1
|
Karbasi A, Abbasi A, Mohagheghi A, Poorolajal J, Emami F, Moradkhani S, Khodadadi I, Gholyaf M, Tavilani H. The Effects of Coenzyme Q10 on Contrast-Induced Acute Kidney Injury in Type 2 Diabetes: A Randomized Clinical Trial. Chonnam Med J 2024; 60:59-68. [PMID: 38304125 PMCID: PMC10828077 DOI: 10.4068/cmj.2024.60.1.59] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 02/03/2024] Open
Abstract
Contrast-induced acute kidney injury (CI-AKI) is a frequent challenge following the injection of contrast media and its subsequent oxidative stress. The aim of the present study was to evaluate the preventive effects of coenzyme Q10 (Q10), as a mitochondrial-targeted antioxidant in CI-AKI in diabetic patients, who account for a large proportion of angiographic cases. A total of 118 diabetic patients were randomly assigned to receive 120 mg of oral coenzyme Q10 (Q10 group) or placebo (Placebo group) for four days, starting 24 hours before contrast media injection. Blood urea nitrogen (BUN), serum and urinary creatinine, estimated glomerular filtration rate (eGFR), urinary malondialdehyde (UMDA), urinary total antioxidant capacity (UTAC), and urinary mitochondrial to nuclearDNA ratios (mtDNA/nDNA ratio) were evaluated before and after the treatment period. Urine sediments were also evaluated to report the urine microscopy score (UMS).The levels of BUN, serum and urine creatinine, and UMS were similar in the Q10 and placebo groups. EGFR was lower in the Q10 group before the treatment (p=0.013) but not after. The urinary mtDNA/nDNA ratio was 3.05±1.68 and 3.69±2.58 in placebo and Q10 groups, but UTAC was found to be lower in Q10 both before (p=0.006) and after the treatment (p<0.001). The incidence of CI-AKI was 14.40% and the mtDNA/nNDA ratio was similar between CI-AKI and non-CI-AKI patients. In conclusion, Q10 treatment shows no favorable effect on prevention of CI-AKI or a urinary mtDNA/nDNA ratio among diabetic patients.
Collapse
Affiliation(s)
- Ashkan Karbasi
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ali Abbasi
- Department of Cardiology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Mohagheghi
- Department of Cardiology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Jalal Poorolajal
- Department of Epidemiology, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Farzad Emami
- Department of Cardiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Shirin Moradkhani
- Department of Pharmacognosy, School of Pharmacy, Medicinal Plants and Natural Products, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Iraj Khodadadi
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mahmoud Gholyaf
- Department of Internal Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Heidar Tavilani
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Infectious disease Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
2
|
Yuan S, Che Y, Wang Z, Xing K, Xie X, Chen Y. Mitochondrion-targeted carboxymethyl chitosan hybrid nanoparticles loaded with Coenzyme Q10 protect cardiac grafts against cold ischaemia‒reperfusion injury in heart transplantation. J Transl Med 2023; 21:925. [PMID: 38124174 PMCID: PMC10734076 DOI: 10.1186/s12967-023-04763-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Heart transplantation (HT) has been approved as an optimal therapeutic regimen for patients with terminal-stage cardiac failure. However, cold ischaemia‒reperfusion (I/R) injury remains an unavoidable and outstanding challenge, which is a major factor in early graft dysfunction and an obstacle to long-term survival in HT. Cold I/R injury induces cardiac graft injury by promoting mitochondrial dysfunction and augmenting free radical production and inflammatory responses. We therefore designed a mitochondrion-targeted nanocarrier loaded with Coenzyme Q10 (CoQ10) (CoQ10@TNPs) for treatment of cold I/R injury after cardiac graft in a murine heterotopic cardiac transplantation model. METHODS Hybrid nanoparticles composed of CaCO3/CaP/biotinylated-carboxymethylchitosan (CaCO3/CaP/BCMC) were synthesized using the coprecipitation method, and the mitochondria-targeting tetrapeptide SS31 was incorporated onto the surface of the hybrid nanoparticles through biotin-avidin interactions. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) analysis were used for characterisation. In vitro, the hypoxia-reoxygenation model of H9c2 cells was employed to replicate in vivo cold I/R injury and treated with CoQ10@TNPs. The impact of CoQ10@TNPs on H9c2 cell injury was assessed by analysis of oxidative damage and apoptosis. In vivo, donor hearts (DHs) were perfused with preservation solution containing CoQ10@TNPs and stored in vitro at 4 °C for 12 h. The DHs were heterotopically transplanted and analysed for graft function, oxidative damage, apoptosis, and inflammatory markers 1 day post-transplantation. RESULTS CoQ10@TNPs were successfully synthesized and delivered CoQ10 to the mitochondria of the cold ischaemic myocardium. In vitro experiments demonstrated that CoQ10@TNPs was taken up by H9c2 cells at 4 °C and localized within the mitochondria, thus ameliorating oxidative stress damage and mitochondrial injury in cold I/R injury. In vivo experiments showed that CoQ10@TNPs accumulated in DH tissue at 4 °C, localized within the mitochondria during cold storage and improved cardiac graft function by attenuating mitochondrial oxidative injury and inflammation. CONCLUSIONS CoQ10@TNPs can precisely deliver CoQ10 to the mitochondria of cold I/R-injured cardiomyocytes to effectively eliminate mitochondrial reactive oxygen species (mtROS), thus reducing oxidative injury and inflammatory reactions in cold I/R-injured graft tissues and finally improving heart graft function. Thus, CoQ10@TNPs offer an effective approach for safeguarding cardiac grafts against extended periods of cold ischaemia, emphasizing the therapeutic potential in mitigating cold I/R injury during HT. These findings present an opportunity to enhance existing results following HT and broaden the range of viable grafts for transplantation.
