibrutinib-refractory disease.
Collapse
Affiliation(s)
- Pavel Klener
- First Department of Internal Medicine- Hematology, University General Hospital and First Faculty of Medicine, Charles University , Prague, Czech Republic.,Institute of Pathological Physiology, First Faculty of Medicine, Charles University , Prague, Czech Republic
| |
Collapse
|
29
|
Abstract
Mantle cell lymphoma (MCL) is a rare, B cell non-Hodgkin's lymphoma with highly heterogeneous clinical presentation and aggressiveness. First-line treatment consists of intensive chemotherapy with autologous stem cell transplant for the fit, transplant eligible patients, or less intensive chemotherapy for the less fit (and transplant-ineligible) patients. Patients eventually relapse with a progressive clinical course. Numerous therapeutic approaches have emerged over the last few years which have significantly changed the treatment landscape of MCL. These therapies consist of targeted approaches such as BTK and BCL2 inhibitors that provide durable therapeutic responses. However, the optimum combination and sequencing of these therapies is unclear and is currently investigated in several ongoing studies. Furthermore, cellular therapies such as chimeric antigen receptor (CAR) T cells and bispecific T cell engager (BiTe) antibodies have shown impressive results and will likely shape treatment approaches in relapsed MCL, especially after failure with BTK inhibitors. Herein, we provide a comprehensive review of past and ongoing studies that will likely significantly impact our approach to MCL treatment in both the frontline (for transplant eligible and ineligible patients) as well as in the relapsed setting. We present the most up to date results from these studies as well as perspectives on future studies in MCL.
Collapse
Affiliation(s)
- Walter Hanel
- Division of Hematology, Department of Medicine, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210 USA
| | - Narendranath Epperla
- Division of Hematology, Department of Medicine, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210 USA
| |
Collapse
|
30
|
Roué G, Sola B. Management of Drug Resistance in Mantle Cell Lymphoma. Cancers (Basel) 2020; 12:cancers12061565. [PMID: 32545704 PMCID: PMC7352245 DOI: 10.3390/cancers12061565] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/06/2020] [Accepted: 06/11/2020] [Indexed: 12/21/2022] Open
Abstract
Mantle cell lymphoma (MCL) is a rare but aggressive B-cell hemopathy characterized by the translocation t(11;14)(q13;q32) that leads to the overexpression of the cell cycle regulatory protein cyclin D1. This translocation is the initial event of the lymphomagenesis, but tumor cells can acquire additional alterations allowing the progression of the disease with a more aggressive phenotype and a tight dependency on microenvironment signaling. To date, the chemotherapeutic-based standard care is largely inefficient and despite the recent advent of different targeted therapies including proteasome inhibitors, immunomodulatory drugs, tyrosine kinase inhibitors, relapses are frequent and are generally related to a dismal prognosis. As a result, MCL remains an incurable disease. In this review, we will present the molecular mechanisms of drug resistance learned from both preclinical and clinical experiences in MCL, detailing the main tumor intrinsic processes and signaling pathways associated to therapeutic drug escape. We will also discuss the possibility to counteract the acquisition of drug refractoriness through the design of more efficient strategies, with an emphasis on the most recent combination approaches.
Collapse
Affiliation(s)
- Gaël Roué
- Lymphoma Translational Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Spain
- Correspondence: (G.R.); (B.S.); Tel.: +34-935572800 (ext. 4080) (G.R.); +33-231068210 (B.S.)
| | - Brigitte Sola
- MICAH Team, INSERM U1245, UNICAEN, CEDEX 5, 14032 Caen, France
- Correspondence: (G.R.); (B.S.); Tel.: +34-935572800 (ext. 4080) (G.R.); +33-231068210 (B.S.)
| |
Collapse
|
31
|
Drug Resistance in Non-Hodgkin Lymphomas. Int J Mol Sci 2020; 21:ijms21062081. [PMID: 32197371 PMCID: PMC7139754 DOI: 10.3390/ijms21062081] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/14/2020] [Accepted: 03/15/2020] [Indexed: 12/15/2022] Open
Abstract
Non-Hodgkin lymphomas (NHL) are lymphoid tumors that arise by a complex process of malignant transformation of mature lymphocytes during various stages of differentiation. The WHO classification of NHL recognizes more than 90 nosological units with peculiar pathophysiology and prognosis. Since the end of the 20th century, our increasing knowledge of the molecular biology of lymphoma subtypes led to the identification of novel druggable targets and subsequent testing and clinical approval of novel anti-lymphoma agents, which translated into significant improvement of patients’ outcome. Despite immense progress, our effort to control or even eradicate malignant lymphoma clones has been frequently hampered by the development of drug resistance with ensuing unmet medical need to cope with relapsed or treatment-refractory disease. A better understanding of the molecular mechanisms that underlie inherent or acquired drug resistance might lead to the design of more effective front-line treatment algorithms based on reliable predictive markers or personalized salvage therapy, tailored to overcome resistant clones, by targeting weak spots of lymphoma cells resistant to previous line(s) of therapy. This review focuses on the history and recent advances in our understanding of molecular mechanisms of resistance to genotoxic and targeted agents used in clinical practice for the therapy of NHL.
