1
|
Huang S, Nunez J, Toresco DL, Wen C, Slotabec L, Wang H, Zhang H, Rouhi N, Adenawoola MI, Li J. Alterations in the inflammatory homeostasis of aging-related cardiac dysfunction and Alzheimer's diseases. FASEB J 2025; 39:e70303. [PMID: 39758048 DOI: 10.1096/fj.202402725rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/20/2024] [Accepted: 12/26/2024] [Indexed: 01/07/2025]
Abstract
Alzheimer's disease (AD) is well known among the elderly and has a profound impact on both patients and their families. Increasing research indicates that AD is a systemic disease, with a strong connection to cardiovascular disease. They share common genetic factors, such as mutations in the presenilin (PS1 and PS2) and the apolipoprotein E (APOE) genes. Cardiovascular conditions can lead to reduced cerebral blood flow and increased oxidative stress. These factors contribute to the accumulation of Aβ plaques and the formation of abnormal tau protein tangles, which are both key pathological features of AD. Additionally, Aβ deposits and abnormal protein responses have been observed in cardiomyocytes as well as in peripheral tissues. The toxic Aβ deposition intensifies damage to the microvascular structure associated with blood-brain barrier disruption and the initiation of neuroinflammation, which may accelerate the onset of neurocognitive deficits and cardiovascular dysfunction. Thus, we discuss the main mechanisms linking AD and cardiac dysfunction to enhance our understanding of these conditions. Ultimately, insights into the brain-heart axis may help us develop effective treatment strategies in the future.
Collapse
Affiliation(s)
- Shuli Huang
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Jeremiah Nunez
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi, USA
- G.V. (Sonny) Montgomery VA Medical Center, Jackson, Mississippi, USA
| | - Dai Lan Toresco
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi, USA
- G.V. (Sonny) Montgomery VA Medical Center, Jackson, Mississippi, USA
| | - Changhong Wen
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi, USA
- G.V. (Sonny) Montgomery VA Medical Center, Jackson, Mississippi, USA
| | - Lily Slotabec
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi, USA
- G.V. (Sonny) Montgomery VA Medical Center, Jackson, Mississippi, USA
| | - Hao Wang
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Haibei Zhang
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Nadiyeh Rouhi
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Michael I Adenawoola
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Ji Li
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi, USA
- G.V. (Sonny) Montgomery VA Medical Center, Jackson, Mississippi, USA
| |
Collapse
|
2
|
Deshpande T, Hannocks M, Kapupara K, Samawar SKR, Wachsmuth L, Faber C, Smith C, Wardlaw J, Sorokin L. Microglial activation without peripheral immune cell infiltration characterises mouse and human cerebral small vessel disease. Neuropathol Appl Neurobiol 2024; 50:e13015. [PMID: 39543785 PMCID: PMC11618487 DOI: 10.1111/nan.13015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 10/07/2024] [Accepted: 10/11/2024] [Indexed: 11/17/2024]
Abstract
AIMS Cerebral small vessel diseases (SVDs) involve diverse pathologies of the brain's small blood vessels, leading to cognitive deficits. Cerebral magnetic resonance imaging (MRI) reveals white matter hyperintensities (WMHs), lacunes, microbleeds and enlarged perivascular spaces in SVD patients. Although correlations of MRI and histopathology help to understand the pathogenesis of SVD, they do not explain disease progression. Mouse models, both genetic and sporadic, are valuable for studying SVD, but their resemblance to clinical SVD is unclear. The study examined similarities and differences between mouse models of SVDs and human nonamyloid SVD specimens. METHODS We analysed four mouse models of SVD (hypertensive BPH mice, Col4a1 mutants, Notch3 mutants and Htra1-/- mice) at different stages for changes in myelin, blood-brain barrier (BBB) markers, immune cell populations and immune activation. The observations from mouse models were compared with human SVD specimens from different regions, including the periventricular, frontal, central and occipital white matter. Postmortem MRI followed by MBP immunostaining was used to identify white matter lesions (WMLs). RESULTS Only Notch3 mutant and hypertensive BPH mice showed significant changes in myelin basic protein (MBP) immunostaining, correlating with MRI patterns. These changes were linked to altered microglial morphology and focal plasma protein staining around blood vessels, without peripheral immune cell infiltration. In human specimens, both normal-appearing white matter (NAWM) and WMLs lacked peripheral cell infiltration. However, WMLs displayed altered microglial morphology, reduced myelin staining and occasional fibrinogen staining around arterioles and venules. CONCLUSIONS Our data show that Notch3 mutants and hypertensive BPH/2J mice recapitulate several features of human SVD, including microglial activation, focal sites of demyelination and perivascular plasma protein leakage without peripheral immune cell infiltration.
Collapse
Affiliation(s)
- Tushar Deshpande
- Institute of Physiological Chemistry and Pathobiochemistry and Cells‐in‐Motion Interfaculty Centre (CiMIC)University of MuensterMuensterGermany
| | - Melanie‐Jane Hannocks
- Institute of Physiological Chemistry and Pathobiochemistry and Cells‐in‐Motion Interfaculty Centre (CiMIC)University of MuensterMuensterGermany
| | - Kishan Kapupara
- Institute of Physiological Chemistry and Pathobiochemistry and Cells‐in‐Motion Interfaculty Centre (CiMIC)University of MuensterMuensterGermany
| | - Sai Kiran Reddy Samawar
- Institute of Physiological Chemistry and Pathobiochemistry and Cells‐in‐Motion Interfaculty Centre (CiMIC)University of MuensterMuensterGermany
| | | | | | - Colin Smith
- Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUK
| | - Joanna Wardlaw
- Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUK
- Centre for Clinical Brain Sciences, UK Dementia Research InstituteUniversity of EdinburghEdinburghUK
| | - Lydia Sorokin
- Institute of Physiological Chemistry and Pathobiochemistry and Cells‐in‐Motion Interfaculty Centre (CiMIC)University of MuensterMuensterGermany
| |
Collapse
|
3
|
Cheng W, Wang Y, Cheng C, Chen X, Zhang L, Huang W. Single-cell RNA Sequencing Identifies a Novel Subtype of Microglia with High Cd74 Expression that Facilitates White Matter Inflammation During Chronic Cerebral Hypoperfusion. Neurochem Res 2024; 49:2821-2841. [PMID: 39012534 DOI: 10.1007/s11064-024-04206-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 05/17/2024] [Accepted: 07/05/2024] [Indexed: 07/17/2024]
Abstract
Vascular dementia (VaD) causes progressive cognitive decline in the elderly population, but there is short of available therapeutic measures. Microglia-mediated neuroinflammation is vigorously involved in the pathogenesis of VaD, but the traditional classification of microglial M1/M2 phenotypes remains restrictive and controversial. This study aims to investigate whether microglia transform into novel subtypes in VaD. Chronic cerebral hypoperfusion (CCH) rat model was constructed to mimic VaD. Microglia were isolated via magnetic-activated cell sorting and analyzed by single-cell RNA sequencing (scRNA-seq) and bioinformatics. The findings inferred from scRNA-seq and bioinformatics were further validated through in vivo experiments. In this study, microglia were divided into eight clusters. The proportion of MG5 cluster was significantly increased in the white matter of the CCH group compared with the Sham group and was named chronic ischemia-associated microglia (CIAM). Immunity- and inflammation-related genes, including RT1-Db1, RT1-Da, RT1-Ba, Cd74, Spp1, C3, and Cd68, were markedly upregulated in CIAM. Enrichment analysis illustrated that CIAM possessed the function of evoking neuroinflammation. Further studies unveiled that Cd74 is associated with the most abundant GO terms involved in inflammation as well as cell proliferation and differentiation. In addition, microglia-specific Cd74 knockdown mediated by adeno-associated virus decreased the abundance of CIAM in the white matter, thereby mitigating inflammatory cytokine levels, alleviating white matter lesions, and improving cognitive impairment for CCH rats. These findings indicate that Cd74 is the core molecule of CIAM to trigger neuroinflammation and induce microglial differentiation to CIAM, suggesting that Cd74 may be a potential therapeutic target for VaD.
Collapse
Affiliation(s)
- Wenchao Cheng
- Department of Neurology, Xinqiao Hospital, The Army Medical University (Third Military Medical University), Chongqing, China
| | - Yuhan Wang
- Department of Neurology, Xinqiao Hospital, The Army Medical University (Third Military Medical University), Chongqing, China
| | - Chang Cheng
- Department of Neurology, Xinqiao Hospital, The Army Medical University (Third Military Medical University), Chongqing, China
| | - Xiuying Chen
- Department of Neurology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing University, Chongqing, China
| | - Lan Zhang
- Department of Neurology, Xinqiao Hospital, The Army Medical University (Third Military Medical University), Chongqing, China
| | - Wen Huang
- Department of Neurology, Xinqiao Hospital, The Army Medical University (Third Military Medical University), Chongqing, China.
- Department of Neurology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing University, Chongqing, China.
| |
Collapse
|
4
|
Isik AT, Kaya D, Gokden M. Brain Banking in Dementia Studies. Methods Mol Biol 2024; 2785:287-295. [PMID: 38427200 DOI: 10.1007/978-1-0716-3774-6_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
It is now well-established practice in dementia that one clinical entity may be caused by various neurodegenerative disorders, each with different histopathological findings, whereas neuropathologically confirmed patients may have different, unusual, and atypical clinical manifestations.This inconsistency in dementia patients leads to neuropathological examination of cases, and neuropathological examination seems to be an inevitable part of dementia practice, at least until all clinical entities are properly identified for humans.Additionally, the development of disease-modifying therapies and confirmation of the actual accurate diagnosis of the neurodegenerative disease that the drug is thought to modify or act upon are of great importance for neuropathological evaluation in brain banks.Neuropathological processes coexisting among patients diagnosed with established clinical criteria or international guidelines have provided a new perspective in the context of drug development.Here, we review our routinely used methodology in the context of the brain banking process.
