1
|
Wu B, Quan C, He Y, Matsika J, Huang J, Liu B, Chen J. Targeting gut and intratumoral microbiota: a novel strategy to improve therapy resistance in cancer with a focus on urologic tumors. Expert Opin Biol Ther 2024; 24:747-759. [PMID: 38910461 DOI: 10.1080/14712598.2024.2371543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 06/19/2024] [Indexed: 06/25/2024]
Abstract
INTRODUCTION Growing attention has been drawn to urologic tumors due to their rising incidence and suboptimal clinical treatment outcomes. Cancer therapy resistance poses a significant challenge in clinical oncology, limiting the efficacy of conventional treatments and contributing to disease progression. Recent research has unveiled a complex interplay between the host microbiota and cancer cells, highlighting the role of the microbiota in modulating therapeutic responses. AREAS COVERED We used the PubMed and Web of Science search engines to identify key publications in the fields of tumor progression and urologic tumor treatment, specifically focusing on the role of the microbiota. In this review, we summarize the current literature on how microbiota influence the tumor microenvironment and anti-tumor immunity, as well as their impact on treatments for urinary system malignancies, highlighting promising future applications. EXPERT OPINION We explore how the composition and function of the gut microbiota influence the tumor microenvironment and immune response, ultimately impacting treatment outcomes. Additionally, we discuss emerging strategies targeting the microbiota to enhance therapeutic efficacy and overcome resistance. The application of antibiotics, fecal microbiota transplantation, and oncolytic bacteria has improved tumor treatment outcomes, which provides a novel insight into developing therapeutic strategies for urologic cancer.
Collapse
Affiliation(s)
- Bingquan Wu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chao Quan
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yunbo He
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Juliet Matsika
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jinliang Huang
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bolong Liu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Andrology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jinbo Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
2
|
Monyók Á, Mansour B, Vadnay I, Makra N, Dunai ZA, Nemes-Nikodém É, Stercz B, Szabó D, Ostorházi E. Change in Tissue Microbiome and Related Human Beta Defensin Levels Induced by Antibiotic Use in Bladder Carcinoma. Int J Mol Sci 2024; 25:4562. [PMID: 38674148 PMCID: PMC11050017 DOI: 10.3390/ijms25084562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/12/2024] [Accepted: 04/21/2024] [Indexed: 04/28/2024] Open
Abstract
It is now generally accepted that the success of antitumor therapy can be impaired by concurrent antibiotic therapy, the presence of certain bacteria, and elevated defensin levels around the tumor tissue. The aim of our current investigation was to identify the underlying changes in microbiome and defensin levels in the tumor tissue induced by different antibiotics, as well as the duration of this modification. The microbiome of the tumor tissues was significantly different from that of healthy volunteers. Comparing only the tumor samples, no significant difference was confirmed between the untreated group and the group treated with antibiotics more than 3 months earlier. However, antibiotic treatment within 3 months of analysis resulted in a significantly modified microbiome composition. Irrespective of whether Fosfomycin, Fluoroquinolone or Beta-lactam treatment was used, the abundance of Bacteroides decreased, and Staphylococcus abundance increased. Large amounts of the genus Acinetobacter were observed in the Fluoroquinolone-treated group. Regardless of the antibiotic treatment, hBD1 expression of the tumor cells consistently doubled. The increase in hBD2 and hBD3 expression was the highest in the Beta-lactam treated group. Apparently, antibiotic treatment within 3 months of sample analysis induced microbiome changes and defensin expression levels, depending on the identity of the applied antibiotic.
Collapse
Affiliation(s)
- Ádám Monyók
- Department of Urology, Markhot Ferenc University Teaching Hospital, 3300 Eger, Hungary; (Á.M.); (B.M.)
| | - Bassel Mansour
- Department of Urology, Markhot Ferenc University Teaching Hospital, 3300 Eger, Hungary; (Á.M.); (B.M.)
| | - István Vadnay
- Department of Pathology, Markhot Ferenc University Teaching Hospital, 3300 Eger, Hungary; (I.V.); (D.S.)
| | - Nóra Makra
- Department of Medical Microbiology, Semmelweis University, 1085 Budapest, Hungary; (N.M.); (Z.A.D.); (É.N.-N.); (B.S.)
| | - Zsuzsanna A. Dunai
- Department of Medical Microbiology, Semmelweis University, 1085 Budapest, Hungary; (N.M.); (Z.A.D.); (É.N.-N.); (B.S.)
| | - Éva Nemes-Nikodém
- Department of Medical Microbiology, Semmelweis University, 1085 Budapest, Hungary; (N.M.); (Z.A.D.); (É.N.-N.); (B.S.)
| | - Balázs Stercz
- Department of Medical Microbiology, Semmelweis University, 1085 Budapest, Hungary; (N.M.); (Z.A.D.); (É.N.-N.); (B.S.)
| | - Dóra Szabó
- Department of Pathology, Markhot Ferenc University Teaching Hospital, 3300 Eger, Hungary; (I.V.); (D.S.)