Collapse
|
32
|
Zhou H, Yang L, Dang Q, Huang J, Cheng Y, Zhang Y, Shi W. Ibrutinib resistance in a patient with transformed diffuse large B-cell lymphoma from primary pulmonary mucosa-associated lymphoid tissue lymphoma. Cancer Biol Ther 2020; 21:303-308. [PMID: 31931656 DOI: 10.1080/15384047.2019.1700743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Extranodal marginal zone lymphoma of mucosa-associated lymphoid tissue (MALT) lymphoma is rare among lung neoplasia cases, representing only 0.5%-1% of newly diagnosed primary lung lymphoma. MALT lymphoma with relapsed refractory and malignant transformation is highly heterogeneous and consensus therapy remains undetermined. We report a 55 year-old woman with a 3 year history of primary pulmonary MALT lymphoma confined to the lung presenting with massive pleural effusion. After two cycles of R-CHOP and six cycles of R2-CHOP, pleural effusion disappeared but the pulmonary mass remained persistent. Second-line therapies R2-GemOx failed to make any substantial improvement. Core-needle puncture biopsy of the pulmonary mass was obtained and pathological testing revealed transformed diffuse large B-cell lymphoma of germinal center B-cell subtype. Next-generation sequencing confirmed BN2 subtype. The mass showed no reduction after three cycles of R-MINE, following which the BTK inhibitor ibrutinib was administered to this patient. Unfortunately, after two months of ibrutinib treatment, the patient rapidly developed an enlarged mass and hyperprogressive disease, to which she subsequently succumbed.
Collapse
Affiliation(s)
- Hong Zhou
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Li Yang
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Qingxiu Dang
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Jianfei Huang
- Clinical Bio-bank, Department of Pathology, Affiliated Hospital of Nantong University, Nantong, China
| | - Yuehua Cheng
- Medical school, Nantong University, Nantong, China
| | - Yaping Zhang
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Wenyu Shi
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China.,Department of Oncology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
33
|
The BET inhibitor GS-5829 targets chronic lymphocytic leukemia cells and their supportive microenvironment. Leukemia 2019; 34:1588-1598. [PMID: 31862959 PMCID: PMC7272263 DOI: 10.1038/s41375-019-0682-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 11/18/2019] [Accepted: 12/05/2019] [Indexed: 12/11/2022]
Abstract
Despite major improvements in treatment outcome with novel targeted therapies, such as the Bruton tyrosine kinase (BTK) inhibitor ibrutinib, chronic lymphocytic leukemia (CLL) remains incurable in the majority of patients. Activation of PI3K, NF-κB, and/or MYC has been linked to residual disease and/or resistance in ibrutinib-treated patients. These pathways can be targeted by inhibitors of bromodomain and extra-terminal (BET) proteins. Here we report about the preclinical activity of GS-5829, a novel BET inhibitor, in CLL. GS-5829 inhibited CLL cell proliferation and induced leukemia cell apoptosis through deregulation of key signaling pathways, such as BLK, AKT, ERK1/2, and MYC. IκBα modulation indicates that GS-5829 also inhibited NF-κB signaling. GS-5829-induced apoptosis resulted from an imbalance between positive (BIM) and negative regulators (BCL-XL) of the intrinsic apoptosis pathway. The antileukemia activity of GS-5829 increased synergistically in combinations with B-cell receptor signaling inhibitors, the BTK inhibitor ibrutinib, the PI3Kδ inhibitor idelalisib, and the SYK inhibitor entospletinib. In cocultures that mimic the lymph node microenvironment, GS-5829 inhibited signaling pathways within nurselike cells and their growth, indicating that BET inhibitors also can target the supportive CLL microenvironment. Collectively, these data provide a rationale for the clinical evaluation of BET inhibitors in CLL.
Collapse
|
34
|
Lavitrano M, Ianzano L, Bonomo S, Cialdella A, Cerrito MG, Pisano F, Missaglia C, Giovannoni R, Romano G, McLean CM, Voest EE, D'Amato F, Noli B, Ferri GL, Agostini M, Pucciarelli S, Helin K, Leone BE, Canzonieri V, Grassilli E. BTK inhibitors synergise with 5-FU to treat drug-resistant TP53-null colon cancers. J Pathol 2019; 250:134-147. [PMID: 31518438 DOI: 10.1002/path.5347] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 08/05/2019] [Accepted: 09/10/2019] [Indexed: 12/12/2022]
Abstract
Colorectal cancer (CRC) is the fourth cause of death from cancer worldwide mainly due to the high incidence of drug-resistance. During a screen for new actionable targets in drug-resistant tumours we recently identified p65BTK - a novel oncogenic isoform of Bruton's tyrosine kinase. Studying three different cohorts of patients here we show that p65BTK expression correlates with histotype and cancer progression. Using drug-resistant TP53-null colon cancer cells as a model we demonstrated that p65BTK silencing or chemical inhibition overcame the 5-fluorouracil resistance of CRC cell lines and patient-derived organoids and significantly reduced the growth of xenografted tumours. Mechanistically, we show that blocking p65BTK in drug-resistant cells abolished a 5-FU-elicited TGFB1 protective response and triggered E2F-dependent apoptosis. Taken together, our data demonstrated that targeting p65BTK restores the apoptotic response to chemotherapy of drug-resistant CRCs and gives a proof-of-concept for suggesting the use of BTK inhibitors in combination with 5-FU as a novel therapeutic approach in CRC patients. © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
| | - Leonarda Ianzano
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Sara Bonomo
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | | | | | - Fabio Pisano
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Carola Missaglia
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Roberto Giovannoni
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Gabriele Romano
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Chelsea M McLean
- Department of Molecular Oncology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Emile E Voest
- Department of Molecular Oncology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Filomena D'Amato
- NEF-Laboratory, Department of Biomedical Science, University of Cagliari, Cagliari, Italy
| | - Barbara Noli
- NEF-Laboratory, Department of Biomedical Science, University of Cagliari, Cagliari, Italy
| | - Gian Luca Ferri
- NEF-Laboratory, Department of Biomedical Science, University of Cagliari, Cagliari, Italy