Collapse
Affiliation(s)
- Shun Yuan
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, 238# Jiefang Road, Wuhan, 430000, Hubei, People's Republic of China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yanjia Che
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, 238# Jiefang Road, Wuhan, 430000, Hubei, People's Republic of China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, 430072, Hubei, People's Republic of China
| | - Zhiwei Wang
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, 238# Jiefang Road, Wuhan, 430000, Hubei, People's Republic of China.
| | - Kai Xing
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, 238# Jiefang Road, Wuhan, 430000, Hubei, People's Republic of China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaoping Xie
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, 238# Jiefang Road, Wuhan, 430000, Hubei, People's Republic of China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yuanyang Chen
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, 238# Jiefang Road, Wuhan, 430000, Hubei, People's Republic of China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
3
|
Jomova K, Raptova R, Alomar SY, Alwasel SH, Nepovimova E, Kuca K, Valko M. Reactive oxygen species, toxicity, oxidative stress, and antioxidants: chronic diseases and aging. Arch Toxicol 2023; 97:2499-2574. [PMID: 37597078 PMCID: PMC10475008 DOI: 10.1007/s00204-023-03562-9] [Citation(s) in RCA: 596] [Impact Index Per Article: 298.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 07/24/2023] [Indexed: 08/21/2023]
Abstract
A physiological level of oxygen/nitrogen free radicals and non-radical reactive species (collectively known as ROS/RNS) is termed oxidative eustress or "good stress" and is characterized by low to mild levels of oxidants involved in the regulation of various biochemical transformations such as carboxylation, hydroxylation, peroxidation, or modulation of signal transduction pathways such as Nuclear factor-κB (NF-κB), Mitogen-activated protein kinase (MAPK) cascade, phosphoinositide-3-kinase, nuclear factor erythroid 2-related factor 2 (Nrf2) and other processes. Increased levels of ROS/RNS, generated from both endogenous (mitochondria, NADPH oxidases) and/or exogenous sources (radiation, certain drugs, foods, cigarette smoking, pollution) result in a harmful condition termed oxidative stress ("bad stress"). Although it is widely accepted, that many chronic diseases are multifactorial in origin, they share oxidative stress as a common denominator. Here we review the importance of oxidative stress and the mechanisms through which oxidative stress contributes to the pathological states of an organism. Attention is focused on the chemistry of ROS and RNS (e.g. superoxide radical, hydrogen peroxide, hydroxyl radicals, peroxyl radicals, nitric oxide, peroxynitrite), and their role in oxidative damage of DNA, proteins, and membrane lipids. Quantitative and qualitative assessment of oxidative stress biomarkers is also discussed. Oxidative stress contributes to the pathology of cancer, cardiovascular diseases, diabetes, neurological disorders (Alzheimer's and Parkinson's diseases, Down syndrome), psychiatric diseases (depression, schizophrenia, bipolar disorder), renal disease, lung disease (chronic pulmonary obstruction, lung cancer), and aging. The concerted action of antioxidants to ameliorate the harmful effect of oxidative stress is achieved by antioxidant enzymes (Superoxide dismutases-SODs, catalase, glutathione peroxidase-GPx), and small molecular weight antioxidants (vitamins C and E, flavonoids, carotenoids, melatonin, ergothioneine, and others). Perhaps one of the most effective low molecular weight antioxidants is vitamin E, the first line of defense against the peroxidation of lipids. A promising approach appears to be the use of certain antioxidants (e.g. flavonoids), showing weak prooxidant properties that may boost cellular antioxidant systems and thus act as preventive anticancer agents. Redox metal-based enzyme mimetic compounds as potential pharmaceutical interventions and sirtuins as promising therapeutic targets for age-related diseases and anti-aging strategies are discussed.
Collapse
Affiliation(s)
- Klaudia Jomova
- Department of Chemistry, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, Nitra, 949 74, Slovakia
| | - Renata Raptova
- Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, 812 37, Slovakia
| | - Suliman Y Alomar
- Zoology Department, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Saleh H Alwasel
- Zoology Department, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Sciences, University of Hradec Kralove, 50005, Hradec Kralove, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Sciences, University of Hradec Kralove, 50005, Hradec Kralove, Czech Republic
| | - Marian Valko
- Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, 812 37, Slovakia.
| |
Collapse
|
4
|
Zhao S, Wu W, Liao J, Zhang X, Shen M, Li X, Lin Q, Cao C. Molecular mechanisms underlying the renal protective effects of coenzyme Q10 in acute kidney injury. Cell Mol Biol Lett 2022; 27:57. [PMID: 35869439 PMCID: PMC9308331 DOI: 10.1186/s11658-022-00361-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/06/2022] [Indexed: 12/18/2022] Open
Abstract
AbstractCoenzyme Q10 (CoQ10), an endogenous antioxidant, has been reported frequently to exert an outstanding protective effect on multiple organ injury, including acute kidney injury (AKI). In this study, we aim to summarize all the current evidence of the protective action of CoQ10 against AKI as there are presently no relevant reviews in the literature. After a systematic search, 20 eligible studies, either clinical trials or experimental studies, were included and further reviewed. CoQ10 treatment exhibited a potent renal protective effect on various types of AKI, such as AKI induced by drugs (e.g., ochratoxin A, cisplatin, gentamicin, L-NAME, and nonsteroidal anti-inflammatory drug), extracorporeal shock wave lithotripsy (ESWL), sepsis, contrast media, and ischemia–reperfusion injury. The renal protective role of CoQ10 against AKI might be mediated by the antiperoxidative, anti-apoptotic, and anti-inflammatory potential of CoQ10. The molecular mechanisms for the protective effects of CoQ10 might be attributed to the regulation of multiple essential genes (e.g., caspase-3, p53, and PON1) and signaling cascades (e.g., Nrf2/HO-1 pathway). This review highlights that CoQ10 may be a potential strategy in the treatment of AKI.
