1
|
Nilsen J, Aaen KH, Benjakul S, Ruso-Julve F, Greiner TU, Bejan D, Stensland M, Singh S, Schlothauer T, Sandlie I, Andersen JT. Enhanced plasma half-life and efficacy of engineered human albumin-fused GLP-1 despite enzymatic cleavage of its C-terminal end. Commun Biol 2025; 8:810. [PMID: 40419755 DOI: 10.1038/s42003-025-08249-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/19/2025] [Indexed: 05/28/2025] Open
Abstract
Albumin has a long plasma half-life due to engagement of the neonatal Fc receptor (FcRn), which prevents intracellular degradation. However, its C-terminal end can be cleaved by carboxypeptidase A, and removal of the last leucine residue (L585) weakens receptor binding, reducing its half-life from 20 days to 3.5 days in humans. This biology has so far been overlooked when designing human albumin-fused biologics. Thus, there is a need for an engineering strategy to secure favorable FcRn binding and pharmacokinetic properties. Here, we show that a branched aliphatic amino acid or methionine at position 585 of albumin is required for optimal receptor binding, which cannot be replaced to prevent enzymatic cleavage without negatively affecting FcRn engagement. As a solution, we report that C-terminally cleaved albumin can be efficiently rescued from intracellular degradation by introducing amino acid substitutions that improve FcRn binding. This albumin-engineering strategy was also effective when applied with a therapeutic fusion partner, glucagon-like peptide 1 (GLP-1), resulting in a 2-fold increase in plasma half-life and prolonged efficacy in human FcRn transgenic mice. We demonstrate how human albumin fusions should be tailored to ensure a long plasma half-life and enhanced efficacy of fused biologics, despite potential C-terminal cleavage in vivo.
Collapse
Affiliation(s)
- Jeannette Nilsen
- Department of Immunology, Oslo University Hospital Rikshospitalet, N-0372, Oslo, Norway
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, N-0372, Oslo, Norway
- Precision Immunotherapy Alliance (PRIMA), University of Oslo, N-0372, Oslo, Norway
| | - Kristin Hovden Aaen
- Department of Immunology, Oslo University Hospital Rikshospitalet, N-0372, Oslo, Norway
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, N-0372, Oslo, Norway
- Precision Immunotherapy Alliance (PRIMA), University of Oslo, N-0372, Oslo, Norway
| | - Sopisa Benjakul
- Department of Immunology, Oslo University Hospital Rikshospitalet, N-0372, Oslo, Norway
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, N-0372, Oslo, Norway
- Precision Immunotherapy Alliance (PRIMA), University of Oslo, N-0372, Oslo, Norway
| | - Fulgencio Ruso-Julve
- Department of Immunology, Oslo University Hospital Rikshospitalet, N-0372, Oslo, Norway
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, N-0372, Oslo, Norway
- Precision Immunotherapy Alliance (PRIMA), University of Oslo, N-0372, Oslo, Norway
| | - Thomas Uwe Greiner
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, 413 45, Gothenburg, Sweden
| | - Daniela Bejan
- Department of Immunology, Oslo University Hospital Rikshospitalet, N-0372, Oslo, Norway
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, N-0372, Oslo, Norway
- Precision Immunotherapy Alliance (PRIMA), University of Oslo, N-0372, Oslo, Norway
| | - Maria Stensland
- Department of Immunology, Oslo University Hospital Rikshospitalet, N-0372, Oslo, Norway
| | - Sachin Singh
- Department of Immunology, Oslo University Hospital Rikshospitalet, N-0372, Oslo, Norway
| | - Tilman Schlothauer
- Roche Pharma Research and Early Development (pRED), Therapeutic Modalities, Roche Innovation Center Munich, Roche Diagnostics GmbH, 82377, Penzberg, Germany
| | - Inger Sandlie
- Department of Biosciences, University of Oslo, N-0371, Oslo, Norway
| | - Jan Terje Andersen
- Department of Immunology, Oslo University Hospital Rikshospitalet, N-0372, Oslo, Norway.
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, N-0372, Oslo, Norway.