Collapse
Affiliation(s)
- Ahmet Turan Isik
- Unit for Aging Brain and Dementia, Department of Geriatric Medicine, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Derya Kaya
- Unit for Aging Brain and Dementia, Department of Geriatric Medicine, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Murat Gokden
- Division of Neuropathology, Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
5
|
Keller JA, Sigurdsson S, Klaassen K, Hirschler L, van Buchem MA, Launer LJ, van Osch MJ, Gudnason V, de Bresser J. White matter hyperintensity shape is associated with long-term dementia risk. Alzheimers Dement 2023; 19:5632-5641. [PMID: 37303267 PMCID: PMC10713858 DOI: 10.1002/alz.13345] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 04/11/2023] [Accepted: 05/05/2023] [Indexed: 06/13/2023]
Abstract
INTRODUCTION We aimed to investigate the association between white matter hyperintensity (WMH) shape and volume and the long-term dementia risk in community-dwelling older adults. METHODS Three thousand seventy-seven participants (mean age: 75.6 ± 5.2 years) of the Age Gene/Environment Susceptibility (AGES)-Reykjavik study underwent baseline 1.5T brain magnetic resonance imaging and were followed up for dementia (mean follow-up: 9.9 ± 2.6 years). RESULTS More irregular shape of periventricular/confluent WMH (lower solidity (hazard ratio (95% confidence interval) 1.34 (1.17 to 1.52), p < .001) and convexity 1.38 (1.28 to 1.49), p < .001); higher concavity index 1.43 (1.32 to 1.54), p < .001) and fractal dimension 1.45 (1.32 to 1.58), p < .001)), higher total WMH volume (1.68 (1.54 to 1.87), p < .001), higher periventricular/confluent WMH volume (1.71 (1.55 to 1.89), p < .001), and higher deep WMH volume (1.17 (1.08 to 1.27), p < .001) were associated with an increased long-term dementia risk. DISCUSSION WMH shape markers may in the future be useful in determining patient prognosis and may aid in patient selection for future preventive treatments in community-dwelling older adults.
Collapse
Affiliation(s)
- Jasmin A. Keller
- Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | | | - Kelly Klaassen
- Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Lydiane Hirschler
- Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Mark A. van Buchem
- Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Lenore J. Launer
- Laboratory of Epidemiology and Population Science, National Institute on Aging, Bethesda, MD 20898, United States
| | - Matthias J.P. van Osch
- Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Vilmundur Gudnason
- Icelandic Heart Association, 201 Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland
| | - Jeroen de Bresser
- Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| |
Collapse
|
6
|
Xiao Y, Guan T, Yang X, Xu J, Zhang J, Qi Q, Teng Z, Dong Y, Gao Y, Li M, Meng N, Lv P. Baicalin facilitates remyelination and suppresses neuroinflammation in rats with chronic cerebral hypoperfusion by activating Wnt/β-catenin and inhibiting NF-κB signaling. Behav Brain Res 2023; 442:114301. [PMID: 36707260 DOI: 10.1016/j.bbr.2023.114301] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/07/2023] [Accepted: 01/11/2023] [Indexed: 01/27/2023]
Abstract
One main factor contributing to the cognitive loss in vascular dementia (VD) is white matter lesions (WMLs) carried on by chronic cerebral hypoperfusion (CCH). A secondary neuroinflammatory response to CCH accelerates the loss and limits the regeneration of oligodendrocytes, leading to progressive demyelination and insufficient remyelination in the white matter. Thus, promoting remyelination and inhibiting neuroinflammation may be an ideal therapeutic strategy. Baicalin (BAI) is known to exhibit protective effects against various inflammatory and demyelinating diseases. However, whether BAI has neuroprotective effects against CCH has not been investigated. To determine whether BAI inhibits CCH-induced demyelination and neuroinflammation, we established a model of CCH in rats by occluding the two common carotid arteries bilaterally. Our results revealed that BAI could remarkably ameliorate cognitive impairment and mitigate CA1 pyramidal neuron damage and myelin loss. BAI exhibited enhancement of remyelination by increasing the expression of myelin basic protein (MBP) and oligodendrocyte transcription factor 2 (Olig2), inhibiting the loss of oligodendrocytes and promoting oligodendrocyte regeneration in the corpus callosum of CCH rats. Furthermore, BAI modified microglia polarization to the anti-inflammatory phenotype and inhibited the release of pro-inflammatory cytokines. Mechanistically, BAI treatment significantly induced phosphorylation of glycogen synthase kinase 3β (GSK3β), enhanced the expression of β-catenin and its nuclear translocation. Simultaneously, BAI reduced the expression of nuclear NF-κB. Collectively, our results suggest that BAI ameliorates cognitive impairment in CCH-induced VD rats through its pro-remyelination and anti-inflammatory capacities, possibly by activating the Wnt/β-catenin and suppressing the NF-κB signaling.
Collapse
Affiliation(s)
- Yining Xiao
- Department of Neurology, Hebei Medical University, Shijiazhuang 050017, China; Department of Neurology, Hebei General Hospital, Shijiazhuang 050051, China; Hebei Provincial Key Laboratory of Cerebral Networks and Cognitive Disorders, Hebei General Hospital, Shijiazhuang 050051, China
| | - Tianyuan Guan
- Department of Neurology, Hebei Medical University, Shijiazhuang 050017, China; Department of Neurology, Hebei General Hospital, Shijiazhuang 050051, China
| | - Xiaofeng Yang
- Department of Neurology, Hebei Medical University, Shijiazhuang 050017, China; Department of Pediatric Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Jing Xu
- Department of Neurology, Hebei General Hospital, Shijiazhuang 050051, China; Hebei Provincial Key Laboratory of Cerebral Networks and Cognitive Disorders, Hebei General Hospital, Shijiazhuang 050051, China
| | - Jiawei Zhang
- Department of Neurology, Hebei Medical University, Shijiazhuang 050017, China
| | - Qianqian Qi
- Department of Neurology, Hebei Medical University, Shijiazhuang 050017, China; Department of Neurology, Hebei General Hospital, Shijiazhuang 050051, China
| | - Zhenjie Teng
- Department of Neurology, Hebei Medical University, Shijiazhuang 050017, China; Department of Neurology, Hebei General Hospital, Shijiazhuang 050051, China; Hebei Provincial Key Laboratory of Cerebral Networks and Cognitive Disorders, Hebei General Hospital, Shijiazhuang 050051, China
| | - Yanhong Dong
- Department of Neurology, Hebei General Hospital, Shijiazhuang 050051, China; Hebei Provincial Key Laboratory of Cerebral Networks and Cognitive Disorders, Hebei General Hospital, Shijiazhuang 050051, China
| | - Yaran Gao
- Department of Neurology, Hebei General Hospital, Shijiazhuang 050051, China
| | - Meixi Li
- Department of Neurology, Hebei General Hospital, Shijiazhuang 050051, China
| | - Nan Meng
- Department of Neurology, Hebei General Hospital, Shijiazhuang 050051, China
| | - Peiyuan Lv
- Department of Neurology, Hebei Medical University, Shijiazhuang 050017, China; Department of Neurology, Hebei General Hospital, Shijiazhuang 050051, China; Hebei Provincial Key Laboratory of Cerebral Networks and Cognitive Disorders, Hebei General Hospital, Shijiazhuang 050051, China.
| |
Collapse
|
7
|
Alvar A, Hahn Arkenberg R, McGowan B, Cheng H, Malandraki GA. The Role of White Matter in the Neural Control of Swallowing: A Systematic Review. Front Hum Neurosci 2021; 15:628424. [PMID: 34262441 PMCID: PMC8273764 DOI: 10.3389/fnhum.2021.628424] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/26/2021] [Indexed: 12/24/2022] Open
Abstract
Background: Swallowing disorders (dysphagia) can negatively impact quality of life and health. For clinicians and researchers seeking to improve outcomes for patients with dysphagia, understanding the neural control of swallowing is critical. The role of gray matter in swallowing control has been extensively documented, but knowledge is limited regarding the contributions of white matter. Our aim was to identify, evaluate, and summarize the populations, methods, and results of published articles describing the role of white matter in neural control of swallowing. Methods: We completed a systematic review with a multi-engine search following PRISMA-P 2015 standards. Two authors screened articles and completed blind full-text review and quality assessments using an adapted U.S. National Institute of Health's Quality Assessment. The senior author resolved any disagreements. Qualitative synthesis of evidence was completed. Results: The search yielded 105 non-duplicate articles, twenty-two of which met inclusion criteria. Twenty were rated as Good (5/22; 23%) or Fair (15/22; 68%) quality. Stroke was the most represented diagnosis (n = 20; 91%). All studies were observational, and half were retrospective cohort design. The majority of studies (13/22; 59%) quantified white matter damage with lesion-based methods, whereas 7/22 (32%) described intrinsic characteristics of white matter using methods like fractional anisotropy. Fifteen studies (68%) used instrumental methods for swallowing evaluations. White matter areas commonly implicated in swallowing control included the pyramidal tract, internal capsule, corona radiata, superior longitudinal fasciculus, external capsule, and corpus callosum. Additional noteworthy themes included: severity of white matter damage is related to dysphagia severity; bilateral white matter lesions appear particularly disruptive to swallowing; and white matter adaptation can facilitate dysphagia recovery. Gaps in the literature included limited sample size and populations, lack of in-depth evaluations, and issues with research design. Conclusion: Although traditionally understudied, there is sufficient evidence to conclude that white matter is critical in the neural control of swallowing. The reviewed studies indicated that white matter damage can be directly tied to swallowing deficits, and several white matter structures were implicated across studies. Further well-designed interdisciplinary research is needed to understand white matter's role in neural control of normal swallowing and in dysphagia recovery and rehabilitation.