Collapse
|
5
|
Coenzyme Q10 Supplementation and Oxidative Stress Parameters: An Updated Systematic Review and Meta-analysis of Randomized Controlled Clinical Trials. Asian J Sports Med 2022. [DOI: 10.5812/asjsm-131308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: Oxidative stress (OS) contributes to the development of some disorders, including malignancies, metabolic diseases, Alzheimer's disease, and Parkinson's disease. Objectives: The effects of coenzyme Q10 (CoQ10) supplementation on OS parameters have been assessed through an updated systematic review and meta-analysis. Methods: SCOPUS, PubMed, Cochrane Library, EMBASE, and Web of Sciences were used for article searching. Standardized mean difference (SMD) and its standard error were calculated using a random-effects DerSimonian and Laird model. All analyses were done using the STATA software version 16.0 (StataCorp, College Station, TX). Results: Based on twenty-five studies which remained to be incorporated in the meta-analysis, a statistically significant decrease in malondialdehyde (MDA) (SMD -2.74; 95% CI -3.89, -1.58; I2 = 96.9%) as well as nitric oxide (NO) (SMD -5.16; 95% CI -7.98, 2.34; I2 = 92.5%) was associated with CoQ10 supplementation, and a significant increase in total antioxidant capacity (TAC) (SMD 3.40; 95% CI 1.98, 4.83; I2 = 97.4%) and superoxide dismutase (SOD) activity (SMD 1.22; 95% CI 0.32, 2.12; I2 = 94.32%). Conclusions: The results showed no significant effect of CoQ10 supplementation on glutathione peroxidase (GPx), catalase (CAT) activities, and glutathione (GSH) levels. CoQ10 supplementation significantly reduced MDA and NO concentrations and increased TAC and SOD activity.
Collapse
|
6
|
Liu Z, Li Y, Li C, Yu L, Chang Y, Qu M. Delivery of coenzyme Q10 with mitochondria-targeted nanocarrier attenuates renal ischemia-reperfusion injury in mice. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 131:112536. [PMID: 34857313 DOI: 10.1016/j.msec.2021.112536] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 10/18/2021] [Accepted: 11/02/2021] [Indexed: 10/19/2022]
Abstract
Ischemia-reperfusion (I/R) injury causes high morbidity, mortality, and healthcare costs. I/R induces acute kidney injury through exacerbating the mitochondrial damage and increasing inflammatory and oxidative responses. Here, we developed the mitochondria-targeted nanocarrier to delivery of Coenzyme Q10 (CoQ10) for renal I/R treatment in animal model. The mitochondria-targeted TPP CoQ10 nanoparticles (T-NPCoQ10) were synthesized through ABC miktoarm polymers method and characterized by dynamic light scattering (DLS) and transmission electron microscopy (TEM). The I/R mouse model and oxygen-glucose deprivation/reperfusion (D/R) model were created to examine the role of T-NPCoQ10 on renal I/R. Mitochondrial DNA damage, apoptosis, and inflammatory cytokines were measured in I/R injury mice. Plasma creatinine, urea nitrogen, tubular injury score was tested to assess the renal function. T-NPCoQ10 nanoparticles could be delivered to renal mitochondria preciously and efficiently. T-NPCoQ10 administration attenuated oxidative injury in both cell and animal models significantly, alleviated mtDNA damage, suppressed inflammatory and apoptotic responses, and improved renal function. The mitochondria specific CoQ10 delivery provided a precious and efficient method for protecting inflammatory and oxidative responses of I/R-induced renal damage.
Collapse
Affiliation(s)
- Zhaohui Liu
- Department of Anesthesiology, Cangzhou Central Hospital, Teaching Hospital of Tianjin Medical University, Cangzhou 061000, Hebei, China.
| | - Yan Li
- Department of Anesthesiology, Cangzhou Central Hospital, Teaching Hospital of Tianjin Medical University, Cangzhou 061000, Hebei, China
| | - Chunlei Li
- Department of Anesthesiology, Cangzhou Central Hospital, Teaching Hospital of Tianjin Medical University, Cangzhou 061000, Hebei, China
| | - Lili Yu
- Department of Anesthesiology, Cangzhou Central Hospital, Teaching Hospital of Tianjin Medical University, Cangzhou 061000, Hebei, China
| | - Yulin Chang
- Department of Anesthesiology, Cangzhou Central Hospital, Teaching Hospital of Tianjin Medical University, Cangzhou 061000, Hebei, China
| | - Min Qu
- Department of Anesthesiology, Cangzhou Central Hospital, Teaching Hospital of Tianjin Medical University, Cangzhou 061000, Hebei, China
| |
Collapse
|
7
|
Cirilli I, Damiani E, Dludla PV, Hargreaves I, Marcheggiani F, Millichap LE, Orlando P, Silvestri S, Tiano L. Role of Coenzyme Q 10 in Health and Disease: An Update on the Last 10 Years (2010-2020). Antioxidants (Basel) 2021; 10:antiox10081325. [PMID: 34439573 PMCID: PMC8389239 DOI: 10.3390/antiox10081325] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 12/11/2022] Open
Abstract
The present review focuses on preclinical and clinical studies conducted in the last decade that contribute to increasing knowledge on Coenzyme Q10's role in health and disease. Classical antioxidant and bioenergetic functions of the coenzyme have been taken into consideration, as well as novel mechanisms of action involving the redox-regulated activation of molecular pathways associated with anti-inflammatory activities. Cardiovascular research and fertility remain major fields of application of Coenzyme Q10, although novel applications, in particular in relation to topical application, are gaining considerable interest. In this respect, bioavailability represents a major challenge and the innovation in formulation aspects is gaining critical importance.