- Precision Immunotherapy Alliance (PRIMA), University of Oslo, N-0372, Oslo, Norway.
| |
Collapse
|
2
|
Zhou Y, Wang Y, Zhao H, Guo T, Hao Y. Neonatal Fc receptor participates in endocytosis of Fc fusion protein in vivo and in vitro. Vet Immunol Immunopathol 2025; 283:110930. [PMID: 40187220 DOI: 10.1016/j.vetimm.2025.110930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 03/12/2025] [Accepted: 03/30/2025] [Indexed: 04/07/2025]
Abstract
The neonatal Fc receptor (FcRn) binds to IgG CH2 and CH3 domains (the Fc segment), triggering transendocytosis. Therefore, FcRn transports biological agents across the mucosal barrier. Mucosal administration provides less stimulation to the body than other methods. However, whether FcRn is an effective carrier for antigens across bovine respiratory epithelial cells is unknown. Here, an antigen was fused with the Fc fragment and transferred through the mucosal barrier to antigen-presenting cells via active transport mediated by FcRn. We established a model of FcRn-mediated recombinant IgG Fc protein expression in bovine embryonic tracheal epithelial cells. Western blotting showed that SPA inhibited the relative transport amount of FcRn-mediated IgG Fc fusion protein. Fc fusion protein positively correlated with protein concentration and action time, with the maximum level reached at 1.4 mg/mL (protein concentration) and 18 h (action time). An FcRn-mediated transport model of the IgG Fc recombinant protein in guinea pig lungs was established, and the amount of protein transported at different time points was measured using immunohistochemistry. FcRn mediates vaccine antigen delivery through the mucosal barrier to activate immune cells in the lamina propria, laying a theoretical foundation for the clinical application of nasal mucosal immune vaccines.
Collapse
Affiliation(s)
- Yaping Zhou
- Laboratory of Microbiology and Immunology, School of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Yanfang Wang
- School of Basic and Forensic Medicine, Baotou Medical College, Baotou, Inner Mongolia 014040, China
| | - Hongmei Zhao
- Laboratory of Microbiology and Immunology, School of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Ting Guo
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, Inner Mongolia 010031, China
| | - Yongqing Hao
- Laboratory of Microbiology and Immunology, School of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China.
| |
Collapse
|
3
|
Anthi AK, Kolderup A, Vaage EB, Bern M, Benjakul S, Tjärnhage E, Ruso-Julve F, Jensen KR, Lode HE, Vaysburd M, Nilsen J, Herigstad ML, Sakya SA, Tietze L, Pilati D, Nyquist-Andersen M, Dürkoop M, Gjølberg TT, Peng L, Foss S, Moe MC, Low BE, Wiles MV, Nemazee D, Jahnsen FL, Vaage JT, Howard KA, Sandlie I, James LC, Grødeland G, Lund-Johansen F, Andersen JT. An intranasal subunit vaccine induces protective systemic and mucosal antibody immunity against respiratory viruses in mouse models. Nat Commun 2025; 16:3999. [PMID: 40312392 PMCID: PMC12045997 DOI: 10.1038/s41467-025-59353-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/21/2025] [Indexed: 05/03/2025] Open
Abstract
Although vaccines are usually given intramuscularly, the intranasal delivery route may lead to better mucosal protection and limit the spread of respiratory virus while easing administration and improving vaccine acceptance. The challenge, however, is to achieve delivery across the selective epithelial cell barrier. Here we report on a subunit vaccine platform, in which the antigen is genetically fused to albumin to facilitate FcRn-mediated transport across the mucosal barrier in the presence of adjuvant. Intranasal delivery in conventional and transgenic mouse models induces both systemic and mucosal antigen-specific antibody responses that protect against challenge with SARS-CoV-2 or influenza A. When benchmarked against an intramuscularly administered mRNA vaccine or an intranasally administered antigen fused to an alternative carrier of similar size, only the albumin-based intranasal vaccine yields robust mucosal IgA antibody responses. Our results thus suggest that this needle-free, albumin-based vaccine platform may be suited for vaccination against respiratory pathogens.