Collapse
Affiliation(s)
- Ann Alvar
- I-EaT Swallowing Research Laboratory, Speech Language and Hearing Sciences, Purdue University, West Lafayette, IN, United States
| | - Rachel Hahn Arkenberg
- I-EaT Swallowing Research Laboratory, Speech Language and Hearing Sciences, Purdue University, West Lafayette, IN, United States
| | - Bethany McGowan
- Libraries and School of Information Studies, Purdue University, West Lafayette, IN, United States
| | - Hu Cheng
- Psychological and Brain Sciences, Imaging Research Facility, Indiana University, Bloomington, IN, United States
| | - Georgia A Malandraki
- I-EaT Swallowing Research Laboratory, Speech Language and Hearing Sciences, Purdue University, West Lafayette, IN, United States.,Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
8
|
Calderón-Garcidueñas L, Mukherjee PS, Waniek K, Holzer M, Chao CK, Thompson C, Ruiz-Ramos R, Calderón-Garcidueñas A, Franco-Lira M, Reynoso-Robles R, Gónzalez-Maciel A, Lachmann I. Non-Phosphorylated Tau in Cerebrospinal Fluid is a Marker of Alzheimer's Disease Continuum in Young Urbanites Exposed to Air Pollution. J Alzheimers Dis 2019; 66:1437-1451. [PMID: 30412505 DOI: 10.3233/jad-180853] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Long-term exposure to fine particulate matter (PM2.5) and ozone (O3) above USEPA standards is associated with Alzheimer's disease (AD) risk. Metropolitan Mexico City (MMC) children exhibit subcortical pretangles in infancy and cortical tau pre-tangles, NFTs, and amyloid phases 1-2 by the 2nd decade. Given their AD continuum, we measured in 507 normal cerebrospinal fluid (CSF) samples (MMC 354, controls 153, 12.82±6.73 y), a high affinity monoclonal non-phosphorylated tau antibody (non-P-Tau), as a potential biomarker of AD and axonal damage. In 81 samples, we also measured total tau (T-Tau), tau phosphorylated at threonine 181 (P-Tau), amyloid-β1-42, BDNF, and vitamin D. We documented by electron microscopy myelinated axonal size and the pathology associated with combustion-derived nanoparticles (CDNPs) in anterior cingulate cortex white matter in 6 young residents (16.25±3.34 y). Non-P-Tau showed a strong increase with age significantly faster among MMC versus controls (p = 0.0055). Aβ1 - 42 and BDNF concentrations were lower in MMC children (p = 0.002 and 0.03, respectively). Anterior cingulate cortex showed a significant decrease (p = <0.0001) in the average axonal size and CDNPs were associated with organelle pathology. Significant age increases in non-P-Tau support tau changes early in a population with axonal pathology and evolving AD hallmarks in the first two decades of life. Non-P-Tau is an early biomarker of axonal damage and potentially valuable to monitor progressive longitudinal changes along with AD multianalyte classical CSF markers. Neuroprotection of young urbanites with PM2.5 and CDNPs exposures ought to be a public health priority to halt the development of AD in the first two decades of life.
Collapse
Affiliation(s)
| | | | | | - Max Holzer
- Paul-Flechsig-Institute for Brain Research, Leipzig, Germany
| | | | | | - Rubén Ruiz-Ramos
- Instituto de Medicina Forense, Universidad Veracruzana, Boca del Rio, Mexico
| | | | | | | | | | | |
Collapse
|
9
|
Zamboni G, Griffanti L, Mazzucco S, Pendlebury ST, Rothwell PM. Age-dependent association of white matter abnormality with cognition after TIA or minor stroke. Neurology 2019; 93:e272-e282. [PMID: 31201296 PMCID: PMC6656647 DOI: 10.1212/wnl.0000000000007772] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 03/04/2019] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVE To investigate if the association between MRI-detectable white matter hyperintensity (WMH) and cognitive status reported in previous studies persists at older ages (>80 years), when some white matter abnormality is almost universally reported in clinical practice. METHODS Consecutive eligible patients from a population-based cohort of all TIA/nondisabling stroke (Oxford Vascular Study) underwent multimodal MRI, including fluid-attenuated inversion recovery and diffusion-weighted imaging, allowing automated measurement of WMH volume, mean diffusivity (MD), and fractional anisotropy (FA) in normal-appearing white matter using FSL tools. These measures were related to cognitive status (Montreal Cognitive Assessment) at age ≤80 vs >80 years. RESULTS Of 566 patients (mean [range] age 66.7 [20-102] years), 107 were aged >80 years. WMH volumes and MD/FA were strongly associated with cognitive status in patients aged ≤80 years (all p < 0.001 for WMH, MD, and FA) but not in patients aged >80 years (not significant for WMH, MD, and FA), with age interactions for WMH volume (p interaction = 0.016) and MD (p interaction = 0.037). Voxel-wise analyses also showed that lower Montreal Cognitive Assessment scores were associated with frontal WMH in patients ≤80 years, but not >80 years. CONCLUSION MRI markers of white matter damage are strongly related to cognition in patients with TIA/minor stroke at younger ages, but not at age >80 years. Clinicians and patients should not overinterpret the significance of these abnormalities at older ages.
Collapse
Affiliation(s)
- Giovanna Zamboni
- From the Centre for Prevention of Stroke and Dementia (G.Z., L.G., S.M., S.T.P., P.M.R.) and Wellcome Centre for Integrative Neuroimaging, FMRIB (G.Z., L.G.), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford; and Department of Biomedical, Metabolic and Neural Sciences and Centre for Neurosciences and Neurotechnology (G.Z.), University of Modena and Reggio Emilia, Italy.
| | - Ludovica Griffanti
- From the Centre for Prevention of Stroke and Dementia (G.Z., L.G., S.M., S.T.P., P.M.R.) and Wellcome Centre for Integrative Neuroimaging, FMRIB (G.Z., L.G.), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford; and Department of Biomedical, Metabolic and Neural Sciences and Centre for Neurosciences and Neurotechnology (G.Z.), University of Modena and Reggio Emilia, Italy
| | - Sara Mazzucco
- From the Centre for Prevention of Stroke and Dementia (G.Z., L.G., S.M., S.T.P., P.M.R.) and Wellcome Centre for Integrative Neuroimaging, FMRIB (G.Z., L.G.), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford; and Department of Biomedical, Metabolic and Neural Sciences and Centre for Neurosciences and Neurotechnology (G.Z.), University of Modena and Reggio Emilia, Italy
| | - Sarah T Pendlebury
- From the Centre for Prevention of Stroke and Dementia (G.Z., L.G., S.M., S.T.P., P.M.R.) and Wellcome Centre for Integrative Neuroimaging, FMRIB (G.Z., L.G.), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford; and Department of Biomedical, Metabolic and Neural Sciences and Centre for Neurosciences and Neurotechnology (G.Z.), University of Modena and Reggio Emilia, Italy
| | - Peter M Rothwell
- From the Centre for Prevention of Stroke and Dementia (G.Z., L.G., S.M., S.T.P., P.M.R.) and Wellcome Centre for Integrative Neuroimaging, FMRIB (G.Z., L.G.), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford; and Department of Biomedical, Metabolic and Neural Sciences and Centre for Neurosciences and Neurotechnology (G.Z.), University of Modena and Reggio Emilia, Italy
| |
Collapse
|
10
|
de la Monte SM, Tong M, Daiello LA, Ott BR. Early-Stage Alzheimer's Disease Is Associated with Simultaneous Systemic and Central Nervous System Dysregulation of Insulin-Linked Metabolic Pathways. J Alzheimers Dis 2019; 68:657-668. [PMID: 30775986 PMCID: PMC10084886 DOI: 10.3233/jad-180906] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
BACKGROUND Brain insulin resistance is a well-recognized abnormality in Alzheimer's disease (AD) and the likely mediator of impaired glucose utilization that emerges early and progresses with disease severity. Moreover, the rates of mild cognitive impairment (MCI) or AD are significantly greater in people with diabetes mellitus or obesity. OBJECTIVE This study was designed to determine whether systemic and central nervous system (CNS) insulin resistant disease states emerge together and thus may be integrally related. METHODS Insulin-related molecules were measured in paired human serum and cerebrospinal fluid (CSF) samples from 19 with MCI or early AD, and 21 controls using a multiplex ELISA platform. RESULTS In MCI/AD, both the CSF and serum samples had significantly elevated mean levels of C-peptide and an incretin, and reduced expression of Visfatin, whereas only CSF showed significant reductions in insulin and leptin and only serum had increased glucagon, PAI-1, and ghrelin. Although the overall CSF and serum responses reflected insulin resistance together with insulin deficiency, the specific alterations measured in CSF and serum were different. CONCLUSION In MCI and early-stage AD, CNS and systemic insulin-related metabolic dysfunctions, including insulin resistance, occur simultaneously, suggesting that they are integrally related and possibly mediated similar pathogenic factors.