Collapse
Affiliation(s)
- Ilenia Cirilli
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy;
| | - Elisabetta Damiani
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (E.D.); (F.M.); (L.E.M.); (P.O.); (S.S.)
| | - Phiwayinkosi Vusi Dludla
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa;
| | - Iain Hargreaves
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK;
| | - Fabio Marcheggiani
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (E.D.); (F.M.); (L.E.M.); (P.O.); (S.S.)
| | - Lauren Elizabeth Millichap
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (E.D.); (F.M.); (L.E.M.); (P.O.); (S.S.)
| | - Patrick Orlando
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (E.D.); (F.M.); (L.E.M.); (P.O.); (S.S.)
| | - Sonia Silvestri
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (E.D.); (F.M.); (L.E.M.); (P.O.); (S.S.)
| | - Luca Tiano
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (E.D.); (F.M.); (L.E.M.); (P.O.); (S.S.)
- Correspondence: ; Tel.: +39-071-220-4394
| |
Collapse
|
8
|
Akbari A, Mobini GR, Agah S, Morvaridzadeh M, Omidi A, Potter E, Fazelian S, Ardehali SH, Daneshzad E, Dehghani S. Coenzyme Q10 supplementation and oxidative stress parameters: a systematic review and meta-analysis of clinical trials. Eur J Clin Pharmacol 2020; 76:1483-1499. [PMID: 32583356 DOI: 10.1007/s00228-020-02919-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/26/2020] [Indexed: 12/21/2022]
Abstract
PURPOSE Oxidative stress (OS) is associated with several chronic complications and diseases. The use of coenzyme Q10 (CoQ10) as an adjuvant treatment with routine clinical therapy against metabolic diseases has shown to be beneficial. However, the impact of CoQ10 as a preventive agent against OS has not been systematically investigated. METHODS A systematic literature search was performed using the PubMed, SCOPUS, EMBASE, and Cochrane Library databases to identify randomized clinical trials evaluating the efficacy of CoQ10 supplementation on OS parameters. Standard mean differences and 95% confidence intervals were calculated for net changes in OS parameters using a random-effects model. RESULTS Seventeen randomized clinical trials met the eligibility criteria to be included in the meta-analysis. Overall, CoQ10 supplementation was associated with a statistically significant decrease in malondialdehyde (MDA) (SMD - 0.94; 95% CI - 1.46, - 0.41; I2 = 87.7%) and a significant increase in total antioxidant capacity (TAC) (SMD 0.67; 95% CI 0.28, 1.07; I2 = 74.9%) and superoxide dismutase (SOD) activity (SMD 0.40; 95% CI 1.12, 0.67; I2 = 9.6%). The meta-analysis found no statistically significant impact of CoQ10 supplementation on nitric oxide (NO) (SMD - 1.40; 95% CI - 0.12, 1.93; I2 = 92.6%), glutathione (GSH) levels (SMD 0.41; 95% CI - 0.09, 0.91; I2 = 70.0%), catalase (CAT) activity (SMD 0.36; 95% CI - 0.46, 1.18; I2 = 90.0%), or glutathione peroxidase (GPx) activities (SMD - 1.40; 95% CI: - 0.12, 1.93; I2 = 92.6%). CONCLUSION CoQ10 supplementation, in the tested range of doses, was shown to reduce MDA concentrations, and increase TAC and antioxidant defense system enzymes. However, there were no significant effects of CoQ10 on NO, GSH concentrations, or CAT activity.
Collapse
Affiliation(s)
- Abolfazl Akbari
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Gholam Reza Mobini
- Cellular & Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences (SkUMS), Shahrekord, Iran
| | - Shahram Agah
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mojgan Morvaridzadeh
- Department of Nutritional Science, School of Nutritional Science and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Amirhossein Omidi
- Department of Nutritional Science, School of Nutritional Science and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Eric Potter
- Baylor Scott & White Research Institute, Dallas, Texas, USA
| | - Siavash Fazelian
- Clinical Research Development Unit, Ayatollah Kashani Hospital, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Seyed Hossein Ardehali
- Department of Anesthesiology and Critical Care, Shohadaye Tajrish Hospital, Tehran, Iran
| | - Elnaz Daneshzad
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Sadegh Dehghani
- Radiation Sciences Department, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Scintigraphic evaluation of renoprotective effects of coenzyme Q10 in a rat renal ischemia-reperfusion injury. Nucl Med Commun 2020; 40:1011-1021. [PMID: 31365500 DOI: 10.1097/mnm.0000000000001070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE Renal ischemia-reperfusion injury (RIRI) may occur secondary to several reasons leading to renal failure. Coenzyme-Q10 (CoQ10) is a well-known antioxidant. However, the effects CoQ10 against RIRI have not been evaluated. Our aim was to evaluate protective effects of CoQ10 to renal ischemia-reperfusion by biochemical, immunohistochemical and scintigraphic findings. METHODS Thirty Wistar-albino rats were randomly separated into groups of 10; Group Sham; Group ischemia-reperfusion (IR) had left renal pedicle clamping; Group CoQ10+IR had IR and CoQ10. Twenty-four hours later after reperfusion, scintigraphy was performed and after that, rats were sacrificed. To demonstrate effects of RIRI, serum urea and creatinine levels and tissue levels oxidative stress markers were evaluated. Both kidneys were subjected to histopathological evaluation and to confirm RIRI-induced immunohistochemical aspects of apoptosis, terminal-deoxynucleotidyl-transferase mediated-deoxyuridine-triphosphate-nick-end-labeling assay and caspase-3 were assessed. RESULTS Tissue oxidative stress, histopathologic changes, apoptosis scores and quantitative scintigraphic parameters were significantly higher in Group IR compared with Group Sham. Although tissue oxidative stress levels and histopathologic changes were not significant, quantitative scintigraphic parameters of contralateral kidney of Group IR were significantly increased. Compared with Group IR, Group CoQ10+IR presented decreased tissue oxidative stress levels; decreased scores of histopathology and apoptosis; and decreased quantitative scintigraphic parameters with increased split renal function in ischemic kidney. CONCLUSIONS Our results suggest that other than its antioxidant properties, CoQ10 shows antiperoxidative, antiapoptotic and antiinflammatory potential in protecting renal functioning of ischemic kidney. Furthermore, our results show that renal scintigraphy is a feasible method to detect early changes in renal functioning after RIRI.