Collapse
MESH Headings
- Animals
- Administration, Intranasal
- Mice
- Immunity, Mucosal/immunology
- Antibodies, Viral/immunology
- Antibodies, Viral/blood
- SARS-CoV-2/immunology
- Vaccines, Subunit/immunology
- Vaccines, Subunit/administration & dosage
- COVID-19/prevention & control
- COVID-19/immunology
- Female
- COVID-19 Vaccines/immunology
- COVID-19 Vaccines/administration & dosage
- Humans
- Influenza A virus/immunology
- Disease Models, Animal
- Influenza Vaccines/immunology
- Influenza Vaccines/administration & dosage
- Immunoglobulin A/immunology
- Receptors, Fc/genetics
- Receptors, Fc/immunology
- Mice, Transgenic
- Orthomyxoviridae Infections/prevention & control
- Orthomyxoviridae Infections/immunology
- Mice, Inbred C57BL
- Albumins/immunology
- mRNA Vaccines/immunology
- mRNA Vaccines/administration & dosage
- Histocompatibility Antigens Class I
Collapse
Affiliation(s)
- Aina Karen Anthi
- Department of Immunology, Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway
- Institute of Clinical Medicine and Department of Pharmacology, University of Oslo and Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway
- Precision Immunotherapy Alliance (PRIMA), University of Oslo, 0372, Oslo, Norway
| | - Anette Kolderup
- Department of Immunology, Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway
- Institute of Clinical Medicine and Department of Pharmacology, University of Oslo and Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway
- Precision Immunotherapy Alliance (PRIMA), University of Oslo, 0372, Oslo, Norway
| | - Eline Benno Vaage
- Department of Immunology, Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway
- Precision Immunotherapy Alliance (PRIMA), University of Oslo, 0372, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, 0372, Oslo, Norway
| | - Malin Bern
- Department of Immunology, Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway
- Institute of Clinical Medicine and Department of Pharmacology, University of Oslo and Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway
| | - Sopisa Benjakul
- Department of Immunology, Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway
- Institute of Clinical Medicine and Department of Pharmacology, University of Oslo and Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway
- Precision Immunotherapy Alliance (PRIMA), University of Oslo, 0372, Oslo, Norway
| | - Elias Tjärnhage
- Department of Immunology, Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, 0372, Oslo, Norway
| | - Fulgencio Ruso-Julve
- Department of Immunology, Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway
- Institute of Clinical Medicine and Department of Pharmacology, University of Oslo and Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway
- Precision Immunotherapy Alliance (PRIMA), University of Oslo, 0372, Oslo, Norway
| | - Kjell-Rune Jensen
- Department of Immunology, Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway
- Institute of Clinical Medicine and Department of Pharmacology, University of Oslo and Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway
- Precision Immunotherapy Alliance (PRIMA), University of Oslo, 0372, Oslo, Norway
| | - Heidrun Elisabeth Lode
- Department of Immunology, Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway
- Institute of Clinical Medicine and Department of Pharmacology, University of Oslo and Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway
- Precision Immunotherapy Alliance (PRIMA), University of Oslo, 0372, Oslo, Norway
- Center of Eye Research, Department of Ophthalmology, Oslo University Hospital Ullevål and University of Oslo, 0450, Oslo, Norway
| | - Marina Vaysburd
- Protein and Nucleic Acid Chemistry Division, Medical Research Council, Laboratory of Molecular Biology, Cambridge, CB2 0QH, United Kingdom
| | - Jeannette Nilsen
- Department of Immunology, Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway
- Institute of Clinical Medicine and Department of Pharmacology, University of Oslo and Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway
- Precision Immunotherapy Alliance (PRIMA), University of Oslo, 0372, Oslo, Norway
| | - Marie Leangen Herigstad
- Department of Immunology, Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway
- Institute of Clinical Medicine and Department of Pharmacology, University of Oslo and Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway
- Precision Immunotherapy Alliance (PRIMA), University of Oslo, 0372, Oslo, Norway
| | - Siri Aastedatter Sakya
- Department of Immunology, Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway
- Institute of Clinical Medicine and Department of Pharmacology, University of Oslo and Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway
- Precision Immunotherapy Alliance (PRIMA), University of Oslo, 0372, Oslo, Norway
| | - Lisa Tietze
- Department of Immunology, Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway
- Precision Immunotherapy Alliance (PRIMA), University of Oslo, 0372, Oslo, Norway
| | - Diego Pilati
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, Aarhus University, DK-8000, Aarhus C, Denmark
| | - Mari Nyquist-Andersen
- Department of Immunology, Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway
- Institute of Clinical Medicine and Department of Pharmacology, University of Oslo and Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway
- Precision Immunotherapy Alliance (PRIMA), University of Oslo, 0372, Oslo, Norway
| | - Mirjam Dürkoop
- Department of Immunology, Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway
- Institute of Clinical Medicine and Department of Pharmacology, University of Oslo and Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway
- Precision Immunotherapy Alliance (PRIMA), University of Oslo, 0372, Oslo, Norway
| | - Torleif Tollefsrud Gjølberg
- Department of Immunology, Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway
- Institute of Clinical Medicine and Department of Pharmacology, University of Oslo and Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway
- Precision Immunotherapy Alliance (PRIMA), University of Oslo, 0372, Oslo, Norway
- Center of Eye Research, Department of Ophthalmology, Oslo University Hospital Ullevål and University of Oslo, 0450, Oslo, Norway
| | - Linghang Peng
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Stian Foss
- Department of Immunology, Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway
- Institute of Clinical Medicine and Department of Pharmacology, University of Oslo and Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway
- Precision Immunotherapy Alliance (PRIMA), University of Oslo, 0372, Oslo, Norway
| | - Morten C Moe
- Center of Eye Research, Department of Ophthalmology, Oslo University Hospital Ullevål and University of Oslo, 0450, Oslo, Norway
| | | | | | - David Nemazee
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Frode L Jahnsen
- Institute of Clinical Medicine, University of Oslo, 0372, Oslo, Norway
- Department of Pathology, Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway
| | - John Torgils Vaage
- Department of Immunology, Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway
| | - Kenneth A Howard
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, Aarhus University, DK-8000, Aarhus C, Denmark
| | - Inger Sandlie
- Department of Biosciences, University of Oslo, 0371, Oslo, Norway
| | - Leo C James
- Protein and Nucleic Acid Chemistry Division, Medical Research Council, Laboratory of Molecular Biology, Cambridge, CB2 0QH, United Kingdom
| | - Gunnveig Grødeland
- Department of Immunology, Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, 0372, Oslo, Norway
| | - Fridtjof Lund-Johansen
- Department of Immunology, Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway
- Precision Immunotherapy Alliance (PRIMA), University of Oslo, 0372, Oslo, Norway
| | - Jan Terje Andersen
- Department of Immunology, Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway.