| | - Marco Agostini
- First Surgical Clinic Section, Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy.,Department of Nanomedicine, The Methodist Hospital Research Institute, Houston, TX, USA
| | - Salvatore Pucciarelli
- First Surgical Clinic Section, Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Kristian Helin
- Center for Epigenetics, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Biagio E Leone
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Vincenzo Canzonieri
- Pathology Unit and CRO Biobank, CRO Aviano National Cancer Institute, Aviano, Italy
| | - Emanuela Grassilli
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| |
Collapse
|
35
|
Potent efficacy of MCL-1 inhibitor-based therapies in preclinical models of mantle cell lymphoma. Oncogene 2019; 39:2009-2023. [PMID: 31772331 DOI: 10.1038/s41388-019-1122-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 11/13/2019] [Accepted: 11/13/2019] [Indexed: 02/06/2023]
Abstract
Apoptosis-regulating BCL-2 family members, which can promote malignant transformation and resistance to therapy, have become prime therapeutic targets, as illustrated by the striking efficacy in certain lymphoid malignancies of the BCL-2-specific inhibitor venetoclax. In other lymphoid malignancies, however, such as the aggressive mantle cell lymphoma (MCL), cell survival might rely instead or also on BCL-2 relative MCL-1. We have explored MCL-1 as a target for killing MCL cells by both genetic and pharmacologic approaches. In several MCL cell lines, MCL-1 knockout with an inducible CRISPR/Cas9 system triggered spontaneous apoptosis. Accordingly, most MCL cell lines proved sensitive to the specific MCL-1 inhibitor S63845, and MCL-1 inhibition also proved efficacious in an MCL xenograft model. Furthermore, its killing efficacy rose on combination with venetoclax, the BCL-XL-specific inhibitor A-1331852, or Bruton's tyrosine kinase (BTK) inhibitor ibrutinib, which reduced pro-survival signals. We also tested the MCL-1 inhibitor in primary samples from 13 MCL patients, using CD40L-expressing feeder cells to model their microenvironmental support. Notably, all unstimulated primary MCL samples were very sensitive to S63845, but the CD40L stimulation attenuated their sensitivity. Mass cytometric analysis revealed that the stimulation likely conveyed protection by elevating BCL-XL and MCL-1. Accordingly, sensitivity of the CD40L-stimulated cells to S63845 was substantially restored by co-treatment with venetoclax, the BCL-XL-specific inhibitor or ibrutinib. Overall, our findings indicate that MCL-1 is very important for survival of MCL cells and that the MCL-1 inhibitor, both alone and together with ibrutinib, venetoclax or a BCL-XL inhibitor, offers promise for novel improved MCL therapies.
Collapse
|
36
|
Zhang Q, Wang HY, Liu X, Nunez-Cruz S, Jillab M, Melnikov O, Nath K, Glickson J, Wasik MA. Cutting Edge: ROR1/CD19 Receptor Complex Promotes Growth of Mantle Cell Lymphoma Cells Independently of the B Cell Receptor-BTK Signaling Pathway. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 203:2043-2048. [PMID: 31534006 PMCID: PMC10013414 DOI: 10.4049/jimmunol.1801327] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 08/27/2019] [Indexed: 12/23/2022]
Abstract
Inhibitors of Bruton tyrosine kinase (BTK), a kinase downstream of BCR, display remarkable activity in a subset of mantle cell lymphoma (MCL) patients, but the drug resistance remains a considerable challenge. In this study, we demonstrate that aberrant expression of ROR1 (receptor tyrosine kinase-like orphan receptor 1), seen in a large subset of MCL, results in BCR/BTK-independent signaling and growth of MCL cells. ROR1 forms a functional complex with CD19 to persistently activate the key cell signaling pathways PI3K-AKT and MEK-ERK in the BCR/BTK-independent manner. This study demonstrates that ROR1/CD19 complex effectively substitutes for BCR-BTK signaling to promote activation and growth of MCL cells. Therefore, ROR1 expression and activation may represent a novel mechanism of resistance to inhibition of BCR/BTK signaling in MCL. Our results provide a rationale to screen MCL patients for ROR1 expression and to consider new therapies targeting ROR1 and/or CD19 or their downstream signaling pathways for MCL-expressing ROR1.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104;
| | - Hong Y Wang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Xiaobin Liu
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Selene Nunez-Cruz
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | | | | | - Kavindra Nath
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; and
| | - Jerry Glickson
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; and
| | - Mariusz A Wasik
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; .,Fox Chase Cancer Center, Philadelphia, PA 19111.,Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
37
|
Klener P. Advances in Molecular Biology and Targeted Therapy of Mantle Cell Lymphoma. Int J Mol Sci 2019; 20:ijms20184417. [PMID: 31500350 PMCID: PMC6770169 DOI: 10.3390/ijms20184417] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/02/2019] [Accepted: 09/04/2019] [Indexed: 12/21/2022] Open
Abstract
Mantle cell lymphoma (MCL) is a heterogeneous malignancy with a broad spectrum of clinical behavior from indolent to highly aggressive cases. Despite the fact that MCL remains in most cases incurable by currently applied immunochemotherapy, our increasing knowledge on the biology of MCL in the last two decades has led to the design, testing, and approval of several innovative agents that dramatically changed the treatment landscape for MCL patients. Most importantly, the implementation of new drugs and novel treatment algorithms into clinical practice has successfully translated into improved outcomes of MCL patients not only in the clinical trials, but also in real life. This review focuses on recent advances in our understanding of the pathogenesis of MCL, and provides a brief survey of currently used treatment options with special focus on mode of action of selected innovative anti-lymphoma molecules. Finally, it outlines future perspectives of patient management with progressive shift from generally applied immunotherapy toward risk-stratified, patient-tailored protocols that would implement innovative agents and/or procedures with the ultimate goal to eradicate the lymphoma and cure the patient.
Collapse
Affiliation(s)
- Pavel Klener
- First Dept. of Medicine-Hematology, General University Hospital in Prague, 128 08 Prague, Czech Republic.