- Neurosurgery and Neurointervention Clinic, Semmelweis University, 1085 Budapest, Hungary
| | - Eszter Ostorházi
- Department of Pathology, Markhot Ferenc University Teaching Hospital, 3300 Eger, Hungary; (I.V.); (D.S.)
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, 1085 Budapest, Hungary
| |
Collapse
|
3
|
Bladder Tissue Microbiome Composition in Patients of Bladder Cancer or Benign Prostatic Hyperplasia and Related Human Beta Defensin Levels. Biomedicines 2022; 10:biomedicines10071758. [PMID: 35885062 PMCID: PMC9313236 DOI: 10.3390/biomedicines10071758] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/13/2022] [Accepted: 07/19/2022] [Indexed: 12/25/2022] Open
Abstract
Balance between the microbiome associated with bladder mucosa and human beta defensin (HBD) levels in urine is a dynamic, sensitive and host-specific relationship. HBD1—possessing both antitumor and antibacterial activity—is produced constitutively, while the inducible production of antibacterial HBD2 and HBD3 is affected by bacteria. Elevated levels of HBD2 were shown to cause treatment failure in anticancer immunotherapy. Our aim was to assess the relationship between microbiome composition characteristic of tumor tissue, defensin expression and HBD levels measured in urine. Tissue samples for analyses were removed during transurethral resection from 55 bladder carcinoma and 12 prostatic hyperplasia patients. Microbiome analyses were carried out with 16S rRNS sequencing. Levels of HBD mRNA expression were measured with qPCR from the same samples, and urinary amounts of HBD1, 2 and 3 were detected with ELISA in these patients, in addition to 34 healthy volunteers. Mann–Whitney U test, Wilcoxon rank sum test (alpha diversity) and PERMANOVA analysis (beta diversity) were performed. Defensin-levels expressed in the tumor did not clearly determine the amount of defensin measurable in the urine. The antibacterial and antitumor defensin (HBD1) showed decreased levels in cancer patients, while others (HBD2 and 3) were considerably increased. Abundance of Staphylococcus, Corynebacterium and Oxyphotobacteria genera was significantly higher, the abundance of Faecalibacterium and Bacteroides genera were significantly lower in tumor samples compared to non-tumor samples. Bacteroides, Parabacteroides and Faecalibacterium abundance gradually decreased with the combined increase in HBD2 and HBD3. Higher Corynebacterium and Staphylococcus abundances were measured together with higher HBD2 and HBD3 urinary levels. Among other factors, defensins and microorganisms also affect the development, progression and treatment options for bladder cancer. To enhance the success of immunotherapies and to develop adjuvant antitumor therapies, it is important to gain insight into the interactions between defensins and the tumor-associated microbiome.
Collapse
|
4
|
Cho MJ, Kim MJ, Kim K, Choi YW, Lee SJ, Whang YM, Chang IH. The immunotherapeutic effects of recombinant Bacillus Calmette-Guérin resistant to antimicrobial peptides on bladder cancer cells. Biochem Biophys Res Commun 2018; 509:167-174. [PMID: 30579607 DOI: 10.1016/j.bbrc.2018.12.097] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 12/13/2018] [Indexed: 11/25/2022]
Abstract
PURPOSE Although Mycobacterium bovis Bacillus Calmette-Guérin (BCG) is the most widely used bladder cancer immunotherapy, innate immune responses involving antimicrobial peptides (AMPs) cause BCG failure and unwanted side effects. Here, we generated genetically modified BCG strains with improved immunotherapeutic effects by adding genes that confer evasion of AMPs. MATERIALS AND METHODS We constructed recombinant BCG (rBCG) strains expressing Streptococcal inhibitor of complement (Sic), which confers resistance to human α-defensin-1 and cathelicidin, and d-alanyl carrier protein ligase (dltA), which confers resistance to cationic AMPs. Sic and dltA were separately cloned into the pMV306 plasmid and introduced into BCG via electroporation. Then, the efficacy of the rBCGs was tested in a growth inhibition assay using two bladder cancer cell lines (5637, T24). RESULTS We confirmed the presence of cDNA segments corresponding to the Sic and dltA genes in total mRNA of the rBCG strains containing Sic (rBCG-Sic) and dltA (rBCG-dltA), and these rBCGs showed higher survival against AMPs. The growth inhibitory effects of rBCGs on bladder cancer cells were significantly enhanced compared to those of the parent BCG, and THP-1 migration also increased. After 8 h of infection, the levels of internalization were higher in rBCG-infected bladder cancer cells than in BCG-infected cells, and cells infected with rBCGs showed increased release of antitumor cytokines, such as IL-6/12, TNF-α, and INF-γ, resulting in inhibition of bacterial killing and immune modulation via antimicrobial peptides. CONCLUSIONS rBCG-Sic and rBCG-dltA can effectively evade BCG-stimulated AMPs, and may be significantly improved immunotherapeutic tools to treat bladder cancer.
