1
|
Caroni F, Sammartano V, Pacelli P, Sicuranza A, Malchiodi M, Dragomir A, Ciofini S, Raspadori D, Bocchia M, Gozzetti A. Minimal Residual Disease Significance in Multiple Myeloma Patients Treated with Anti-CD38 Monoclonal Antibodies. Pharmaceuticals (Basel) 2025; 18:159. [PMID: 40005973 PMCID: PMC11858645 DOI: 10.3390/ph18020159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 02/27/2025] Open
Abstract
Minimal residual disease (MRD) evaluation is a recognized endpoint in clinical trials. Both next-generation flow and sequencing could be used as complementary techniques to detect myeloma cells after therapy to measure the depth of response and novel drug efficacy. Anti-CD38 monoclonal antibodies combined with proteasome inhibitors and immunomodulatory drugs have increased the quality of response in myeloma patients, and MRD evaluation is also entering routine clinical practice in many hematological centers. This review analyzes updated results from recent clinical trials utilizing anti-CD38 monoclonal antibodies such as isatuximab and daratumumab in terms of their responses and MRD data. MRD-driven therapy appears promising for the future of MM patients, and emerging minimally invasive techniques to assess MRD are under investigation as novel potential methods to replace or integrate traditional MRD evaluation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Alessandro Gozzetti
- AOUS Policlinico Le Scotte, University of Siena, 53100 Siena, Italy; (F.C.); (V.S.); (P.P.); (A.S.); (M.M.); (A.D.); (S.C.); (D.R.); (M.B.)
| |
Collapse
|
2
|
Mu H, Zou J, Zhang H. Quantitative detection of T315I mutations of BCR::ABL1 using digital droplet polymerase chain reaction. Hematol Transfus Cell Ther 2024; 46 Suppl 6:S79-S85. [PMID: 38383224 PMCID: PMC11726099 DOI: 10.1016/j.htct.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 12/27/2023] [Indexed: 02/23/2024] Open
Abstract
BACKGROUND T315I mutations of the BCR::ABL1 gene lead to resistance to tyrosine kinase inhibitors (TKIs). This study evaluated the performance of digital droplet polymerase chain reaction (ddPCR) in quantifying T315I mutations and their frequency in Philadelphia chromosome (Ph) positive hematological patients. METHODS The course of disease and BCR::ABL1 fusion transcripts (e13a2, e14a2 and e1a2) were retrospectively reviewed in 21 patients with acute lymphoblastic leukemia (ALL) and 85 patients with chronic myeloid leukemia (CML). T315I mutation analysis was carried out using ddPCR and the limit of detection was assessed using mutant T315I DNA at varying variant allele fractions. RESULTS T315I mutations were found in two ALL patients and one CML patient without remission in molecular biology and with mutation burdens of 29.20%, 40.85%, and 3.00%, respectively. The mutation burden of ALL patients was higher than that of CML patients, but there was no significant difference between the two (p-value = 0.0536). The test's limit of detection was 0.02% with a correlation coefficient greater than 0.99 between the expected and actual detection abundances. CONCLUSION T315I mutations have a high incidence in Ph-positive ALL patients even if the course of disease is short. In molecular biology, T315I mutation detection is indicated for CML patients not in remission.
Collapse
Affiliation(s)
- Huijun Mu
- Department of Clinical Laboratory, the Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, PR China
| | - Jian Zou
- Department of Clinical Laboratory, the Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, PR China
| | - Haiping Zhang
- Department of Dermatology, Wuxi No.2 People's Hospital, Jiangnan University Medical Center, Wuxi, PR China.
| |
Collapse
|
3
|
Péterffy B, Nádasi TJ, Krizsán S, Horváth A, Márk Á, Barna G, Timár B, Almási L, Müller J, Csanádi K, Rakonczai A, Nagy Z, Kállay K, Kertész G, Kriván G, Csóka M, Sebestyén A, Semsei ÁF, Kovács GT, Erdélyi DJ, Bödör C, Egyed B, Alpár D. Digital PCR-based quantification of miR-181a in the cerebrospinal fluid aids patient stratification in pediatric acute lymphoblastic leukemia. Sci Rep 2024; 14:28556. [PMID: 39558071 PMCID: PMC11574027 DOI: 10.1038/s41598-024-79733-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/12/2024] [Indexed: 11/20/2024] Open
Abstract
Despite remarkable improvements in the survival of pediatric acute lymphoblastic leukemia (ALL), sensitive detection and clinical management of central nervous system leukemia (CNSL) are still immensely challenging. Blast cells residing in the CNS but not circulating in the cerebrospinal fluid (CSF) remain undetected by current diagnostic methods, preventing a truly risk-adapted anti-leukemic treatment in this compartment. We examined the clinical applicability of the molecular marker microRNA (miR)-181a quantified in the cell-free CSF to evaluate the level of CNS involvement and to optimize patient stratification based on CNS status. Normalized copy number of miR-181a was longitudinally profiled using droplet digital PCR, and the results were compared with the degree of leukemic involvement of the CNS. After combining cytospin- and flow cytometry (FCM) data with miR-181a expression, we could stratify previously ambiguous cases and reclassify patients into a CNS-positive/miR-significant group (mean ± SE for miR-181a copies: 3300.70 ± 809.69) bearing remarkable infiltration as well as into CNS-minimal/miR-significant and CNS-minimal/miR-minimal groups differentiating putative, clinically significant occult CNSL cases (2503.50 ± 275.89 and 744.02 ± 86.81 copies, respectively, p = 1.13 × 10-6). In summary, miR-181a expression is a promising biomarker for CNSL detection, facilitating the robust identification of patients who could benefit from intensified CNS-directed therapy.
Collapse
Grants
- PD145889, FK134253, K137948, K139139 Hungarian National Research, Development and Innovation Office
- PD145889, FK134253, K137948, K139139 Hungarian National Research, Development and Innovation Office
- PD145889, FK134253, K137948, K139139 Hungarian National Research, Development and Innovation Office
- PD145889, FK134253, K137948, K139139 Hungarian National Research, Development and Innovation Office
- PD145889, FK134253, K137948, K139139 Hungarian National Research, Development and Innovation Office
- PD145889, FK134253, K137948, K139139 Hungarian National Research, Development and Innovation Office
- PD145889, FK134253, K137948, K139139 Hungarian National Research, Development and Innovation Office
- STIA-KFI-2022 Semmelweis Scientific and Innovation fund
- STIA-KFI-2022 Semmelweis Scientific and Innovation fund
- 739593 Horizon 2020 Framework Programme
- 739593 Horizon 2020 Framework Programme
- TKP2021-EGA-24, TKP2021-NVA-15 National Research, Development and Innovation Fund
- TKP2021-EGA-24, TKP2021-NVA-15 National Research, Development and Innovation Fund
- EFOP-3.6.3-VEKOP-16-2017-00009 Complementary Research Excellence Program of Semmelweis University
- BO/00125/22 János Bolyai Research Scholarship
Collapse
Affiliation(s)
- Borbála Péterffy
- HCEMM-SE, MTA-SE "Lendület" Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, 26 Üllői Str, 1085, Budapest, Hungary
| | - Tamás J Nádasi
- Pediatric Center, Semmelweis University, 7-9 Tűzoltó Str, 1094, Budapest, Hungary
| | - Szilvia Krizsán
- HCEMM-SE, MTA-SE "Lendület" Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, 26 Üllői Str, 1085, Budapest, Hungary
- Pediatric Center, Semmelweis University, 7-9 Tűzoltó Str, 1094, Budapest, Hungary
| | - Anna Horváth
- Department of Pathology and Experimental Cancer Research, Semmelweis University, 26 Üllői Str, 1085, Budapest, Hungary
| | - Ágnes Márk
- Department of Pathology and Experimental Cancer Research, Semmelweis University, 26 Üllői Str, 1085, Budapest, Hungary
| | - Gábor Barna
- Department of Pathology and Experimental Cancer Research, Semmelweis University, 26 Üllői Str, 1085, Budapest, Hungary
| | - Botond Timár
- HCEMM-SE, MTA-SE "Lendület" Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, 26 Üllői Str, 1085, Budapest, Hungary
| | - Laura Almási
- Pediatric Center, Semmelweis University, 7-9 Tűzoltó Str, 1094, Budapest, Hungary
| | - Judit Müller
- Pediatric Center, Semmelweis University, 7-9 Tűzoltó Str, 1094, Budapest, Hungary
| | - Krisztina Csanádi
- Hemato-Oncology Unit, Heim Pál Children's Hospital, 86 Üllői Str, 1089, Budapest, Hungary
| | - Anna Rakonczai
- Department of Internal Medicine and Hematology, Semmelweis University, 46 Szentkirályi Str, 1088, Budapest, Hungary
| | - Zsolt Nagy
- Department of Internal Medicine and Hematology, Semmelweis University, 46 Szentkirályi Str, 1088, Budapest, Hungary
| | - Krisztián Kállay
- Department of Pediatric Hematology and Stem Cell Transplantation, Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, 5-7 Albert Flórián Str, 1097, Budapest, Hungary
| | - Gabriella Kertész
- Department of Pediatric Hematology and Stem Cell Transplantation, Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, 5-7 Albert Flórián Str, 1097, Budapest, Hungary
| | - Gergely Kriván
- Department of Pediatric Hematology and Stem Cell Transplantation, Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, 5-7 Albert Flórián Str, 1097, Budapest, Hungary
| | - Monika Csóka
- Pediatric Center, Semmelweis University, 7-9 Tűzoltó Str, 1094, Budapest, Hungary
| | - Anna Sebestyén
- Department of Pathology and Experimental Cancer Research, Semmelweis University, 26 Üllői Str, 1085, Budapest, Hungary
| | - Ágnes F Semsei
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, 4 Nagyvárad Square, 1089, Budapest, Hungary
| | - Gábor T Kovács
- Pediatric Center, Semmelweis University, 7-9 Tűzoltó Str, 1094, Budapest, Hungary
| | - Dániel J Erdélyi
- Pediatric Center, Semmelweis University, 7-9 Tűzoltó Str, 1094, Budapest, Hungary
| | - Csaba Bödör
- HCEMM-SE, MTA-SE "Lendület" Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, 26 Üllői Str, 1085, Budapest, Hungary
| | - Bálint Egyed
- HCEMM-SE, MTA-SE "Lendület" Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, 26 Üllői Str, 1085, Budapest, Hungary.
- Pediatric Center, Semmelweis University, 7-9 Tűzoltó Str, 1094, Budapest, Hungary.
| | - Donát Alpár
- HCEMM-SE, MTA-SE "Lendület" Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, 26 Üllői Str, 1085, Budapest, Hungary
| |
Collapse
|
4
|
Oscorbin IP, Gordukova MA, Davydova NV, Zinovieva NV, Kovzel EF, Andries L, Kudlay DA, Filipenko ML. Multiplex droplet digital PCR for 22q11.2 microdeletions screening and DiGeorge syndrome diagnostics. Clin Chim Acta 2024; 563:119903. [PMID: 39127298 DOI: 10.1016/j.cca.2024.119903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/01/2024] [Accepted: 08/04/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND AND AIMS DiGeorge syndrome (DGS) is a genetic disorder manifesting in polymorphic symptoms related to developmental abnormalities of various organs including thymus. DGS is caused by microdeletions in the 22q11.2 region between several low copy repeats (LCR) occurring in approximately 1 in 4000 live births. Diagnosis of DGS relies on phenotypic examination, qPCR, ultrasound, FISH, MLPA and NGS which can be relatively inaccurate, time-consuming, and costly. MATERIALS AND METHODS A novel multiplex droplet digital PCR (ddPCR) assay was designed, optimized and validated for detection and mapping 22q11.2 microdeletions by simultaneous amplification of three targets - TUPLE1, ZNF74, D22S936 - within the deletion areas and one reference target - RPP30 - as an internal control. RESULTS The assay reliable identified microdeletions when the template concentration was >32 copies per reaction and successfully detected LCR22A-B, LCR22A-C, LCR22A-D, and LCR22B-C deletions in clinical samples from 153 patients with signs of immunodeficiency. In patients with the microdeletions, flow cytometry detected a significant increase in B-cell and natural killer cell counts and percentages, while T-cell percentages and T-cell receptor excision circle (TREC) numbers decreased. CONCLUSION The designed ddPCR assay is suitable for diagnosing DGS using whole blood and blood spots.
Collapse
Affiliation(s)
- Igor Petrovich Oscorbin
- Laboratory of Pharmacogenomics, The Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences (ICBFM SB RAS), Novosibirsk 630090, Russia.
| | | | | | | | - Elena Fedorovna Kovzel
- Clinical Immunology, Allergology, Pulmonology Program, Corporate Fund "University Medical Center" of Nazarbayev University, Astana, Kazakhstan
| | - Lucia Andries
- Laboratory of Clinical Immunology and Allergology, Nicolae Testemitanu State University of Medicine and Pharmacy of the Republic of Moldova, Chișinău, Moldova
| | - Dmitry Anatolyevich Kudlay
- The Department of Pharmacology, Faculty of Medicine, I.M. Sechenov First Moscow State Medical University, Pogodinskaya St. 1, Moscow 119991, Russia
| | - Maxim Leonidovich Filipenko
- Laboratory of Pharmacogenomics, The Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences (ICBFM SB RAS), Novosibirsk 630090, Russia
| |
Collapse
|
5
|
Del Giudice I, Della Starza I, De Falco F, Gaidano G, Sportoletti P. Monitoring Response and Resistance to Treatment in Chronic Lymphocytic Leukemia. Cancers (Basel) 2024; 16:2049. [PMID: 38893168 PMCID: PMC11171231 DOI: 10.3390/cancers16112049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/09/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
The recent evolution in chronic lymphocytic leukemia (CLL) targeted therapies led to a progressive change in the way clinicians manage the goals of treatment and evaluate the response to treatment in respect to the paradigm of the chemoimmunotherapy era. Continuous therapies with BTK inhibitors achieve prolonged and sustained control of the disease. On the other hand, venetoclax and anti-CD20 monoclonal antibodies or, more recently, ibrutinib plus venetoclax combinations, given for a fixed duration, achieve undetectable measurable residual disease (uMRD) in the vast majority of patients. On these grounds, a time-limited MRD-driven strategy, a previously unexplored scenario in CLL, is being attempted. On the other side of the spectrum, novel genetic and non-genetic mechanisms of resistance to targeted treatments are emerging. Here we review the response assessment criteria, the evolution and clinical application of MRD analysis and the mechanisms of resistance according to the novel treatment strategies within clinical trials. The extent to which this novel evidence will translate in the real-life management of CLL patients remains an open issue to be addressed.