- Institute of Clinical Medicine and Department of Pharmacology, University of Oslo and Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway.
- Precision Immunotherapy Alliance (PRIMA), University of Oslo, 0372, Oslo, Norway.
| |
Collapse
|
4
|
Bos MHA, van Diest RE, Monroe DM. Blood coagulation factor IX: structural insights impacting hemophilia B therapy. Blood 2024; 144:2198-2210. [PMID: 38996207 PMCID: PMC11600082 DOI: 10.1182/blood.2023023276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/18/2024] [Accepted: 07/08/2024] [Indexed: 07/14/2024] Open
Abstract
ABSTRACT Coagulation factor IX plays a central role in hemostasis through interaction with factor VIIIa to form a factor X-activating complex at the site of injury. The absence of factor IX activity results in the bleeding disorder hemophilia B. This absence of activity can arise either from a lack of circulating factor IX protein or mutations that decrease the activity of factor IX. This review focuses on analyzing the structure of factor IX with respect to molecular mechanisms that are at the basis of factor IX function. The proteolytic activation of factor IX to form activated factor IX(a) and subsequent structural rearrangements are insufficient to generate the fully active factor IXa. Multiple specific interactions between factor IXa, the cofactor VIIIa, and the physiological substrate factor X further alter the factor IXa structure to achieve the full enzymatic activity of factor IXa. Factor IXa also interacts with inhibitors, extravascular proteins, and cellular receptors that clear factor IX(a) from the circulation. Hemophilia B is treated by replacement of the missing factor IX by plasma-derived protein, a recombinant bioequivalent, or via gene therapy. An understanding of how the function of factor IX is tied to structure leads to modified forms of factor IX that have increased residence time in circulation, higher functional activity, protection from inhibition, and even activity in the absence of factor VIIIa. These modified forms of factor IX have the potential to significantly improve therapy for patients with hemophilia B.
Collapse
Affiliation(s)
- Mettine H. A. Bos
- Department of Internal Medicine, Thrombosis and Hemostasis, Leiden University Medical Center, Leiden, The Netherlands
| | - Rianne E. van Diest
- Department of Internal Medicine, Thrombosis and Hemostasis, Leiden University Medical Center, Leiden, The Netherlands
| | - Dougald M. Monroe
- Department of Medicine and UNC Blood Research Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| |
Collapse
|
5
|
Franchini M, Focosi D. Factor IX stimulants in preclinical and early phase trials for hemophilia B treatment. Expert Opin Investig Drugs 2024; 33:939-944. [PMID: 39099431 DOI: 10.1080/13543784.2024.2388565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/16/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
INTRODUCTION Hemophilia B is a X-linked rare inherited bleeding disorder characterized by coagulation factor IX (FIX) deficiency. Therapy for hemophilia B is aimed at replacing the FIX deficiency by means of several plasma-derived or recombinant FIX products. The recent availability of recombinant FIX concentrates with a prolonged FIX half-life represented a great technological advance, permitting more spaced drug infusions and reducing treatment burden among hemophilia B patients. AREAS COVERED This review summarizes the main preclinical and phase 1/2 studies investigating the innovative hemostatic products for hemophilia B replacement therapy. EXPERT OPINION The significant recent technological advantages in the treatment of hemophilia B has led to the development of innovative FIX products aimed at further extending FIX half-life and using increasingly effective and convenient modes of administration. These novel hemostatic agents, currently in the preclinical or early clinical phase of development, carry the potential of improving patients' health status and quality of life. Continuous research is anyway needed to offer such patients a concrete chance of conducting a normal existence, like to non-affected age-matched individuals.