Collapse
Affiliation(s)
- Min-Ji Cho
- Department of Urology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Myeong Joo Kim
- Department of Urology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Kijeong Kim
- College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Young Wook Choi
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Sang-Jin Lee
- Genitourinary Cancer Branch, Research Institute, National Cancer Center, Goyang, Republic of Korea
| | - Young Mi Whang
- Department of Urology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea.
| | - In Ho Chang
- Department of Urology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea.
| |
Collapse
|
5
|
Whang YM, Jin SB, Park SI, Chang IH. MEK inhibition enhances efficacy of bacillus Calmette-Guérin on bladder cancer cells by reducing release of Toll-like receptor 2-activated antimicrobial peptides. Oncotarget 2017; 8:53168-53179. [PMID: 28881802 PMCID: PMC5581101 DOI: 10.18632/oncotarget.18230] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 05/12/2017] [Indexed: 12/27/2022] Open
Abstract
Bacillus Calmette-Guérin (BCG) is one of the standard treatment options for non-muscle-invasive bladder cancer. The details of the biological defense mechanisms against BCG remain unclear. Here, we investigated whether BCG-induced release of antimicrobial peptides (AMPs; e.g., human β-defensin-2, -3, and cathelicidin) is involved with mitogen-activated protein kinase (MAPK) pathways, and investigated the enhanced anticancer effect of BCG through the down-regulation of Toll-like receptors (TLRs) and MAPK pathways in bladder cancer cells. BCG-infected bladder cancer cells produced AMPs as a defense mechanism against BCG, which were reduced by MEK inhibitors by blocking phosphorylation of extracellular signal-regulated kinase (ERK1/2 or MEK) and c-Jun. MEK inhibitors enhanced inhibition of bladder cancer cell growth by decreased binding of c-Jun, p65 and Pol II to the activated protein-1 promoter. Knockdown of TLR2 and TLR4 reduced ERK phosphorylation. Knockdown of TLR 2 decreased release of AMPs, which was similar to the efficacy of MEK inhibitor on BCG-infected cells. BCG-infected bladder cancer cells were more prone to induction of AMP release following TLR2 activation via ERK and c-Jun pathway mediators. In conclusion, our data suggest that the BCG-induced release of AMPs in bladder cancer cells is a promising molecular target for enhancing the immunotherapeutic efficacy of BCG in bladder cancer patients.