Collapse
Affiliation(s)
- Ilaria Del Giudice
- Hematology, Department of Translational and Precision Medicine, Sapienza University, 00161 Rome, Italy;
| | - Irene Della Starza
- Hematology, Department of Translational and Precision Medicine, Sapienza University, 00161 Rome, Italy;
- AIL Roma, ODV, 00161 Rome, Italy
| | - Filomena De Falco
- Department of Medicine and Surgery, Institute of Hematology and Center for Hemato-Oncological Research, University of Perugia, 06129 Perugia, Italy;
| | - Gianluca Gaidano
- Division of Hematology, Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy;
| | - Paolo Sportoletti
- Department of Medicine and Surgery, Institute of Hematology and Center for Hemato-Oncological Research, University of Perugia, 06129 Perugia, Italy;
| |
Collapse
|
6
|
Rosenquist R, Bernard E, Erkers T, Scott DW, Itzykson R, Rousselot P, Soulier J, Hutchings M, Östling P, Cavelier L, Fioretos T, Smedby KE. Novel precision medicine approaches and treatment strategies in hematological malignancies. J Intern Med 2023; 294:413-436. [PMID: 37424223 DOI: 10.1111/joim.13697] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Genetic testing has been applied for decades in clinical routine diagnostics of hematological malignancies to improve disease (sub)classification, prognostication, patient management, and survival. In recent classifications of hematological malignancies, disease subtypes are defined by key recurrent genetic alterations detected by conventional methods (i.e., cytogenetics, fluorescence in situ hybridization, and targeted sequencing). Hematological malignancies were also one of the first disease areas in which targeted therapies were introduced, the prime example being BCR::ABL1 inhibitors, followed by an increasing number of targeted inhibitors hitting the Achilles' heel of each disease, resulting in a clear patient benefit. Owing to the technical advances in high-throughput sequencing, we can now apply broad genomic tests, including comprehensive gene panels or whole-genome and whole-transcriptome sequencing, to identify clinically important diagnostic, prognostic, and predictive markers. In this review, we give examples of how precision diagnostics has been implemented to guide treatment selection and improve survival in myeloid (myelodysplastic syndromes and acute myeloid leukemia) and lymphoid malignancies (acute lymphoblastic leukemia, diffuse large B-cell lymphoma, and chronic lymphocytic leukemia). We discuss the relevance and potential of monitoring measurable residual disease using ultra-sensitive techniques to assess therapy response and detect early relapses. Finally, we bring up the promising avenue of functional precision medicine, combining ex vivo drug screening with various omics technologies, to provide novel treatment options for patients with advanced disease. Although we are only in the beginning of the field of precision hematology, we foresee rapid development with new types of diagnostics and treatment strategies becoming available to the benefit of our patients.
Collapse
Affiliation(s)
- Richard Rosenquist
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Clinical Genetics, Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Elsa Bernard
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, USA
- PRISM Center for Personalized Medicine, Gustave Roussy, Villejuif, France
| | - Tom Erkers
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- SciLifeLab, Stockholm, Sweden
| | - David W Scott
- BC Cancer's Centre for Lymphoid Cancer, Vancouver, Canada
- Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Raphael Itzykson
- Université Paris Cité, Génomes, biologie cellulaire et thérapeutique U944, INSERM, CNRS, Paris, France
- Département Hématologie et Immunologie, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Philippe Rousselot
- Department of Hematology, Centre Hospitalier de Versailles, Le Chesnay, France
| | - Jean Soulier
- Université Paris Cité, Génomes, biologie cellulaire et thérapeutique U944, INSERM, CNRS, Paris, France
- Hématologie Biologique, APHP, Hôpital Saint-Louis, Paris, France
| | - Martin Hutchings
- Department of Haematology and Phase 1 Unit, Rigshospitalet, Copenhagen, Denmark
| | - Päivi Östling
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- SciLifeLab, Stockholm, Sweden
| | - Lucia Cavelier
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Clinical Genetics, Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Thoas Fioretos
- Department of Clinical Genetics, Pathology and Molecular Diagnostics, Office for Medical Services, Region Skåne, Lund, Sweden
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Clinical Genomics Lund, Science for Life Laboratory, Lund University, Lund, Sweden
| | - Karin E Smedby
- Department of Hematology, Karolinska University Hospital, Solna, Stockholm, Sweden
- Division of Clinical Epidemiology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
7
|
[Chinese consensus on minimal residual disease detection and interpretation of patients with acute lymphoblastic leukemia (2023)]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2023; 44:267-275. [PMID: 37356994 PMCID: PMC10282871 DOI: 10.3760/cma.j.issn.0253-2727.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Indexed: 06/27/2023]
|
8
|
Shirai R, Osumi T, Keino D, Nakabayashi K, Uchiyama T, Sekiguchi M, Hiwatari M, Yoshida M, Yoshida K, Yamada Y, Tomizawa D, Takae S, Kiyokawa N, Matsumoto K, Yoshioka T, Hata K, Hori T, Suzuki N, Kato M. Minimal residual disease detection by mutation-specific droplet digital PCR for leukemia/lymphoma. Int J Hematol 2023; 117:910-918. [PMID: 36867356 DOI: 10.1007/s12185-023-03566-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 03/04/2023]
Abstract
Minimal residual disease (MRD) is usually defined as the small number of cancer cells that remain in the body after treatment. The clinical significance of MRD kinetics is well recognized in treatment of hematologic malignancies, particularly acute lymphoblastic leukemia (ALL). Real time quantitative PCR targeting immunoglobulin (Ig) or T-cell receptor (TCR) rearrangement (PCR-MRD), as well as multiparametric flow cytometric analysis targeting antigen expression, are widely used in MRD detection. In this study, we devised an alternative method to detect MRD using droplet digital PCR (ddPCR), targeting somatic single nucleotide variants (SNVs). This ddPCR-based method (ddPCR-MRD) had sensitivity up to 1E-4. We assessed ddPCR-MRD at 26 time points from eight T-ALL patients, and compared it to the results of PCR-MRD. Almost all results were concordant between the two methods, but ddPCR-MRD detected micro-residual disease that was missed by PCR-MRD in one patient. We also measured MRD in stored ovarian tissue of four pediatric cancer patients, and detected 1E-2 of submicroscopic infiltration. Considering the universality of ddPCR-MRD, the methods can be used as a complement for not only ALL, but also other malignant diseases regardless of tumor-specific Ig/TCR or surface antigen patterns.
Collapse
Affiliation(s)
- Ryota Shirai
- Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Tokyo, Japan.,Department of Pediatrics, Yokohama City University Graduate School of Medicine, Kanagawa, Japan
| | - Tomoo Osumi
- Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Tokyo, Japan.,Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Dai Keino
- Department of Pediatrics, St. Marianna University School of Medicine Hospital, Kawasaki, Japan.,Division of Hematology/Oncology, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Kazuhiko Nakabayashi
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Toru Uchiyama
- Department of Human Genetics, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Masahiro Sekiguchi
- Department of Pediatrics, the University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
| | - Mitsuteru Hiwatari
- Department of Pediatrics, the University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan.,Department of Pediatrics, School of Medicine, Teikyo University, Tokyo, Japan
| | - Masanori Yoshida
- Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Tokyo, Japan.,Department of Pediatrics, Yokohama City University Graduate School of Medicine, Kanagawa, Japan
| | - Kaoru Yoshida
- Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Yuji Yamada
- Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Daisuke Tomizawa
- Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Seido Takae
- Department of Obstetrics and Gynecology, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Nobutaka Kiyokawa
- Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kimikazu Matsumoto
- Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Takako Yoshioka
- Department of Pathology, National Center for Child Health and Development, Tokyo, Japan
| | - Kenichiro Hata
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan.,Department of Human Molecular Genetics, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Toshinori Hori
- Department of Pediatrics, Aichi Medical University, Nagakute, Japan
| | - Nao Suzuki
- Department of Obstetrics and Gynecology, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Motohiro Kato
- Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Tokyo, Japan. .,Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan. .,Department of Pediatrics, the University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan.
| |
Collapse
|
9
|
Benintende G, Pozzo F, Innocenti I, Autore F, Fresa A, D’Arena G, Gattei V, Lurenti L. Measurable residual disease in chronic lymphocytic leukemia. Front Oncol 2023; 13:1112616. [PMID: 36865804 PMCID: PMC9971803 DOI: 10.3389/fonc.2023.1112616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/24/2023] [Indexed: 02/16/2023] Open
Abstract
Measurable residual disease (MRD) is defined as the presence of residual cancer cells after treatment in patients with clinically undetectable disease, who would otherwise be considered in complete remission. It is a highly sensitive parameter which indicates the disease burden and predicts survival in this setting of patients. In recent years, MRD has gained a role in many hematological malignancies as a surrogate endpoint for clinical trials: undetectable MRD has been correlated to longer progression free survival (PFS) and overall survival (OS). New drugs and combinations have been developed with the aim to achieve MRD negativity, which would indicate favorable prognosis. Different methods to measure MRD have also been devised, which include flow cytometry, polymerase chain reaction (PCR) and next generation sequencing (NGS), with different sensitivity and accuracy in evaluating deep remission after treatment. In this review, we will analyze the current recommendations for the detection of MRD, with particular focus on its role in Chronic Lymphocytic Leukemia (CLL), as well as the different detection methods. Moreover, we will discuss the results of clinical trials and the role of MRD in new therapeutic schemes with inhibitors and monoclonal antibodies. MRD is not currently used in the clinical practice to evaluate response to treatment, due to technical and economical limitations, but it's gaining more and more interest in trials settings, especially since the introduction of venetoclax. The use of MRD in trials will likely be followed by a broader practical application in the future. The aim of this work is to provide a reader-friendly summary of the state of art in the field, as MRD will soon become an accessible tool to evaluate our patients, predict their survival and guide physician's therapeutic choices and preferences.
Collapse
Affiliation(s)
- Giulia Benintende
- Sezione di Ematologia, Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Rome, Italy,*Correspondence: Giulia Benintende,
| | - Federico Pozzo
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO) Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Aviano, Italy
| | - Idanna Innocenti
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Francesco Autore
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Alberto Fresa
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Giovanni D’Arena
- “San Luca” Hospital, Azienda Sanitaria Locale (ASL) Salerno, Salerno, Italy
| | - Valter Gattei
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO) Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Aviano, Italy
| | - Luca Lurenti
- Sezione di Ematologia, Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
10
|
Luib L, Kreyenberg H, Michaelis S, Handgretinger R, Mezger M. Transferring measurable residual disease measurement in pediatric acute lymphoblastic leukemia from quantitative real-time PCR to digital droplet PCR. Pediatr Transplant 2023; 27:e14483. [PMID: 36750990 DOI: 10.1111/petr.14483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/02/2023] [Accepted: 01/23/2023] [Indexed: 02/09/2023]
Abstract
BACKGROUND Since the measurement of measurable residual disease (MRD) is part of clinical routine examination for children affected with acute lymphoblastic leukemia (ALL), continuous efforts are made to improve its method, applicability and accuracy. Whereas quantitative real-time polymerase chain reaction (qPCR) is considered as the gold standard for MRD detection and endowed with international guidelines for implementation and evaluation, these do not yet exist for digital droplet PCR (ddPCR). However, advantages are seen in droplet partitioning for MRD measurement to allow absolute quantification without depending on reference samples. METHODS In this study, 17 MRD targets of nine patients with childhood B-ALL were analyzed with qPCR and ddPCR, respectively. All patients were assigned to high risk group and had hematopoietic stem cell transplantation and CD19 antibody therapy for relapse prevention. Starting with the sequences and guidelines of qPCR and optimizing the protocol for ddPCR, the MRD targets could also be measured precisely with this novel method, using the same primer and probe sets as for qPCR. RESULTS The already established MRD protocol of qPCR could be transferred to ddPCR and all 17 MRD targets were measured in dilution series reaching comparable Limit of detection levels with both PCR methods. CONCLUSIONS With a given qPCR protocol and some experience in conventional MRD monitoring, it is conceivable to transfer the procedure of MRD measurement to ddPCR technology. Our data is in line with other studies which are summarized and discussed here as well to facilitate the transfer of MRD diagnostics to ddPCR.
Collapse
Affiliation(s)
- Luise Luib
- Department of General Paediatrics, Haematology/Oncology, University Children's Hospital Tübingen, Tübingen, Germany
| | - Hermann Kreyenberg
- Clinic for Children and Adolescents, Department for Stem Cell Transplantation and Immunology, University Hospital Frankfurt, Frankfurt/Main, Germany
| | - Sebastian Michaelis
- Department of General Paediatrics, Haematology/Oncology, University Children's Hospital Tübingen, Tübingen, Germany
| | - Rupert Handgretinger
- Department of General Paediatrics, Haematology/Oncology, University Children's Hospital Tübingen, Tübingen, Germany
| | - Markus Mezger
- Department of General Paediatrics, Haematology/Oncology, University Children's Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
11
|
Della Starza I, De Novi LA, Elia L, Bellomarino V, Beldinanzi M, Soscia R, Cardinali D, Chiaretti S, Guarini A, Foà R. Optimizing Molecular Minimal Residual Disease Analysis in Adult Acute Lymphoblastic Leukemia. Cancers (Basel) 2023; 15:374. [PMID: 36672325 PMCID: PMC9856386 DOI: 10.3390/cancers15020374] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/09/2023] Open
Abstract
Minimal/measurable residual disease (MRD) evaluation has resulted in a fundamental instrument to guide patient management in acute lymphoblastic leukemia (ALL). From a methodological standpoint, MRD is defined as any approach aimed at detecting and possibly quantifying residual neoplastic cells beyond the sensitivity level of cytomorphology. The molecular methods to study MRD in ALL are polymerase chain reaction (PCR) amplification-based approaches and are the most standardized techniques. However, there are some limitations, and emerging technologies, such as digital droplet PCR (ddPCR) and next-generation sequencing (NGS), seem to have advantages that could improve MRD analysis in ALL patients. Furthermore, other blood components, namely cell-free DNA (cfDNA), appear promising and are also being investigated for their potential role in monitoring tumor burden and response to treatment in hematologic malignancies. Based on the review of the literature and on our own data, we hereby discuss how emerging molecular technologies are helping to refine the molecular monitoring of MRD in ALL and may help to overcome some of the limitations of standard approaches, providing a benefit for the care of patients.