Collapse
Affiliation(s)
- Massimo Franchini
- Department of Transfusion Medicine and Hematology, Carlo Poma Hospital, Mantua, Italy
| | - Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, Pisa, Italy
| |
Collapse
|
6
|
Benjakul S, Anthi AK, Kolderup A, Vaysburd M, Lode HE, Mallery D, Fossum E, Vikse EL, Albecka A, Ianevski A, Kainov D, Karlsen KF, Sakya SA, Nyquist-Andersen M, Gjølberg TT, Moe MC, Bjørås M, Sandlie I, James LC, Andersen JT. A pan-SARS-CoV-2-specific soluble angiotensin-converting enzyme 2-albumin fusion engineered for enhanced plasma half-life and needle-free mucosal delivery. PNAS NEXUS 2023; 2:pgad403. [PMID: 38077689 PMCID: PMC10703496 DOI: 10.1093/pnasnexus/pgad403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/13/2023] [Indexed: 02/29/2024]
Abstract
Immunocompromised patients often fail to raise protective vaccine-induced immunity against the global emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants. Although monoclonal antibodies have been authorized for clinical use, most have lost their ability to potently neutralize the evolving Omicron subvariants. Thus, there is an urgent need for treatment strategies that can provide protection against these and emerging SARS-CoV-2 variants to prevent the development of severe coronavirus disease 2019. Here, we report on the design and characterization of a long-acting viral entry-blocking angiotensin-converting enzyme 2 (ACE2) dimeric fusion molecule. Specifically, a soluble truncated human dimeric ACE2 variant, engineered for improved binding to the receptor-binding domain of SARS-CoV-2, was fused with human albumin tailored for favorable engagement of the neonatal fragment crystallizable receptor (FcRn), which resulted in enhanced plasma half-life and allowed for needle-free transmucosal delivery upon nasal administration in human FcRn-expressing transgenic mice. Importantly, the dimeric ACE2-fused albumin demonstrated potent neutralization of SARS-CoV-2 immune escape variants.
Collapse
Affiliation(s)
- Sopisa Benjakul
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, Oslo 0372, Norway
- Department of Immunology, Oslo University Hospital Rikshospitalet, Oslo 0372, Norway
- Precision Immunotherapy Alliance (PRIMA), University of Oslo, Oslo 0372, Norway
| | - Aina Karen Anthi
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, Oslo 0372, Norway
- Department of Immunology, Oslo University Hospital Rikshospitalet, Oslo 0372, Norway
- Precision Immunotherapy Alliance (PRIMA), University of Oslo, Oslo 0372, Norway
| | - Anette Kolderup
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, Oslo 0372, Norway
- Department of Immunology, Oslo University Hospital Rikshospitalet, Oslo 0372, Norway
- Precision Immunotherapy Alliance (PRIMA), University of Oslo, Oslo 0372, Norway
| | - Marina Vaysburd
- Protein and Nucleic Acid Chemistry Division, Medical Research Council, Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Heidrun Elisabeth Lode
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, Oslo 0372, Norway
- Department of Immunology, Oslo University Hospital Rikshospitalet, Oslo 0372, Norway
- Department of Ophthalmology, Oslo University Hospital and University of Oslo, Oslo 0450, Norway
| | - Donna Mallery
- Protein and Nucleic Acid Chemistry Division, Medical Research Council, Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Even Fossum
- Department of Virology, Norwegian Institute of Public Health, Oslo 0213, Norway
| | - Elisabeth Lea Vikse
- Department of Virology, Norwegian Institute of Public Health, Oslo 0213, Norway
| | - Anna Albecka
- Protein and Nucleic Acid Chemistry Division, Medical Research Council, Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Aleksandr Ianevski
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - Denis Kainov
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim 7491, Norway
- Institute of Technology, University of Tartu, Tartu 50411, Estonia
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki 00290, Finland
| | - Karine Flem Karlsen
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, Oslo 0372, Norway
- Department of Immunology, Oslo University Hospital Rikshospitalet, Oslo 0372, Norway
| | - Siri Aastedatter Sakya
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, Oslo 0372, Norway
- Department of Immunology, Oslo University Hospital Rikshospitalet, Oslo 0372, Norway
- Precision Immunotherapy Alliance (PRIMA), University of Oslo, Oslo 0372, Norway
| | - Mari Nyquist-Andersen
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, Oslo 0372, Norway
- Department of Immunology, Oslo University Hospital Rikshospitalet, Oslo 0372, Norway
- Precision Immunotherapy Alliance (PRIMA), University of Oslo, Oslo 0372, Norway
| | - Torleif Tollefsrud Gjølberg
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, Oslo 0372, Norway
- Department of Immunology, Oslo University Hospital Rikshospitalet, Oslo 0372, Norway
- Precision Immunotherapy Alliance (PRIMA), University of Oslo, Oslo 0372, Norway
- Department of Ophthalmology, Oslo University Hospital and University of Oslo, Oslo 0450, Norway
| | - Morten C Moe
- Department of Ophthalmology, Oslo University Hospital and University of Oslo, Oslo 0450, Norway
| | - Magnar Bjørås
- Department of Virology, Norwegian Institute of Public Health, Oslo 0213, Norway
| | - Inger Sandlie
