1
|
Helal SA, Gerges SH, Panahi S, Dyck JRB, El-Kadi AOS. Investigating the sexual dimorphism in isoproterenol-induced cardiac hypertrophy in Sprague Dawley rats. Drug Metab Dispos 2025; 53:100035. [PMID: 39891968 DOI: 10.1016/j.dmd.2025.100035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 12/23/2024] [Indexed: 02/03/2025] Open
Abstract
Distinct differences between sexes exist in various cardiovascular diseases. Moreover, there is a significant correlation between the pathogenesis of cardiac hypertrophy (CH) and the metabolites of arachidonic acid (AA) mediated by cytochrome P450 (CYP) enzymes. The potential link between these sex differences, the levels and the activity of CYP enzymes, and their AA-mediated metabolites remains to be elucidated. Male and female Sprague Dawley rats were injected with 1 mg/kg isoproterenol for 7 days to induce CH. Echocardiography was performed before and after the induction of CH. The hypertrophic markers and CYP enzyme levels were analyzed at the gene and protein levels using real-time polymerase chain reaction and Western blot, respectively. Heart microsomal proteins were incubated with AA, and the resulting metabolites were quantified using liquid chromatography-tandem mass spectrometry. Both sexes showed a significant degree of CH, albeit to varying extents, as the echocardiograph, heart weight/tibial length, and left ventricular parameters proved. In addition, the β/α-myosin heavy chain was 2-fold higher in male compared with female rats. Albeit the 20-hydroxyeicosatetraenoic acid (20-HETE) metabolite formation showed no increase in both sexes, the mid-chain HETEs (5- and 15-HETE) were higher in male rats, which paralleled the increase in the gene and protein levels of CYP1B1. The formation rate of the epoxyeicosatrienoic acids was almost unchanged in female-treated rats, while it was significantly decreased in male-treated rats. Our results suggest sexual dimorphism in the isoproterenol-induced CH in rats, specifically on the level of CYP enzymes and their AA-mediated metabolites. SIGNIFICANCE STATEMENT: Sexual dimorphism was observed in rats following isoproterenol-induced cardiac hypertrophy, with males showing a stronger hypertrophic response. This was linked to higher CYP1B1 gene and protein expression in males, along with sex-related differences in many cytochrome P450 enzyme activities and their mediated arachidonic acid metabolites. These findings emphasized the need for targeted, sex-specific therapeutic strategies for the management and treatment of cardiac hypertrophy and other cardiovascular disorders.
Collapse
Affiliation(s)
- Sara A Helal
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada; Faculty of Pharmacy, Department of Biochemistry, Tanta University, Tanta, Egypt
| | - Samar H Gerges
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Sareh Panahi
- Faculty of Medicine & Dentistry, Pediatrics Department, University of Alberta, Edmonton, Alberta, Canada
| | - Jason R B Dyck
- Faculty of Medicine & Dentistry, Pediatrics Department, University of Alberta, Edmonton, Alberta, Canada
| | - Ayman O S El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
2
|
Ma K, Sun L, Jia C, Kui H, Xie J, Zang S, Huang S, Que J, Liu C, Huang J. Potential mechanisms underlying podophyllotoxin-induced cardiotoxicity in male rats: toxicological evidence chain (TEC) concept. Front Pharmacol 2024; 15:1378758. [PMID: 39386032 PMCID: PMC11463157 DOI: 10.3389/fphar.2024.1378758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/31/2024] [Indexed: 10/12/2024] Open
Abstract
Introduction Podophyllotoxin (PPT) is a high-content and high-activity compound extracted from the traditional Chinese medicinal plant Dysosma versipellis (DV) which exhibits various biological activities. However, its severe toxicity limits its use. In clinical settings, patients with DV poisoning often experience adverse reactions when taking large doses in a short period. The heart is an important toxic target organ, so it is necessary to conduct 24-h acute cardiac toxicity studies on PPT to understand its underlying toxicity mechanism. Methods Based on the concept of the toxicological evidence chain (TEC), we utilized targeted metabolomic and transcriptomic analyses to reveal the mechanism of the acute cardiotoxicity of PPT. The manifestation of toxicity in Sprague-Dawley rats, including changes in weight and behavior, served as Injury Phenotype Evidence (IPE). To determine Adverse Outcomes Evidence (AOE), the hearts of the rats were evaluated through histopathological examination and by measuring myocardial enzyme and cardiac injury markers levels. Additionally, transcriptome analysis, metabolome analysis, myocardial enzymes, and cardiac injury markers were integrated to obtain Toxic Event Evidence (TEE) using correlation analysis. Results The experiment showed significant epistaxis, hypokinesia, and hunched posture in PPT group rats within 24 h after exposure to 120 mg/kg PPT. It is found that PPT induced cardiac injury in rats within 24 h, as evidenced by increased serum myocardial enzyme levels, elevated concentrations of cardiac injury biomarkers, and altered cardiac cell morphology, all indicating some degree of cardiac toxicity. Transcriptome analysis revealed that primary altered metabolic pathway was arachidonic acid metabolism after PPT exposure. Cyp2e1, Aldob were positively correlated with differential metabolites, while DHA showed positive correlation with differential genes Fmo2 and Timd2, as well as with heart injury markers BNP and Mb. Conclusion This study comprehensively evaluated cardiac toxicity of PPT and initially revealed the mechanism of PPT-induced acute cardiotoxicity, which involved oxidative stress, apoptosis, inflammatory response, and energy metabolism disorder.