Collapse
|
10
|
Yu JH, Lim SW, Luo K, Cui S, Quan Y, Shin YJ, Lee KE, Kim HL, Ko EJ, Chung BH, Kim JH, Chung SJ, Yang CW. Coenzyme Q 10 alleviates tacrolimus-induced mitochondrial dysfunction in kidney. FASEB J 2019; 33:12288-12298. [PMID: 31431058 DOI: 10.1096/fj.201900386rr] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The major side effect of tacrolimus (Tac) is nephrotoxicity. We studied whether supplementation of coenzyme Q10, (CoQ10) a potent antioxidant, can reduce Tac-induced nephrotoxicity via improving mitochondrial function. In an in vitro study, CoQ10 reduced the production of Tac-induced mitochondrial reactive oxygen species and abolished the loss of mitochondrial membrane potential in proximal tubular cell line. Assessment of mitochondrial function revealed that CoQ10 decreased oxygen consumption and mitochondrial respiration rate increased by Tac, suggesting improvement of mitochondrial function to synthesize ATP with CoQ10 treatment. The effect of the CoQ10 in vitro study was observed in an experimental model of chronic Tac-induced nephropathy. CoQ10 attenuated Tac-induced oxidative stress and was accompanied by function and histologic improvement. On electron microscopy, addition of CoQ10 increased not only the number but also the volume of mitochondria compared with Tac treatment only. Our data indicate that CoQ10 improves Tac-induced mitochondrial dysfunction in kidney. Supplementary CoQ10 treatment may be a promising approach to reduce Tac-induced nephrotoxicity.-Yu, J. H., Lim, S. W., Luo, K., Cui, S., Quan, Y., Shin, Y. J., Lee, K. E., Kim, H. L., Ko, E. J., Chung, B. H., Kim, J. H., Chung, S. J., Yang, C. W. Coenzyme Q10 alleviates tacrolimus-induced mitochondrial dysfunction in kidney.
Collapse
Affiliation(s)
- Ji Hyun Yu
- Department of Internal Medicine and The Catholic University of Korea School of Medicine, Seoul, South Korea
| | - Sun Woo Lim
- Convergent Research Consortium for Immunologic Disease, Seoul St. Mary's Hospital, The Catholic University of Korea School of Medicine, Seoul, South Korea.,Transplant Research Center, The Catholic University of Korea School of Medicine, Seoul, South Korea
| | - Kang Luo
- Convergent Research Consortium for Immunologic Disease, Seoul St. Mary's Hospital, The Catholic University of Korea School of Medicine, Seoul, South Korea.,Transplant Research Center, The Catholic University of Korea School of Medicine, Seoul, South Korea
| | - Sheng Cui
- Convergent Research Consortium for Immunologic Disease, Seoul St. Mary's Hospital, The Catholic University of Korea School of Medicine, Seoul, South Korea.,Transplant Research Center, The Catholic University of Korea School of Medicine, Seoul, South Korea
| | - Yi Quan
- Convergent Research Consortium for Immunologic Disease, Seoul St. Mary's Hospital, The Catholic University of Korea School of Medicine, Seoul, South Korea.,Transplant Research Center, The Catholic University of Korea School of Medicine, Seoul, South Korea
| | - Yoo Jin Shin
- Convergent Research Consortium for Immunologic Disease, Seoul St. Mary's Hospital, The Catholic University of Korea School of Medicine, Seoul, South Korea.,Transplant Research Center, The Catholic University of Korea School of Medicine, Seoul, South Korea
| | - Kyung Eun Lee
- Advanced Analysis Center, Korea Institute of Science and Technology, Seoul, South Korea
| | - Hong Lim Kim
- Integrative Research Support Center, The Catholic University of Korea School of Medicine, Seoul, South Korea
| | - Eun Jeong Ko
- Department of Internal Medicine and The Catholic University of Korea School of Medicine, Seoul, South Korea.,Convergent Research Consortium for Immunologic Disease, Seoul St. Mary's Hospital, The Catholic University of Korea School of Medicine, Seoul, South Korea.,Transplant Research Center, The Catholic University of Korea School of Medicine, Seoul, South Korea
| | - Byung Ha Chung
- Department of Internal Medicine and The Catholic University of Korea School of Medicine, Seoul, South Korea.,Convergent Research Consortium for Immunologic Disease, Seoul St. Mary's Hospital, The Catholic University of Korea School of Medicine, Seoul, South Korea.,Transplant Research Center, The Catholic University of Korea School of Medicine, Seoul, South Korea
| | | | - Sang J Chung
- School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Chul Woo Yang
- Department of Internal Medicine and The Catholic University of Korea School of Medicine, Seoul, South Korea.,Convergent Research Consortium for Immunologic Disease, Seoul St. Mary's Hospital, The Catholic University of Korea School of Medicine, Seoul, South Korea.,Transplant Research Center, The Catholic University of Korea School of Medicine, Seoul, South Korea
| |
Collapse
|
11
|
Bozkurt A, Mertoglu C, Karabakan M, Siranli G, Yurt EF, Erel O. Does extracorporeal shockwave lithotripsy therapy affect thiol-disulfide homeostasis? Pak J Med Sci 2018; 34:1070-1075. [PMID: 30344552 PMCID: PMC6191784 DOI: 10.12669/pjms.345.15823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Objective: Extracorporeal Shockwave Lithotripsy (ESWL) is a non-invasive method that is effective at crushing stones in the upper urinary tract. Disturbance of the thiol/disulfide homeostasis, in favor of the disulfide, has been shown to be involved in the disease pathogenesis. Methods: A total of 36 individuals that underwent ESWL had blood samples collected before ESWL (0hrs), 6hrs, and one week after the ESWL. Sera native and total as wells as disulfide amount was measured using an automated method sodium borohydrate (NaBH4) reduction. In addition, Ischemia Modified Albumin (IMA) levels were measured using colorimetric assay method. Results: Native thiol level was reduced at the 6th hour following ESWL compared to baseline. While the ratios of disulfide level, Disulfide/Total Thiol (DTT), Disulfide/Native Thiol (DNT) and IMA level were increased at the 6th hour following ESWL compared to baseline, they were found to be similar with their baseline values at the end of 1st week. Total thiol and native /total thiol did not show any significant change. Conclusions: ESWL treatment disrupts thiol/disulfide homeostasis and the structure of albumin at the acute term. Therefore, it increases protein oxidation and leads to increased oxidative stress. However, this state is transient and returns to normal within the proceeding days.