- Department of Biosciences, University of Oslo, Oslo 0371, Norway
| | - Leo C James
- Protein and Nucleic Acid Chemistry Division, Medical Research Council, Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Jan Terje Andersen
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, Oslo 0372, Norway
- Department of Immunology, Oslo University Hospital Rikshospitalet, Oslo 0372, Norway
- Precision Immunotherapy Alliance (PRIMA), University of Oslo, Oslo 0372, Norway
| |
Collapse
|
7
|
Gowtham P, Arumugam VA, Harini K, Pallavi P, Thirumalai A, Girigoswami K, Girigoswami A. Nanostructured proteins for delivering drugs to diseased tissues. BIOINSPIRED, BIOMIMETIC AND NANOBIOMATERIALS 2023; 12:115-129. [DOI: 10.1680/jbibn.23.00004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
During the last few years, nanostructures based on proteins have been playing a vital role in revolutionizing the nanomedicine era. Since protein nanoparticles are smaller and have a greater surface area, they retain a better capacity to interact with other molecules, resulting in carrying payloads efficiently to diseased tissues. Besides having attractive biocompatibility and biodegradability, protein nanoparticles can also be modified on their surfaces. For the fabrication of these nanostructures, there are several processes involved, including emulsification, desolvation, a combination of complex coacervation and electrospray. This can be achieved by using different proteins such as albumin, gelatin, elastin, gliadin, collagen, legumin and zein, as well as a combination of these proteins. It is possible to functionalize protein nanoparticles by altering their internal and external interfaces so that they can encapsulate drugs, release them in a controlled manner, disassemble them systematically and target tumors. This review highlights the physicochemical properties and engineering of several proteins to nano-dimensions used to deliver drugs to diseased tissues.
Collapse
Affiliation(s)
- Pemula Gowtham
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chennai, India
| | - Vijaya Anand Arumugam
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, India
| | - Karthick Harini
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chennai, India
| | - Pragya Pallavi
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chennai, India
| | - Anbazhagan Thirumalai
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chennai, India
| | - Koyeli Girigoswami
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chennai, India
| | - Agnishwar Girigoswami
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chennai, India
| |
Collapse
|
8
|
Hameedat F, Pizarroso NA, Teixeira N, Pinto S, Sarmento B. Functionalized FcRn-targeted nanosystems for oral drug delivery: A new approach to colorectal cancer treatment. Eur J Pharm Sci 2022; 176:106259. [PMID: 35842140 DOI: 10.1016/j.ejps.2022.106259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/01/2022] [Accepted: 07/11/2022] [Indexed: 01/17/2023]
Abstract
Colorectal cancer (CRC) is the second type of cancer with the highest lethality rate. The current chemotherapy to treat CRC causes systemic toxicity, unsatisfying response rate, and low tumor-specific selectivity, which is mainly administered by invasive routes. The chronic and aggressive nature of cancers may require long-term regimens. Thus, the oral route is preferred. However, the orally administered drugs still need to surpass the harsh environment of the gastrointestinal tract and the biological barriers. Nanotechnology is a promising strategy to overcome the oral route limitations. Targeted nanoparticle systems decorated with functional groups can enhance the delivery of anticancer agents to tumor sites. It is described in the literature that the neonatal Fc receptor (FcRn) is expressed in cancer tissue and overexpressed in CRC epithelial cells. However, the impact of FcRn-targeted nanosystems in the treatment of CRC has been poorly investigated. This review article discusses the current knowledge on the involvement of the FcRn in CRC, as well as to critically assess its relevance as a target for further localization of oral nanocarriers in CRC tumor cells. Finally, a brief overview of cancer therapeutics, strategies to design the nanoparticles of anticancer drugs and a review of decorated nanoparticles with FcRn moieties are explored.
Collapse
Affiliation(s)
- Fatima Hameedat
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-393, Portugal; NANOMED EMJMD, Pharmacy School, Faculty of Health, University of Angers, France; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-393, Portugal
| | - Nuria A Pizarroso
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-393, Portugal
| | - Natália Teixeira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-393, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-393, Portugal; Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, Porto 4169-007, Portugal
| | - Soraia Pinto
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-393, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-393, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Rua Jorge Viterbo Ferreira, 228, Porto 4150-180, Portugal
| | - Bruno Sarmento
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-393, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-393, Portugal; CESPU - IUCS, Rua Central de Gandra 1317, Gandra 4585-116, Portugal.