Collapse
Affiliation(s)
- Kaiyue Ma
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Lu Sun
- College of Chinese Materia Medica and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Chunxue Jia
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Hongqian Kui
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jiaqi Xie
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Shidan Zang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Shixin Huang
- Luoyang Key Laboratory of Clinical Multiomics and Translational Medicine, Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Jinfeng Que
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Chuanxin Liu
- Eye Hospital China Academy of Chinese Medical Sciences, Beijing, China
| | - Jianmei Huang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
3
|
Jiang S, Han S, Wang DW. The involvement of soluble epoxide hydrolase in the development of cardiovascular diseases through epoxyeicosatrienoic acids. Front Pharmacol 2024; 15:1358256. [PMID: 38628644 PMCID: PMC11019020 DOI: 10.3389/fphar.2024.1358256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/12/2024] [Indexed: 04/19/2024] Open
Abstract
Arachidonic acid (AA) has three main metabolic pathways: the cycloxygenases (COXs) pathway, the lipoxygenases (LOXs) pathway, and the cytochrome P450s (CYPs) pathway. AA produces epoxyeicosatrienoic acids (EETs) through the CYPs pathway. EETs are very unstable in vivo and can be degraded in seconds to minutes. EETs have multiple degradation pathways, but are mainly degraded in the presence of soluble epoxide hydrolase (sEH). sEH is an enzyme of bifunctional nature, and current research focuses on the activity of its C-terminal epoxide hydrolase (sEH-H), which hydrolyzes the EETs to the corresponding inactive or low activity diol. Previous studies have reported that EETs have cardiovascular protective effects, and the activity of sEH-H plays a role by degrading EETs and inhibiting their protective effects. The activity of sEH-H plays a different role in different cells, such as inhibiting endothelial cell proliferation and migration, but promoting vascular smooth muscle cell proliferation and migration. Therefore, it is of interest whether the activity of sEH-H is involved in the initiation and progression of cardiovascular diseases by affecting the function of different cells through EETs.
Collapse
Affiliation(s)
- Shan Jiang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Siyi Han
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| |
Collapse
|
4
|
Edin ML, Gruzdev A, Bradbury JA, Graves JP, Lih FB, DeGraff LM, Fleming I, Zeldin DC. Disruption of Ephx2 in cardiomyocytes but not endothelial cells improves functional recovery after ischemia-reperfusion in isolated mouse hearts. J Biol Chem 2023; 299:103049. [PMID: 36822325 PMCID: PMC10040734 DOI: 10.1016/j.jbc.2023.103049] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 02/25/2023] Open
Abstract
Cytochromes P450 metabolize arachidonic acid to epoxyeicosatrienoic acids (EETs) which have numerous effects. After cardiac ischemia, EET-induced coronary vasodilation increases delivery of oxygen/nutrients to the myocardium, and EET-induced signaling protects cardiomyocytes against postischemic mitochondrial damage. Soluble epoxide hydrolase 2 (EPHX2) diminishes the benefits of EETs through hydrolysis to less active dihydroxyeicosatrienoic acids. EPHX2 inhibition or genetic disruption improves recovery of cardiac function after ischemia. Immunohistochemical staining revealed EPHX2 expression in cardiomyocytes and some endothelial cells but little expression in cardiac smooth muscle cells or fibroblasts. To determine specific roles of EPHX2 in cardiac cell types, we generated mice with cell-specific disruption of Ephx2 in endothelial cells (Ephx2fx/fx/Tek-cre) or cardiomyocytes (Ephx2fx/fx/Myh6-cre) to compare to global Ephx2-deficient mice (global Ephx2-/-) and WT (Ephx2fx/fx) mice in expression, EET hydrolase activity, and heart function studies. Most cardiac EPHX2 expression and activity is in cardiomyocytes with substantially less activity in endothelial cells. Ephx2fx/fx/Tek-cre hearts have similar EPHX2 expression, hydrolase activity, and postischemic cardiac function as control Ephx2fx/fx hearts. However, Ephx2fx/fx/Myh6-cre hearts were similar to global Ephx2-/- hearts with significantly diminished EPHX2 expression, decreased hydrolase activity, and enhanced postischemic cardiac function compared to Ephx2fx/fx hearts. During reperfusion, Ephx2fx/fx/Myh6-cre hearts displayed increased ERK activation compared to Ephx2fx/fx hearts, which could be reversed by EEZE treatment. EPHX2 did not regulate coronary vasodilation in this model. We conclude that EPHX2 is primarily expressed in cardiomyocytes where it regulates EET hydrolysis and postischemic cardiac function, whereas endothelial EPHX2 does not play a significant role in these processes.