Collapse
Affiliation(s)
- Irene Della Starza
- Hematology, Department of Translational and Precision Medicine, “Sapienza” University, Via Benevento 6, 00161 Rome, Italy
- GIMEMA Foundation, 00182 Rome, Italy
| | - Lucia Anna De Novi
- Hematology, Department of Translational and Precision Medicine, “Sapienza” University, Via Benevento 6, 00161 Rome, Italy
| | - Loredana Elia
- Hematology, Department of Translational and Precision Medicine, “Sapienza” University, Via Benevento 6, 00161 Rome, Italy
| | - Vittorio Bellomarino
- Hematology, Department of Translational and Precision Medicine, “Sapienza” University, Via Benevento 6, 00161 Rome, Italy
| | - Marco Beldinanzi
- Hematology, Department of Translational and Precision Medicine, “Sapienza” University, Via Benevento 6, 00161 Rome, Italy
| | - Roberta Soscia
- Hematology, Department of Translational and Precision Medicine, “Sapienza” University, Via Benevento 6, 00161 Rome, Italy
| | - Deborah Cardinali
- Hematology, Department of Translational and Precision Medicine, “Sapienza” University, Via Benevento 6, 00161 Rome, Italy
| | - Sabina Chiaretti
- Hematology, Department of Translational and Precision Medicine, “Sapienza” University, Via Benevento 6, 00161 Rome, Italy
| | - Anna Guarini
- Hematology, Department of Translational and Precision Medicine, “Sapienza” University, Via Benevento 6, 00161 Rome, Italy
| | - Robin Foà
- Hematology, Department of Translational and Precision Medicine, “Sapienza” University, Via Benevento 6, 00161 Rome, Italy
| |
Collapse
|
12
|
Meng J, Ji H, Chen L, Liu A. Comparison of Droplet Digital PCR and Metagenomic Next-Generation Sequencing Methods for the Detection of Human Herpesvirus 6B Infection Using Cell-Free DNA from Patients Receiving CAR-T and Hematopoietic Stem Cell Transplantation. Infect Drug Resist 2022; 15:5353-5364. [PMID: 36110128 PMCID: PMC9469937 DOI: 10.2147/idr.s379439] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/01/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose The aim of this study was to examine and compare the differences between droplet digital PCR (ddPCR) and metagenomic next-generation sequencing (mNGS) in the detection of human herpesvirus 6B (HHV-6B). Long-term monitoring of HHV-6B viral load in patients receiving chimeric antigen receptor-modified T-cell (CAR-T) therapy and hematopoietic stem cell transplantation (HSCT) can be used to identify immune effector cell-associated neurotoxicity syndrome (ICANS) and guide drug therapy. Methods Twenty-seven patients with suspected HHV-6B infection who had both mNGS and ddPCR test results were analyzed retrospectively, including 19 patients who received CAR T-cell therapy and 8 who received HSCT. The HHV-6B probe and primers were designed, and the performance of the ddPCR assay was evaluated. Subsequently, ddPCR was performed utilizing blood and urine. Data on clinical information and mNGS investigations were collected. Results The ddPCR test results correlated significantly with the mNGS test results (P < 0.001, R2 = 0.672). Of the 27 time-paired samples, ddPCR showed positive HHV-6B detection in 20 samples, while mNGS alone showed positive HHV-6B detection in 12 samples. ddPCR detected additional HHV-6B infections in 8 samples that would have been missed if only mNGS were used. In addition, the first HHV-6B infection event was detected at a median of 14 days after CAR T-cell infusion (range, 8 to 19 days). Longitudinal monitoring of HHV-6B by ddPCR was performed to assess the effectiveness of antiviral therapy. The data showed that with antiviral treatment HHV-6B viral load gradually decreased. Conclusion Our results indicated that ddPCR improved the HHV-6B positive detection ratio and was an effective adjunct to mNGS methods. Furthermore, the longitudinal detection and quantification of HHV-6B viral load in patients undergoing CAR T-cell therapy and HSCT may serve as a guide for drug treatment.
Collapse
Affiliation(s)
- Jiao Meng
- Hematology Department, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, People's Republic of China
| | - Hongyan Ji
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Liting Chen
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Aichun Liu
- Hematology Department, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, People's Republic of China
| |
Collapse
|
13
|
Digital Droplet PCR Is a Reliable Tool to Improve Minimal Residual Disease Stratification in Adult Philadelphia-Negative Acute Lymphoblastic Leukemia. J Mol Diagn 2022; 24:893-900. [PMID: 35710027 DOI: 10.1016/j.jmoldx.2022.04.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/19/2022] [Accepted: 04/25/2022] [Indexed: 11/20/2022] Open
Abstract
Digital droplet PCR (ddPCR) is an implementation of conventional PCR, with the potential of overcoming some limitations of real-time quantitative PCR (RQ-PCR). To evaluate if ddPCR may improve the quantification of disease levels and refine patients' risk stratification, 116 samples at four time points from 44 (35 B-lineage and 9 T-lineage) adult Philadelphia-negative acute lymphoblastic leukemia patients enrolled in the GIMEMA LAL1913 protocol were analyzed by RQ-PCR and ddPCR. A concordance rate between RQ-PCR and ddPCR of 79% (P < 0.0001) was observed; discordances were identified in 21% of samples, with the majority being RQ-PCR-negative (NEG) or positive not quantifiable (PNQ). ddPCR significantly reduced the proportion of PNQ samples-2.6% versus 14% (P = 0.003)-and allowed disease quantifiability in 6.6% of RQ-PCR-NEG, increasing minimal residual disease quantification in 14% of samples. Forty-seven samples were also investigated by next-generation sequencing, which confirmed the ddPCR results in samples classified as RQ-PCR-PNQ or NEG. By reclassifying samples on the basis of the ddPCR results, a better event-free survival stratification of patients was observed compared with RQ-PCR: indeed, ddPCR captured more true-quantifiable samples, with five relapses occurring in three patients who resulted RQ-PCR-PNQ/NEG but proved ddPCR positive quantifiable. At variance, no relapses were recorded in patients whose follow-up samples were RQ-PCR-PNQ but reclassified as ddPCR-NEG. A broader application of ddPCR in acute lymphoblastic leukemia clinical trials will help to improve patients' stratification.
Collapse
|
14
|
Schwinghammer C, Koopmann J, Chitadze G, Karawajew L, Brüggemann M, Eckert C. Droplet Digital PCR: A New View on Minimal Residual Disease Quantification in Acute Lymphoblastic Leukemia. J Mol Diagn 2022; 24:856-866. [PMID: 35691569 DOI: 10.1016/j.jmoldx.2022.04.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 03/05/2022] [Accepted: 04/06/2022] [Indexed: 11/27/2022] Open
Abstract
Real-time quantitative PCR (qPCR) using immunoglobulin/T-cell receptor gene rearrangements has been used as the gold standard for minimal residual disease (MRD) monitoring in acute lymphoblastic leukemia (ALL) for >20 years. Recently, new PCR-based technologies have emerged, such as droplet digital PCR (ddPCR), which could offer several methodologic advances for MRD monitoring. In the current work, qPCR and ddPCR were compared in an unbiased blinded prospective study (n = 88 measurements) and in a retrospective study with selected critical low positive samples (n = 65 measurements). The former included flow cytometry (Flow; n = 31 measurements) as a third MRD detection method. Published guidelines (qPCR) and the latest, revised evaluation criteria (ie, ddPCR, Flow) have been applied for data analysis. The prospective study shows that ddPCR outperforms qPCR with a significantly better quantitative limit of detection and sensitivity. The number of critical MRD estimates below quantitative limit was reduced by sixfold and by threefold in the retrospective and prospective cohorts, respectively. Furthermore, the concordance of quantitative values between ddPCR and Flow was higher than between ddPCR and qPCR, probably because ddPCR and Flow are absolute quantification methods independent of the diagnostic sample, unlike qPCR. In summary, our data highlight the advantages of ddPCR as a more precise and sensitive technology that could be used to refine response monitoring in ALL.
Collapse
Affiliation(s)
- Claudia Schwinghammer
- Department of Paediatric Oncology/Haematology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Johannes Koopmann
- Department of Haematology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Guranda Chitadze
- Department of Haematology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Leonid Karawajew
- Department of Paediatric Oncology/Haematology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Monika Brüggemann
- Department of Haematology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Cornelia Eckert
- Department of Paediatric Oncology/Haematology, Charité-Universitätsmedizin Berlin, Berlin, Germany; German Cancer Consortium, German Cancer Research Center, Heidelberg, Germany.
| |
Collapse
|
15
|
Lu Y, Li Z, Lim EH, Huan PT, Kham SKY, Yeoh AEJ. Digital PCR for Minimal Residual Disease Quantitation Using Immunoglobulin/T-Cell Receptor Gene Rearrangements in Acute Lymphoblastic Leukemia: A Proposed Analytic Algorithm. J Mol Diagn 2022; 24:655-665. [PMID: 35390515 DOI: 10.1016/j.jmoldx.2022.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 02/11/2022] [Accepted: 03/04/2022] [Indexed: 10/18/2022] Open
Abstract
In minimal residual disease (MRD), where there are exceedingly low target copy numbers, digital PCR (dPCR) can improve MRD quantitation. However, standards for dPCR MRD interpretation in acute lymphoblastic leukemia are lacking. Here, for immunoglobulin/T-cell receptor-based MRD, we propose an objective, statistics-based analytic algorithm. In 161 postinduction samples from 79 children with acute lymphoblastic leukemia, MRD was performed by dPCR and real-time quantitative PCR (qPCR) using the same markers and primer-probe sets. The dPCR raw data were analyzed by using an automated algorithm. dPCR and qPCR results were highly concordant (P < 0.0001): 98% (50 of 51) of qPCR positive were positive by dPCR, whereas 95% (61 of 64) of qPCR negative results were also negative by dPCR. For MRD quantitation, both qPCR and dPCR were tightly correlated (R2 = 0.94). Using more DNA (1 μg × 7 versus 630 ng × 3), dPCR improved sensitivity of MRD quantitation by one log10 (median MRD positive cutoff 1.6 × 10-5). With dPCR, 83% (29 of 35) of positive-not-quantifiable results by qPCR could be assigned positive/negative MRD status. Seven replicates of tested samples and negative controls were optimal. Compared with qPCR, dPCR could improve MRD sensitivity by one log10. We proposed an automatable, statistics-based algorithm that minimized interoperator variance for dPCR MRD.
Collapse
Affiliation(s)
- Yi Lu
- VIVA-NUS Centre for Translational Research in Acute Leukemia, Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Zhenhua Li
- VIVA-NUS Centre for Translational Research in Acute Leukemia, Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Evelyn Huizi Lim
- VIVA-NUS Centre for Translational Research in Acute Leukemia, Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Pei Tee Huan
- VIVA-NUS Centre for Translational Research in Acute Leukemia, Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Shirley Kow Yin Kham
- VIVA-NUS Centre for Translational Research in Acute Leukemia, Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Allen Eng-Juh Yeoh
- VIVA-NUS Centre for Translational Research in Acute Leukemia, Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; VIVA-University Children's Cancer Centre, Khoo Teck Puat-National University Children's Medical Institute, National University Hospital, National University Health System, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Singapore.
| |
Collapse
|
16
|
Starza ID, Eckert C, Drandi D, Cazzaniga G. Minimal Residual Disease Analysis by Monitoring Immunoglobulin and T-Cell Receptor Gene Rearrangements by Quantitative PCR and Droplet Digital PCR. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2453:79-89. [PMID: 35622321 DOI: 10.1007/978-1-0716-2115-8_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Analysis of immunoglobulin and T-cell receptor gene rearrangements by real-time quantitative polymerase chain reaction (RQ-PCR) is the gold standard for sensitive and accurate minimal residual disease (MRD) monitoring; it has been extensively standardized and guidelines have been developed within the EuroMRD consortium ( www.euromrd.org ). However, new generations of PCR-based methods are standing out as potential alternatives to RQ-PCR, such as digital PCR technology (dPCR), the third-generation implementation of conventional PCR, which has the potential to overcome some of the limitations of RQ-PCR such as allowing the absolute quantification of nucleic acid targets without the need for a calibration curve. During the last years, droplet digital PCR (ddPCR) technology has been compared to RQ-PCR in several hematologic malignancies showing its proficiency for MRD analysis. So far, no established guidelines for ddPCR MRD analysis and data interpretation have been defined and its potential is still under investigation. However, a major standardization effort is underway within the EuroMRD consortium ( www.euromrd.org ) for future application of ddPCR in standard clinical practice.
Collapse
Affiliation(s)
- Irene Della Starza
- Hematology, Department of Translational and Precision Medicine, "Sapienza" University of Rome, Rome, Italy.,GIMEMA Foundation, Rome, Italy
| | - Cornelia Eckert
- Department of Pediatric Oncology Hematology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,German Cancer Consortium, and German Cancer Research Center, Heidelberg, Germany
| | - Daniela Drandi
- Hematology Division, Department of Molecular Biotechnology and Health sciences, University of Torino, Torino, Italy
| | - Giovanni Cazzaniga
- Centro Ricerca Tettamanti, Fondazione Tettamanti, Centro Maria Letizia Verga, Monza, Italy. .,Genetics, Department of Medicine and Surgery, University of Milan Bicocca, Monza, Italy.
| | | |
Collapse
|
17
|
Galimberti S, Balducci S, Guerrini F, Del Re M, Cacciola R. Digital Droplet PCR in Hematologic Malignancies: A New Useful Molecular Tool. Diagnostics (Basel) 2022; 12:1305. [PMID: 35741115 PMCID: PMC9221914 DOI: 10.3390/diagnostics12061305] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/21/2022] [Accepted: 05/22/2022] [Indexed: 01/27/2023] Open
Abstract
Digital droplet PCR (ddPCR) is a recent version of quantitative PCR (QT-PCR), useful for measuring gene expression, doing clonality assays and detecting hot spot mutations. In respect of QT-PCR, ddPCR is more sensitive, does not need any reference curve and can quantify one quarter of samples already defined as "positive but not quantifiable". In the IgH and TCR clonality assessment, ddPCR recapitulates the allele-specific oligonucleotide PCR (ASO-PCR), being not adapt for detecting clonal evolution, that, on the contrary, does not represent a pitfall for the next generation sequencing (NGS) technique. Differently from NGS, ddPCR is not able to sequence the whole gene, but it is useful, cheaper, and less time-consuming when hot spot mutations are the targets, such as occurs with IDH1, IDH2, NPM1 in acute leukemias or T315I mutation in Philadelphia-positive leukemias or JAK2 in chronic myeloproliferative neoplasms. Further versions of ddPCR, that combine different primers/probes fluorescences and concentrations, allow measuring up to four targets in the same PCR reaction, sparing material, time, and money. ddPCR is also useful for quantitating BCR-ABL1 fusion gene, WT1 expression, donor chimerism, and minimal residual disease, so helping physicians to realize that "patient-tailored therapy" that is the aim of the modern hematology.