Collapse
Affiliation(s)
- Aliseydi Bozkurt
- Aliseydi Bozkurt, Department of Urology, Faculty of Medicine, Erzincan University, Erzincan, Turkey
| | - Cuma Mertoglu
- Cuma Mertoglu, Department of Clinical Biochemistry, Faculty of Medicine, Erzincan University, Erzincan, Turkey
| | - Mehmet Karabakan
- Mehmet Karabakan, Department of Urology, Erzincan University, Erzincan, Turkey
| | - Gulsah Siranli
- Gulsah Siranli, Department of Clinical Biochemistry, Faculty of Medicine, Erzincan University, Erzincan, Turkey
| | - Emine Feyza Yurt
- Emine Feyza Yurt, Department of Clinical Biochemistry, Faculty of Medicine, Yildirim Beyazit University, Ankara, Turkey
| | - Ozcan Erel
- Ozcan Erel, Department of Clinical Biochemistry, Faculty of Medicine, Yildirim Beyazit University, Ankara, Turkey
| |
Collapse
|
12
|
Gutierrez-Mariscal FM, Yubero-Serrano EM, Villalba JM, Lopez-Miranda J. Coenzyme Q10: From bench to clinic in aging diseases, a translational review. Crit Rev Food Sci Nutr 2018; 59:2240-2257. [DOI: 10.1080/10408398.2018.1442316] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Francisco M. Gutierrez-Mariscal
- Lipid and Atherosclerosis Unit, Department of Internal Medicine/IMIBIC/Reina Sofia University Hospital/University of Córdoba, Córdoba, Spain; CIBER Fisiología Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Elena M. Yubero-Serrano
- Lipid and Atherosclerosis Unit, Department of Internal Medicine/IMIBIC/Reina Sofia University Hospital/University of Córdoba, Córdoba, Spain; CIBER Fisiología Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Jose M. Villalba
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario, ceiA3, Córdoba, Spain
| | - Jose Lopez-Miranda
- Lipid and Atherosclerosis Unit, Department of Internal Medicine/IMIBIC/Reina Sofia University Hospital/University of Córdoba, Córdoba, Spain; CIBER Fisiología Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
13
|
|
14
|
Kabel AM, Elkhoely AA. Ameliorative Effect of Coenzyme Q10 and/or Candesartan on Carboplatin-Induced Nephrotoxicity: Roles of Apoptosis, Transforming Growth Factor-Β1, Nuclear Factor Kappa-B And The Nrf2/HO-1 Pathway. Asian Pac J Cancer Prev 2017; 18:1629-1636. [PMID: 28670881 PMCID: PMC6373792 DOI: 10.22034/apjcp.2017.18.6.1629] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Background: Carboplatin is a drug that is used for treatment of many types of cancer. However, it may produce serious nephrotoxicity. Candesartan is angiotensin II receptor antagonist employed mainly for control of hypertension. Coenzyme Q10 (CoQ10) is a fat-soluble substance which was proven to have potent antioxidant and anti-inflammatory properties. Aim: Our aim was to study the effects of candesartan and/or CoQ10 on carboplatin-induced nephrotoxicity in mice. Methods: Sixty mice were divided into 6 equal groups: Control untreated; carboplatin; carboplatin + candesartan; carboplatin + CoQ10; carboplatin + carboxymethyl cellulose; and carboplatin + candesartan + CoQ10 group. Kidney weight/body weight ratio, blood urea, serum creatinine, creatinine clearance, urinary N-acetyl beta-D-glucosaminidase (NAG), gamma glutamyl transpeptidase (GGT) and the urinary albumin excretion rate (UAER) were determined. Renal tissue catalase (CAT), glutathione reductase (GR), nuclear factor (erythroid-derived 2)-like 2 (Nrf2), heme oxygenase-1 (HO-1), transforming growth factor beta-1 (TGF-β1), tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6) were also determined, along with mitochondrial complex I activity. In addition, portions of the kidney were subjected to histopathological and immunohistochemical examination. Results: Candesartan and/or CoQ10 induced significant improvement of renal and mitochondrial functions with significant increase in tissue CAT, GR, Nrf2 and HO-1 content associated with significant decrease in the kidney weight/body weight ratio, tissue TGF-β1, TNF-α and IL-6 and alleviation of the histopathological and immunohistochemical changes as compared to carboplatin alone group. These effects were more significant in candesartan/CoQ10 combination group compared to either candesartan or CoQ10 alone. Conclusion: Candesartan/CoQ10 combination might represent a beneficial therapeutic modality for amelioration of carboplatin-induced nephrotoxicity.