Collapse
Affiliation(s)
- Matthew L Edin
- Division of Intramural Research, National Institute for Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Artiom Gruzdev
- Division of Intramural Research, National Institute for Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - J Alyce Bradbury
- Division of Intramural Research, National Institute for Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Joan P Graves
- Division of Intramural Research, National Institute for Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Fred B Lih
- Division of Intramural Research, National Institute for Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Laura M DeGraff
- Division of Intramural Research, National Institute for Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Ingrid Fleming
- Institute for Vascular Signaling, Centre of Molecular Medicine, Goethe University, Frankfurt am Main, Germany
| | - Darryl C Zeldin
- Division of Intramural Research, National Institute for Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA.
| |
Collapse
|
5
|
Liu J, Li X, Ding L, Li W, Niu X, Gao D. GRK2 participation in cardiac hypertrophy induced by isoproterenol through the regulation of Nrf2 signaling and the promotion of NLRP3 inflammasome and oxidative stress. Int Immunopharmacol 2023; 117:109957. [PMID: 37012864 DOI: 10.1016/j.intimp.2023.109957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/23/2023] [Accepted: 02/26/2023] [Indexed: 03/17/2023]
Abstract
OBJECTIVE In cases of heart failure, cardiac hypertrophy may be caused by the upregulation of G-protein-coupled receptor kinase 2 (GRK2). Both NLRP3 inflammasome and oxidative stress contribute to cardiovascular disease. In this study, we clarified the effect of GRK2 on cardiac hypertrophy in H9c2 cells induced by isoproterenol (ISO) and examined the underlying mechanisms. METHODS We randomly categorized H9c2 cells into five groups: an ISO group, a paroxetine plus ISO group, a GRK2 small-interfering RNA (siRNA) plus ISO group, a GRK2 siRNA combined with ML385 plus ISO group, and a control group. To determine the effect of GRK2 on cardiac hypertrophy induced by ISO, we carried out CCK8 assays, RT-PCR, TUNEL staining, ELISA assay, DCFH-DA staining, immunofluorescence staining, and western blotting. RESULTS By using paroxetine or siRNA to inhibit GRK2, we significantly decreased cell viability; reduced the mRNA levels of ANP, BNP, and β-MHC; and limited the apoptosis rate and protein levels of cleaved caspase-3 and cytochrome c in H9c2 cells treated with ISO. We also found that oxidative stress induced by ISO could be mitigated with paroxetine or GRK2 siRNA. This result was validated by decreased activities of the antioxidant enzymes CAT, GPX, and SOD and increased MDA levels and ROS production. We observed that the protein expression of NLRP3, ASC, and caspase-1 and the intensity of NLRP3 could be inhibited by paroxetine or GRK2 siRNA. Both paroxetine and GRK2 siRNA were able to abolish the increase in GRK2 expression induced by ISO. They also could increase protein levels of HO-1, nuclear Nrf2, and Nrf2 immunofluorescence intensity; however, they could not change the protein level of cytoplasmic Nrf2. By combining treatment with ML385, we were able to reverse GRK2 inhibition on H9c2 cells treated with ISO. CONCLUSION According to the results of this study, GRK2 participated in cardiac hypertrophy induced by ISO by mitigating NLRP3 inflammasome and oxidative stress through the signaling of Nrf2 in H9c2 cells.
Collapse
Affiliation(s)
- Jing Liu
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710068, Shaanxi Province, China; Department of Cardiology, Tangdu Hospital, Air Force Medical University, Xi'an 710038, Shaanxi Province, China
| | - Xiaoli Li
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710068, Shaanxi Province, China
| | - Lu Ding
- Department of Cardiology, Tangdu Hospital, Air Force Medical University, Xi'an 710038, Shaanxi Province, China
| | - Wei Li
- Department of Cardiology, Xi'an International Medical Center Hospital, Xi'an 710100, Shaanxi Province, China
| | - Xiaolin Niu
- Department of Cardiology, Tangdu Hospital, Air Force Medical University, Xi'an 710038, Shaanxi Province, China.
| | - Dengfeng Gao
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710068, Shaanxi Province, China.