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, 128 53 Prague, Czech Republic.
| |
Collapse
|
38
|
Huang S, Pan J, Jin J, Li C, Li X, Huang J, Huang X, Yan X, Li F, Yu M, Hu C, Jin J, Xu Y, Ling Q, Ye W, Wang Y, Jin J. Abivertinib, a novel BTK inhibitor: Anti-Leukemia effects and synergistic efficacy with homoharringtonine in acute myeloid leukemia. Cancer Lett 2019; 461:132-143. [PMID: 31310800 DOI: 10.1016/j.canlet.2019.07.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 07/05/2019] [Accepted: 07/12/2019] [Indexed: 01/23/2023]
Abstract
Ibrutinib, an inhibitor of Bruton tyrosine kinase (BTK), has shown promising pharmacologic effects in acute myeloid leukemia (AML). In this study, we report that abivertinib or AC0010, a novel BTK inhibitor, inhibits cell proliferation, reduces colony-forming capacity, and induces apoptosis and cell cycle arrest in AML cells, especially those harboring FLT3-ITD mutations. Abivertinib was also found to be more sensitive than ibrutinib in treating AML. We demonstrate that in addition to targeting the phosphorylation of BTK, abivertinib also targeted the crucial PI3K survival pathway. Furthermore, abivertinib suppressed the expression of p-FLT3 and the downstream target p-STAT5 in AML cells harboring FLT3-ITD mutations. Moreover, in vitro and in vivo data revealed synergistic activity between abivertinib and homoharringtonine (HHT), a natural plant alkaloid commonly used in China, in treating AML cells with or without FLT3-ITD mutations. Collectively, these preclinical data suggest that abivertinib may be a promising novel agent for AML, with potential for combination treatment with HHT. Clinical studies on abivertinib-involved therapy are planned.
Collapse
Affiliation(s)
- Shujuan Huang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, People's Republic of China; Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, People's Republic of China
| | - Jiajia Pan
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, People's Republic of China; Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, People's Republic of China
| | - Jing Jin
- Department of Hematology, Shaoxing People's Hospital, Zhejiang, Shaoxing, China
| | - Chengying Li
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, People's Republic of China; Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, People's Republic of China
| | - Xia Li
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, People's Republic of China; Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, People's Republic of China
| | - Jiansong Huang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, People's Republic of China; Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, People's Republic of China
| | - Xin Huang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, People's Republic of China; Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, People's Republic of China
| | - Xiao Yan
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, People's Republic of China; Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, People's Republic of China
| | - Fengling Li
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, People's Republic of China; Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, People's Republic of China
| | - Mengxia Yu
- Department of Hematology, Hangzhou First People's Hospital, Zhejiang, Hangzhou, China
| | - Chao Hu
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, People's Republic of China; Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, People's Republic of China
| | - Jingrui Jin
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, People's Republic of China; Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, People's Republic of China
| | - Yu Xu
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, People's Republic of China; Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, People's Republic of China
| | - Qing Ling
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, People's Republic of China; Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, People's Republic of China
| | - Wenle Ye
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, People's Republic of China; Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, People's Republic of China
| | - Yungui Wang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, People's Republic of China; Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, People's Republic of China
| | - Jie Jin
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, People's Republic of China; Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, People's Republic of China.
| |
Collapse
|
39
|
Activation of MYC, a bona fide client of HSP90, contributes to intrinsic ibrutinib resistance in mantle cell lymphoma. Blood Adv 2019; 2:2039-2051. [PMID: 30115641 DOI: 10.1182/bloodadvances.2018016048] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 07/11/2018] [Indexed: 11/20/2022] Open
Abstract
The BTK inhibitor ibrutinib has demonstrated a remarkable therapeutic effect in mantle cell lymphoma (MCL). However, approximately one-third of patients do not respond to the drug initially. To identify the mechanisms underlying primary ibrutinib resistance in MCL, we analyzed the transcriptome changes in ibrutinib-sensitive and ibrutinib-resistant cell lines on ibrutinib treatment. We found that MYC gene signature was suppressed by ibrutinib in sensitive but not resistant cell lines. We demonstrated that MYC gene was structurally abnormal and MYC protein was overexpressed in MCL cells. Further, MYC knockdown with RNA interference inhibited cell growth in ibrutinib-sensitive as well as ibrutinib-resistant cells. We explored the possibility of inhibiting MYC through HSP90 inhibition. The chaperon protein is overexpressed in both cell lines and primary MCL cells from the patients. We demonstrated that MYC is a bona fide client of HSP90 in the context of MCL by both immunoprecipitation and chemical precipitation. Furthermore, inhibition of HSP90 using PU-H71 induced apoptosis and caused cell cycle arrest. PU-H71 also demonstrates strong and relatively specific inhibition of the MYC transcriptional program compared with other oncogenic pathways. In a MCL patient-derived xenograft model, the HSP90 inhibitor retards tumor growth and prolongs survival. Last, we showed that PU-H71 induced apoptosis and downregulated MYC protein in MCL cells derived from patients who were clinically resistant to ibrutinib. In conclusion, MYC activity underlies intrinsic resistance to ibrutinib in MCL. As a client protein of HSP90, MYC can be inhibited via PU-H71 to overcome primary ibrutinib resistance.