Collapse
Affiliation(s)
- Sara Galimberti
- Department of Clinical and Experimental Medicine, Section of Hematology, University of Pisa, 56126 Pisa, Italy; (S.G.); (S.B.); (F.G.); (M.D.R.)
| | - Serena Balducci
- Department of Clinical and Experimental Medicine, Section of Hematology, University of Pisa, 56126 Pisa, Italy; (S.G.); (S.B.); (F.G.); (M.D.R.)
| | - Francesca Guerrini
- Department of Clinical and Experimental Medicine, Section of Hematology, University of Pisa, 56126 Pisa, Italy; (S.G.); (S.B.); (F.G.); (M.D.R.)
| | - Marzia Del Re
- Department of Clinical and Experimental Medicine, Section of Hematology, University of Pisa, 56126 Pisa, Italy; (S.G.); (S.B.); (F.G.); (M.D.R.)
| | - Rossella Cacciola
- Department of Clinical and Experimental Medicine, Section of Hemostasis, University of Catania, 95123 Catania, Italy
| |
Collapse
|
18
|
Daddy Gaoh S, Kweon O, Lee YJ, Hussong D, Marasa B, Ahn Y. A Propidium Monoazide (PMAxx)-Droplet Digital PCR (ddPCR) for the Detection of Viable Burkholderia cepacia Complex in Nuclease-Free Water and Antiseptics. Microorganisms 2022; 10:943. [PMID: 35630385 PMCID: PMC9147393 DOI: 10.3390/microorganisms10050943] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 12/26/2022] Open
Abstract
Pharmaceutical products contaminated with Burkholderia cepacia complex (BCC) strains constitute a serious health issue for susceptible individuals. New detection methods to distinguish DNA from viable cells are required to ensure pharmaceutical product quality and safety. In this study, we have assessed a droplet digital PCR (ddPCR) with a variant propidium monoazide (PMAxx) for selective detection of live/dead BCC cells in autoclaved nuclease-free water after 365 days, in 0.001% chlorhexidine gluconate (CHX), and in 0.005% benzalkonium chloride (BZK) solutions after 184 days. Using 10 μM PMAxx and 5 min light exposure, a proportion of dead BCC was quantified by ddPCR. The detection limit of culture-based method was 104 CFU/mL, equivalent to 9.7 pg/μL for B. cenocepacia J2315, while that of ddPCR was 9.7 fg/μL. The true positive rate from nuclease-free water and CHX using PMAxx-ddPCR assay was 60.0% and 38.3%, respectively, compared to 85.0% and 74.6% without PMAxx (p < 0.05), respectively. However, in BZK-treated cells, no difference in the detection rate was observed between the ddPCR assay on samples treated with PMAxx (67.1%) and without PMAxx (63.3%). This study shows that the PMAxx-ddPCR assay provides a better tool for selective detection of live BCC cells in non-sterile pharmaceutical products.
Collapse
Affiliation(s)
- Soumana Daddy Gaoh
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA; (S.D.G.); (O.K.)
| | - Ohgew Kweon
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA; (S.D.G.); (O.K.)
| | - Yong-Jin Lee
- Department of Natural Sciences, Albany State University, Albany, GA 31705, USA;
| | - David Hussong
- Office of Pharmaceutical Science, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Beltsville, MD 20993, USA;
| | - Bernard Marasa
- Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA;
| | - Youngbeom Ahn
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA; (S.D.G.); (O.K.)
| |
Collapse
|
19
|
Oscorbin IP, Smertina MA, Pronyaeva KA, Voskoboev ME, Boyarskikh UA, Kechin AA, Demidova IA, Filipenko ML. Multiplex Droplet Digital PCR Assay for Detection of MET and HER2 Genes Amplification in Non-Small Cell Lung Cancer. Cancers (Basel) 2022; 14:cancers14061458. [PMID: 35326608 PMCID: PMC8945941 DOI: 10.3390/cancers14061458] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 01/27/2023] Open
Abstract
Non-small-cell lung cancer (NSCLC), a subtype of lung cancer, remains one of the most common tumors with a high mortality and morbidity rate. Numerous targeted drugs were implemented or are now developed for the treatment of NSCLC. Two genes, HER2 and MET, are among targets for these specific therapeutic agents. Alterations in HER2 and MET could lead to primary or acquired resistance to commonly used anti-EGFR drugs. Using current methods for detecting HER2 and MET amplifications is time and labor-consuming; alternative methods are required for HER2 and MET testing. We developed the first multiplex droplet digital PCR assay for the simultaneous detection of MET and HER2 amplification in NSCLC samples. The suitability of qPCR was assessed for the optimization of multiplex ddPCR. The optimal elongation temperature, reference genes for DNA quantification, and amplicon length were selected. The developed ddPCR was validated on control samples with various DNA concentrations and ratios of MET and HER2 genes. Using ddPCR, 436 EGFR-negative NSCLC samples were analyzed. Among the tested samples, five specimens (1.15%) showed a higher ratio of MET, and six samples (1.38%) showed a higher ratio of HER2. The reported multiplex ddPCR assay could be used for the routine screening of MET and HER2 amplification in NSCLC samples.
Collapse
Affiliation(s)
- Igor P. Oscorbin
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences (ICBFM SB RAS), 630090 Novosibirsk, Russia; (M.A.S.); (K.A.P.); (M.E.V.); (U.A.B.); (A.A.K.); (M.L.F.)
- Correspondence: ; Tel.: +7-9137061694
| | - Maria A. Smertina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences (ICBFM SB RAS), 630090 Novosibirsk, Russia; (M.A.S.); (K.A.P.); (M.E.V.); (U.A.B.); (A.A.K.); (M.L.F.)
| | - Ksenia A. Pronyaeva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences (ICBFM SB RAS), 630090 Novosibirsk, Russia; (M.A.S.); (K.A.P.); (M.E.V.); (U.A.B.); (A.A.K.); (M.L.F.)
- V. Zelman Institute for Medicine and Psychology, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Mikhail E. Voskoboev
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences (ICBFM SB RAS), 630090 Novosibirsk, Russia; (M.A.S.); (K.A.P.); (M.E.V.); (U.A.B.); (A.A.K.); (M.L.F.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Ulyana A. Boyarskikh
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences (ICBFM SB RAS), 630090 Novosibirsk, Russia; (M.A.S.); (K.A.P.); (M.E.V.); (U.A.B.); (A.A.K.); (M.L.F.)
| | - Andrey A. Kechin
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences (ICBFM SB RAS), 630090 Novosibirsk, Russia; (M.A.S.); (K.A.P.); (M.E.V.); (U.A.B.); (A.A.K.); (M.L.F.)
| | | | - Maxim L. Filipenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences (ICBFM SB RAS), 630090 Novosibirsk, Russia; (M.A.S.); (K.A.P.); (M.E.V.); (U.A.B.); (A.A.K.); (M.L.F.)
| |
Collapse
|
20
|
Fernando F, Robertson HF, El-Zahab S, Pavlů J. How I Use Measurable Residual Disease in the Clinical Management of Adult Acute Lymphoblastic Leukemia. Clin Hematol Int 2021; 3:130-141. [PMID: 34938985 PMCID: PMC8690704 DOI: 10.2991/chi.k.211119.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 10/05/2021] [Indexed: 11/01/2022] Open
Abstract
Over the last decade the use of measurable residual disease (MRD) diagnostics in adult acute lymphoblastic leukemia (ALL) has expanded from a limited number of study groups in Europe and the United States to a world-wide application. In this review, we summarize the advantages and drawbacks of the current available techniques used for MRD monitoring. Through the use of three representative case studies, we highlight the advances in the use of MRD in clinical decision-making in the management of ALL in adults. We acknowledge discrepancies in MRD monitoring and treatment between different countries, reflecting differing availability, accessibility and affordability.
Collapse
Affiliation(s)
- Fiona Fernando
- Centre for Haematology, Imperial College London at Hammersmith Hospital, London, UK
| | | | - Sarah El-Zahab
- Centre for Haematology, Imperial College London at Hammersmith Hospital, London, UK
| | - Jiří Pavlů
- Centre for Haematology, Imperial College London at Hammersmith Hospital, London, UK
| |
Collapse
|
21
|
Chen D, Sutton R, Giles J, Venn NC, Huang L, Law T, Subhash VV, Trahair TN, Henderson MJ. Analytical Quality Controls for ddPCR Detection of Minimal Residual Disease in Acute Lymphoblastic Leukemia. Clin Chem 2021; 67:1373-1383. [PMID: 39506256 DOI: 10.1093/clinchem/hvab117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/03/2021] [Indexed: 11/08/2024]
Abstract
BACKGROUND Droplet digital PCR (ddPCR) is a promising technique for absolute quantification of minimal residual disease (MRD) in acute lymphoblastic leukemia (ALL), but there is no comprehensive quality assurance program to enable its application in clinical laboratories. Current guidelines for real-time quantitative PCR (qPCR) assays targeting immunoglobulin/T-cell receptor (Ig/TCR) gene rearrangements needed adaptation for ddPCR to cover droplet generation, intraassay variation, and interassay variation in the absence of standard curves. METHODS Six qPCR MRD assays for Ig/TCR gene rearrangements and a standard albumin control gene assay were migrated to a ddPCR platform and used to test 82 remission samples from 6 patients with ALL. Three analytical quality controls (QC) were developed and evaluated for ddPCR MRD detection. RESULTS Analytical QC for droplet number generation (DN-QC), for albumin ddPCR assay performance (Alb-QC) and for patient-specific marker assay performance (PS-QC) were established with pass/fail limits and corresponding QC rules. Compared to established qPCRs, the ddPCR assays had comparable sensitivity and quantitative range. Overall, there was close agreement (91%) of MRD results between qPCR and ddPCR (κ = 0.86, P < 0.0001) and stronger concordance in 32 quantifiable samples (R2 = 0.97, P < 0.0001). CONCLUSIONS The use of this newly developed quality control system for ddPCR MRD testing avoids the need to repeat standard curves and provides reliable results comparable to standardized qPCR methods for MRD detection in ALL.
Collapse
Affiliation(s)
- Dan Chen
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, NSW, Australia
| | - Rosemary Sutton
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, NSW, Australia
- School of Women's and Children's Health, UNSW Medicine, Randwick, Australia
| | - Jodie Giles
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, NSW, Australia
| | - Nicola C Venn
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, NSW, Australia
| | - Libby Huang
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, NSW, Australia
| | - Tamara Law
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, NSW, Australia
| | - Vinod Vijay Subhash
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, NSW, Australia
| | - Toby N Trahair
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, NSW, Australia
- School of Women's and Children's Health, UNSW Medicine, Randwick, Australia
- Kids Cancer Centre, Sydney Children's Hospital, Randwick, Australia
| | - Michelle J Henderson
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, NSW, Australia
- School of Women's and Children's Health, UNSW Medicine, Randwick, Australia
| |
Collapse
|
22
|
Ceppi F, Rizzati F, Colombini A, Conter V, Cazzaniga G. Utilizing the prognostic impact of minimal residual disease in treatment decisions for pediatric acute lymphoblastic leukemia. Expert Rev Hematol 2021; 14:795-807. [PMID: 34374613 DOI: 10.1080/17474086.2021.1967137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Acute lymphoblastic leukemia (ALL) is the first pediatric cancer where the assessment of early response to therapy by minimal residual disease (MRD) monitoring has demonstrated its importance to improve risk-based treatment approaches. The most standardized tools to study MRD in ALL are multiparametric flow cytometry and realtime-quantitative polymerase chain reaction amplification-based methods. In recent years, MRD measurement has reached greater levels of sensitivity and standardization through international laboratory networks collaboration. AREAS COVERED We herewith describe how to assess and apply the prognostic impact of MRD in treatment decisions, with specific focus on pediatric ALL. We also highlight the role of MRD monitoring in the context of genetically homogeneous subgroups of pediatric ALL. However, some queries remain to be addressed and emerging technologies hold the promise of improving MRD detection in ALL patients. EXPERT OPINION Emerging technologies, like next generation flow cytometry, droplet digital PCR, and next generation sequencing appear to be important methods for assessing MRD in pediatric ALL. These more specific and/or sensitive MRD monitoring methods may help to predict relapse with greater accuracy, and are currently being used in clinical trials to improve pediatric ALL outcome by optimizing patient stratification and earlier MRD-based interventional therapy.
Collapse
Affiliation(s)
- Francesco Ceppi
- Pediatric Hematology-Oncology Unit, Division of Pediatrics, Woman-Mother-Child Department, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Frida Rizzati
- Pediatric Hematology-Oncology Unit, Division of Pediatrics, Woman-Mother-Child Department, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Antonella Colombini
- Pediatric Hematology-Oncology, University Milano Bicocca, Fondazione MBBM/Ospedale San Gerardo, Monza, Italy
| | - Valentino Conter
- Pediatric Hematology-Oncology, University Milano Bicocca, Fondazione MBBM/Ospedale San Gerardo, Monza, Italy
| | - Giovanni Cazzaniga
- Centro Ricerca Tettamanti, Pediatrics, School of Medicine, University of Milano Bicocca, Fondazione MBBM/Ospedale San Gerardo, Monza, Italy.,Medical Genetics, School of Medicine, University of Milano Bicocca, Monza, Italy
| |
Collapse
|
23
|
Ansuinelli M, Della Starza I, Lauretti A, Elia L, Siravo V, Messina M, De Novi LA, Taherinasab A, Canichella M, Guarini A, Foà R, Chiaretti S. Applicability of droplet digital polymerase chain reaction for minimal residual disease monitoring in Philadelphia-positive acute lymphoblastic leukaemia. Hematol Oncol 2021; 39:680-686. [PMID: 34402088 PMCID: PMC9292453 DOI: 10.1002/hon.2913] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/30/2021] [Accepted: 08/01/2021] [Indexed: 12/18/2022]
Abstract
In Ph+ acute lymphoblastic leukaemia (Ph+ ALL), minimal residual disease (MRD) is the most relevant prognostic factor. Currently, its evaluation is based on quantitative real‐time polymerase chain reaction (Q‐RT‐PCR). Digital droplet PCR (ddPCR) was successfully applied to several haematological malignancies. We analyzed 98 samples from 40 Ph+ ALL cases, the majority enrolled in the GIMEMA LAL2116 trial: 10 diagnostic samples and 88 follow‐up samples, mostly focusing on positive non‐quantifiable (PNQ) or negative samples by Q‐RT‐PCR to investigate the value of ddPCR for MRD monitoring. DdPCR BCR/ABL1 assay showed good sensitivity and accuracy to detect low levels of transcripts, with a high rate of reproducibility. The analysis of PNQ or negative cases by Q‐RT‐PCR revealed that ddPCR increased the proportion of quantifiable samples (p < 0.0001). Indeed, 29/54 PNQ samples (53.7%) proved positive and quantifiable by ddPCR, whereas 13 (24.1%) were confirmed as PNQ by ddPCR and 12 (22.2%) proved negative. Among 24 Q‐RT‐PCR‐negative samples, 13 (54.1%) were confirmed negative, four (16.7%) resulted PNQ and seven (29.2%) proved positive and quantifiable by ddPCR. Four of 5 patients, evaluated at different time points, who were negative by Q‐RT‐PCR and positive by ddPCR experienced a relapse. DdPCR appears useful for MRD monitoring in adult Ph+ ALL.