| |
Collapse
|
6
|
Classes of Lipid Mediators and Their Effects on Vascular Inflammation in Atherosclerosis. Int J Mol Sci 2023; 24:ijms24021637. [PMID: 36675152 PMCID: PMC9863938 DOI: 10.3390/ijms24021637] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/06/2023] [Accepted: 01/08/2023] [Indexed: 01/18/2023] Open
Abstract
It is commonly believed that the inactivation of inflammation is mainly due to the decay or cessation of inducers. In reality, in connection with the development of atherosclerosis, spontaneous decay of inducers is not observed. It is now known that lipid mediators originating from polyunsaturated fatty acids (PUFAs), which are important constituents of all cell membranes, can act in the inflamed tissue and bring it to resolution. In fact, PUFAs, such as arachidonic acid (AA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), are precursors to both pro-inflammatory and anti-inflammatory compounds. In this review, we describe the lipid mediators of vascular inflammation and resolution, and their biochemical activity. In addition, we highlight data from the literature that often show a worsening of atherosclerotic disease in subjects deficient in lipid mediators of inflammation resolution, and we also report on the anti-proteasic and anti-thrombotic properties of these same lipid mediators. It should be noted that despite promising data observed in both animal and in vitro studies, contradictory clinical results have been observed for omega-3 PUFAs. Many further studies will be required in order to clarify the observed conflicts, although lifestyle habits such as smoking or other biochemical factors may often influence the normal synthesis of lipid mediators of inflammation resolution.
Collapse
|
7
|
Lipid mediators generated by the cytochrome P450—Epoxide hydrolase pathway. ADVANCES IN PHARMACOLOGY 2023; 97:327-373. [DOI: 10.1016/bs.apha.2022.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
8
|
ElKhatib MAW, Isse FA, El-Kadi AOS. Effect of inflammation on cytochrome P450-mediated arachidonic acid metabolism and the consequences on cardiac hypertrophy. Drug Metab Rev 2022; 55:50-74. [PMID: 36573379 DOI: 10.1080/03602532.2022.2162075] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The incidence of heart failure (HF) is generally preceded by cardiac hypertrophy (CH), which is the enlargement of cardiac myocytes in response to stress. During CH, the metabolism of arachidonic acid (AA), which is present in the cell membrane phospholipids, is modulated. Metabolism of AA gives rise to hydroxyeicosatetraenoic acids (HETEs) and epoxyeicosatrienoic acids (EETs) via cytochrome P450 (CYP) ω-hydroxylases and CYP epoxygenases, respectively. A plethora of studies demonstrated the involvement of CYP-mediated AA metabolites in the pathogenesis of CH. Also, inflammation is known to be a characteristic hallmark of CH. In this review, our aim is to highlight the impact of inflammation on CYP-derived AA metabolites and CH. Inflammation is shown to modulate the expression of various CYP ω-hydroxylases and CYP epoxygenases and their respective metabolites in the heart. In general, HETEs such as 20-HETE and mid-chain HETEs are pro-inflammatory, while EETs are characterized by their anti-inflammatory and cardioprotective properties. Several mechanisms are implicated in inflammation-induced CH, including the modulation of NF-κB and MAPK. This review demonstrated the inflammatory modulation of cardiac CYPs and their metabolites in the context of CH and the anti-inflammatory strategies that can be employed in the treatment of CH and HF.
Collapse
Affiliation(s)
| | - Fadumo Ahmed Isse
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
| | | |
Collapse
|
9
|
Zhang Y, Gao L, Yao B, Huang S, Zhang Y, Liu J, Liu Z, Wang X. Role of epoxyeicosatrienoic acids in cardiovascular diseases and cardiotoxicity of drugs. Life Sci 2022; 310:121122. [DOI: 10.1016/j.lfs.2022.121122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 11/09/2022]
|
10
|
Verma K, Paliwal S, Sharma S. Therapeutic Potential of Reserpine in Metabolic Syndrome: An Evidence Based Study. Pharmacol Res 2022; 186:106531. [PMID: 36336214 DOI: 10.1016/j.phrs.2022.106531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/16/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022]
Abstract
Reserpine is as old as the scientific diagnosis of hypertension. For many years' clinicians have used it for the treatment of high blood pressure, but with the passage of time and introduction of new anti-hypertensive drugs, the usage of reserpine has gone down drastically most probably due to poorly understood mechanism of action and multiple misleading adverse effects precisely due to high dosing of reserpine. With an aim to elucidate the specific mechanism of action, we screened reserpine against various targets associated with regulation of blood pressure. Surprisingly reserpine showed remarkable inhibitory potential for soluble epoxide hydrolase an enzyme responsible for pathophysiology of not only hypertension but also hyperlipidemia, diabetes and inflammation collectively known as metabolic syndrome. The in-silico, in-vitro and in-vivo results showed that reserpine has the ability to treat metabolic syndrome effectively by inhibiting soluble epoxide hydrolase.