Collapse
Affiliation(s)
- Suzanne M de la Monte
- Department of Pathology and Laboratory Medicine (Neuropathology), Rhode Island Hospital, the Providence VA Medical Center, and the Alpert Medical School of Brown University, Providence, RI, USA.,Department of Neurology, Rhode Island Hospital and the Alpert Medical School of Brown University, Providence, RI, USA.,Department of Medicine, Rhode Island Hospital and the Alpert Medical School of Brown University, Providence, RI, USA
| | - Ming Tong
- Department of Medicine, Rhode Island Hospital and the Alpert Medical School of Brown University, Providence, RI, USA
| | - Lori A Daiello
- Department of Neurology, Rhode Island Hospital and the Alpert Medical School of Brown University, Providence, RI, USA.,The Alzheimer's Disease and Memory Disorders Center, Rhode Island Hospital and the Alpert Medical School of Brown University, Providence, RI, USA
| | - Brian R Ott
- Department of Neurology, Rhode Island Hospital and the Alpert Medical School of Brown University, Providence, RI, USA.,The Alzheimer's Disease and Memory Disorders Center, Rhode Island Hospital and the Alpert Medical School of Brown University, Providence, RI, USA
| |
Collapse
|
11
|
Roles of aging in sleep. Neurosci Biobehav Rev 2019; 98:177-184. [DOI: 10.1016/j.neubiorev.2019.01.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 01/02/2019] [Accepted: 01/11/2019] [Indexed: 12/12/2022]
|
12
|
Liu T, He F, Yan J, Kuang W, Yu C. Icariside II affects hippocampal neuron axon regeneration and improves learning and memory in a chronic cerebral hypoperfusion rat model. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:826-834. [PMID: 31933890 PMCID: PMC6945144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 01/18/2019] [Indexed: 06/10/2023]
Abstract
Chronic cerebral hypoperfusion (CCH) is a basic pathological process that is comorbid with brain diseases, such as vascular Parkinsonism and Alzheimer's disease. Icariside II (ICS II), which is one of the main metabolites of icariin, has anti-inflammatory and antioxidant effects and protects against ischemic brain injury. This study aims to investigate the neuroprotective effects of ICS II on neuronal axon regeneration-related factors in a CCH rat model. Sprague-Dawley (SD) rats were divided into the following four groups: sham group, model group and 4 and 8 mg/kg/day ICS II administration groups. Learning and spatial memory functions were tested using a Morris water maze. Pathological changes were observed in the rat hippocampal tissue by hematoxylin and eosin (H&E) staining. Neuronal axon regeneration-related proteins (GAP-43, MAP-2 and Nogo-A) were observed by immunohistochemical staining and detected by the average optical density method. The results showed that 8 mg/kg/day of ICS II can effectively reduce the escape latency and prolong the target quadrant residence time at 12 weeks and that ICS II can improve the histopathological changes in the CA1 area of the rat hippocampus. Moreover, ICS II administration at 8 mg/kg/day significantly increased GAP-43 and MAP-2 expression and reduced Nogo-A expression in the CA1 area of the rat hippocampus at 12 weeks; however, significant differences were not observed at 4 and 8 weeks. Hence, ICS II at a dosage of 8 mg/kg/day could promote learning and memory abilities and improve histopathological changes in the rat hippocampus in a CCH rat model. These results may be related to the promotion of neuronal axon regeneration in the CA1 area of the hippocampus under increases in hippocampal GAP-43 and MAP-2 protein expression and decreased Nogo-A protein expression.
Collapse
Affiliation(s)
- Tao Liu
- Department of Cerebrovascular Disease, The Affiliated Hospital of Zunyi Medical CollegeZunyi 563003, Guizhou, China
| | - Fang He
- Key Laboratory of Cell Engineering of Guizhou Province, The Affiliated Hospital of Zunyi Medical CollegeZunyi 563003, Guizhou, China
- Department of Oral and Maxillofacial Surgery, University Hospital of Tübingen72076 Tübingen, Germany
| | - Jiahong Yan
- Department of Pediatric Medicine, The Affiliated Hospital of Zunyi Medical CollegeZunyi 563003, Guizhou, China
| | - Wei Kuang
- Department of Neurology, The Affiliated Hospital of Zunyi Medical CollegeZunyi 563003, Guizhou, China
| | - Changyin Yu
- Department of Neurology, The Affiliated Hospital of Zunyi Medical CollegeZunyi 563003, Guizhou, China
| |
Collapse
|
13
|
de la Monte SM. The Full Spectrum of Alzheimer's Disease Is Rooted in Metabolic Derangements That Drive Type 3 Diabetes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1128:45-83. [PMID: 31062325 PMCID: PMC9996398 DOI: 10.1007/978-981-13-3540-2_4] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The standard practice in neuropathology is to diagnose Alzheimer's disease (AD) based on the distribution and abundance of neurofibrillary tangles and Aβ deposits. However, other significant abnormalities including neuroinflammation, gliosis, white matter degeneration, non-Aβ microvascular disease, and insulin-related metabolic dysfunction require further study to understand how they could be targeted to more effectively remediate AD. This review addresses non-Aβ and non-pTau AD-associated pathologies, highlighting their major features, roles in neurodegeneration, and etiopathic links to deficits in brain insulin and insulin-like growth factor signaling and cognitive impairment. The discussion delineates why AD with its most characteristic clinical and pathological phenotypic profiles should be regarded as a brain form of diabetes, i.e., type 3 diabetes, and entertains the hypothesis that type 3 diabetes is just one of the categories of insulin resistance diseases that can occur independently or overlap with one or more of the others, including type 2 diabetes, metabolic syndrome, and nonalcoholic fatty liver disease.
Collapse
Affiliation(s)
- Suzanne M de la Monte
- Departments of Neurology, Neuropathology, and Neurosurgery, Rhode Island Hospital, and the Alpert Medical School of Brown University, Providence, RI, USA.
- Department of Pathology and Laboratory Medicine, Providence VA Medical Center, Providence, RI, USA.
| |
Collapse
|
14
|
Rowland HA, Hooper NM, Kellett KAB. Modelling Sporadic Alzheimer's Disease Using Induced Pluripotent Stem Cells. Neurochem Res 2018; 43:2179-2198. [PMID: 30387070 PMCID: PMC6267251 DOI: 10.1007/s11064-018-2663-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 09/11/2018] [Accepted: 10/15/2018] [Indexed: 12/24/2022]
Abstract
Developing cellular models of sporadic Alzheimer's disease (sAD) is challenging due to the unknown initiator of disease onset and the slow disease progression that takes many years to develop in vivo. The use of human induced pluripotent stem cells (iPSCs) has revolutionised the opportunities to model AD pathology, investigate disease mechanisms and screen potential drugs. The majority of this work has, however, used cells derived from patients with familial AD (fAD) where specific genetic mutations drive disease onset. While these provide excellent models to investigate the downstream pathways involved in neuronal toxicity and ultimately neuronal death that leads to AD, they provide little insight into the causes and mechanisms driving the development of sAD. In this review we compare the data obtained from fAD and sAD iPSC-derived cell lines, identify the inconsistencies that exist in sAD models and highlight the potential role of Aβ clearance mechanisms, a relatively under-investigated area in iPSC-derived models, in the study of AD. We discuss the development of more physiologically relevant models using co-culture and three-dimensional culture of iPSC-derived neurons with glial cells. Finally, we evaluate whether we can develop better, more consistent models for sAD research using genetic stratification of iPSCs and identification of genetic and environmental risk factors that could be used to initiate disease onset for modelling sAD. These considerations provide exciting opportunities to develop more relevant iPSC models of sAD which can help drive our understanding of disease mechanisms and identify new therapeutic targets.
Collapse
Affiliation(s)
- Helen A Rowland
- Division of Neuroscience & Experimental Psychology, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - Nigel M Hooper
- Division of Neuroscience & Experimental Psychology, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - Katherine A B Kellett
- Division of Neuroscience & Experimental Psychology, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK.
| |
Collapse
|
15
|
Cardiovascular disease and brain health: Focus on white matter hyperintensities. IJC HEART & VASCULATURE 2018; 19:63-69. [PMID: 29946567 PMCID: PMC6016077 DOI: 10.1016/j.ijcha.2018.04.006] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 04/25/2018] [Accepted: 04/26/2018] [Indexed: 12/28/2022]
Abstract
Diseases affecting the brain contribute to a substantial proportion of morbidity and mortality in the general population. Conditions such as stroke, dementia and cognitive impairment have a prominent impact on global public health. Despite the heterogeneous clinical manifestations of these conditions and their diverse prognostic implications, current evidence supports a role for cardiovascular disease as a common pathophysiological ground. Brain white matter hyperintensities (WMH) are patchy white matter signal hyperintensity on T2-weighted magnetic resonance imaging sequences commonly found in elderly individuals. WMH appear to have a vascular pathogenesis and have been shown to confer an increased risk of stroke and cognitive decline. Indeed, they were proposed as a marker for central nervous system frailty. Cardiovascular diseases seem to play a key role in the etiology of WMH. Carotid atherosclerosis and atrial fibrillation were shown to be associated with higher WMH burden, while adequate blood pressure control has been reported reducing WMH progression. Aim of the present work is to review the available evidence linking WMH to cardiovascular disease, highlighting the complex interplay between cerebral and cardiovascular health.
Collapse
|
16
|
Wijesinghe P, Shankar SK, Yasha TC, Gorrie C, Amaratunga D, Hulathduwa S, Kumara KS, Samarasinghe K, Suh YH, Steinbusch HWM, De Silva KRD. Vascular Contributions in Alzheimer's Disease-Related Neuropathological Changes: First Autopsy Evidence from a South Asian Aging Population. J Alzheimers Dis 2018; 54:1607-1618. [PMID: 27589527 DOI: 10.3233/jad-160425] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND Evidence from various consortia on vascular contributions has been inconsistent in determining the etiology of sporadic Alzheimer's disease (AD). OBJECTIVE To investigate vascular risk factors and cerebrovascular pathologies associated in manifestation of AD-related neuropathological changes of an elderly population. METHODS Postmortem brain samples from 76 elderly subjects (≥50 years) were used to study genetic polymorphisms, intracranial atherosclerosis of the circle of Willis (IASCW), and microscopic infarcts in deep white matters. From this cohort, 50 brains (≥60 years) were subjected to neuropathological diagnosis using immunohistopathological techniques. RESULTS Besides the association with age, the apolipoprotein E ɛ4 allele was significantly and strongly associated with Thal amyloid-β phases ≥1 [odds ratio (OR) = 6.76, 95% confidence interval (CI) 1.37-33.45] and inversely with Braak neurofibrillary tangle (NFT) stages ≥III (0.02, 0.0-0.47). Illiterates showed a significant positive association for Braak NFT stages ≥IV (14.62, 1.21-176.73) and a significant negative association for microscopic infarcts (0.15, 0.03-0.71) in deep white matters. With respect to cerebrovascular pathologies, cerebral small vessel lesions (white matter hyperintensities and cerebral amyloid angiopathy) showed a higher degree of associations among them and with AD-related neuropathological changes (p < 0.05) compared to large vessel pathology (IASCW), which showed a significant association only with Braak NFT stages ≥I (p = 0.050). CONCLUSION These findings suggest that besides age, education, and genetic factors, other vascular risk factors were not associated with AD-related neuropathological changes and urge prompt actions be taken against cerebral small vessel diseases since evidence for effective prevention is still lacking.