| |
Collapse
|
9
|
Testa MF, Lombardi S, Bernardi F, Ferrarese M, Belvini D, Radossi P, Castaman G, Pinotti M, Branchini A. Translational readthrough at F8 nonsense variants in the factor VIII B domain contributes to residual expression and lowers inhibitor association. Haematologica 2022; 108:472-482. [PMID: 35924581 PMCID: PMC9890017 DOI: 10.3324/haematol.2022.281279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Indexed: 02/03/2023] Open
Abstract
In hemophilia A, F8 nonsense variants, and particularly those affecting the large factor VIII (FVIII) B domain that is dispensable for coagulant activity, display lower association with replacement therapy-related anti-FVIII inhibitory antibodies as retrieved from multiple international databases. Since null genetic conditions favor inhibitor development, we hypothesized that translational readthrough over premature termination codons (PTC) may contribute to immune tolerance by producing full-length proteins through the insertion of amino acid subset(s). To quantitatively evaluate the readthrough output in vitro, we developed a very sensitive luciferase-based system to detect very low full-length FVIII synthesis from a wide panel (n=45; ~60% patients with PTC) of F8 nonsense variants. PTC not associated with inhibitors displayed higher readthrough-driven expression levels than inhibitor-associated PTC, a novel observation. Particularly, higher levels were detected for B-domain variants (n=20) than for variants in other domains (n=25). Studies on plasma from six hemophilia A patients with PTC, integrated by expression of the corresponding nonsense and readthrough-deriving missense variants, consistently revealed higher FVIII levels for B-domain variants. Only one B-domain PTC (Arg814*) was found among the highly represented PTC not sporadically associated with inhibitors, but with the lowest proportion of inhibitor cases (4 out of 57). These original insights into the molecular genetics of hemophilia A, and particularly into genotype-phenotype relationships related with disease treatment, demonstrate that B-domain features favor PTC readthrough output. This provides a potential molecular mechanism contributing to differential PTC-associated inhibitor occurrence, with translational implications for a novel, experimentally based classification of F8 nonsense variants.
Collapse
Affiliation(s)
- Maria Francesca Testa
- Department of Life Sciences and Biotechnology and LTTA Center, University of Ferrara, Ferrara
| | - Silvia Lombardi
- Department of Life Sciences and Biotechnology and LTTA Center, University of Ferrara, Ferrara,°Current address: Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Francesco Bernardi
- Department of Life Sciences and Biotechnology and LTTA Center, University of Ferrara, Ferrara
| | - Mattia Ferrarese
- Department of Life Sciences and Biotechnology and LTTA Center, University of Ferrara, Ferrara
| | - Donata Belvini
- Transfusion Service, Hemophilia Center and Hematology, Castelfranco Veneto Hospital, Castelfranco Veneto
| | - Paolo Radossi
- Oncohematology-Oncologic Institute of Veneto, Castelfranco Veneto Hospital, Castelfranco Veneto
| | - Giancarlo Castaman
- Center for Bleeding Disorders and Coagulation, Careggi University Hospital, Florence, Italy
| | - Mirko Pinotti
- Department of Life Sciences and Biotechnology and LTTA Center, University of Ferrara, Ferrara.
| | - Alessio Branchini
- Department of Life Sciences and Biotechnology and LTTA Center, University of Ferrara, Ferrara.
| |
Collapse
|
10
|
Branchini A, Morfini M, Lunghi B, Belvini D, Radossi P, Bury L, Serino ML, Giordano P, Cultrera D, Molinari AC, Napolitano M, Bigagli E, Castaman G, Pinotti M, Bernardi F. F9 missense mutations impairing factor IX activation are associated with pleiotropic plasma phenotypes. J Thromb Haemost 2022; 20:69-81. [PMID: 34626083 PMCID: PMC9298354 DOI: 10.1111/jth.15552] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/06/2021] [Accepted: 10/06/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Circulating dysfunctional factor IX (FIX) might modulate distribution of infused FIX in hemophilia B (HB) patients. Recurrent substitutions at FIX activation sites (R191-R226, >300 patients) are associated with variable FIX activity and antigen (FIXag) levels. OBJECTIVES To investigate the (1) expression of a complete panel of missense mutations at FIX activation sites and (2) contribution of F9 genotypes on the FIX pharmacokinetics (PK). METHODS We checked FIX activity and antigen and activity assays in plasma and after recombinant expression of FIX variants and performed an analysis of infused FIX PK parameters in patients (n = 30), mostly enrolled in the F9 Genotype and PK HB Italian Study (GePKHIS; EudraCT ID2017-003902-42). RESULTS The variable FIXag amounts and good relation between biosynthesis and activity of multiple R191 variants results in graded moderate-to-mild severity of the R191C>L>P>H substitutions. Recombinant expression may predict the absence in the HB mutation database of the benign R191Q/W/K and R226K substitutions. Equivalent changes at R191/R226 produced higher FIXag levels for R226Q/W/P substitutions, as also observed in p.R226W female carrier plasma. Pharmacokinetics analysis in patients suggested that infused FIX Alpha distribution and Beta elimination phases positively correlated with endogenous FIXag levels. Mean residence time was particularly prolonged (79.4 h, 95% confidence interval 44.3-114.5) in patients (n = 7) with the R191/R226 substitutions, which in regression analysis were independent predictors (β coefficient 0.699, P = .004) of Beta half-life, potentially prolonged by the increasing over time ratio between endogenous and infused FIX. CONCLUSIONS FIX activity and antigen levels and specific features of the dysfunctional R191/R226 variants may exert pleiotropic effects both on HB patients' phenotypes and substitutive treatment.