Collapse
|
11
|
Shi Z, He Z, Wang DW. CYP450 Epoxygenase Metabolites, Epoxyeicosatrienoic Acids, as Novel Anti-Inflammatory Mediators. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123873. [PMID: 35744996 PMCID: PMC9230517 DOI: 10.3390/molecules27123873] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/11/2022] [Accepted: 06/14/2022] [Indexed: 12/25/2022]
Abstract
Inflammation plays a crucial role in the initiation and development of a wide range of systemic illnesses. Epoxyeicosatrienoic acids (EETs) are derived from arachidonic acid (AA) metabolized by CYP450 epoxygenase (CYP450) and are subsequently hydrolyzed by soluble epoxide hydrolase (sEH) to dihydroxyeicosatrienoic acids (DHETs), which are merely biologically active. EETs possess a wide range of established protective effects on many systems of which anti-inflammatory actions have gained great interest. EETs attenuate vascular inflammation and remodeling by inhibiting activation of endothelial cells and reducing cross-talk between inflammatory cells and blood vessels. EETs also process direct and indirect anti-inflammatory properties in the myocardium and therefore alleviate inflammatory cardiomyopathy and cardiac remodeling. Moreover, emerging studies show the substantial roles of EETs in relieving inflammation under other pathophysiological environments, such as diabetes, sepsis, lung injuries, neurodegenerative disease, hepatic diseases, kidney injury, and arthritis. Furthermore, pharmacological manipulations of the AA-CYP450-EETs-sEH pathway have demonstrated a contribution to the alleviation of numerous inflammatory diseases, which highlight a therapeutic potential of drugs targeting this pathway. This review summarizes the progress of AA-CYP450-EETs-sEH pathway in regulation of inflammation under different pathological conditions and discusses the existing challenges and future direction of this research field.
Collapse
Affiliation(s)
- Zeqi Shi
- Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiological Disorders, Wuhan 430030, China;
| | - Zuowen He
- Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiological Disorders, Wuhan 430030, China;
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Correspondence: (Z.H.); (D.W.W.)
| | - Dao Wen Wang
- Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiological Disorders, Wuhan 430030, China;
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Correspondence: (Z.H.); (D.W.W.)
| |
Collapse
|
12
|
He Z, Wang DW. The roles of eicosanoids in myocardial diseases. ADVANCES IN PHARMACOLOGY 2022; 97:167-200. [DOI: 10.1016/bs.apha.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
13
|
Epoxyeicosatrienoic Acids and Fibrosis: Recent Insights for the Novel Therapeutic Strategies. Int J Mol Sci 2021; 22:ijms221910714. [PMID: 34639055 PMCID: PMC8509622 DOI: 10.3390/ijms221910714] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 12/27/2022] Open
Abstract
Organ fibrosis often ends in eventual organ failure and leads to high mortality. Although researchers have identified many effector cells and molecular pathways, there are few effective therapies for fibrosis to date and the underlying mechanism needs to be examined and defined further. Epoxyeicosatrienoic acids (EETs) are endogenous lipid metabolites of arachidonic acid (ARA) synthesized by cytochrome P450 (CYP) epoxygenases. EETs are rapidly metabolized primarily via the soluble epoxide hydrolase (sEH) pathway. The sEH pathway produces dihydroxyeicosatrienoic acids (DHETs), which have lower activity. Stabilized or increased EETs levels exert several protective effects, including pro-angiogenesis, anti-inflammation, anti-apoptosis, and anti-senescence. Currently, intensive investigations are being carried out on their anti-fibrotic effects in the kidney, heart, lung, and liver. The present review provides an update on how the stabilized or increased production of EETs is a reasonable theoretical basis for fibrosis treatment.
Collapse
|
14
|
CYP1B1 as a therapeutic target in cardio-oncology. Clin Sci (Lond) 2021; 134:2897-2927. [PMID: 33185690 PMCID: PMC7672255 DOI: 10.1042/cs20200310] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/12/2020] [Accepted: 10/28/2020] [Indexed: 02/06/2023]
Abstract
Cardiovascular complications have been frequently reported in cancer patients and survivors, mainly because of various cardiotoxic cancer treatments. Despite the known cardiovascular toxic effects of these treatments, they are still clinically used because of their effectiveness as anti-cancer agents. In this review, we discuss the growing body of evidence suggesting that inhibition of the cytochrome P450 1B1 enzyme (CYP1B1) can be a promising therapeutic strategy that has the potential to prevent cancer treatment-induced cardiovascular complications without reducing their anti-cancer effects. CYP1B1 is an extrahepatic enzyme that is expressed in cardiovascular tissues and overexpressed in different types of cancers. A growing body of evidence is demonstrating a detrimental role of CYP1B1 in both cardiovascular diseases and cancer, via perturbed metabolism of endogenous compounds, production of carcinogenic metabolites, DNA adduct formation, and generation of reactive oxygen species (ROS). Several chemotherapeutic agents have been shown to induce CYP1B1 in cardiovascular and cancer cells, possibly via activating the Aryl hydrocarbon Receptor (AhR), ROS generation, and inflammatory cytokines. Induction of CYP1B1 is detrimental in many ways. First, it can induce or exacerbate cancer treatment-induced cardiovascular complications. Second, it may lead to significant chemo/radio-resistance, undermining both the safety and effectiveness of cancer treatments. Therefore, numerous preclinical studies demonstrate that inhibition of CYP1B1 protects against chemotherapy-induced cardiotoxicity and prevents chemo- and radio-resistance. Most of these studies have utilized phytochemicals to inhibit CYP1B1. Since phytochemicals have multiple targets, future studies are needed to discern the specific contribution of CYP1B1 to the cardioprotective and chemo/radio-sensitizing effects of these phytochemicals.