Collapse
Affiliation(s)
- Ahmed M Kabel
- Department of Clinical Pharmacy, College of Pharmacy, Taif University, Taif, Saudi Arabia
- Pharmacology Department, Faculty of Medicine, Tanta University, Tanta, Egypt.
| | | |
Collapse
|
15
|
Fan L, Feng Y, Chen GC, Qin LQ, Fu CL, Chen LH. Effects of coenzyme Q10 supplementation on inflammatory markers: A systematic review and meta-analysis of randomized controlled trials. Pharmacol Res 2017; 119:128-136. [PMID: 28179205 DOI: 10.1016/j.phrs.2017.01.032] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 01/20/2017] [Accepted: 01/27/2017] [Indexed: 12/17/2022]
Abstract
The aims of this meta-analysis were to evaluate the effects of coenzyme Q10 (CoQ10) supplementation on inflammatory mediators including C-reactive protein (CRP), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) by analyzing published randomized controlled trials (RCTs). A systematic search in PubMed, Cochrane Library and Clinicaltrials.gov was performed to identify eligible RCTs. Data synthesis was performed using a random- or a fixed-effects model depending on the results of heterogeneity tests, and pooled data were displayed as weighed mean difference (WMD) and 95% confidence interval (CI). Seventeen RCTs were selected for the meta-analysis. CoQ10 supplementation significantly reduced the levels of circulating CRP (WMD: -0.35mg/L, 95% CI: -0.64 to -0.05, P=0.022), IL-6 (WMD: -1.61pg/mL, 95% CI: -2.64 to -0.58, P=0.002) and TNF-α (WMD: -0.49pg/mL, 95% CI: -0.93 to -0.06, P=0.027). The results of meta-regression showed that the changes of CRP were independent of baseline CRP, treatment duration, dosage, and patients characteristics. In the meta-regression analyses, a higher baseline IL-6 level was significantly associated with greater effects of CoQ10 on IL-6 levels (P for interaction=0.006). In conclusion, this meta-analysis of RCTs suggests significant lowering effects of CoQ10 on CRP, IL-6 and TNF-α. However, results should be interpreted with caution because of the evidence of heterogeneity and limited number of studies.
Collapse
Affiliation(s)
- Li Fan
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, 199 Renai Road, Dushu Lake Higher Education Town, Suzhou 215123, China.
| | - Yu Feng
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, 199 Renai Road, Dushu Lake Higher Education Town, Suzhou 215123, China; The Second Affiliated Hospital of Soochow University,1055 Sanxiang Road, Suzhou 215004, China.
| | - Guo-Chong Chen
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, 199 Renai Road, Dushu Lake Higher Education Town, Suzhou 215123, China.
| | - Li-Qiang Qin
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, 199 Renai Road, Dushu Lake Higher Education Town, Suzhou 215123, China.
| | - Chun-Ling Fu
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, 199 Renai Road, Dushu Lake Higher Education Town, Suzhou 215123, China.
| | - Li-Hua Chen
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, 199 Renai Road, Dushu Lake Higher Education Town, Suzhou 215123, China.
| |
Collapse
|
16
|
Simeoni L, Thurm C, Kritikos A, Linkermann A. Redox homeostasis, T cells and kidney diseases: three faces in the dark. Clin Kidney J 2015; 9:1-10. [PMID: 26798455 PMCID: PMC4720211 DOI: 10.1093/ckj/sfv135] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 11/09/2015] [Indexed: 12/13/2022] Open
Abstract
The redox equilibrium is crucial for the maintenance of immune homeostasis. Here, we summarize recent data showing that oxidation regulates T-cell functions and that alterations of the redox equilibrium may play an important role in the pathogenesis of inflammatory conditions affecting the kidneys. We further discuss potential links between oxidation, T cells and renal diseases such as systemic lupus erythematosus, renal ischaemia/reperfusion injury, end-stage renal disease and hypertension. The basic understanding of oxidation as a means by which diseases are directly affected results in unexpected pathophysiological similarities. Finally, we describe potential therapeutic options targeting redox systems for the treatment of nephropathies affecting humans.