Collapse
Affiliation(s)
- Michela Ansuinelli
- Hematology, Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| | - Irene Della Starza
- Hematology, Department of Translational and Precision Medicine, Sapienza University, Rome, Italy.,GIMEMA Foundation, Rome, Italy
| | - Alessia Lauretti
- Hematology, Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| | - Loredana Elia
- Hematology, Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| | - Veronica Siravo
- Hematology, Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| | - Monica Messina
- Hematology, Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| | - Lucia Anna De Novi
- Hematology, Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| | - Akram Taherinasab
- Hematology, Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| | - Martina Canichella
- Hematology, Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| | - Anna Guarini
- Department of Molecular Medicine, Sapienza University, Rome, Italy
| | - Robin Foà
- Hematology, Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| | - Sabina Chiaretti
- Hematology, Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| |
Collapse
|
24
|
Immune Gene Rearrangements: Unique Signatures for Tracing Physiological Lymphocytes and Leukemic Cells. Genes (Basel) 2021; 12:genes12070979. [PMID: 34198966 PMCID: PMC8329920 DOI: 10.3390/genes12070979] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 06/25/2021] [Indexed: 02/07/2023] Open
Abstract
The tremendous diversity of the human immune repertoire, fundamental for the defense against highly heterogeneous pathogens, is based on the ingenious mechanism of immune gene rearrangements. Rearranged immune genes encoding the immunoglobulins and T-cell receptors and thus determining each lymphocyte's antigen specificity are very valuable molecular markers for tracing malignant or physiological lymphocytes. One of their most significant applications is tracking residual leukemic cells in patients with lymphoid malignancies. This so called 'minimal residual disease' (MRD) has been shown to be the most important prognostic factor across various leukemia subtypes and has therefore been given enormous attention. Despite the current rapid development of the molecular methods, the classical real-time PCR based approach is still being regarded as the standard method for molecular MRD detection due to the cumbersome standardization of the novel approaches currently in progress within the EuroMRD and EuroClonality NGS Consortia. Each of the molecular methods, however, poses certain benefits and it is therefore expectable that none of the methods for MRD detection will clearly prevail over the others in the near future.
Collapse
|
25
|
Shanmuganathan N, Branford S. Multiplex technologies for the assessment of minimal residual disease and low-level mutation detection in leukaemia: mass spectrometry versus next-generation sequencing. Br J Haematol 2021; 196:19-30. [PMID: 34124782 DOI: 10.1111/bjh.17623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/10/2021] [Accepted: 05/17/2021] [Indexed: 01/07/2023]
Abstract
With the focus of leukaemia management shifting to the implications of low-level disease burden, increasing attention is being paid on the development of highly sensitive methodologies required for detection. There are various techniques capable of identification of measurable residual disease (MRD) either evidencing as relevant mutation detection [e.g. nucleophosmin 1 (NPM1) mutation] or trace levels of leukaemic clonal populations. The vast majority of these methods only permit detection of a single clone or mutation. However, mass spectrometry and next-generation sequencing enable the interrogation of multiple genes simultaneously, facilitating a more complete genomic profile. In the present review, we explore the methodologies of both techniques in conjunction with the important advantages and limitations associated with each assay. We also highlight the evidence and the various instances where either technique has been used and propose future strategies for MRD detection.
Collapse
Affiliation(s)
- Naranie Shanmuganathan
- Department of Haematology, Royal Adelaide Hospital and SA Pathology, Adelaide, South Australia, Australia.,Department of Genetics and Molecular Pathology and Centre for Cancer Biology, SA Pathology, Adelaide, South Australia, Australia.,Precision Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia.,School of Pharmacy and Medical Science, University of South Australia, Adelaide, South Australia, Australia.,School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Susan Branford
- Department of Genetics and Molecular Pathology and Centre for Cancer Biology, SA Pathology, Adelaide, South Australia, Australia.,Precision Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia.,School of Pharmacy and Medical Science, University of South Australia, Adelaide, South Australia, Australia.,School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
26
|
Leguit RJ, Vink A, de Jonge N, Minnema MC, Oerlemans MIF. Endomyocardial biopsy with co-localization of a lymphoplasmacytic lymphoma and AL amyloidosis. Cardiovasc Pathol 2021; 53:107348. [PMID: 34038803 DOI: 10.1016/j.carpath.2021.107348] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/30/2021] [Accepted: 05/15/2021] [Indexed: 10/21/2022] Open
Abstract
In about 4% of cases, amyloid light chain (AL) amyloidosis is due to an underlying lymphoplasmacytic lymphoma (LPL) or other monoclonal protein forming low-grade B-cell lymphoma, instead of a plasma cell neoplasm. We report an unusual case of a 55-year-old male with co-localization of an IgG positive LPL and AL amyloidosis in his endomyocardial biopsy (EMB). The patient was diagnosed 4 years earlier with a low grade B-cell non Hodgkin lymphoma stage IV, at the time classified as marginal zone lymphoma. He received several lines of treatment for his lymphoma, which had shown progressive disease. Four years after initial diagnosis, he developed increasing dyspnea on exertion. Echocardiography demonstrated left and right ventricular hypertrophy with classical apical sparing, suspicious for cardiac amyloidosis. Bone marrow biopsy revealed massive infiltration by his low grade B-cell lymphoma, which was now reclassified as LPL based on the demonstration of a MYD88 L265P mutation. An EMB confirmed the presence of amyloid, which was typed as AL amyloidosis by the use of immunoelectron microscopy. In addition, mild B-cell infiltrates were present in the EMB, which were shown to be part of his LPL by the demonstration of the MYD88 L265P mutation using the highly sensitive droplet digital polymerase chain reaction technique. This is a rare case of cardiac AL amyloidosis based on an IgG kappa positive LPL, in which not only the amyloid but also the lymphoma itself were present in the EMB. In addition, this case nicely illustrates the use of 2 highly sensitive techniques (immunoelectron microscopy and droplet digital polymerase chain reaction), which both can be performed on small, formalin-fixed paraffin-embedded biopsies.
Collapse
Affiliation(s)
- Roos J Leguit
- Department of Pathology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
| | - Aryan Vink
- Department of Pathology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Nicolaas de Jonge
- Department of Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Monique C Minnema
- Department of Hematology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Marish I F Oerlemans
- Department of Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
27
|
Minimal Residual Disease in Acute Lymphoblastic Leukemia: Current Practice and Future Directions. Cancers (Basel) 2021; 13:cancers13081847. [PMID: 33924381 PMCID: PMC8069391 DOI: 10.3390/cancers13081847] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/31/2021] [Accepted: 04/11/2021] [Indexed: 12/27/2022] Open
Abstract
Simple Summary Acute lymphoblastic leukemia minimal residual disease (MRD) refers to the presence of residual leukemia cells following the achievement of complete remission, but below the limit of detection using conventional morphologic assessment. Up to two thirds of children may have MRD detectable after induction therapy depending on the biological subtype and method of detection. Patients with detectable MRD have an increased likelihood of relapse. A rapid reduction of MRD reveals leukemia sensitivity to therapy and under this premise, MRD has emerged as the strongest independent predictor of individual patient outcome and is crucial for risk stratification. However, it is a poor surrogate for treatment effect on long term outcome at the trial level, with impending need of randomized trials to prove efficacy of MRD-adapted interventions. Abstract Acute lymphoblastic leukemia (ALL) is the most common pediatric cancer and advances in its clinical and laboratory biology have grown exponentially over the last few decades. Treatment outcome has improved steadily with over 90% of patients surviving 5 years from initial diagnosis. This success can be attributed in part to the development of a risk stratification approach to identify those subsets of patients with an outstanding outcome that might qualify for a reduction in therapy associated with fewer short and long term side effects. Likewise, recognition of patients with an inferior prognosis allows for augmentation of therapy, which has been shown to improve outcome. Among the clinical and biological variables known to impact prognosis, the kinetics of the reduction in tumor burden during initial therapy has emerged as the most important prognostic variable. Specifically, various methods have been used to detect minimal residual disease (MRD) with flow cytometric and molecular detection of antigen receptor gene rearrangements being the most common. However, many questions remain as to the optimal timing of these assays, their sensitivity, integration with other variables and role in treatment allocation of various ALL subgroups. Importantly, the emergence of next generation sequencing assays is likely to broaden the use of these assays to track disease evolution. This review will discuss the biological basis for utilizing MRD in risk assessment, the technical approaches and limitations of MRD detection and its emerging applications.
Collapse
|
28
|
Guan Y, Zhang M, Zhang W, Wang J, Shen K, Zhang K, Yang L, Huang L, Wang N, Xiao M, Zhou J. Clinical Utility of Droplet Digital PCR to Monitor BCR-ABL1 Transcripts of Patients With Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia Post-chimeric Antigen Receptor19/22 T-Cell Cocktail Therapy. Front Oncol 2021; 11:646499. [PMID: 33898316 PMCID: PMC8059437 DOI: 10.3389/fonc.2021.646499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 02/12/2021] [Indexed: 12/13/2022] Open
Abstract
Philadelphia chromosome–positive acute lymphoblastic leukemia (Ph+ ALL) accounts for 20–30% of adult patients with ALL, characterized by translocation of t(9, 22). Tyrosine kinase inhibitors (TKIs) have significantly improved the outcome even though there are still some problems including relapse due to drug-resistant mutations and suboptimal molecular remission depth. Previously, we reported the safety and efficacy of sequential infusion of CD19/22 chimeric antigen receptor T-cell (CAR-T) immunotherapy in the treatment of relapsed/refractory (R/R) B-cell neoplasms including cases with Ph+ ALL. Given possible deeper reaction, more patients were expected to reach optimal minimal residual disease (MRD) response. An alternative method, duplex droplet digital PCR (ddPCR) with high sensitivity was established, which could provide absolute quantification of MRD without the need for calibration curves. Here, we retrospectively collected 95 bone marrow samples from 10 patients with R/R Ph+, who received 19/22 CAR-T-cell cocktail therapy. Notably, sequential molecular remission for more than 3 months (SMR3), a significant indicator based on ddPCR after CAR-T infusion was established, which was defined as a sequential molecular remission for not <3 months with negative MRD. In this cohort, no recurrence was observed in six patients achieving SMR3, where four of whom accepted allogeneic hematopoietic stem cell transplantation (allo-HSCT) after CAR-T cell regimen. Unfortunately, the other four patients who did not reach SMR3 relapsed, and did not receive extra specific treatment except CAR-T regimen. To sum up, ddPCR may be an alternative, especially when nucleic acid was insufficient in clinical practice. No achievement of SMR3 may be an early warning of potential relapse after CAR-T and indicating the initiation of other therapies including allo-HSCT.
Collapse
Affiliation(s)
- Yuqi Guan
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meilan Zhang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Zhang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiachen Wang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kefeng Shen
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | - Li Yang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liang Huang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Na Wang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Xiao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianfeng Zhou
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
29
|
Droplet Digital PCR Improves IG-/TR-based MRD Risk Definition in Childhood B-cell Precursor Acute Lymphoblastic Leukemia. Hemasphere 2021; 5:e543. [PMID: 33655199 PMCID: PMC7909459 DOI: 10.1097/hs9.0000000000000543] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 12/16/2020] [Indexed: 02/04/2023] Open
Abstract
Minimal residual disease (MRD) is the most powerful prognostic factor in pediatric acute lymphoblastic leukemia (ALL). Real-time quantitative polymerase chain reaction (RQ-PCR) represents the gold standard for molecular MRD assessment and risk-based stratification of front-line treatment. In the protocols of the Italian Association of Pediatric Hematology and Oncology (AIEOP) and the Berlin-Frankfurth-Munschen (BFM) group AIEOP-BFM ALL2009 and ALL2017, B-lineage ALL patients with high RQ-PCR-MRD at day+33 and positive at day+78 are defined slow early responders (SERs). Based on results of the AIEOP-BFM ALL2000 study, these patients are treated as high-risk also when positive MRD signal at day +78 is below the lower limit of quantification of RQ-PCR (“positive not-quantifiable,” POS-NQ). To assess whether droplet digital polymerase chain reaction (ddPCR) could improve patients’ risk definition, we analyzed MRD in 209 pediatric B-lineage ALL cases classified by RQ-PCR as POS-NQ and/or negative (NEG) at days +33 and/or +78 in the AIEOP-BFM ALL2000 trial. ddPCR MRD analysis was performed on 45 samples collected at day +78 from SER patients, who had RQ-PCR MRD ≥ 5.0 × 10–4 at day+33 and POS-NQ at day+78 and were treated as medium risk (MR). The analysis identified 13 of 45 positive quantifiable cases. Most relapses occurred in this patients’ subgroup, while ddPCR NEG or ddPCR-POS-NQ patients had a significantly better outcome (P < 0.001). Overall, in 112 MR cases and 52 standard-risk patients, MRD negativity and POS-NQ were confirmed by the ddPCR analysis except for a minority of cases, for whom no differences in outcome were registered. These data indicate that ddPCR is more accurate than RQ-PCR in the measurement of MRD, particularly in late follow-up time points, and may thus allow improving patients’ stratification in ALL protocols.