Collapse
Affiliation(s)
- Alessio Branchini
- Department of Life Sciences and Biotechnology and LTTA CentreUniversity of FerraraFerraraItaly
| | | | - Barbara Lunghi
- Department of Life Sciences and Biotechnology and LTTA CentreUniversity of FerraraFerraraItaly
| | - Donata Belvini
- Transfusion ServiceHaemophilia Centre and HaematologyCastelfranco Veneto HospitalCastelfranco VenetoItaly
| | - Paolo Radossi
- Oncohematology‐Oncologic Institute of VenetoCastelfranco Veneto HospitalCastelfranco VenetoItaly
| | - Loredana Bury
- Department of Medicine and SurgeryUniversity of PerugiaPerugiaItaly
| | - Maria Luisa Serino
- Haemostasis and Thrombosis CentreUniversity Hospital of FerraraFerraraItaly
| | - Paola Giordano
- Paediatric SectionDepartment of Biomedicine and Human OncologyA. Moro” UniversityBariItaly
| | - Dorina Cultrera
- Haemophilia Regional Reference CenterVittorio Emanuele” University HospitalCataniaItaly
| | | | - Mariasanta Napolitano
- Haematology UnitThrombosis and Haemostasis Reference Regional Center and PROMISE DepartmentUniversity of PalermoPalermoItaly
| | - Elisabetta Bigagli
- Department of Neuroscience, PsychologyDrug Research and Child Health (NEUROFARBA)Section of Pharmacology and ToxicologyUniversity of FlorenceFlorenceItaly
| | - Giancarlo Castaman
- Department of Oncology, Center for Bleeding DisordersCareggi University HospitalFirenzeItaly
| | - Mirko Pinotti
- Department of Life Sciences and Biotechnology and LTTA CentreUniversity of FerraraFerraraItaly
| | - Francesco Bernardi
- Department of Life Sciences and Biotechnology and LTTA CentreUniversity of FerraraFerraraItaly
| |
Collapse
|
11
|
Rodríguez-Merchán EC, De Pablo-Moreno JA, Liras A. Gene Therapy in Hemophilia: Recent Advances. Int J Mol Sci 2021; 22:7647. [PMID: 34299267 PMCID: PMC8306493 DOI: 10.3390/ijms22147647] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 02/07/2023] Open
Abstract
Hemophilia is a monogenic mutational disease affecting coagulation factor VIII or factor IX genes. The palliative treatment of choice is based on the use of safe and effective recombinant clotting factors. Advanced therapies will be curative, ensuring stable and durable concentrations of the defective circulating factor. Results have so far been encouraging in terms of levels and times of expression using mainly adeno-associated vectors. However, these therapies are associated with immunogenicity and hepatotoxicity. Optimizing the vector serotypes and the transgene (variants) will boost clotting efficacy, thus increasing the viability of these protocols. It is essential that both physicians and patients be informed about the potential benefits and risks of the new therapies, and a register of gene therapy patients be kept with information of the efficacy and long-term adverse events associated with the treatments administered. In the context of hemophilia, gene therapy may result in (particularly indirect) cost savings and in a more equitable allocation of treatments. In the case of hemophilia A, further research is needed into how to effectively package the large factor VIII gene into the vector; and in the case of hemophilia B, the priority should be to optimize both the vector serotype, reducing its immunogenicity and hepatotoxicity, and the transgene, boosting its clotting efficacy so as to minimize the amount of vector administered and decrease the incidence of adverse events without compromising the efficacy of the protein expressed.
Collapse
Affiliation(s)
- E. Carlos Rodríguez-Merchán
- Osteoarticular Surgery Research, Hospital La Paz Institute for Health Research–IdiPAZ (La Paz University Hospital—Autonomous University of Madrid), 28046 Madrid, Spain;
| | - Juan Andres De Pablo-Moreno
- Department of Genetic, Physiology and Microbiology, Biology School, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Antonio Liras
- Department of Genetic, Physiology and Microbiology, Biology School, Complutense University of Madrid, 28040 Madrid, Spain;
| |
Collapse
|