Collapse
|
15
|
Lai J, Chen C. The Role of Epoxyeicosatrienoic Acids in Cardiac Remodeling. Front Physiol 2021; 12:642470. [PMID: 33716791 PMCID: PMC7943617 DOI: 10.3389/fphys.2021.642470] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 01/25/2021] [Indexed: 12/12/2022] Open
Abstract
Epoxyeicosatrienoic acids (EETs) are metabolites of arachidonic acid by cytochrome P450 (CYP) epoxygenases, which include four regioisomers: 5,6-EET, 8,9-EET, 11,12-EET, and 14,15-EET. Each of them possesses beneficial effects against inflammation, fibrosis, and apoptosis, which could combat cardiovascular diseases. Numerous studies have demonstrated that elevation of EETs by overexpression of CYP2J2, inhibition of sEH, or treatment with EET analogs showed protective effects in various cardiovascular diseases, including hypertension, myocardial infarction, and heart failure. As is known to all, cardiac remodeling is the major pathogenesis of cardiovascular diseases. This review will begin with the introduction of EETs and their protective effects in cardiovascular diseases. In the following, the roles of EETs in cardiac remodeling, with a particular emphasis on myocardial hypertrophy, apoptosis, fibrosis, inflammation, and angiogenesis, will be summarized. Finally, it is suggested that upregulation of EETs is a potential therapeutic strategy for cardiovascular diseases. The EET-related drug development against cardiac remodeling is also discussed, including the overexpression of CYP2J2, inhibition of sEH, and the analogs of EET.
Collapse
Affiliation(s)
- Jinsheng Lai
- Division of Cardiology, Tongji Hospital, Tongji Medical College and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, China
| | - Chen Chen
- Division of Cardiology, Tongji Hospital, Tongji Medical College and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
16
|
Wen J, Shen J, Zhou Y, Zhao X, Dai Z, Jin Y. Pyrroloquinoline quinone attenuates isoproterenol hydrochloride‑induced cardiac hypertrophy in AC16 cells by inhibiting the NF‑κB signaling pathway. Int J Mol Med 2020; 45:873-885. [PMID: 31922230 PMCID: PMC7015139 DOI: 10.3892/ijmm.2020.4463] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 12/11/2019] [Indexed: 12/20/2022] Open
Abstract
Pyrroloquinoline quinone (PQQ) is a naturally occurring redox co-factor that functions as an essential nutrient and antioxidant, and has been reported to exert potent anti-inflammatory effects. However, the therapeutic potential of PQQ for isoproterenol hydrochloride (Iso)-induced cardiac hypertrophy has not yet been explored, at least to the best of our knowledge. In the present study, the anti-inflammatory effects of PQQ were investigated in Iso-treated AC16 cells, a myocardial injury cellular model characterized by an increase in the apparent surface area of the cells and the activation of intracellular cardiac hypertrophy-associated proteins. The results revealed that pre-treatment with PQQ significantly inhibited the expression of cardiac hypertrophy marker proteins, such as atrial natriuretic peptide, brain natriuretic peptide and β-myosin heavy chain. PQQ also inhibited the activation of the nuclear factor (NF)-κB signaling pathway in Iso-treated AC16 cells, thus inhibiting the nuclear translocation of NF-κB and reducing the phosphorylation levels of p65. On the whole, the findings of this study suggest that PQQ may be a promising therapeutic agent for effectively reversing the progression of cardiac hypertrophy.