Collapse
|
30
|
Juelg P, Kipf E, Specht M, Fillies M, Eckert C, Paust N, Zengerle R, Lehnert M, Hutzenlaub T. The MRD disk: automated minimal residual disease monitoring by highly sensitive centrifugal microfluidic multiplex qPCR. LAB ON A CHIP 2021; 21:558-570. [PMID: 33319895 DOI: 10.1039/d0lc00945h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We present a proof-of-principle study on automated, highly sensitive and multiplexed qPCR quantification by centrifugal microfluidics. The MRD disk can be used for standardisation of repetitive, longitudinal assays with high requirements on reproducibility and sensitivity, such as cancer monitoring. In contrast to high-throughput qPCR automation by bulky and expensive robotic workstations we employ a small centrifugal microfluidic instrument, addressing the need of low- to mid-throughput applications. As a potential application we demonstrate automated minimum residual disease (MRD) monitoring of prognostic markers in patients with acute lymphoblastic leukaemia (ALL). The disk-workflow covers all aspects of clinical gold standard MRD quantification: generation of standard curves, specificity controls, no template controls and quantification of the ALL patient sample. We integrated a highly sensitive, colorimetric 2-plex analysis of MRD targets, as well as a 2-plex analysis of reference genes, both in parallel and in a single LabDisk cartridge. For this purpose, a systematic procedure for crosstalk- and signal-to-noise-optimisation is introduced, providing a guideline for efficient multiplex readout inside microfluidic platforms. The qPCR standard curves (n = 12/12) generated on-disk reach clinically required linearity (R2 = 98.1% to R2 = 99.8%). In three consecutive MRD disk runs with an ALL patient sample containing the two representative MRD targets VH3D3D5JH3 and VkIkde, we observe high accordance between the on-disk quantifications (48 ± 6 copies/reaction and 69 ± 6 copies/reaction) and the expected concentrations (57 copies/reaction for both targets). In comparison to the clinical gold standard of manually pipetted, singleplex assays, the MRD disk yields comparable limit of quantification (1 × 10-4) in n = 6/6 analyses (vs. n = 4/4 in gold standard) and a limit of detection (1 × 10-5) in n = 6/6 analysis (vs. n = 2/4 in gold standard). The automation reduces the risk of manual liquid handling errors, making the MRD disk an attractive solution to assure reproducibility in moderate-throughput, longitudinal gene quantification applications.
Collapse
Affiliation(s)
- Peter Juelg
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany.
| | - Elena Kipf
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany.
| | - Mara Specht
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany.
| | - Marion Fillies
- Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Cornelia Eckert
- Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Nils Paust
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany. and Laboratory for MEMS Applications, IMTEK - Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| | - Roland Zengerle
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany. and Laboratory for MEMS Applications, IMTEK - Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| | - Michael Lehnert
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany.
| | - Tobias Hutzenlaub
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany. and Laboratory for MEMS Applications, IMTEK - Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| |
Collapse
|
31
|
Uchiyama T, Yokoyama A, Aoki S. Measurable residual disease in the treatment of chronic lymphocytic leukemia. J Clin Exp Hematop 2020; 60:138-145. [PMID: 33148932 PMCID: PMC7810249 DOI: 10.3960/jslrt.20014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Treatment outcomes of chronic lymphocytic leukemia (CLL) have improved since
chemoimmunotherapy and novel drugs became available for CLL treatment; therefore, more
sensitive methods to evaluate residual CLL cells in patients are required. Measurable
residual disease (MRD) has been assessed in several clinical trials on CLL using flow
cytometry, real-time quantitative PCR (RQ-PCR) with allele-specific oligonucleotide (ASO)
primers, and high-throughput sequencing. MRD assessment is useful to predict the treatment
outcomes in the context of chemotherapy and treatment with novel drugs such as venetoclax.
In this review, we discuss major techniques for MRD assessment, data from relevant
clinical trials, and the future of MRD assessment in CLL treatment.
Collapse
Affiliation(s)
- Takayoshi Uchiyama
- Niigata University of Pharmacy and Applied Life Sciences, Faculty of Pharmaceutical Sciences, Department of Pathophysiology, Niigata, Japan
| | - Aki Yokoyama
- Niigata University of Pharmacy and Applied Life Sciences, Faculty of Pharmaceutical Sciences, Department of Pathophysiology, Niigata, Japan
| | - Sadao Aoki
- Niigata University of Pharmacy and Applied Life Sciences, Faculty of Pharmaceutical Sciences, Department of Pathophysiology, Niigata, Japan
| |
Collapse
|
32
|
Tellinghuisen J. dPCR vs. qPCR: The role of Poisson statistics at low concentrations. Anal Biochem 2020; 611:113946. [DOI: 10.1016/j.ab.2020.113946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 08/14/2020] [Accepted: 09/03/2020] [Indexed: 10/23/2022]
|
33
|
Quelen C, Grand D, Sarot E, Brugières L, Sibon D, Pradines A, Laurent C, Brousset P, Lamant L. Minimal Residual Disease Monitoring Using a 3'ALK Universal Probe Assay in ALK-Positive Anaplastic Large-Cell Lymphoma: ddPCR, an Attractive Alternative Method to Real-Time Quantitative PCR. J Mol Diagn 2020; 23:131-139. [PMID: 33246076 DOI: 10.1016/j.jmoldx.2020.11.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 10/06/2020] [Accepted: 11/03/2020] [Indexed: 12/20/2022] Open
Abstract
In ALK-positive anaplastic large-cell lymphomas, positive qualitative PCR for NPM1-anaplastic lymphoma kinase (ALK) in peripheral blood and/or bone marrow at diagnosis and during treatment are associated with a higher risk of treatment failure. Real-time quantitative PCR allows identification of very high risk patients. However, this latter technique initially designed for patients with lymphomas carrying the most frequent NPM1-ALK translocation necessitates calibration curves, limiting interlaboratory reproducibility. An ALK universal quantitative PCR based on 3'ALK transcript amplification was designed to allow the detection of all ALK fusion transcripts. The absolute concordance of 3'ALK quantitative PCR results were validated with the routine NPM1-ALK qualitative and quantitative PCR on 46 samples. The universality of ALK fusion transcript detection also was validated on TPM3-, ALO17-, and ATIC-ALK-positive samples, and the EML4-ALK-positive cell line. Digital droplet PCR using the 3'ALK universal probe showed highly concordant results with 3'ALK universal quantitative PCR. A major benefit of digital droplet PCR is a reduced experimental set-up compared with quantitative PCR, without generation of standard curves, leading to a reliable protocol for multilaboratory validation in multicenter clinical trials essential for this rare pathology. Our ALK universal method could be used for the screening of ALK fusion transcripts in liquid biopsy specimens of other ALK-positive tumors, including non-small cell lung carcinomas.
Collapse
Affiliation(s)
- Cathy Quelen
- Department of Pathology, Institut Universitaire du Cancer Toulouse Oncopole, Toulouse, France; Université Toulouse III-Paul-Sabatier, Toulouse, France; Cancer Research Center of Toulouse, INSERM UMR 1037, ERL5294 CNRS, Université Toulouse III-Paul-Sabatier, Toulouse, France
| | - David Grand
- Department of Pathology, Institut Universitaire du Cancer Toulouse Oncopole, Toulouse, France
| | - Emeline Sarot
- Department of Pathology, Institut Universitaire du Cancer Toulouse Oncopole, Toulouse, France
| | - Laurence Brugières
- Department of Children and Adolescents Oncology, Gustave Roussy Cancer Center, Paris-Saclay University, Villejuif
| | - David Sibon
- Department of Hematology, Hopital Necker-Enfants Malades, Paris, France
| | - Anne Pradines
- Medical Laboratory, Claudius Regaud Institute, Institut Universitaire du Cancer Toulouse Oncopole, Toulouse, France
| | - Camille Laurent
- Department of Pathology, Institut Universitaire du Cancer Toulouse Oncopole, Toulouse, France; Cancer Research Center of Toulouse, INSERM UMR 1037, ERL5294 CNRS, Université Toulouse III-Paul-Sabatier, Toulouse, France
| | - Pierre Brousset
- Department of Pathology, Institut Universitaire du Cancer Toulouse Oncopole, Toulouse, France; Cancer Research Center of Toulouse, INSERM UMR 1037, ERL5294 CNRS, Université Toulouse III-Paul-Sabatier, Toulouse, France
| | - Laurence Lamant
- Department of Pathology, Institut Universitaire du Cancer Toulouse Oncopole, Toulouse, France; Cancer Research Center of Toulouse, INSERM UMR 1037, ERL5294 CNRS, Université Toulouse III-Paul-Sabatier, Toulouse, France.
| |
Collapse
|
34
|
Gozzetti A, Raspadori D, Bacchiarri F, Sicuranza A, Pacelli P, Ferrigno I, Tocci D, Bocchia M. Minimal Residual Disease in Multiple Myeloma: State of the Art and Applications in Clinical Practice. J Pers Med 2020; 10:jpm10030120. [PMID: 32927719 PMCID: PMC7565263 DOI: 10.3390/jpm10030120] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 09/03/2020] [Accepted: 09/08/2020] [Indexed: 12/14/2022] Open
Abstract
Novel drugs have revolutionized multiple myeloma therapy in the last 20 years, with median survival that has doubled to up to 8–10 years. The introduction of therapeutic strategies, such as consolidation and maintenance after autologous stem cell transplants, has also ameliorated clinical results. The goal of modern therapies is becoming not only complete remission, but also the deepest possible remission. In this context, the evaluation of minimal residual disease by techniques such as next-generation sequencing (NGS) and next-generation flow (NGF) is becoming part of all new clinical trials that test drug efficacy. This review focuses on minimal residual disease approaches in clinical trials, with particular attention to real-world practices.
Collapse
|
35
|
Wang Y, Wen FQ. [Latest advances in minimal residual disease evaluation in B-cell lymphoproliferative disease]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2020; 22:667-671. [PMID: 32571470 PMCID: PMC7390215 DOI: 10.7499/j.issn.1008-8830.1912034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 04/21/2020] [Indexed: 06/11/2023]
Abstract
The clearance of cancer cells is closely associated with the prognosis of various hematologic malignancies. Clinical studies have shown that minimal residual disease (MRD) can directly reflect the clearance of cancer cells, but the tools for MRD detection need to be improved. This article reviews the latest advances in the MRD detection by digital polymerase chain reaction and next-generation sequencing in B-cell lymphoproliferative disease.
Collapse
Affiliation(s)
- Yan Wang
- Department of Pediatric Hematology and Oncology, Shenzhen Children's Hospital, China Medical University, Shenzhen, Guangdong 518031, China.
| | | |
Collapse
|
36
|
Sun YQ, Li SQ, Zhao XS, Chang YJ. Measurable residual disease of acute lymphoblastic leukemia in allograft settings: how to evaluate and intervene. Expert Rev Anticancer Ther 2020; 20:453-464. [PMID: 32459519 DOI: 10.1080/14737140.2020.1766973] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
INTRODUCTION Allogeneic hematopoietic stem cell transplantation (allo-HSCT) remains a curable strategy for acute lymphoblastic leukemia (ALL), especially for adult cases. However, leukemia relapse after allograft restricts the improvement of transplant outcomes. Measurable residual disease (MRD) has been the strongest predictor for relapse after allo-HSCT, allowing MRD-directed preemptive therapy. AREAS COVERED This manuscript summarizes the detection of MRD in patients with ALL who undergo allo-HSCT, focusing the effects of positive pre-HSCT MRD and post-HSCT MRD on outcomes as well as MRD-directed interventions. EXPERT OPINION Except for MFC and RQ-PCR, other strategies, such as next-generation sequencing and RNAseq, have been developed for MRD determination. Negative effects of positive MRD peri-transplantation on outcomes of ALL patients were observed both in human leukocyte antigen (HLA)-matched sibling donor transplantation and in alternative donor transplantation. Advances have been made in determining the need for transplant according to MRD evaluation after induction or consolidation therapy. A number of approaches, including CAR-T-cell therapy, antibodies (blinatumomab, etc), targeted therapy (imatinib, etc), transplant donor selection, as well as donor lymphocyte infusion and interferon-α, have been successfully used or are promising for peri-transplantation MRD interventions. This progress could lead to the significant improvement of transplant outcomes for ALL patients.
Collapse
Affiliation(s)
- Yu-Qian Sun
- National Clinical Research Center for Hematologic Disease, Peking University People's Hospital & Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation , Beijing, P.R.C
| | - Si-Qi Li
- National Clinical Research Center for Hematologic Disease, Peking University People's Hospital & Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation , Beijing, P.R.C
| | - Xiao-Su Zhao
- National Clinical Research Center for Hematologic Disease, Peking University People's Hospital & Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation , Beijing, P.R.C
| | - Ying-Jun Chang
- National Clinical Research Center for Hematologic Disease, Peking University People's Hospital & Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation , Beijing, P.R.C
| |
Collapse
|
37
|
Coccaro N, Tota G, Anelli L, Zagaria A, Specchia G, Albano F. Digital PCR: A Reliable Tool for Analyzing and Monitoring Hematologic Malignancies. Int J Mol Sci 2020; 21:ijms21093141. [PMID: 32365599 PMCID: PMC7247671 DOI: 10.3390/ijms21093141] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 02/06/2023] Open
Abstract
The digital polymerase chain reaction (dPCR) is considered to be the third-generation polymerase chain reaction (PCR), as it yields direct, absolute and precise measures of target sequences. dPCR has proven particularly useful for the accurate detection and quantification of low-abundance nucleic acids, highlighting its advantages in cancer diagnosis and in predicting recurrence and monitoring minimal residual disease, mostly coupled with next generation sequencing. In the last few years, a series of studies have employed dPCR for the analysis of hematologic malignancies. In this review, we will summarize these findings, attempting to focus on the potential future perspectives of the application of this promising technology.
Collapse
Affiliation(s)
| | | | | | | | | | - Francesco Albano
- Correspondence: ; Tel.: +39-(0)80-5478031; Fax: +39-(0)80-5508369
| |
Collapse
|
38
|
Damm-Welk C, Kutscher N, Zimmermann M, Attarbaschi A, Schieferstein J, Knörr F, Oschlies I, Klapper W, Woessmann W. Quantification of minimal disseminated disease by quantitative polymerase chain reaction and digital polymerase chain reaction for NPM-ALK as a prognostic factor in children with anaplastic large cell lymphoma. Haematologica 2019; 105:2141-2149. [PMID: 31649129 PMCID: PMC7395281 DOI: 10.3324/haematol.2019.232314] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 10/24/2019] [Indexed: 01/20/2023] Open
Abstract
Detection of minimal disseminated disease is a validated prognostic factor in ALK-positive anaplastic large cell lymphoma. We previously reported that quantification of minimal disease by quantitative real-time polymerase chain reaction (RQ-PCR) in bone marrow applying a cut-off of 10 copies NPM-ALK/104 copies of ABL1 identifies very high-risk patients. In the present study, we aimed to confirm the prognostic value of quantitative minimal disseminated disease evaluation and to validate digital polymerase chain reaction (dPCR) as an alternative method. Among 91 patients whose bone marrow was analyzed by RQ-PCR, more than 10 normalized copy-numbers correlated with stage III/IV disease, mediastinal and visceral organ involvement and low anti-ALK antibody titers. The cumulative incidence of relapses of 18 patients with more than 10 normalized copy-numbers of NPM-ALK was 61±12% compared to 21±5% for the remaining 73 patients (P=0.0002). Results in blood correlated with those in bone marrow (r=0.74) in 70 patients for whom both materials could be tested. Transcripts were quantified by RQ-PCR and dPCR in 75 bone marrow and 57 blood samples. Copy number estimates using dPCR and RQ-PCR correlated in 132 samples (r=0.85). Applying a cut-off of 30 copies NPM-ALK/104 copies ABL1 for quantification by dPCR, almost identical groups of patients were separated as those separated by RQ-PCR. In summary, the prognostic impact of quantification of minimal disseminated disease in bone marrow could be confirmed for patients with anaplastic large cell lymphoma. Blood can substitute for bone marrow. Quantification of minimal disease by dPCR provides a promising tool to facilitate harmonization of minimal disease measurement between laboratories and for clinical studies.