Collapse
|
40
|
Lee SC, Shestov AA, Guo L, Zhang Q, Roman JC, Liu X, Wang HY, Pickup S, Nath K, Lu P, Hofbauer S, Mesaros C, Wang YL, Nelson DS, Schuster SJ, Blair IA, Glickson JD, Wasik MA. Metabolic Detection of Bruton's Tyrosine Kinase Inhibition in Mantle Cell Lymphoma Cells. Mol Cancer Res 2019; 17:1365-1377. [PMID: 30862686 DOI: 10.1158/1541-7786.mcr-18-0256] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 07/17/2018] [Accepted: 03/08/2019] [Indexed: 11/16/2022]
Abstract
Current methods to evaluate effects of kinase inhibitors in cancer are suboptimal. Analysis of changes in cancer metabolism in response to the inhibitors creates an opportunity for better understanding of the interplay between cell signaling and metabolism and, from the translational perspective, potential early evaluation of response to the inhibitors as well as treatment optimization. We performed genomic, metabolomic, and fluxomic analyses to evaluate the mechanism of action of the Bruton's tyrosine kinase (BTK) inhibitor ibrutinib (IBR) in mantle cell lymphoma (MCL) cells. Our comprehensive analysis of the data generated by these diverse technologies revealed that IBR profoundly affected key metabolic pathways in IBR-sensitive cells including glycolysis, pentose phosphate pathway, TCA cycle, and glutaminolysis while having much less effects on IBR-poorly responsive cells. Changes in 1H magnetic resonance spectroscopy (MRS)-detectable lactate and alanine concentrations emerged as promising biomarkers of response and resistance to IBR as demonstrated from experiments on various MCL cell lines. The metabolic network analysis on the 13C MRS and 13C LC/MS experimental data provided quantitative estimates of various intracellular fluxes and energy contributions. Glutaminolysis contributed over 50% of mitochondrial ATP production. Administration of the glutaminase inhibitor CB-839 induced growth suppression of the IBR-poorly responsive cells. IMPLICATIONS: Our study demonstrates application of the advanced metabolomic/fluxomic techniques for comprehensive, precise, and prompt evaluations of the effects of kinase inhibition in MCL cells and has strong translational implications by potentially permitting early evaluation of cancer patient response versus resistance to kinase inhibitors and on design of novel therapies for overcoming the resistance.
Collapse
Affiliation(s)
- Seung-Cheol Lee
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania.
| | - Alexander A Shestov
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Lili Guo
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Qian Zhang
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jeffrey C Roman
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Xiaobin Liu
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Hong Y Wang
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Stephen Pickup
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kavindra Nath
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Pin Lu
- Department of Pathology, University of Chicago, Chicago, Illinois
| | - Samuel Hofbauer
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Clementina Mesaros
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Y Lynn Wang
- Department of Pathology, University of Chicago, Chicago, Illinois
| | - David S Nelson
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Stephen J Schuster
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ian A Blair
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jerry D Glickson
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania. .,Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Mariusz A Wasik
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
41
|
D'Agaro T, Zucchetto A, Vit F, Bittolo T, Tissino E, Rossi FM, Degan M, Zaja F, Bulian P, Bo MD, Ferrero S, Ladetto M, Zamò A, Gattei V, Bomben R. A B-cell receptor-related gene signature predicts response to ibrutinib treatment in mantle cell lymphoma cell lines. Haematologica 2019; 104:e410-e414. [PMID: 30819916 DOI: 10.3324/haematol.2018.212811] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Tiziana D'Agaro
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano
| | - Antonella Zucchetto
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano
| | - Filippo Vit
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano.,Department of Life Science, University of Trieste, Trieste
| | - Tamara Bittolo
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano
| | - Erika Tissino
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano
| | - Francesca Maria Rossi
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano
| | - Massimo Degan
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano
| | - Francesco Zaja
- Department of Internal Medicine and Haematology, Maggiore General Hospital, University of Trieste, Trieste
| | - Pietro Bulian
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano
| | - Michele Dal Bo
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano
| | - Simone Ferrero
- Department of Molecular Biotechnologies and Health Sciences, Hematology Division 1, University of Torino, Torino.,Hematology Division 1, AOU "Città della Salute e della Scienza di Torino" University-Hospital, Torino
| | - Marco Ladetto
- Department of Molecular Biotechnologies and Health Sciences, Hematology Division 1, University of Torino, Torino.,SC Ematologia Azienda Ospedaliera Nazionale SS. Antonio e Biagio e Cesare Arrigo, Alessandria
| | - Alberto Zamò
- Department of Oncology, University of Torino, Torino, Italy
| | - Valter Gattei
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano
| | - Riccardo Bomben
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano
| |
Collapse
|
42
|
Bruton tyrosine kinase degradation as a therapeutic strategy for cancer. Blood 2018; 133:952-961. [PMID: 30545835 DOI: 10.1182/blood-2018-07-862953] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 12/04/2018] [Indexed: 01/08/2023] Open
Abstract
The covalent Bruton tyrosine kinase (BTK) inhibitor ibrutinib is highly efficacious against multiple B-cell malignancies. However, it is not selective for BTK, and multiple mechanisms of resistance, including the C481S-BTK mutation, can compromise its efficacy. We hypothesized that small-molecule-induced BTK degradation may overcome some of the limitations of traditional enzymatic inhibitors. Here, we demonstrate that BTK degradation results in potent suppression of signaling and proliferation in cancer cells and that BTK degraders efficiently degrade C481S-BTK. Moreover, we discovered DD-03-171, an optimized lead compound that exhibits enhanced antiproliferative effects on mantle cell lymphoma (MCL) cells in vitro by degrading BTK, IKFZ1, and IKFZ3 as well as efficacy against patient-derived xenografts in vivo. Thus, "triple degradation" may be an effective therapeutic approach for treating MCL and overcoming ibrutinib resistance, thereby addressing a major unmet need in the treatment of MCL and other B-cell lymphomas.