Collapse
Affiliation(s)
- Printha Wijesinghe
- Interdisciplinary Center for Innovation in Biotechnology & Neuroscience, Genetic Diagnostic and Research Laboratory, Department of Anatomy, Faculty of Medical Sciences, University of Srijayewardenepura, Nugegoda, Sri Lanka
| | - S K Shankar
- Department of Neuropathology, National Institute of Mental Health & Neurosciences, Bangalore, India
| | - T C Yasha
- Department of Neuropathology, National Institute of Mental Health & Neurosciences, Bangalore, India
| | - Catherine Gorrie
- School of Medical and Molecular Biosciences, University of Technology Sydney, Sydney, Australia
| | | | - Sanjayah Hulathduwa
- Department of Forensic Medicine, Faculty of Medical Sciences, University of Srijayewardenepura, Nugegoda, Sri Lanka
| | - K Sunil Kumara
- Department of Judicial Medical Office, Colombo South Teaching Hospital, Colombo, Sri Lanka
| | - Kamani Samarasinghe
- Department of Pathology, University of Srijayewardenepura, Nugegoda, Sri Lanka
| | - Yoo-Hun Suh
- Department of Pharmacology, College of Medicine, Seoul National University, Seoul, Korea.,NRI, Gachon University, Incheon, South Korea
| | - Harry W M Steinbusch
- Department of Translational Neuroscience, Faculty Health, Medicine & Life Sciences, Maastricht University, Maastricht, Netherlands
| | - K Ranil D De Silva
- Interdisciplinary Center for Innovation in Biotechnology & Neuroscience, Genetic Diagnostic and Research Laboratory, Department of Anatomy, Faculty of Medical Sciences, University of Srijayewardenepura, Nugegoda, Sri Lanka
| |
Collapse
|
17
|
Miners JS, Schulz I, Love S. Differing associations between Aβ accumulation, hypoperfusion, blood-brain barrier dysfunction and loss of PDGFRB pericyte marker in the precuneus and parietal white matter in Alzheimer's disease. J Cereb Blood Flow Metab 2018; 38:103-115. [PMID: 28151041 PMCID: PMC5757436 DOI: 10.1177/0271678x17690761] [Citation(s) in RCA: 159] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Recent studies implicate loss of pericytes in hypoperfusion and blood-brain barrier (BBB) leakage in Alzheimer's disease (AD). In this study, we have measured levels of the pericyte marker, platelet-derived growth factor receptor-β (PDGFRB), and fibrinogen (to assess blood-brain barrier leakage), and analyzed their relationship to indicators of microvessel density (von Willebrand factor level), ante-mortem oxygenation (myelin-associated glycoprotein:proteolipid protein-1 ratio and vascular endothelial growth factor level), Aβ level and plaque load, in precuneus and underlying white matter from 49 AD to 37 control brains. There was reduction in PDGFRB and increased fibrinogen in the precuneus in AD. These changes correlated with reduction in oxygenation and with plaque load. In the underlying white matter, increased fibrinogen correlated with reduced oxygenation, but PDGFRB level was unchanged. The level of platelet-derived growth factor-ββ (PDGF-BB), important for pericyte maintenance, was increased in AD but mainly in the insoluble tissue fraction, correlating with insoluble Aβ level. Loss of the PDGFRB within the precuneus in AD is associated with fibrinogen leakage and reduced oxygenation, and related to fibrillar Aβ accumulation. In contrast, fibrinogen leakage and reduced oxygenation of underlying white matter occur independently of loss of PDGFRB, perhaps secondary to reduced transcortical perfusion.
Collapse
Affiliation(s)
| | | | - Seth Love
- Seth Love, School of Clinical Sciences,
University of Bristol, Learning & Research level 2, Southmead Hospital,
Bristol BS10 5NB, UK.
| |
Collapse
|
18
|
Kovacs GG, Robinson JL, Xie SX, Lee EB, Grossman M, Wolk DA, Irwin DJ, Weintraub D, Kim CF, Schuck T, Yousef A, Wagner ST, Suh E, Van Deerlin VM, Lee VMY, Trojanowski JQ. Evaluating the Patterns of Aging-Related Tau Astrogliopathy Unravels Novel Insights Into Brain Aging and Neurodegenerative Diseases. J Neuropathol Exp Neurol 2017; 76:270-288. [PMID: 28340083 DOI: 10.1093/jnen/nlx007] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The term "aging-related tau astrogliopathy" (ARTAG) describes pathological accumulation of abnormally phosphorylated tau protein in astrocytes. We evaluated the correlates of ARTAG types (i.e., subpial, subependymal, white and gray matter, and perivascular) in different neuroanatomical regions. Clinical, neuropathological, and genetic (eg, APOE ε4 allele, MAPT H1/H2 haplotype) data from 628 postmortem brains from subjects were investigated; most of the patients had been longitudinally followed at the University of Pennsylvania. We found that (i) the amygdala is a hotspot for all ARTAG types; (ii) age at death, male sex, and presence of primary frontotemporal lobar degeneration (FTLD) tauopathy are significantly associated with ARTAG; (iii) age at death, greater degree of brain atrophy, ventricular enlargement, and Alzheimer disease (AD)-related variables are associated with subpial, white matter, and perivascular ARTAG types; (iv) AD-related variables are associated particularly with lobar white matter ARTAG; and (v) gray matter ARTAG in primary FTLD-tauopathies appears in areas without neuronal tau pathology. We provide a reference map of ARTAG types and propose at least 5 constellations of ARTAG. Furthermore, we propose a conceptual link between primary FTLD-tauopathy and ARTAG-related astrocytic tau pathologies. Our observations serve as a basis for etiological stratification and definition of progression patterns of ARTAG.
Collapse
Affiliation(s)
- Gabor G Kovacs
- Institute of Neurology, Medical University of Vienna, Vienna, Austria.,Center for Neurodegenerative Disease Research, Institute on Aging and Department of Pathology & Laboratory Medicine, Philadelphia, PA, USA
| | - John L Robinson
- Center for Neurodegenerative Disease Research, Institute on Aging and Department of Pathology & Laboratory Medicine, Philadelphia, PA, USA
| | - Sharon X Xie
- Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Edward B Lee
- Center for Neurodegenerative Disease Research, Institute on Aging and Department of Pathology & Laboratory Medicine, Philadelphia, PA, USA
| | - Murray Grossman
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David A Wolk
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David J Irwin
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Dan Weintraub
- Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Christopher F Kim
- Center for Neurodegenerative Disease Research, Institute on Aging and Department of Pathology & Laboratory Medicine, Philadelphia, PA, USA
| | - Theresa Schuck
- Center for Neurodegenerative Disease Research, Institute on Aging and Department of Pathology & Laboratory Medicine, Philadelphia, PA, USA
| | - Ahmed Yousef
- Center for Neurodegenerative Disease Research, Institute on Aging and Department of Pathology & Laboratory Medicine, Philadelphia, PA, USA
| | | | - Eunran Suh
- Center for Neurodegenerative Disease Research, Institute on Aging and Department of Pathology & Laboratory Medicine, Philadelphia, PA, USA
| | - Vivianna M Van Deerlin
- Center for Neurodegenerative Disease Research, Institute on Aging and Department of Pathology & Laboratory Medicine, Philadelphia, PA, USA
| | - Virginia M-Y Lee
- Center for Neurodegenerative Disease Research, Institute on Aging and Department of Pathology & Laboratory Medicine, Philadelphia, PA, USA
| | - John Q Trojanowski
- Center for Neurodegenerative Disease Research, Institute on Aging and Department of Pathology & Laboratory Medicine, Philadelphia, PA, USA
| |
Collapse
|
19
|
Love S, Miners JS. Small vessel disease, neurovascular regulation and cognitive impairment: post-mortem studies reveal a complex relationship, still poorly understood. Clin Sci (Lond) 2017; 131:1579-1589. [PMID: 28667060 DOI: 10.1042/cs20170148] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 03/27/2017] [Accepted: 03/28/2017] [Indexed: 11/08/2023]
Abstract
The contribution of vascular disease to cognitive impairment is under-recognized and the pathogenesis is poorly understood. This information gap has multiple causes, including a lack of post-mortem validation of clinical diagnoses of vascular cognitive impairment (VCI) or vascular dementia (VaD), the exclusion of cases with concomitant neurodegenerative disease when diagnosing VCI/VaD, and a lack of standardization of neuropathological assessment protocols for vascular disease. Other contributors include a focus on end-stage destructive lesions to the exclusion of more subtle types of diffuse brain injury, on structural abnormalities of arteries and arterioles to the exclusion of non-structural abnormalities and capillary damage, and the use of post-mortem sampling strategies that are biased towards the identification of neurodegenerative pathologies. Recent studies have demonstrated the value of detailed neuropathology in characterizing vascular contributions to cognitive impairment (e.g. in diabetes), and highlight the importance of diffuse white matter changes, capillary damage and vasoregulatory abnormalities in VCI/VaD. The use of standardized, evidence-based post-mortem assessment protocols and the inclusion of biochemical as well as morphological methods in neuropathological studies should improve the accuracy of determination of the contribution of vascular disease to cognitive impairment and clarify the relative contribution of different pathogenic processes to the tissue damage.
Collapse
Affiliation(s)
- Seth Love
- Dementia Research Group, School of Clinical Sciences, University of Bristol, Learning and Research Level 1, Southmead Hospital, Bristol BS10 5NB, U.K.
| | - J Scott Miners
- Dementia Research Group, School of Clinical Sciences, University of Bristol, Learning and Research Level 1, Southmead Hospital, Bristol BS10 5NB, U.K
| |
Collapse
|
20
|
Zamboni G, Griffanti L, Jenkinson M, Mazzucco S, Li L, Küker W, Pendlebury ST, Rothwell PM. White Matter Imaging Correlates of Early Cognitive Impairment Detected by the Montreal Cognitive Assessment After Transient Ischemic Attack and Minor Stroke. Stroke 2017; 48:1539-1547. [DOI: 10.1161/strokeaha.116.016044] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 12/29/2016] [Accepted: 01/18/2017] [Indexed: 11/16/2022]
Abstract
Background and Purpose—
Among screening tools for cognitive impairment in large cohorts, the Montreal Cognitive Assessment (MoCA) seems to be more sensitive to early cognitive impairment than the Mini-Mental State Examination (MMSE), particularly after transient ischemic attack or minor stroke. We reasoned that if MoCA-detected early cognitive impairment is pathologically significant, then it should be specifically associated with the presence of white matter hyperintensities (WMHs) and reduced fractional anisotropy (FA) on magnetic resonance imaging.