Collapse
Affiliation(s)
- Luca Simeoni
- Otto-von-Guericke University, Institute of Molecular and Clinical Immunology , Magdeburg , Germany
| | - Christoph Thurm
- Otto-von-Guericke University, Institute of Molecular and Clinical Immunology , Magdeburg , Germany
| | - Andreas Kritikos
- Otto-von-Guericke University, Institute of Molecular and Clinical Immunology , Magdeburg , Germany
| | - Andreas Linkermann
- Clinic for Nephrology and Hypertension , Christian-Albrechts-University Kiel , Germany
| |
Collapse
|
17
|
Li M, Wang Z, Yang J, Guo X, Wang T, Wang S, Yin C, Liu J, Ye Z. Adjunctive medical therapy with α-blocker after extracorporeal shock wave lithotripsy of renal and ureteral stones: a meta-analysis. PLoS One 2015; 10:e0122497. [PMID: 25860144 PMCID: PMC4393103 DOI: 10.1371/journal.pone.0122497] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 02/22/2015] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Although some trials assessed the efficacy and safety of the α-blocker in facilitating renal and ureteral stones expulsion after extracorporeal shock wave lithotripsy (ESWL), the role of the α-blocker in facilitating upper urinary calculi expulsion after ESWL remain controversial. AIMS To determine the efficacy and safety of the α-blocker in facilitating renal and ureteral stones expulsion after ESWL. METHODS A literature search was carried out using the PubMed database, EMBASE and the Cochrane Library database to identify relevant studies. Two reviewers independently extracted data and assessed methodological quality. Pooled effect estimates were obtained using a fixed- and random-effects meta-analysis. RESULTS The meta-analysis included 23 RCTs, α-blocker significantly enhanced expulsion rate of upper urinary tract calculi after ESWL (P<0.00001; RR 1.21; 95% CI 1.12-1.31), significantly promoted steinstrasse expulsion (P=0.03; RR 1.25; 95% CI 1.03-1.53), significantly shortened the discharge time of upper urinary tract calculi (P=0.0001; MD -2.12; 95% CI -3.20--1.04), significantly reduced the patient's pain VAS score (P=0.001; RR -1.0; 95% CI -1.61--0.39). Compared with the control group, dizziness (P=0.002; RR 5.48; 95% CI 1.91-15.77), anejaculation (P=0.02; RR 12.17; 95% CI 1.61-91.99) and headache (P=0.04; RR 4.03; 95% CI 1.04-15.72) in the α-blocker group was associated with a higher incidence. CONCLUSIONS Treatment with α-blocker after ESWL appears to be effective in enhancing expulsion rate of upper urinary tract calculi, shortening the discharge time of upper urinary tract calculi, reducing the patient's pain. The side effects of α-blocker were light and few.
Collapse
Affiliation(s)
- Mingchao Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, P. R. China
| | - Zhengyun Wang
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P. R. China
| | - Jun Yang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, P. R. China
| | - Xiaolin Guo
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, P. R. China
- * E-mail: (XLG); (CPY)
| | - Tao Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, P. R. China
| | - Shaogang Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, P. R. China
| | - Chunping Yin
- Department of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- * E-mail: (XLG); (CPY)
| | - Jihong Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, P. R. China
| | - Zhangqun Ye
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, P. R. China
| |
Collapse
|
18
|
Alehagen U, Aaseth J. Selenium and coenzyme Q10 interrelationship in cardiovascular diseases--A clinician's point of view. J Trace Elem Med Biol 2015; 31:157-62. [PMID: 25511910 DOI: 10.1016/j.jtemb.2014.11.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 11/13/2014] [Accepted: 11/17/2014] [Indexed: 12/31/2022]
Abstract
A short review is given of the potential role of selenium deficiency and selenium intervention trials in atherosclerotic heart disease. Selenium is an essential constituent of several proteins, including the glutathione peroxidases and selenoprotein P. The selenium intake in Europe is generally in the lower margin of recommendations from authorities. Segments of populations in Europe may thus have a deficient intake that may be presented by a deficient anti-oxidative capacity in various illnesses, in particular atherosclerotic disease, and this may influence the prognosis of the disease. Ischemic heart disease and heart failure are two conditions where increased oxidative stress has been convincingly demonstrated. Some of the intervention studies of anti-oxidative substances that have focused on selenium are discussed in this review. The interrelationship between selenium and coenzyme Q10, another anti-oxidant, is presented, pointing to a theoretical advantage in using both substances in an intervention if there are deficiencies within the population. Clinical results from an intervention study using both selenium and coenzyme Q10 in an elderly population are discussed, where reduction in cardiovascular mortality, a better cardiac function according to echocardiography, and finally a lower concentration of the biomarker NT-proBNP as a sign of lower myocardial wall tension could be seen in those on active treatment, compared to placebo.
Collapse
Affiliation(s)
- Urban Alehagen
- Division of Cardiovascular Medicine, Department of Medicine and Health Sciences, Linköping University, Department of Cardiology, County Council of Östergötland, SE-581 85 Linköping, Sweden.
| | - Jan Aaseth
- Deptartment of Medicine, Innlandet Hospital Trust, N-2226 Kongsvinger, Norway
| |
Collapse
|
19
|
Liu Q, Wang S, Cai L. Diabetic cardiomyopathy and its mechanisms: Role of oxidative stress and damage. J Diabetes Investig 2014; 5:623-34. [PMID: 25422760 PMCID: PMC4234223 DOI: 10.1111/jdi.12250] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 05/12/2014] [Accepted: 05/14/2014] [Indexed: 01/29/2023] Open
Abstract
Diabetic cardiomyopathy as an important threat to health occurs with or without coexistence of vascular diseases. The exact mechanisms underlying the disease remain incompletely clear. Although several pathological mechanisms responsible for diabetic cardiomyopathy have been proposed, oxidative stress is widely considered as one of the major causes for the pathogenesis of the disease. Hyperglycemia-, hyperlipidemia-, hypertension- and inflammation-induced oxidative stress are major risk factors for the development of microvascular pathogenesis in the diabetic myocardium, which results in abnormal gene expression, altered signal transduction and the activation of pathways leading to programmed myocardial cell deaths. In the present article, we aim to provide an extensive review of the role of oxidative stress and anti-oxidants in diabetic cardiomyopathy based on our own works and literature information available.
Collapse
Affiliation(s)
- Quan Liu
- Center of Cardiovascular Diseases at the First Hospital of the Jilin University Changchun, China
| | - Shudong Wang
- Center of Cardiovascular Diseases at the First Hospital of the Jilin University Changchun, China ; Kosair Children's Hospital Research Institute, the Department of Pediatrics, the University of Louisville Louisville, KY, USA
| | - Lu Cai
- Kosair Children's Hospital Research Institute, the Department of Pediatrics, the University of Louisville Louisville, KY, USA ; Departments of Radiation Oncology, Pharmacology and Toxicology, the University of Louisville Louisville, KY, USA
| |
Collapse
|
20
|
|