Collapse
|
43
|
Ming M, Wu W, Xie B, Sukhanova M, Wang W, Kadri S, Sharma S, Lee J, Shacham S, Landesman Y, Maltsev N, Lu P, Wang YL. XPO1 Inhibitor Selinexor Overcomes Intrinsic Ibrutinib Resistance in Mantle Cell Lymphoma via Nuclear Retention of IκB. Mol Cancer Ther 2018; 17:2564-2574. [PMID: 30510142 DOI: 10.1158/1535-7163.mct-17-0789-atr] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 05/24/2018] [Accepted: 08/29/2018] [Indexed: 11/16/2022]
Abstract
Inhibition of B-cell receptor (BCR) signaling through the BTK inhibitor, ibrutinib, has generated a remarkable response in mantle cell lymphoma (MCL). However, approximately one third of patients do not respond well to the drug, and disease relapse on ibrutinib is nearly universal. Alternative therapeutic strategies aimed to prevent and overcome ibrutinib resistance are needed. We compared and contrasted the effects of selinexor, a selective inhibitor of nuclear export, with ibrutinib in six MCL cell lines that display differential intrinsic sensitivity to ibrutinib. We found that selinexor had a broader antitumor activity in MCL than ibrutinib. MCL cell lines resistant to ibrutinib remained sensitive to selinexor. We showed that selinexor induced apoptosis/cell-cycle arrest and XPO-1 knockdown also retarded cell growth. Furthermore, downregulation of the NFκB gene signature, as opposed to BCR signature, was a common feature that underlies the response of MCL to both selinexor and ibrutinib. Meanwhile, unaltered NFκB was associated with ibrutinib resistance. Mechnistically, selinexor induced nuclear retention of IκB that was accompanied by the reduction of DNA-binding activity of NFκB, suggesting that NFκB is trapped in an inhibitory complex. Coimmunoprecipitation confirmed that p65 of NFκB and IκB were physically associated. In primary MCL tumors, we further demonstrated that the number of cells with IκB nuclear retention was linearly correlated with the degree of apoptosis. Our data highlight the role of NFκB pathway in drug response to ibrutinib and selinexor and show the potential of using selinexor to prevent and overcome intrinsic ibrutinib resistance through NFκB inhibition.
Collapse
Affiliation(s)
- Mei Ming
- Department of Pathology, University of Chicago, Chicago, Illinois
| | - Wenjun Wu
- Department of Pathology, University of Chicago, Chicago, Illinois
| | - Bingqing Xie
- Illinois Institute of Technology, Chicago, Illinois
| | - Madina Sukhanova
- Department of Medicine, University of Chicago, Chicago, Illinois
| | - Weige Wang
- Department of Pathology, University of Chicago, Chicago, Illinois
- Department of Pathology, Fudan University and Shanghai Cancer Center, Shanghai, China
| | - Sabah Kadri
- Department of Pathology, University of Chicago, Chicago, Illinois
| | - Shruti Sharma
- Department of Pathology, University of Chicago, Chicago, Illinois
| | - Jimmy Lee
- Department of Pathology, University of Chicago, Chicago, Illinois
| | | | | | - Natalia Maltsev
- Department of Human Genetics, University of Chicago, Chicago, Illinois
| | - Pin Lu
- Department of Pathology, University of Chicago, Chicago, Illinois
| | - Y Lynn Wang
- Department of Pathology, University of Chicago, Chicago, Illinois.
| |
Collapse
|
44
|
Chu Y, Lee S, Shah T, Yin C, Barth M, Miles RR, Ayello J, Morris E, Harrison L, Van de Ven C, Galardy P, Goldman SC, Lim MS, Hermiston M, McAllister-Lucas LM, Giulino-Roth L, Perkins SL, Cairo MS. Ibrutinib significantly inhibited Bruton's tyrosine kinase (BTK) phosphorylation, in-vitro proliferation and enhanced overall survival in a preclinical Burkitt lymphoma (BL) model. Oncoimmunology 2018; 8:e1512455. [PMID: 30546948 DOI: 10.1080/2162402x.2018.1512455] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 07/27/2018] [Accepted: 08/12/2018] [Indexed: 12/15/2022] Open
Abstract
Pediatric and adult patients with recurrent/refractory Burkitt lymphoma (BL) continue to have poor outcomes, emphasizing the need for newer therapeutic agents. Bruton's tyrosine kinase (BTK) is activated following B-cell receptor stimulation and in part regulates normal B-cell development. Ibrutinib, a selective and irreversible BTK inhibitor, has been efficacious in chronic lymphocytic leukemia (CLL), mantle cell lymphoma (MCL), Waldenström's macroglobulinemia, and marginal zone lymphoma. In this study, we investigated the efficacy of ibrutinib alone and in selective adjuvant combinations against BL in-vitro and in a human BL xenografted immune-deficient NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ (NSG) mouse model. Our data demonstrated that phospho-BTK level was significantly reduced in BL cells treated with ibrutinib (p < 0.001). Moreover, we observed a significant decrease in cell proliferation as well as significant decrease in IC50 of ibrutinib in combination with dexamethasone, rituximab, obinutuzumab, carfilzomib, and doxorubicin (p < 0.001). In-vivo studies demonstrated ibrutinib treated mice had a significantly prolonged survival with median survival of mice following ibrutinib treatment (32 days) (24 days) (p < 0.02). In conclusion, our findings demonstrate the significant in-vitro and preclinical in-vivo effects of ibrutinib in BL. Based on our preclinical results in this investigation, there is an on-going clinical trial comparing overall survival in children and adolescents with relapsed/refractory BL treated with chemoimmunotherapy with or without ibrutinib (NCT02703272).