Collapse
Affiliation(s)
- Christine Damm-Welk
- NHL-BFM Study Center, Department of Pediatric Hematology and Oncology, Giessen, Germany
| | - Nina Kutscher
- NHL-BFM Study Center, Department of Pediatric Hematology and Oncology, Giessen, Germany
| | - Martin Zimmermann
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Andishe Attarbaschi
- Department of Pediatric Hematology and Oncology, St. Anna Children's Hospital, Medical University of Vienna, Vienna, Austria
| | - Jutta Schieferstein
- NHL-BFM Study Center, Department of Pediatric Hematology and Oncology, Giessen, Germany
| | - Fabian Knörr
- Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ilske Oschlies
- Institute of Pathology, Hematopathology Section and Lymph Node Registry, Kiel, Germany
| | - Wolfram Klapper
- Institute of Pathology, Hematopathology Section and Lymph Node Registry, Kiel, Germany
| | - Wilhelm Woessmann
- NHL-BFM Study Center, Department of Pediatric Hematology and Oncology, Giessen, Germany .,Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
39
|
Della Starza I, Cavalli M, De Novi LA, Genuardi E, Mantoan B, Drandi D, Barbero D, Ciabatti E, Grassi S, Gazzola A, Mannu C, Agostinelli C, Piccaluga PP, Bomben R, Degan M, Gattei V, Guarini A, Foà R, Galimberti S, Ladetto M, Ferrero S, Del Giudice I. Minimal residual disease (MRD) in non-Hodgkin lymphomas: Interlaboratory reproducibility on marrow samples with very low levels of disease within the FIL (Fondazione Italiana Linfomi) MRD Network. Hematol Oncol 2019; 37:368-374. [PMID: 31325190 DOI: 10.1002/hon.2652] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/08/2019] [Accepted: 07/11/2019] [Indexed: 01/08/2023]
Abstract
In 2009, the four laboratories of the Fondazione Italiana Linfomi (FIL) minimal residual disease (MRD) Network started a collaborative effort to harmonize and standardize their methodologies at the national level, performing quality control (QC) rounds for follicular lymphoma (FL) and mantle cell lymphoma (MCL) MRD assessment. In 16 QC rounds between 2010 and 2017, the four laboratories received 208 bone marrow (BM) samples (126 FL; 82 MCL); 187 were analyzed, according to the EuroMRD Consortium guidelines, by both nested (NEST) polymerase chain reaction (PCR) and real-time quantitative (RQ) PCR for BCL2/IGH MBR or IGHV rearrangements. Here, we aimed at analyzing the samples that challenged the interlaboratory reproducibility and data interpretation. Overall, 156/187 BM samples (83%) were concordantly classified as NEST+/RQ+ or NEST-/RQ- by all the four laboratories. The remaining 31 samples (17%) resulted alternatively positive and negative in the interlaboratory evaluations, independently of the method and the type of rearrangement, and were defined "borderline" (brd) samples: 12 proved NEST brd/RQ brd, 7 NEST-/RQ brd, 10 NEST brd/RQ positive not quantifiable (PNQ), and 2 NEST brd/RQ-. Results did not change even increasing the number of replicates/sample. In 6/31 brd samples, droplet digital PCR (ddPCR) was tested and showed no interlaboratory discordance. Despite the high interlaboratory reproducibility in the MRD analysis obtained and maintained by the QC round strategy, samples with the lowest MRD levels can still represent a challenge: 17% (31/187) of our samples showed discordant results in interlaboratory assessments, with 6.4% (12/187) remained brd even applying the two methods. Thus, although representing a minority, brd samples are still problematic, especially when a clinically oriented interpretation of MRD results is required. Alternative, novel methods such as ddPCR and next-generation sequencing have the potential to overcome the current limitations.
Collapse
MESH Headings
- Bone Marrow/pathology
- Bone Marrow Examination/standards
- Clone Cells
- Gene Rearrangement, B-Lymphocyte, Heavy Chain
- Genes, Immunoglobulin
- Genes, bcl-2
- High-Throughput Nucleotide Sequencing
- Humans
- Immunoglobulin Heavy Chains/genetics
- Immunoglobulin Variable Region/genetics
- Italy/epidemiology
- Laboratory Proficiency Testing
- Lymphoma, Non-Hodgkin/genetics
- Lymphoma, Non-Hodgkin/pathology
- Neoplasm, Residual
- Oncogene Proteins, Fusion/analysis
- Polymerase Chain Reaction/methods
- Polymerase Chain Reaction/standards
- Proto-Oncogene Proteins c-bcl-2/genetics
- Quality Assurance, Health Care
- Reproducibility of Results
- Translocation, Genetic
Collapse
Affiliation(s)
- Irene Della Starza
- Hematology, Department of Translational and Precision Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Marzia Cavalli
- Hematology, Department of Translational and Precision Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Lucia Anna De Novi
- Hematology, Department of Translational and Precision Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Elisa Genuardi
- Department of Molecular Biotechnologies and Health Sciences, Division of Hematology, University of Torino, Turin, Italy
| | - Barbara Mantoan
- Department of Molecular Biotechnologies and Health Sciences, Division of Hematology, University of Torino, Turin, Italy
| | - Daniela Drandi
- Department of Molecular Biotechnologies and Health Sciences, Division of Hematology, University of Torino, Turin, Italy
| | - Daniela Barbero
- Department of Molecular Biotechnologies and Health Sciences, Division of Hematology, University of Torino, Turin, Italy
| | - Elena Ciabatti
- Division of Hematology, Department of Oncology, Santa Chiara Hospital, Pisa, Italy
| | - Susanna Grassi
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Anna Gazzola
- Hematopathology Section, Department of Experimental, Diagnostic and Specialty Medicine, S. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Claudia Mannu
- Hematopathology Section, Department of Experimental, Diagnostic and Specialty Medicine, S. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Claudio Agostinelli
- Hematopathology Section, Department of Experimental, Diagnostic and Specialty Medicine, S. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Pier Paolo Piccaluga
- Hematopathology Section, Department of Experimental, Diagnostic and Specialty Medicine, S. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Riccardo Bomben
- Clinical and Experimental Onco-Haematology Unit, Centro di Riferimento Oncologico, I.R.C.C.S., Aviano, Italy
| | - Massimo Degan
- Clinical and Experimental Onco-Haematology Unit, Centro di Riferimento Oncologico, I.R.C.C.S., Aviano, Italy
| | - Valter Gattei
- Clinical and Experimental Onco-Haematology Unit, Centro di Riferimento Oncologico, I.R.C.C.S., Aviano, Italy
| | - Anna Guarini
- Department of Molecular Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Robin Foà
- Hematology, Department of Translational and Precision Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Sara Galimberti
- Division of Hematology, Department of Oncology, Santa Chiara Hospital, Pisa, Italy
| | - Marco Ladetto
- Division of Hematology, Azienda Ospedaliera SS Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
| | - Simone Ferrero
- Department of Molecular Biotechnologies and Health Sciences, Division of Hematology, University of Torino, Turin, Italy
| | - Ilaria Del Giudice
- Hematology, Department of Translational and Precision Medicine, "Sapienza" University of Rome, Rome, Italy
| |
Collapse
|
40
|
Multiplex ddPCR assay for screening copy number variations in BRCA1 gene. Breast Cancer Res Treat 2019; 178:545-555. [PMID: 31482362 DOI: 10.1007/s10549-019-05425-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 08/27/2019] [Indexed: 12/16/2022]
Abstract
PURPOSE Germinal and somatic rearrangements in BRCA1 gene play a significant role in carcinogenesis of breast and ovarian cancer. The present study is dedicated to the development of multiplex droplet digital PCR (ddPCR) assay for detecting large deletions and duplications in the BRCA1 gene. METHODS In-house tetraplex ddPCR assay for BRCA1 gene analysis was used for testing of DNA samples with BRCA1 status. RESULTS DNA specimens were purified from 24 individuals. The presence of BRCA1 rearrangements in samples was confirmed by a commercial MLPA-based kit. An amplitude-based multiplex ddPCR assay was developed: 8 multiplexes, each containing primers and probes to amplify 3 BRCA1 exons and 1 reference gene (ALB or RPP30). A novel assay demonstrated 100% concordance with the commercial MLPA-based kit, identifying 9 specimens with different deletions in BRCA1, 1 with duplication, and 14 with the wild-type BRCA1. CONCLUSIONS We have designed a simple, precise, and cost-effective assay for BRCA1 rearrangement testing, based on ddPCR. The developed assay is the first multiplex ddPCR-based test that provides results in accordance with MLPA and can be used for routine clinical screening.
Collapse
|
41
|
Del Giudice I, Raponi S, Della Starza I, De Propris MS, Cavalli M, De Novi LA, Cappelli LV, Ilari C, Cafforio L, Guarini A, Foà R. Minimal Residual Disease in Chronic Lymphocytic Leukemia: A New Goal? Front Oncol 2019; 9:689. [PMID: 31555576 PMCID: PMC6727319 DOI: 10.3389/fonc.2019.00689] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 07/12/2019] [Indexed: 12/18/2022] Open
Abstract
In chronic lymphocytic leukemia (CLL), there is a growing interest for minimal residual disease (MRD) monitoring, due to the availability of drug combinations capable of unprecedented complete clinical responses. The standardized and most commonly applied methods to assess MRD in CLL are based on flow cytometry (FCM) and, to a lesser extent, real-time quantitative PCR (RQ-PCR) with allele-specific oligonucleotide (ASO) primers of immunoglobulin heavy chain genes (IgH). Promising results are being obtained using droplet digital PCR (ddPCR) and next generation sequencing (NGS)-based approaches, with some advantages and a potential higher sensitivity compared to the standardized methodologies. Plasma cell-free DNA can also be explored as a more precise measure of residual disease from all different compartments, including the lymph nodes. From a clinical point of view, CLL MRD quantification has proven an independent prognostic marker of progression-free survival (PFS) and overall survival (OS) after chemoimmunotherapy as well as after allogeneic transplantation. In the era of mechanism-driven drugs, the paradigms of CLL treatment are being revolutionized, challenging the use of chemoimmunotherapy even in first-line. The continuous administration of ibrutinib single agent has led to prolonged PFS and OS in relapsed/refractory and treatment naïve CLL, including those with TP53 deletion/mutation or unmutated IGHV genes, though the clinical responses are rarely complete. More recently, chemo-free combinations of venetoclax+rituximab, venetoclax+obinutuzumab or ibrutinib+venetoclax have been shown capable of inducing undetectable MRD in the bone marrow, opening the way to protocols exploring a MRD-based duration of treatment, aiming at disease eradication. Thus, beside a durable disease control desirable particularly for older patients and/or for those with comorbidities, a MRD-negative complete remission is becoming a realistic prospect for CLL patients in an attempt to obtain a long-lasting eradication and possibly cure of the disease. Here we discuss the standardized and innovative technical approaches for MRD detection in CLL, the clinical impact of MRD monitoring in chemoimmunotherapy and chemo-free trials and the future clinical implications of MRD monitoring in CLL patients outside of clinical trials.
Collapse
Affiliation(s)
- Ilaria Del Giudice
- Hematology, Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Sara Raponi
- Hematology, Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Irene Della Starza
- Hematology, Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy.,GIMEMA Foundation, Rome, Italy
| | - Maria Stefania De Propris
- Hematology, Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Marzia Cavalli
- Hematology, Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Lucia Anna De Novi
- Hematology, Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Luca Vincenzo Cappelli
- Hematology, Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Caterina Ilari
- Hematology, Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Luciana Cafforio
- Hematology, Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Anna Guarini
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Robin Foà
- Hematology, Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
42
|
Della Starza I, Chiaretti S, De Propris MS, Elia L, Cavalli M, De Novi LA, Soscia R, Messina M, Vitale A, Guarini A, Foà R. Minimal Residual Disease in Acute Lymphoblastic Leukemia: Technical and Clinical Advances. Front Oncol 2019; 9:726. [PMID: 31448230 PMCID: PMC6692455 DOI: 10.3389/fonc.2019.00726] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 07/22/2019] [Indexed: 12/28/2022] Open
Abstract
Introduction: Acute lymphoblastic leukemia (ALL) is the first neoplasm where the assessment of early response to therapy by minimal residual disease (MRD) monitoring has proven to be a fundamental tool to guide therapeutic choices. The most standardized methods to study MRD in ALL are multi-parametric flow cytometry (MFC) and polymerase chain reaction (PCR) amplification-based methods. Emerging technologies hold the promise to improve MRD detection in ALL patients. Moreover, novel therapies, such as monoclonal antibodies, bispecific T-cell engagers, and chimeric antigen receptor T cells (CART) represent exciting advancements in the management of B-cell precursor (BCP)-ALL. Aims: Through a review of the literature and in house data, we analyze the current status of MRD assessment in ALL to better understand how some of its limitations could be overcome by emerging molecular technologies. Furthermore, we highlight the future role of MRD monitoring in the context of personalized protocols, taking into account the genetic complexity in ALL. Results and Conclusions: Molecular rearrangements (gene fusions and immunoglobulin and T-cell receptor-IG/TR gene rearrangements) are widely used as targets to detect residual leukemic cells in ALL patients. The advent of novel techniques, namely next generation flow cytometry (NGF), digital-droplet-PCR (ddPCR), and next generation sequencing (NGS) appear important tools to evaluate MRD in ALL, since they have the potential to overcome the limitations of standard approaches. It is likely that in the forthcoming future these techniques will be incorporated in clinical trials, at least at decisional time points. Finally, the advent of new powerful compounds is further increasing MRD negativity rates, with benefits in long-term survival and a potential reduction of therapy-related toxicities. However, the prognostic relevance in the setting of novel immunotherapies still needs to be evaluated.