Methods—
Consecutive eligible patients with transient ischemic attack or minor stroke (Oxford Vascular Study) underwent magnetic resonance imaging and cognitive assessment. We correlated MoCA and MMSE scores with WMH and FA, then specifically studied patients with low MoCA and normal MMSE.
Results—
Among 400 patients, MoCA and MMSE scores were significantly correlated (all
P
<0.001) with WMH volumes (
r
MoCA
=−0.336;
r
MMSE
=−0.297) and FA (
r
MoCA
=0.409;
r
MMSE
=0.369) and—on voxel-wise analyses—with WMH in frontal white matter and reduced FA in almost all white matter tracts. However, only the MoCA was independently correlated with WMH volumes (
r
=−0.183;
P
<0.001), average FA values (
r
=0.218;
P
<0.001), and voxel-wise reduced FA in anterior tracts after controlling for the MMSE. In addition, patients with low MoCA but normal MMSE (n=57) had higher WMH volumes (
t
=3.1;
P
=0.002), lower average FA (
t
=−4.0;
P
<0.001), and lower voxel-wise FA in almost all white matter tracts than those with normal MoCA and MMSE (n=238).
Conclusions—
In patients with transient ischemic attack or minor stroke, early cognitive impairment detected with the MoCA but not with the MMSE was independently associated with white matter damage on magnetic resonance imaging, particularly reduced FA.
Collapse
Affiliation(s)
- Giovanna Zamboni
- From the Stroke Prevention Research Unit, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital (G.Z., L.G., S.M., L.L., W.K., S.T.P., P.M.R.) and Oxford Centre for Functional MRI of the Brain (FMRIB) (M.J.), Nuffield Department of Clinical Neurosciences, University of Oxford, United Kingdom
| | - Ludovica Griffanti
- From the Stroke Prevention Research Unit, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital (G.Z., L.G., S.M., L.L., W.K., S.T.P., P.M.R.) and Oxford Centre for Functional MRI of the Brain (FMRIB) (M.J.), Nuffield Department of Clinical Neurosciences, University of Oxford, United Kingdom
| | - Mark Jenkinson
- From the Stroke Prevention Research Unit, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital (G.Z., L.G., S.M., L.L., W.K., S.T.P., P.M.R.) and Oxford Centre for Functional MRI of the Brain (FMRIB) (M.J.), Nuffield Department of Clinical Neurosciences, University of Oxford, United Kingdom
| | - Sara Mazzucco
- From the Stroke Prevention Research Unit, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital (G.Z., L.G., S.M., L.L., W.K., S.T.P., P.M.R.) and Oxford Centre for Functional MRI of the Brain (FMRIB) (M.J.), Nuffield Department of Clinical Neurosciences, University of Oxford, United Kingdom
| | - Linxin Li
- From the Stroke Prevention Research Unit, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital (G.Z., L.G., S.M., L.L., W.K., S.T.P., P.M.R.) and Oxford Centre for Functional MRI of the Brain (FMRIB) (M.J.), Nuffield Department of Clinical Neurosciences, University of Oxford, United Kingdom
| | - Wilhelm Küker
- From the Stroke Prevention Research Unit, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital (G.Z., L.G., S.M., L.L., W.K., S.T.P., P.M.R.) and Oxford Centre for Functional MRI of the Brain (FMRIB) (M.J.), Nuffield Department of Clinical Neurosciences, University of Oxford, United Kingdom
| | - Sarah T. Pendlebury
- From the Stroke Prevention Research Unit, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital (G.Z., L.G., S.M., L.L., W.K., S.T.P., P.M.R.) and Oxford Centre for Functional MRI of the Brain (FMRIB) (M.J.), Nuffield Department of Clinical Neurosciences, University of Oxford, United Kingdom
| | - Peter M. Rothwell
- From the Stroke Prevention Research Unit, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital (G.Z., L.G., S.M., L.L., W.K., S.T.P., P.M.R.) and Oxford Centre for Functional MRI of the Brain (FMRIB) (M.J.), Nuffield Department of Clinical Neurosciences, University of Oxford, United Kingdom
| |
Collapse
|
21
|
Muñoz Maniega S, Chappell FM, Valdés Hernández MC, Armitage PA, Makin SD, Heye AK, Thrippleton MJ, Sakka E, Shuler K, Dennis MS, Wardlaw JM. Integrity of normal-appearing white matter: Influence of age, visible lesion burden and hypertension in patients with small-vessel disease. J Cereb Blood Flow Metab 2017; 37:644-656. [PMID: 26933133 PMCID: PMC5381455 DOI: 10.1177/0271678x16635657] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
White matter hyperintensities accumulate with age and occur in patients with stroke, but their pathogenesis is poorly understood. We measured multiple magnetic resonance imaging biomarkers of tissue integrity in normal-appearing white matter and white matter hyperintensities in patients with mild stroke, to improve understanding of white matter hyperintensities origins. We classified white matter into white matter hyperintensities and normal-appearing white matter and measured fractional anisotropy, mean diffusivity, water content (T1-relaxation time) and blood-brain barrier leakage (signal enhancement slope from dynamic contrast-enhanced magnetic resonance imaging). We studied the effects of age, white matter hyperintensities burden (Fazekas score) and vascular risk factors on each biomarker, in normal-appearing white matter and white matter hyperintensities, and performed receiver-operator characteristic curve analysis. Amongst 204 patients (34.3-90.9 years), all biomarkers differed between normal-appearing white matter and white matter hyperintensities ( P < 0.001). In normal-appearing white matter and white matter hyperintensities, mean diffusivity and T1 increased with age ( P < 0.001), all biomarkers varied with white matter hyperintensities burden ( P < 0.001; P = 0.02 signal enhancement slope), but only signal enhancement slope increased with hypertension ( P = 0.028). Fractional anisotropy showed complex age-white matter hyperintensities-tissue interactions; enhancement slope showed white matter hyperintensities-tissue interactions. Mean diffusivity distinguished white matter hyperintensities from normal-appearing white matter best at all ages. Blood-brain barrier leakage increases with hypertension and white matter hyperintensities burden at all ages in normal-appearing white matter and white matter hyperintensities, whereas water mobility and content increase as tissue damage accrues, suggesting that blood-brain barrier leakage mediates small vessel disease-related brain damage.
Collapse
Affiliation(s)
| | | | | | - Paul A Armitage
- 2 Department of Cardiovascular Science, University of Sheffield, Sheffield, UK
| | - Stephen D Makin
- 1 Division of Neuroimaging Sciences, University of Edinburgh, Edinburgh, UK
| | - Anna K Heye
- 1 Division of Neuroimaging Sciences, University of Edinburgh, Edinburgh, UK
| | | | - Eleni Sakka
- 1 Division of Neuroimaging Sciences, University of Edinburgh, Edinburgh, UK
| | - Kirsten Shuler
- 1 Division of Neuroimaging Sciences, University of Edinburgh, Edinburgh, UK
| | - Martin S Dennis
- 1 Division of Neuroimaging Sciences, University of Edinburgh, Edinburgh, UK
| | - Joanna M Wardlaw
- 1 Division of Neuroimaging Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
22
|
Charidimou A, Pantoni L, Love S. The concept of sporadic cerebral small vessel disease: A road map on key definitions and current concepts. Int J Stroke 2016; 11:6-18. [PMID: 26763016 DOI: 10.1177/1747493015607485] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Sporadic cerebral small vessel disease is considered to be among the most common known neuropathological processes and has an important role in stroke, cognitive impairment, and functional loss in elderly persons. The term is now commonly used to describe a range of neuroimaging, neuropathological, and associated clinical features, the pathogenesis of which is largely unclear but that are thought to arise from disease affecting the perforating cerebral arterioles, capillaries, and venules. Modern neuroimaging has revolutionized our understanding of the consequences of small vessels disease on the brain parenchyma, even though small arteries, arterioles, capillaries, and venules are difficult to be directly visualized with current techniques used in clinical practice. In this short review, we focus on histopathological and neuroimaging perspectives, basic definitions, and recent advances in the field.
Collapse
Affiliation(s)
- Andreas Charidimou
- Hemorrhagic Stroke Research Program, Department of Neurology, Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston, USA UCL Institute of Neurology and The National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - Leonardo Pantoni
- NEUROFARBA Department, University of Florence and Stroke Unit and Neurology, Azienda Ospedaliero Universitaria Careggi, Florence, Italy
| | - Seth Love
- Dementia Research Group, Institute of Clinical Neurosciences, University of Bristol, Learning & Research Level 2, Southmead Hospital, Bristol, UK
| |
Collapse
|
23
|
Skrobot OA, Attems J, Esiri M, Hortobágyi T, Ironside JW, Kalaria RN, King A, Lammie GA, Mann D, Neal J, Ben-Shlomo Y, Kehoe PG, Love S. Vascular cognitive impairment neuropathology guidelines (VCING): the contribution of cerebrovascular pathology to cognitive impairment. Brain 2016; 139:2957-2969. [DOI: 10.1093/brain/aww214] [Citation(s) in RCA: 171] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Accepted: 07/03/2016] [Indexed: 01/01/2023] Open
|
24
|
Love S, Miners J. Cerebral Hypoperfusion and the Energy Deficit in Alzheimer's Disease. Brain Pathol 2016; 26:607-17. [PMID: 27327656 PMCID: PMC8028913 DOI: 10.1111/bpa.12401] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 06/21/2016] [Accepted: 05/25/2016] [Indexed: 12/19/2022] Open
Abstract
There is a perfusion deficit in Alzheimer's disease (AD), commencing in the precuneus and spreading to other parts of the cerebral cortex. The deficit anticipates the development of dementia, contributes to brain damage, and is caused by both functional and structural abnormalities of the cerebral vasculature. Most of the abnormalities are probably secondary to the accumulation of Aβ but the consequent hypoperfusion may, in turn, increase Aβ production. In the early stages of disease, abnormalities that cause vasoconstriction predominate. These include cholinergic vascular denervation, inhibition of endothelial nitric oxide synthase, increased production of endothelin-1 production and possibly also of angiotensin II. Patients with AD also have an increased prevalence of structural disease of cerebral microvessels, particularly CAA and capillary damage, and particularly in the later stages of disease these are likely to make an important contribution to the cerebral hypoperfusion. The metabolic abnormalities that cause early vascular dysfunction offer several targets for therapeutic intervention. However, for intervention to be effective it probably needs to be early. Prolonged cerebral hypoperfusion may induce compensatory circulatory changes that are themselves damaging, including hypertension and small vessel disease. This has implications for the use of antihypertensive drugs once there is accumulation of Aβ within the brain.