Collapse
Affiliation(s)
- Yaya Chu
- Department of Pediatrics, New York Medical College, Valhalla, NY, USA
| | - Sanghoon Lee
- Department of Pediatrics, New York Medical College, Valhalla, NY, USA.,Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, USA
| | - Tishi Shah
- Department of Pediatrics, New York Medical College, Valhalla, NY, USA
| | - Changhong Yin
- Department of Pediatrics, New York Medical College, Valhalla, NY, USA
| | - Matthew Barth
- Department of Pediatrics, University of Buffalo, Buffalo, NY, USA
| | - Rodney R Miles
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Janet Ayello
- Department of Pediatrics, New York Medical College, Valhalla, NY, USA
| | - Erin Morris
- Department of Pediatrics, New York Medical College, Valhalla, NY, USA
| | - Lauren Harrison
- Department of Pediatrics, New York Medical College, Valhalla, NY, USA
| | | | - Paul Galardy
- Department of Pediatrics, Mayo Clinic, Rochester, MN, USA
| | - Stanton C Goldman
- Division of Pediatric Hematology/Oncology, Medical City Children's Hospital, Dallas, TX, USA
| | - Megan S Lim
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, PA, USA
| | - Michelle Hermiston
- Department of Pediatrics, University of California, San Francisco, CA, USA
| | | | - Lisa Giulino-Roth
- Departments of Pediatrics and Pathology and Laboratory Medicine, Weill Cornell Medical College, NY, NY, USA
| | - Sherrie L Perkins
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Mitchell S Cairo
- Department of Pediatrics, New York Medical College, Valhalla, NY, USA.,Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, USA.,Department of Microbiology & Immunology, New York Medical College, Valhalla, NY, USA.,Department of Medicine, New York Medical College, Valhalla, NY, USA.,Department of Pathology, New York Medical College, Valhalla, NY, USA
| |
Collapse
|
45
|
Agarwal R, Dawson MA, Dreyling M, Tam CS. Understanding resistance mechanisms to BTK and BCL2 inhibitors in mantle cell lymphoma: implications for design of clinical trials. Leuk Lymphoma 2018; 59:2769-2781. [DOI: 10.1080/10428194.2018.1457148] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Rishu Agarwal
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Mark A. Dawson
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
- Division of Cancer Medicine, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Centre for Cancer Research, University of Melbourne, Parkville, Victoria, Australia
| | - Martin Dreyling
- Department of Medicine III, University Hospital, LMU Munich, Germany
| | - Constantine S. Tam
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
- Division of Cancer Medicine, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Department of Haematology, St Vincent's Hospital, Fitzroy, Victoria, Australia
- Department of Medicine, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
46
|
Merolle MI, Ahmed M, Nomie K, Wang ML. The B cell receptor signaling pathway in mantle cell lymphoma. Oncotarget 2018; 9:25332-25341. [PMID: 29861875 PMCID: PMC5982769 DOI: 10.18632/oncotarget.25011] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 11/05/2017] [Indexed: 12/16/2022] Open
Abstract
Signal transduction through the constitutively activated B cell receptor (BCR) plays a key role in the pathogenesis of B-cell tumors by promoting survival and proliferation of malignant B cells. The BCR signaling pathway is known to be deregulated in Mantle Cell Lymphoma (MCL) due to mutations or epigenetic events that impact regulatory proteins. One such protein is Bruton's tyrosine kinase (BTK), an integral component of the BCR signaling pathway. The success of ibrutinib, a BTK inhibitor, and other drugs that target components of the BCR pathway is evidence that regulation of the BCR signaling pathway is an effective method of MCL treatment. The complexity of the pathway indicates that it contains other potential therapeutic targets for the treatment of MCL. This is supported by recent and ongoing clinical trials of inhibitors of molecules such as PI3K, BCL-2, and BTK that show promising initial results. Additionally, agents that target different points of the pathway may have synergistic effects when used in combination. This review provides a description of the BCR signaling pathway on the molecular level followed by an explanation of its relationship to MCL. The role of the BCR signaling pathway in the pathogenesis of MCL is explained through an overview of the drugs that target BCR signaling in MCL treatment.
Collapse
Affiliation(s)
- Maria I Merolle
- Department of Lymphoma and Myeloma, MD Anderson Cancer Center, Houston, TX, USA
| | - Makhdum Ahmed
- Department of Lymphoma and Myeloma, MD Anderson Cancer Center, Houston, TX, USA
| | - Krystle Nomie
- Department of Lymphoma and Myeloma, MD Anderson Cancer Center, Houston, TX, USA
| | - Michael L Wang
- Department of Lymphoma and Myeloma, MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
47
|
CCND1 mutations increase protein stability and promote ibrutinib resistance in mantle cell lymphoma. Oncotarget 2018; 7:73558-73572. [PMID: 27713153 PMCID: PMC5341999 DOI: 10.18632/oncotarget.12434] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 09/24/2016] [Indexed: 11/25/2022] Open
Abstract
Mantle cell lymphoma (MCL) is characterized by the t(11;14) translocation, which leads to deregulated expression of the cell cycle regulatory protein cyclin D1 (CCND1). Genomic studies of MCL have also identified recurrent mutations in the coding region of CCND1. However, the functional consequence of these mutations is not known. Here, we showed that, compared to wild type (WT), single E36K, Y44D or C47S CCND1 mutations increased CCND1 protein levels in MCL cell lines. Mechanistically, these mutations stabilized CCND1 protein through attenuation of threonine-286 phosphorylation, which is important for proteolysis through the ubiquitin-proteasome pathway. In addition, the mutant proteins preferentially localized to the nucleus. Interestingly, forced expression of WT or mutant CCND1 increased resistance of MCL cell lines to ibrutinib, an FDA-approved Bruton tyrosine kinase inhibitor for MCL treatment. The Y44D mutant sustained the resistance to ibrutinib even at supraphysiologic concentrations (5-10 μM). Furthermore, primary MCL tumors with CCND1 mutations also expressed stable CCND1 protein and were resistant to ibrutinib. These findings uncover a new mechanism that is critical for the regulation of CCND1 protein levels, and is directly relevant to primary ibrutinib resistance in MCL.