Collapse
Affiliation(s)
- Irene Della Starza
- Hematology, Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy.,GIMEMA Foundation, Rome, Italy
| | - Sabina Chiaretti
- Hematology, Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Maria S De Propris
- Hematology, Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Loredana Elia
- Hematology, Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Marzia Cavalli
- Hematology, Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Lucia A De Novi
- Hematology, Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Roberta Soscia
- Hematology, Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Monica Messina
- Hematology, Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Antonella Vitale
- Hematology, Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Anna Guarini
- Hematology, Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy.,Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Robin Foà
- Hematology, Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
43
|
Della Starza I, De Novi LA, Santoro A, Salemi D, Tam W, Cavalli M, Menale L, Soscia R, Apicella V, Ilari C, Vitale A, Testi AM, Inghirami G, Chiaretti S, Foà R, Guarini A. Digital droplet PCR and next-generation sequencing refine minimal residual disease monitoring in acute lymphoblastic leukemia. Leuk Lymphoma 2019; 60:2838-2840. [DOI: 10.1080/10428194.2019.1607325] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Irene Della Starza
- Division of Hematology, Department of Translational and Precision Medicine, “Sapienza” University of Rome, Rome, Italy
- GIMEMA Foundation, Rome, Italy
| | - Lucia Anna De Novi
- Division of Hematology, Department of Translational and Precision Medicine, “Sapienza” University of Rome, Rome, Italy
| | - Alessandra Santoro
- Division of Hematology and Bone Marrow Transplantation, Ospedali Riuniti Villa Sofia-Cervello, Palermo, Italy
| | - Domenico Salemi
- Division of Hematology and Bone Marrow Transplantation, Ospedali Riuniti Villa Sofia-Cervello, Palermo, Italy
| | - Wayne Tam
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Marzia Cavalli
- Division of Hematology, Department of Translational and Precision Medicine, “Sapienza” University of Rome, Rome, Italy
| | - Lucia Menale
- Division of Hematology, Department of Translational and Precision Medicine, “Sapienza” University of Rome, Rome, Italy
| | - Roberta Soscia
- Division of Hematology, Department of Translational and Precision Medicine, “Sapienza” University of Rome, Rome, Italy
| | - Valerio Apicella
- Division of Hematology, Department of Translational and Precision Medicine, “Sapienza” University of Rome, Rome, Italy
| | - Caterina Ilari
- Division of Hematology, Department of Translational and Precision Medicine, “Sapienza” University of Rome, Rome, Italy
| | - Antonella Vitale
- Division of Hematology, Department of Translational and Precision Medicine, “Sapienza” University of Rome, Rome, Italy
| | - Anna Maria Testi
- Division of Hematology, Department of Translational and Precision Medicine, “Sapienza” University of Rome, Rome, Italy
| | - Giorgio Inghirami
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, USA
- Department of Molecular Biotechnology and Health Science and Center for Experimental Research and Medical Studies, University of Torino, Torino, Italy
- Department of Pathology and NYU Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Sabina Chiaretti
- Division of Hematology, Department of Translational and Precision Medicine, “Sapienza” University of Rome, Rome, Italy
| | - Robin Foà
- Division of Hematology, Department of Translational and Precision Medicine, “Sapienza” University of Rome, Rome, Italy
| | - Anna Guarini
- Division of Hematology, Department of Translational and Precision Medicine, “Sapienza” University of Rome, Rome, Italy
- Department of Molecular Medicine, “Sapienza” University of Rome, Rome, Italy
| |
Collapse
|
44
|
Kjaer L, Skov V, Andersen MT, Aggerholm A, Clair P, Gniot M, Soeby K, Udby L, Dorff MH, Hasselbalch H, Pallisgaard N. Variant‐specific discrepancy when quantitatingBCR‐ABL1e13a2 and e14a2 transcripts using the Europe Against Cancer qPCR assay. Eur J Haematol 2019; 103:26-34. [DOI: 10.1111/ejh.13238] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/08/2019] [Accepted: 04/09/2019] [Indexed: 01/22/2023]
Affiliation(s)
- Lasse Kjaer
- Department of Hematology Zealand University Hospital Roskilde Denmark
| | - Vibe Skov
- Department of Hematology Zealand University Hospital Roskilde Denmark
| | | | - Anni Aggerholm
- Hemodiagnostic Laboratory Aarhus University Hospital Aarhus Denmark
| | - Philippe Clair
- Plateforme PCR Université de Montpellier Montpellier France
| | - Michal Gniot
- Department of Hematology and Stem Cell Transplantation Poznan University of Medical Sciences Poznan Poland
| | - Karen Soeby
- Department of Clinical Biochemistry Zealand University Hospital Roskilde Denmark
| | - Lene Udby
- Department of Hematology Zealand University Hospital Roskilde Denmark
| | - Mikkel H. Dorff
- Department of Hematology Zealand University Hospital Roskilde Denmark
| | - Hans Hasselbalch
- Department of Hematology Zealand University Hospital Roskilde Denmark
| | - Niels Pallisgaard
- Department of Surgical Pathology Zealand University Hospital Roskilde Denmark
| |
Collapse
|
45
|
New Molecular Technologies for Minimal Residual Disease Evaluation in B-Cell Lymphoid Malignancies. J Clin Med 2018; 7:jcm7090288. [PMID: 30231510 PMCID: PMC6162632 DOI: 10.3390/jcm7090288] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 09/10/2018] [Accepted: 09/14/2018] [Indexed: 12/19/2022] Open
Abstract
The clearance of malignant clonal cells significantly correlates with clinical outcomes in many hematologic malignancies. Accurate and high throughput tools for minimal residual disease (MRD) detection are needed to overcome some drawbacks of standard molecular techniques; such novel tools have allowed for higher sensitivity analyses and more precise stratification of patients, based on molecular response to therapy. In this review, we depict the recently introduced digital PCR and next-generation sequencing technologies, describing their current application for MRD monitoring in lymphoproliferative disorders. Moreover, we illustrate the feasibility of these new technologies to test less invasive and more patient-friendly tissues sources, such as "liquid biopsy".
Collapse
|
46
|
Wang WJ, Zheng CF, Liu Z, Tan YH, Chen XH, Zhao BL, Li GX, Xu ZF, Ren FG, Zhang YF, Chang JM, Wang HW. Droplet digital PCR for BCR/ABL(P210) detection of chronic myeloid leukemia: A high sensitive method of the minimal residual disease and disease progression. Eur J Haematol 2018; 101:291-296. [PMID: 29691899 DOI: 10.1111/ejh.13084] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2018] [Indexed: 12/11/2022]
Abstract
OBJECTIVE This study intended to establish a droplet digital PCR (dd-PCR) for monitoring minimal residual disease (MRD) in patients with BCR/ABL (P210)-positive chronic myeloid leukemia (CML), thereby achieving deep-level monitoring of tumor load and determining the efficacy for guided clinically individualized treatment. METHODS Using dd-PCR and RT-qPCR, two cell suspensions were obtained from K562 cells and normal peripheral blood mononuclear cells by gradient dilution and were measured at the cellular level. At peripheral blood (PB) level, 61 cases with CML-chronic phase (CML-CP) were obtained after tyrosine kinase inhibitor (TKI) treatment and regular follow-ups. By RT-qPCR, BCR/ABL (P210) fusion gene was undetectable in PB after three successive analyses, which were performed once every 3 months. At the same time, dd-PCR was performed simultaneously with the last equal amount of cDNA. Ten CML patients with MR4.5 were followed up by the two methods. RESULTS At the cellular level, consistency of results of dd-PCR and RT-qPCR reached R2 ≥ 0.99, with conversion equation of Y = 33.148X1.222 (Y: dd-PCR results; X: RT-qPCR results). In the dd-PCR test, 11 of the 61 patients with CML (18.03%) tested positive and showed statistically significant difference (P < .01). In the follow-up of 10 CML patients who were in MR4.5. All patients were loss of MR4.0, and 4 were tested positive by dd-PCR 3 months earlier than by RT-qPCR. CONCLUSION In contrast with RT-qPCR, dd-PCR is more sensitive, thus enabling accurate conversion of dd-PCR results into internationally standard RT-qPCR results by conversion equation, to achieve a deeper molecular biology-based stratification of BCR/ABL(P210) MRD. It has some reference value to monitor disease progression in clinic.
Collapse
Affiliation(s)
- Wen-Jun Wang
- Department of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Chao-Feng Zheng
- Department of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Zhuang Liu
- Department of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yan-Hong Tan
- Department of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiu-Hua Chen
- Department of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Bin-Liang Zhao
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Guo-Xia Li
- Department of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Zhi-Fang Xu
- Department of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Fang-Gang Ren
- Department of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yao-Fang Zhang
- Department of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jian-Mei Chang
- Department of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Hong-Wei Wang
- Department of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
47
|
Selim AG, Moore AS. Molecular Minimal Residual Disease Monitoring in Acute Myeloid Leukemia. J Mol Diagn 2018; 20:389-397. [DOI: 10.1016/j.jmoldx.2018.03.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 02/22/2018] [Accepted: 03/27/2018] [Indexed: 01/22/2023] Open
|
48
|
Coccaro N, Anelli L, Zagaria A, Casieri P, Tota G, Orsini P, Impera L, Minervini A, Minervini CF, Cumbo C, Parciante E, Carluccio P, Brunetti C, Specchia G, Albano F. Droplet Digital PCR Is a Robust Tool for Monitoring Minimal Residual Disease in Adult Philadelphia-Positive Acute Lymphoblastic Leukemia. J Mol Diagn 2018; 20:474-482. [DOI: 10.1016/j.jmoldx.2018.03.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 02/13/2018] [Accepted: 03/09/2018] [Indexed: 12/16/2022] Open
|
49
|
Chiaretti S, Jabbour E, Hoelzer D. "Society of Hematologic Oncology (SOHO) State of the Art Updates and Next Questions"-Treatment of ALL. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2018; 18:301-310. [PMID: 29653823 DOI: 10.1016/j.clml.2018.03.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 03/28/2018] [Indexed: 10/17/2022]
Abstract
The outcome of adult acute lymphoblastic leukemia (ALL) has substantially improved by adopting pediatric-inspired regimens, and approximately half of the patients are nowadays cured. The evaluation of minimal residual disease currently represents the most important prognostic indicator, which drives treatment algorithms, which include allogeneic stem cell transplantation (allo-SCT) allocation. Indeed, for high-risk patients, allo-SCT should be pursued as soon as possible, whereas in standard-risk patients this procedure should be avoided also in light of related toxicity and because there are no significant benefits. Furthermore, better characterization of the molecular genetic events can drive therapeutic decisions: a historical example in this respect is represented by the use of tyrosine kinase inhibitors (TKIs) in Philadelphia chromosome-positive ALL; in the upcoming future, TKIs might be used also in other subgroups, such as breakpoint cluster region/Abelson 1-like cases and others with deregulated tyrosine kinases. Finally, the greatest progress is currently achieved with new immunotherapies targeting frequently expressed surface antigens in ALL. It is also a new chance for elderly ALL patients, so far spared from intensive chemotherapy and allo-SCT. These targeted therapies will substantially change this treatment algorithm and the great challenge is to find optimal sequence of the extended therapy options in an individual patient.
Collapse
Affiliation(s)
- Sabina Chiaretti
- Hematology, Department of Cellular Biotechnologies and Hematology, "Sapienza" University, Rome, Italy
| | - Elias Jabbour
- Department of Leukemia, University of Texas M.D. Anderson Cancer Center, Houston, TX
| | - Dieter Hoelzer
- Onkologikum, Frankfurt am Museumsufer, Frankfurt, Germany.
| |
Collapse
|
50
|
Minervini A, Francesco Minervini C, Anelli L, Zagaria A, Casieri P, Coccaro N, Cumbo C, Tota G, Impera L, Orsini P, Brunetti C, Giordano A, Specchia G, Albano F. Droplet digital PCR analysis of NOTCH1 gene mutations in chronic lymphocytic leukemia. Oncotarget 2018; 7:86469-86479. [PMID: 27835908 PMCID: PMC5349927 DOI: 10.18632/oncotarget.13246] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 10/28/2016] [Indexed: 11/25/2022] Open
Abstract
In chronic lymphocytic leukemia (CLL), NOTCH1 gene mutations (NOTCH1mut) have been associated with adverse prognostic features but the independence of these as a prognostic factor is still controversial. In our study we validated a c.7541-7542delCT NOTCH1 mutation assay based on droplet digital PCR (ddPCR); we also analyzed the NOTCH1mut allelic burden, expressed as fractional abundance (FA), in 88 CLL patients at diagnosis to assess its prognostic role and made a longitudinal ddPCR analysis in 10 cases harboring NOTCH1mut to verify the FA variation over time. Our data revealed that with the ddPCR approach the incidence of NOTCH1mut in CLL was much higher (53.4%) than expected. However, longitudinal ddPCR analysis of CLL cases showed a statistically significant reduction of the NOTCH1mut FA detected at diagnosis after treatment (median FA 11.67 % vs 0.09 %, respectively, p = 0.01); the same difference, in terms of NOTCH1mut FA, was observed in the relapsed cases compared to the NOTCH1mut allelic fraction observed in patients in complete or partial remission (median FA 4.75% vs 0.43%, respectively, p = 0.007). Our study demonstrated a much higher incidence of NOTCH1mut in CLL than has previously been reported, and showed that the NOTCH1mut allelic burden evaluation by ddPCR might identify patients in need of a closer clinical follow-up during the “watch and wait” interval and after standard chemotherapy.
Collapse
Affiliation(s)
- Angela Minervini
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, Bari, 70124 Italy
| | | | - Luisa Anelli
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, Bari, 70124 Italy
| | - Antonella Zagaria
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, Bari, 70124 Italy
| | - Paola Casieri
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, Bari, 70124 Italy
| | - Nicoletta Coccaro
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, Bari, 70124 Italy
| | - Cosimo Cumbo
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, Bari, 70124 Italy
| | - Giuseppina Tota
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, Bari, 70124 Italy
| | - Luciana Impera
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, Bari, 70124 Italy
| | - Paola Orsini
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, Bari, 70124 Italy
| | - Claudia Brunetti
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, Bari, 70124 Italy
| | - Annamaria Giordano
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, Bari, 70124 Italy
| | - Giorgina Specchia
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, Bari, 70124 Italy
| | - Francesco Albano
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, Bari, 70124 Italy
| |
Collapse
|