Collapse
Affiliation(s)
- Seth Love
- Dementia Research Group, Institute of Clinical Neurosciences, School of Clinical SciencesUniversity of BristolBristolUnited Kingom
| | - J.Scott Miners
- Dementia Research Group, Institute of Clinical Neurosciences, School of Clinical SciencesUniversity of BristolBristolUnited Kingom
| |
Collapse
|
25
|
Kapasi A, Schneider JA. Vascular contributions to cognitive impairment, clinical Alzheimer's disease, and dementia in older persons. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1862:878-86. [PMID: 26769363 PMCID: PMC11062590 DOI: 10.1016/j.bbadis.2015.12.023] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 12/29/2015] [Accepted: 12/29/2015] [Indexed: 12/27/2022]
Abstract
There is growing evidence suggesting that vascular pathologies and dysfunction play a critical role in cognitive impairment, clinical Alzheimer's disease, and dementia. Vascular pathologies such as macroinfarcts, microinfarcts, microbleeds, small and large vessel cerebrovascular disease, and white matter disease are common especially in the brains of older persons where they contribute to cognitive impairment and lower the dementia threshold. Vascular dysfunction resulting in decreased cerebral blood flow, and abnormalities in the blood brain barrier may also contribute to the Alzheimer's disease (AD) pathophysiologic process and AD dementia. This review provides a clinical-pathological perspective on the role of vessel disease, vascular brain injury, alterations of the neurovascular unit, and mixed pathologies in the Alzheimer's disease pathophysiologic process and Alzheimer's dementia. This article is part of a Special Issue entitled: Vascular Contributions to Cognitive Impairment and Dementia edited by M. Paul Murphy, Roderick A. Corriveau and Donna M. Wilcock.
Collapse
Affiliation(s)
- A Kapasi
- Rush Alzheimer's Disease Center, Rush University Medical Center, 600 S. Paulina Street, IL 60612, Chicago, USA.
| | - J A Schneider
- Rush Alzheimer's Disease Center, Rush University Medical Center, 600 S. Paulina Street, IL 60612, Chicago, USA.
| |
Collapse
|
26
|
Love S, Miners JS. Cerebrovascular disease in ageing and Alzheimer's disease. Acta Neuropathol 2016; 131:645-58. [PMID: 26711459 PMCID: PMC4835514 DOI: 10.1007/s00401-015-1522-0] [Citation(s) in RCA: 219] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Revised: 12/03/2015] [Accepted: 12/07/2015] [Indexed: 12/14/2022]
Abstract
Cerebrovascular disease (CVD) and Alzheimer’s disease (AD) have more in common than their association with ageing. They share risk factors and overlap neuropathologically. Most patients with AD have Aβ amyloid angiopathy and degenerative changes affecting capillaries, and many have ischaemic parenchymal abnormalities. Structural vascular disease contributes to the ischaemic abnormalities in some patients with AD. However, the stereotyped progression of hypoperfusion in this disease, affecting first the precuneus and cingulate gyrus, then the frontal and temporal cortex and lastly the occipital cortex, suggests that other factors are more important, particularly in early disease. Whilst demand for oxygen and glucose falls in late disease, functional MRI, near infrared spectroscopy to measure the saturation of haemoglobin by oxygen, and biochemical analysis of myelin proteins with differential susceptibility to reduced oxygenation have all shown that the reduction in blood flow in AD is primarily a problem of inadequate blood supply, not reduced metabolic demand. Increasing evidence points to non-structural vascular dysfunction rather than structural abnormalities of vessel walls as the main cause of cerebral hypoperfusion in AD. Several mediators are probably responsible. One that is emerging as a major contributor is the vasoconstrictor endothelin-1 (EDN1). Whilst there is clearly an additive component to the clinical and pathological effects of hypoperfusion and AD, experimental and clinical observations suggest that the disease processes also interact mechanistically at a cellular level in a manner that exacerbates both. The elucidation of some of the mechanisms responsible for hypoperfusion in AD and for the interactions between CVD and AD has led to the identification of several novel therapeutic approaches that have the potential to ameliorate ischaemic damage and slow the progression of neurodegenerative disease.
Collapse
Affiliation(s)
- Seth Love
- Institute of Clinical Neurosciences, School of Clinical Sciences, Learning and Research Level 2, Southmead Hospital, University of Bristol, Bristol, BS10 5NB, UK.
| | - J Scott Miners
- Institute of Clinical Neurosciences, School of Clinical Sciences, Learning and Research Level 2, Southmead Hospital, University of Bristol, Bristol, BS10 5NB, UK
| |
Collapse
|
27
|
Calderón-Garcidueñas L, Reynoso-Robles R, Vargas-Martínez J, Gómez-Maqueo-Chew A, Pérez-Guillé B, Mukherjee PS, Torres-Jardón R, Perry G, Gónzalez-Maciel A. Prefrontal white matter pathology in air pollution exposed Mexico City young urbanites and their potential impact on neurovascular unit dysfunction and the development of Alzheimer's disease. ENVIRONMENTAL RESEARCH 2016; 146:404-17. [PMID: 26829765 DOI: 10.1016/j.envres.2015.12.031] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 11/30/2015] [Accepted: 12/27/2015] [Indexed: 05/20/2023]
Abstract
Millions of urban children are chronically exposed to high concentrations of air pollutants, i.e., fine particulate matter (PM2.5) and ozone, associated with increased risk for Alzheimer's disease. Compared with children living with clear air those in Mexico City (MC) exhibit systemic, brain and intrathecal inflammation, low CSF Aβ42, breakdown of the BBB, attention and short-term memory deficits, prefrontal white matter hyperintensities, damage to epithelial and endothelial barriers, tight junction and neural autoantibodies, and Alzheimer and Parkinson's hallmarks. The prefrontal white matter is a target of air pollution. We examined by light and electron microscopy the prefrontal white matter of MC dogs (n: 15, age 3.17±0.74 years), children and teens (n: 34, age: 12.64±4.2 years) versus controls. Major findings in MC residents included leaking capillaries and small arterioles with extravascular lipids and erythrocytes, lipofuscin in pericytes, smooth muscle and endothelial cells (EC), thickening of cerebrovascular basement membranes with small deposits of amyloid, patchy absence of the perivascular glial sheet, enlarged Virchow-Robin spaces and nanosize particles (20-48nm) in EC, basement membranes, axons and dendrites. Tight junctions, a key component of the neurovascular unit (NVU) were abnormal in MC versus control dogs (χ(2)<0.0001), and white matter perivascular damage was significantly worse in MC dogs (p=0.002). The integrity of the NVU, an interactive network of vascular, glial and neuronal cells is compromised in MC young residents. Characterizing the early NVU damage and identifying biomarkers of neurovascular dysfunction may provide a fresh insight into Alzheimer pathogenesis and open opportunities for pediatric neuroprotection.
Collapse
Affiliation(s)
- Lilian Calderón-Garcidueñas
- The University of Montana, Missoula, MT 59812, USA; Universidad del Valle de México, Mexico City 04850, México.
| | | | | | | | | | | | - Ricardo Torres-Jardón
- Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, Mexico City 04310, México
| | - George Perry
- College of Sciences, University of Texas at San Antonio, San Antonio, TX, USA
| | | |
Collapse
|
28
|
Abstract
PURPOSE OF REVIEW Epidemiological investigations have proposed strict control of vascular risk factors as a strategy to overcome dementia, because of the close interaction between cerebrovascular disease (CVD) and Alzheimer's disease. In light of recent advances in basic, translational, and clinical research in the area, this review focuses on the significance of CVD in Alzheimer's disease pathogenesis. RECENT FINDINGS Alzheimer's disease and CVD share several risk factors, and the coexistence of both pathologies is frequently noted. CVD and subsequent cerebral blood flow reduction would increase amyloid β (Aβ) production by modulating β and γ-secretase. Furthermore, CVD impairs Aβ clearance, which is mainly driven by vascular mediated systems, including active transport across the blood-brain barrier, and perivascular lymphatic/paravascular glymphatic drainage systems. Thus, CVD may disturb homeostasis between Aβ production and clearance, thereby aggravating Alzheimer's disease. Recent translational researches in this field aim to facilitate Aβ clearance. Several candidate drugs are being tested in clinical trials. SUMMARY Compared with Aβ pathology, little is known about the relationship between tau pathology and CVD, although some studies have shown that CVD has an influence on tau pathology. The close interrelationship between Alzheimer's disease and CVD suggests the necessity of the maintenance of cerebrovascular integrity, which may herald a new generation of dementia treatment strategies.