Collapse
Affiliation(s)
- Young Mi Whang
- Department of Urology, Chung-Ang University College of Medicine, Seoul, Korea
| | - Su Bin Jin
- Department of Urology, Chung-Ang University College of Medicine, Seoul, Korea
| | - Serk In Park
- Department of Biochemistry and Molecular Biology and BK21 Plus Program, Korea University College of Medicine, Seoul, Korea.,Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - In Ho Chang
- Department of Urology, Chung-Ang University College of Medicine, Seoul, Korea
| |
Collapse
|
6
|
Lin AE, Beasley FC, Olson J, Keller N, Shalwitz RA, Hannan TJ, Hultgren SJ, Nizet V. Role of Hypoxia Inducible Factor-1α (HIF-1α) in Innate Defense against Uropathogenic Escherichia coli Infection. PLoS Pathog 2015; 11:e1004818. [PMID: 25927232 PMCID: PMC4415805 DOI: 10.1371/journal.ppat.1004818] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 03/18/2015] [Indexed: 02/04/2023] Open
Abstract
Uropathogenic E. coli (UPEC) is the primary cause of urinary tract infections (UTI) affecting approximately 150 million people worldwide. Here, we revealed the importance of transcriptional regulator hypoxia-inducible factor-1 α subunit (HIF-1α) in innate defense against UPEC-mediated UTI. The effects of AKB-4924, a HIF-1α stabilizing agent, were studied using human uroepithelial cells (5637) and a murine UTI model. UPEC adherence and invasion were significantly reduced in 5637 cells when HIF-1α protein was allowed to accumulate. Uroepithelial cells treated with AKB-4924 also experienced reduced cell death and exfoliation upon UPEC challenge. In vivo, fewer UPEC were recovered from the urine, bladders and kidneys of mice treated transurethrally with AKB-4924, whereas increased bacteria were recovered from bladders of mice with a HIF-1α deletion. Bladders and kidneys of AKB-4924 treated mice developed less inflammation as evidenced by decreased pro-inflammatory cytokine release and neutrophil activity. AKB-4924 impairs infection in uroepithelial cells and bladders, and could be correlated with enhanced production of nitric oxide and antimicrobial peptides cathelicidin and β-defensin-2. We conclude that HIF-1α transcriptional regulation plays a key role in defense of the urinary tract against UPEC infection, and that pharmacological HIF-1α boosting could be explored further as an adjunctive therapy strategy for serious or recurrent UTI. Urinary tract infection (UTI), commonly caused by uropathogenic E.coli (UPEC), affects more than 150 million people worldwide, resulting in 14 million hospital visits per year and an estimated total cost of 6 billion dollars in direct health care. Due to the high prevalence of UTI and rapid emergence of antibiotic-resistant bacteria, new effective strategies to prevent and treat UTI are urgently needed. Here, we describe a global regulatory role of transcription factor hypoxia-inducible factor-1 (HIF-1) in innate antimicrobial defense against UPEC. HIF-1 stabilization reduces UPEC attachment to and invasion of uroepithelial cells, and protects bladders from UPEC-mediated cytotoxicity in vivo. In the murine UTI model, we found normal bladder HIF-1 expression is required for efficient UPEC clearance, since HIF-1-deficient mice suffer more severe infection than normal mice. Further studies showed that key elements of host protection provided by HIF-1 regulation are uroepithelial cell nitric oxide and antimicrobial peptide production. This study provides valuable insight into the importance of HIF-1 in supporting host immunity during UTI and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Ann E. Lin
- Division of Pediatric Pharmacology & Drug Discovery, University of California, San Diego, La Jolla, California, United States of America
| | - Federico C. Beasley
- Division of Pediatric Pharmacology & Drug Discovery, University of California, San Diego, La Jolla, California, United States of America
| | - Joshua Olson
- Division of Pediatric Pharmacology & Drug Discovery, University of California, San Diego, La Jolla, California, United States of America
| | - Nadia Keller
- Division of Pediatric Pharmacology & Drug Discovery, University of California, San Diego, La Jolla, California, United States of America
| | | | - Thomas J. Hannan
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Scott J. Hultgren
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Victor Nizet
- Division of Pediatric Pharmacology & Drug Discovery, University of California, San Diego, La Jolla, California, United States of America
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California, United States of America
- Rady Children’s Hospital, San Diego, California, United States of America
- * E-mail:
| |
Collapse
|
7
|
Choi SY, Kim SJ, Chi BH, Kwon JK, Chang IH. Modulating the internalization of bacille Calmette-Guérin by cathelicidin in bladder cancer cells. Urology 2015; 85:964.e7-964.e12. [PMID: 25681250 DOI: 10.1016/j.urology.2014.12.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 12/01/2014] [Accepted: 12/19/2014] [Indexed: 10/24/2022]
Abstract
OBJECTIVE To confirm the role of cathelicidin (LL-37) in the internalization of bacille Calmette-Guérin (BCG) into bladder cancer cells. METHODS Enzyme-linked immunosorbent assay and reverse transcription polymerase chain reaction analysis evaluated the changes in protein and messenger ribonucleic acid (RNA) expression with BCG incubation after LL-37 pretreatment in 5637 and T24 human bladder cancer cells. The internalization rate was evaluated by a double immunofluorescence assay, and confocal microscopy confirmed the function of LL-37 in BCG internalization. We also investigated the difference in internalization rates and cell viability between LL-37, anti-LL-37 antibody, and LL-37 plus anti-LL-37 antibody. RESULTS The levels of LL-37 increased after BCG exposure in bladder cancer cells in dose- and time-dependent manners. Increasing LL-37 levels using recombinant LL-37 protein further dose dependently decreased BCG internalization in both cell lines. The internalization rates of BCG after LL-37 instillation were lower compared with the controls, and the internalization rate of BCG after anti-LL-37 antibody instillation was significantly higher compared with the controls in both cell lines (P <.05). Viability of LL-37 plus BCG group was higher compared with the BCG-alone group. The anti-LL-37 antibody plus BCG group had decreased cell viability compared with the BCG-alone group in both cell lines. CONCLUSION Bladder cancer cells produce cathelicidin when infected with BCG and upregulate cathelicidin to defend against BCG by inhibiting its internalization. Blocking the action of cathelicidin may increase the internalization and effectiveness of BCG in reducing bladder cancer cell proliferation.