Collapse
|
48
|
Wang YL. MYD88 Mutations and Sensitivity to Ibrutinib Therapy. J Mol Diagn 2018; 20:264-266. [DOI: 10.1016/j.jmoldx.2017.11.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 11/02/2017] [Indexed: 12/31/2022] Open
|
49
|
Voltan R, Rimondi E, Melloni E, Rigolin GM, Casciano F, Arcidiacono MV, Celeghini C, Cuneo A, Zauli G, Secchiero P. Ibrutinib synergizes with MDM-2 inhibitors in promoting cytotoxicity in B chronic lymphocytic leukemia. Oncotarget 2018; 7:70623-70638. [PMID: 27661115 PMCID: PMC5342579 DOI: 10.18632/oncotarget.12139] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 09/09/2016] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE The aim of this study was to investigate the anti-leukemic activity of the Bruton tyrosine kinase inhibitor Ibrutinib in combination with the small molecule MDM-2 inhibitor Nutlin-3 in preclinical models. METHODS The potential efficacy of the Ibrutinib/Nutlin-3 combination was evaluated in vitro in a panel of B leukemic cell lines (EHEB, JVM-2, JVM-3, MEC-1, MEC-2) and in primary B-chronic lymphocytic leukemia (B-CLL) patient samples, by assessing cell viability, cell cycle profile, apoptosis and intracellular pathway modulations. Validation of the combination therapy was assessed in a B leukemic xenograft mouse model. RESULTS Ibrutinib exhibited variable anti-leukemic activity in vitro and the combination with Nutlin-3 synergistically enhanced the induction of apoptosis independently from the p53 status. Indeed, the Ibrutinib/Nutlin-3 combination was effective in promoting cytotoxicity also in primary B-CLL samples carrying 17p13 deletion and/or TP53 mutations, already in therapy with Ibrutinib. Molecular analyses performed on both B-leukemic cell lines as well as on primary B-CLL samples, while confirming the switch-off of the MAPK and PI3K pro-survival pathways by Ibrutinib, indicated that the synergism of action with Nutlin-3 was independent by p53 pathway and was accompanied by the activation of the DNA damage cascade signaling through the phosphorylation of the histone protein H2A.X. This observation was confirmed also in the JVM-2 B leukemic xenograft mouse model. CONCLUSIONS Taken together, our data emphasize that the Ibrutinib/Nutlin-3 combination merits to be further evaluated as a therapeutic option for B-CLL.
Collapse
Affiliation(s)
- Rebecca Voltan
- Department of Morphology, Surgery and Experimental Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Erika Rimondi
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Elisabetta Melloni
- Department of Morphology, Surgery and Experimental Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Gian Matteo Rigolin
- Department of Medical Sciences, Section of Hematology, University of Ferrara, Ferrara, Italy
| | - Fabio Casciano
- Department of Morphology, Surgery and Experimental Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Maria Vittoria Arcidiacono
- Department of Morphology, Surgery and Experimental Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | | | - Antonio Cuneo
- Department of Medical Sciences, Section of Hematology, University of Ferrara, Ferrara, Italy
| | - Giorgio Zauli
- Department of Morphology, Surgery and Experimental Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Paola Secchiero
- Department of Morphology, Surgery and Experimental Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| |
Collapse
|
50
|
Guan J, Huang D, Yakimchuk K, Okret S. p110α Inhibition Overcomes Stromal Cell-Mediated Ibrutinib Resistance in Mantle Cell Lymphoma. Mol Cancer Ther 2018; 17:1090-1100. [PMID: 29483220 DOI: 10.1158/1535-7163.mct-17-0784] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 12/11/2017] [Accepted: 02/19/2018] [Indexed: 11/16/2022]
Abstract
Acquired resistance to cancer drugs is common, also for modern targeted drugs like the Bruton tyrosine kinase (BTK) inhibitor ibrutinib, a new drug approved for the treatment of the highly aggressive and relapsing mantle cell lymphoma (MCL). The tumor microenvironment often impacts negatively on drug response. Here, we demonstrate that stromal cells protect MCL cells from ibrutinib-induced apoptosis and support MCL cell regrowth after drug removal by impairing ibrutinib-mediated downregulation of PI3K/AKT signaling. Importantly, the stromal cell-mediated ibrutinib resistance was overcome in vitro by inhibiting AKT activity using the PI3K catalytic p110α subunit-specific inhibitor BYL719. This was seen both for MCL cell lines and primary MCL cells. Furthermore, inhibition of p110α activity by BYL719 potentiated the ability of ibrutinib to inhibit MCL tumor growth in vivo in a mouse xenograft model. The stromal cell-mediated ibrutinib resistance was found to be due to a direct interaction with MCL cells and involves the integrin VLA-4, as disrupting stromal cell-MCL cell interaction using a VLA-4 blocking antibody abrogated the ibrutinib resistance. This suggests that combined treatment with ibrutinib and a p110α inhibitor, alternatively by disrupting stromal cell-MCL cell interaction, may be a promising therapeutic strategy to overcome stromal cell-mediated ibrutinib resistance in MCL. Mol Cancer Ther; 17(5); 1090-100. ©2018 AACR.
Collapse
Affiliation(s)
- Jiyu Guan
- Department of Biosciences and Nutrition, Karolinska Institutet, Neo, Huddinge, Sweden.,Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China, E-mail:
| | - Dan Huang
- Department of Biosciences and Nutrition, Karolinska Institutet, Neo, Huddinge, Sweden
| | - Konstantin Yakimchuk
- Department of Biosciences and Nutrition, Karolinska Institutet, Neo, Huddinge, Sweden
| | - Sam Okret
- Department of Biosciences and Nutrition, Karolinska Institutet, Neo, Huddinge, Sweden.
| |
Collapse
|