Collapse
|
29
|
Ułamek-Kozioł M, Pluta R, Bogucka-Kocka A, Januszewski S, Kocki J, Czuczwar SJ. Brain ischemia with Alzheimer phenotype dysregulates Alzheimer's disease-related proteins. Pharmacol Rep 2016; 68:582-91. [PMID: 26940197 DOI: 10.1016/j.pharep.2016.01.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 01/12/2016] [Accepted: 01/14/2016] [Indexed: 02/04/2023]
Abstract
There are evidences for the influence of Alzheimer's proteins on postischemic brain injury. We present here an overview of the published evidence underpinning the relationships between β-amyloid peptide, hyperphosphorylated tau protein, presenilins, apolipoproteins, secretases and neuronal survival/death decisions after ischemia and development of postischemic dementia. The interactions of above molecules and their influence and contribution to final ischemic brain degeneration resulting in dementia of Alzheimer phenotype are reviewed. Generation and deposition of β-amyloid peptide and tau protein pathology are essential factors involved in Alzheimer's disease development as well as in postischemic brain dementia. Postischemic injuries demonstrate that ischemia may stimulate pathological amyloid precursor protein processing by upregulation of β- and γ-secretases and therefore are capable of establishing a vicious cycle. Functional postischemic brain recovery is always delayed and incomplete by an injury-related increase in the amount of the neurotoxic C-terminal of amyloid precursor protein and β-amyloid peptide. Finally, we present here the concept that Alzheimer's proteins can contribute to and/or precipitate postischemic brain neurodegeneration including dementia with Alzheimer's phenotype.
Collapse
Affiliation(s)
- Marzena Ułamek-Kozioł
- Laboratory of Ischemic and Neurodegenerative Brain Research, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warszawa, Poland
| | - Ryszard Pluta
- Laboratory of Ischemic and Neurodegenerative Brain Research, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warszawa, Poland.
| | - Anna Bogucka-Kocka
- Department of Pharmaceutical Botany, Medical University of Lublin, Lublin, Poland
| | - Sławomir Januszewski
- Laboratory of Ischemic and Neurodegenerative Brain Research, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warszawa, Poland
| | - Janusz Kocki
- Department of Clinical Genetics, Medical University of Lublin, Lublin, Poland
| | | |
Collapse
|
30
|
Kovacs GG, Ferrer I, Grinberg LT, Alafuzoff I, Attems J, Budka H, Cairns NJ, Crary JF, Duyckaerts C, Ghetti B, Halliday GM, Ironside JW, Love S, Mackenzie IR, Munoz DG, Murray ME, Nelson PT, Takahashi H, Trojanowski JQ, Ansorge O, Arzberger T, Baborie A, Beach TG, Bieniek KF, Bigio EH, Bodi I, Dugger BN, Feany M, Gelpi E, Gentleman SM, Giaccone G, Hatanpaa KJ, Heale R, Hof PR, Hofer M, Hortobágyi T, Jellinger K, Jicha GA, Ince P, Kofler J, Kövari E, Kril JJ, Mann DM, Matej R, McKee AC, McLean C, Milenkovic I, Montine TJ, Murayama S, Lee EB, Rahimi J, Rodriguez RD, Rozemüller A, Schneider JA, Schultz C, Seeley W, Seilhean D, Smith C, Tagliavini F, Takao M, Thal DR, Toledo JB, Tolnay M, Troncoso JC, Vinters HV, Weis S, Wharton SB, White CL, Wisniewski T, Woulfe JM, Yamada M, Dickson DW. Aging-related tau astrogliopathy (ARTAG): harmonized evaluation strategy. Acta Neuropathol 2016; 131:87-102. [PMID: 26659578 DOI: 10.1007/s00401-015-1509-x] [Citation(s) in RCA: 383] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 11/14/2015] [Accepted: 11/14/2015] [Indexed: 12/14/2022]
Abstract
Pathological accumulation of abnormally phosphorylated tau protein in astrocytes is a frequent, but poorly characterized feature of the aging brain. Its etiology is uncertain, but its presence is sufficiently ubiquitous to merit further characterization and classification, which may stimulate clinicopathological studies and research into its pathobiology. This paper aims to harmonize evaluation and nomenclature of aging-related tau astrogliopathy (ARTAG), a term that refers to a morphological spectrum of astroglial pathology detected by tau immunohistochemistry, especially with phosphorylation-dependent and 4R isoform-specific antibodies. ARTAG occurs mainly, but not exclusively, in individuals over 60 years of age. Tau-immunoreactive astrocytes in ARTAG include thorn-shaped astrocytes at the glia limitans and in white matter, as well as solitary or clustered astrocytes with perinuclear cytoplasmic tau immunoreactivity that extends into the astroglial processes as fine fibrillar or granular immunopositivity, typically in gray matter. Various forms of ARTAG may coexist in the same brain and might reflect different pathogenic processes. Based on morphology and anatomical distribution, ARTAG can be distinguished from primary tauopathies, but may be concurrent with primary tauopathies or other disorders. We recommend four steps for evaluation of ARTAG: (1) identification of five types based on the location of either morphologies of tau astrogliopathy: subpial, subependymal, perivascular, white matter, gray matter; (2) documentation of the regional involvement: medial temporal lobe, lobar (frontal, parietal, occipital, lateral temporal), subcortical, brainstem; (3) documentation of the severity of tau astrogliopathy; and (4) description of subregional involvement. Some types of ARTAG may underlie neurological symptoms; however, the clinical significance of ARTAG is currently uncertain and awaits further studies. The goal of this proposal is to raise awareness of astroglial tau pathology in the aged brain, facilitating communication among neuropathologists and researchers, and informing interpretation of clinical biomarkers and imaging studies that focus on tau-related indicators.
Collapse
|
31
|
Wardlaw JM, Valdés Hernández MC, Muñoz-Maniega S. What are white matter hyperintensities made of? Relevance to vascular cognitive impairment. J Am Heart Assoc 2015; 4:001140. [PMID: 26104658 PMCID: PMC4599520 DOI: 10.1161/jaha.114.001140] [Citation(s) in RCA: 603] [Impact Index Per Article: 60.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Joanna M Wardlaw
- Division of Neuroimaging Sciences and Brain Research Imaging Centre, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom (J.M.W., M.C.V.H., S.M.M.)
| | - Maria C Valdés Hernández
- Division of Neuroimaging Sciences and Brain Research Imaging Centre, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom (J.M.W., M.C.V.H., S.M.M.)
| | - Susana Muñoz-Maniega
- Division of Neuroimaging Sciences and Brain Research Imaging Centre, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom (J.M.W., M.C.V.H., S.M.M.)
| |
Collapse
|
32
|
Thomas T, Miners S, Love S. Post-mortem assessment of hypoperfusion of cerebral cortex in Alzheimer's disease and vascular dementia. ACTA ACUST UNITED AC 2015; 138:1059-69. [PMID: 25688080 DOI: 10.1093/brain/awv025] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Perfusion is reduced in the cerebral neocortex in Alzheimer's disease. We have explored some of the mechanisms, by measurement of perfusion-sensitive and disease-related proteins in post-mortem tissue from Alzheimer's disease, vascular dementia and age-matched control brains. To distinguish physiological from pathological reduction in perfusion (i.e. reduction exceeding the decline in metabolic demand), we measured the concentration of vascular endothelial growth factor (VEGF), a protein induced under conditions of tissue hypoxia through the actions of hypoxia-inducible factors, and the myelin associated glycoprotein to proteolipid protein 1 (MAG:PLP1) ratio, which declines in chronically hypoperfused brain tissue. To evaluate possible mechanisms of hypoperfusion, we also measured the levels of amyloid-β40, amyloid-β42, von Willebrand factor (VWF; a measure of microvascular density) and the potent vasoconstrictor endothelin 1 (EDN1); we assayed the activity of angiotensin I converting enzyme (ACE), which catalyses the production of another potent vasoconstrictor, angiotensin II; and we scored the severity of arteriolosclerotic small vessel disease and cerebral amyloid angiopathy, and determined the Braak tangle stage. VEGF was markedly increased in frontal and parahippocampal cortex in Alzheimer's disease but only slightly and not significantly in vascular dementia. In frontal cortex the MAG:PLP1 ratio was significantly reduced in Alzheimer's disease and even more so in vascular dementia. VEGF but not MAG:PLP1 increased with Alzheimer's disease severity, as measured by Braak tangle stage, and correlated with amyloid-β42 and amyloid-β42: amyloid-β40 but not amyloid-β40. Although MAG:PLP1 tended to be lowest in cortex from patients with severe small vessel disease or cerebral amyloid angiopathy, neither VEGF nor MAG:PLP1 correlated significantly with the severity of structural vascular pathology (small vessel disease, cerebral amyloid angiopathy or VWF). However, MAG:PLP1 showed a significant negative correlation with the level of EDN1, which we previously showed to be elevated in the cerebral cortex Alzheimer's disease. These finding are in contrast with the previously demonstrated reduction in EDN1, and positive correlation with MAG:PLP1, in the hypoperfused white matter in Alzheimer's disease. The decline in MAG:PLP1 strongly suggests pathological hypoperfusion of the frontal cortex in Alzheimer's disease. Although severe small vessel disease or cerebral amyloid angiopathy may contribute in some cases, abnormal vascular contractility mediated by EDN1 is likely to be a more important overall contributor. Both amyloid-β accumulation and hypoperfusion are likely to cause the upregulation of VEGF.
Collapse
Affiliation(s)
- Taya Thomas
- Dementia Research Group, University of Bristol, Learning & Research level 1, Southmead Hospital, Bristol BS10 5NB, UK
| | - Scott Miners
- Dementia Research Group, University of Bristol, Learning & Research level 1, Southmead Hospital, Bristol BS10 5NB, UK
| | - Seth Love
- Dementia Research Group, University of Bristol, Learning & Research level 1, Southmead Hospital, Bristol BS10 5NB, UK
| |
Collapse
|
33
|
Love S, Esiri MM. White matter damage in dementia. Introduction. Brain Pathol 2014; 25:33-4. [PMID: 25521174 DOI: 10.1111/bpa.12222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 10/22/2014] [Indexed: 11/29/2022] Open
Affiliation(s)
- Seth Love
- Dementia Research Group, Institute of Clinical Neurosciences, Southmead Hospital, University of Bristol, Bristol, UK
| | | |
Collapse
|