Collapse
Affiliation(s)
- Se Young Choi
- Department of Urology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Soon-Ja Kim
- Biomedical Science, Department of Medicine, Chung-Ang University Graduate School, Seoul, Republic of Korea
| | - Byung Hoon Chi
- Department of Urology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Jong Kyou Kwon
- Department of Urology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - In Ho Chang
- Department of Urology, Chung-Ang University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
8
|
Kwon JK, Chi BH, Choi SY, Kim SJ, Lee TJ, Kim K, Chang IH. Murine β-defensin-2 may regulate the effect of bacillus Calmette-Guérin (BCG) in normal mouse bladder. Urol Oncol 2015; 33:111.e9-16. [PMID: 25573055 DOI: 10.1016/j.urolonc.2014.10.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Revised: 10/23/2014] [Accepted: 10/23/2014] [Indexed: 11/19/2022]
Abstract
PURPOSE We investigated whether bacillus Calmette-Guérin (BCG)-induced secretion of murine β-defensin-2 (mBD2) and determined whether mBD2 regulated BCG effects in the normal mouse bladder. MATERIALS AND METHODS A total of 140 C57BL/6 female mice were divided into 28 groups, and the experiment was performed over 3 steps. In the first step (20 groups), mice bladders were stimulated with different doses of BCG (multiplicity of infection [MOI] 0, 1, 10, 30, and 100) and histological analysis was conducted in bladder specimens isolated at different times (0, 4, 8, and 24h after instillation) to determine optimal dose and time point of BCG internalization and urine mBD2 and cytokine concentration. In the second step (4 groups), BCG internalization and urine cytokine levels were measured after pretreatment of different recombinant mBD2 (rmBD2) (0, 1, 2.5, and 5 ng/ml) at optimal dose and time point. In the third step (4 groups), BCG internalization and urine cytokine levels were compared between pretreatment conditions (control, rmBD2, anti-mBD2 Ab, and rmBD2+anti-mBD2 Ab). Urine was collected for estimating mBD2 levels and a multiplex analysis for 9 cytokines. Real-time polymerase chain reaction assay was used for estimating the relative BCG cell number in mice bladder tissue. RESULTS Bladder edema was induced by BCG (MOI 30 and 100), which progressed to an inflammatory infiltrate composed primarily of neutrophils and increased mBD2 secretion at 4 hours after instillation. Relative BCG cell number and urinary cytokine levels (interferon-γ and interleukins [IL]-2, -4, -6, and -10) response pattern was characterized by a peak at 4 hours after instillation followed by rapid decline. The levels of interferon-γ, and IL-1β, -2, -4, -6, and -10 and relative BCG cell numbers decreased in a dose-dependent manner according to pretreatment with rmBD2 protein, and the responses were potentiated in the anti-mBD2 pretreatment group at 4 hours after BCG (MOI 30) instillation. CONCLUSION The present results suggest that the mouse urothelium produces mBD2 in response to intravesicular BCG as a defense mechanism against BCG, and blocking mBD2 by an anti-mBD2 antibody increased the effectiveness of BCG.
Collapse
Affiliation(s)
- Jong Kyou Kwon
- Department of Urology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Byung Hoon Chi
- Department of Urology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Se Young Choi
- Department of Urology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Soon-Ja Kim
- Department of Urology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Tae-Jin Lee
- Department of Pathology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Kijeong Kim
- Department of Microbiology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - In Ho Chang
- Department of Urology, Chung-Ang University Hospital, Seoul, Republic of Korea.
| |
Collapse
|
9
|
Sapre N, Corcoran NM. Modulating the immune response to Bacillus Calmette-Guérin (BCG): a novel way to increase the immunotherapeutic effect of BCG for treatment of bladder cancer? BJU Int 2013; 112:852-3. [DOI: 10.1111/bju.12261] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|