Collapse
Affiliation(s)
- Junru Wen
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Junwei Shen
- Key Laboratory of Arrhythmias, Ministry of Education, Tongji University Affiliated EAST Hospital, Shanghai 200120, P.R. China
| | - Yajie Zhou
- Graduate School, Guizhou Medical University, Guiyang, Guizhou 550025, P.R. China
| | - Xianhui Zhao
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Zhensheng Dai
- Department of Oncology, Shanghai Pudong Hospital Affiliated to Fudan University, Shanghai 200090, P.R. China
| | - Yueling Jin
- Department of Science and Technology, Shanghai University of Medicine and Health Sciences, Shanghai 200237, P.R. China
| |
Collapse
|
17
|
Dos Santos LRB, Fleming I. Role of cytochrome P450-derived, polyunsaturated fatty acid mediators in diabetes and the metabolic syndrome. Prostaglandins Other Lipid Mediat 2019; 148:106407. [PMID: 31899373 DOI: 10.1016/j.prostaglandins.2019.106407] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 11/14/2019] [Accepted: 12/23/2019] [Indexed: 12/17/2022]
Abstract
Over the last decade, cases of metabolic syndrome and type II diabetes have increased exponentially. Exercise and ω-3 polyunsaturated fatty acid (PUFA)-enriched diets are usually prescribed but no therapy is effectively able to restore the impaired glucose metabolism, hypertension, and atherogenic dyslipidemia encountered by diabetic patients. PUFAs are metabolized by different enzymes into bioactive metabolites with anti- or pro-inflammatory activity. One important class of PUFA metabolizing enzymes are the cytochrome P450 (CYP) enzymes that can generate a series of bioactive products, many of which have been attributed protective/anti-inflammatory and insulin-sensitizing effects in animal models. PUFA epoxides are, however, further metabolized by the soluble epoxide hydrolase (sEH) to fatty acid diols. The biological actions of the latter are less well understood but while low concentrations may be biologically important, higher concentrations of diols derived from linoleic acid and docosahexaenoic acid have been linked with inflammation. One potential application for sEH inhibitors is in the treatment of diabetic retinopathy where sEH expression and activity is elevated as are levels of a diol of docosahexaenoic acid that can induce the destabilization of the retina vasculature.
Collapse
Affiliation(s)
- Laila R B Dos Santos
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt, Germany; German Centre for Cardiovascular Research (DZHK) Partner Site Rhein-Main, Germany
| | - Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt, Germany; German Centre for Cardiovascular Research (DZHK) Partner Site Rhein-Main, Germany.
| |
Collapse
|
18
|
Zhang Y, Wang S, Huang Y, Yang K, Liu Y, Bi X, Liu C, Xiong J, Zhang B, Zhao J, Nie L. Inhibition of CYP1B1 ameliorates cardiac hypertrophy induced by uremic toxin. Mol Med Rep 2019; 21:393-404. [PMID: 31746392 DOI: 10.3892/mmr.2019.10810] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 10/07/2019] [Indexed: 11/06/2022] Open
Abstract
Cardiovascular disease is the predominant complication and leading cause of mortality in patients with chronic kidney disease (CKD). Previous studies have revealed that uremic toxins, including indoxyl sulfate (IS), participate in cardiac hypertrophy. As a heme‑thiolate monooxygenase, cytochrome P450 family 1 subfamily B member 1 (CYP1B1) is able to metabolize arachidonic acid into hydroxyeicosatetraenoic acids, which are thought to serve a central function in the pathophysiology of the cardiovascular system. However, whether CYP1B1 is involved in cardiac hypertrophy induced by uremic toxins remains unknown. The present study revealed that the expression of the CYP1B1 gene was significantly (P<0.05, CKD or IS vs. control) upregulated by CKD serum or IS at the transcriptional and translational level. Furthermore, IS treatment resulted in the nuclear translocation of aryl hydrocarbon receptor (AhR), an endogenous ligand of IS. Binding of AhR in the promoter region of CYP1B1 was confirmed using a chromatin immunoprecipitation assay in the cardiomyoblast H9c2 cell line. In addition, knockdown of AhR or CYP1B1 reversed the production of cardiac hypertrophy markers. The in vivo injection of a CYP1B1 inhibitor significantly (P<0.05, Inhibitor vs. control) attenuated cardiac hypertrophy in mice. The data from the present study clearly demonstrated that CYP1B1 was involved in cardiac hypertrophy induced by uremic toxins.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Nephrology, The Key Laboratory for The Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, P.R. China
| | - Shaobo Wang
- Department of Nephrology, The Key Laboratory for The Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, P.R. China
| | - Yinghui Huang
- Department of Nephrology, The Key Laboratory for The Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, P.R. China
| | - Ke Yang
- Department of Nephrology, The Key Laboratory for The Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, P.R. China
| | - Yong Liu
- Department of Nephrology, The Key Laboratory for The Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, P.R. China
| | - Xianjin Bi
- Department of Nephrology, The Key Laboratory for The Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, P.R. China
| | - Chi Liu
- Department of Nephrology, The Key Laboratory for The Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, P.R. China
| | - Jiachuan Xiong
- Department of Nephrology, The Key Laboratory for The Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, P.R. China
| | - Bo Zhang
- Department of Nephrology, The Key Laboratory for The Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, P.R. China
| | - Jinghong Zhao
- Department of Nephrology, The Key Laboratory for The Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, P.R. China
| | - Ling Nie
- Department of Nephrology, The Key Laboratory for The Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, P.R. China
| |
Collapse
|
19
|
Role of Cytochrome p450 and Soluble Epoxide Hydrolase Enzymes and Their Associated Metabolites in the Pathogenesis of Diabetic Cardiomyopathy. J Cardiovasc Pharmacol 2019; 74:235-245. [DOI: 10.1097/fjc.0000000000000707] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
20
|
Zhang H, Zhang K, Liang J, Yan W, Wu F, Xu W, Wu Z, Chen Y, Pan R, Wu G. Soluble epoxide hydrolase inhibitor, TUPS, attenuates isoproterenol/angiotensin II-induced cardiac hypertrophy through mammalian target of rapamycin-mediated autophagy inhibition. ACTA ACUST UNITED AC 2019; 71:1291-1300. [PMID: 31215026 DOI: 10.1111/jphp.13113] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 04/22/2019] [Indexed: 11/28/2022]
Abstract
OBJECTIVES To investigate the potential role and mechanism of TUPS, a soluble epoxide hydrolase inhibitor, in cardiac hypertrophy. METHODS Rat and H9C2 cell models of cardiac hypertrophy were induced by isoproterenol and angiotensin II, respectively, followed by TUPS treatment. The expression of hypertrophic markers, ANP and BNP, was determined by quantitative real-time PCR. The abundance of Beclin-1, LC3, p-AMPK and phosphorylated-mammalian target of rapamycin (p-mTOR) proteins was analysed by Western blot and immunohistocytology. Cell morphology and viability were evaluated by F-actin staining and MTS. H9C2 cells were transfected with GFP-LC3 to evaluate autophagy flux. KEY FINDINGS TUPS significantly inhibited rat heart size, heart weight-to-body weight ratio, heart wall thickness, hypertrophic H9C2 cell swelling and viability suppression as well as the expression of ANP and BNP genes in hypertrophic models. In addition, autophagic markers Beclin-1 and LC3 were elevated in both cellular and animal models, which were suppressed by TUPS, with corresponding changes of autophagy flux. The abundance of p-AMPK was increased, while p-mTOR was decreased in hypertrophic cells, which were abolished by TUPS. Rapamycin decreased p-mTOR level, increased Beclin-1 and LC3 expression and induced cell size enlargement and cell viability inhibition in hypertrophic H9C2 cells treated with TUPS. CONCLUSIONS TUPS inhibits cardiac hypertrophy by regulating mTOR/autophagy axis.
Collapse
Affiliation(s)
- Huanji Zhang
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Kun Zhang
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jianwen Liang
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Wen Yan
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Fensheng Wu
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Wenmin Xu
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Zhiwen Wu
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yixi Chen
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Rongquan Pan
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Guifu Wu
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
21
|
Eladwy RA, Mantawy EM, El-Bakly WM, Fares M, Ramadan LA, Azab SS. Mechanistic insights to the cardioprotective effect of blueberry nutraceutical extract in isoprenaline-induced cardiac hypertrophy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 51:84-93. [PMID: 30466632 DOI: 10.1016/j.phymed.2018.10.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 09/30/2018] [Accepted: 10/09/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Lowbush blueberry extract (Vaccinium angustifolium) is abundant with polyphenols (such as chlorogenic acid) with high antioxidant profile. It has received great interest due to its protective role in many disorders such as heart diseases and neurological disorders. HYPOTHESIS We hypothesized that blueberry leaf extract might have a protective effect against cardiac hypertrophy via suppressing oxidative stress, inflammation and fibrosis. METHOD Blueberry leaf nutraceutical extract was administered orally to male albino rats at three different doses (25, 50 and 100 mg/kg/day of the extract, equivalent to 3.4, 6.8 and 13.6 mg of chlorogenic acid, respectively) once daily for 28 consecutive days against a dose of isoprenaline (ISO) (5 mg/kg) for 14 days. RESULTS The results indicated that isoprenaline induced significant myocardial damage, characterized by conduction abnormalities, increased heart-to-body weight ratio, increased serum CKMB, AST, c-TnI and LDH. Pretreatment with blueberry extract at a dose of 50 mg/kg/day (equivalent to 6.8 mg chlorogenic acid) protected against ISO-induced ECG changes, leakage of cardiac enzymes and histopathological changes. Also, ISO caused significant glutathione depletion, lipid peroxidation and reduction in activities of antioxidant catalase enzyme. These effects were prevented by pretreatment with blueberry extract. Additionally, ISO elicited inflammatory effects by increasing the expression of NF-κB, COX-2, TNF-α and IL-6 while pretreatment with blueberry extract significantly inhibited these inflammatory responses. Furthermore, ISO induced fibrosis by increasing the level of TGF-β while pretreatment with blueberry extract significantly reduced it. CONCLUSION These findings indicate that blueberry leaf extract possessed a potent protective effect against ISO-induced cardiac hypertrophy via suppressing oxidative stress, inflammation and fibrosis.
Collapse
Affiliation(s)
- Radwa A Eladwy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo 11829, Egypt
| | - Eman M Mantawy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| | - Wesam M El-Bakly
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt
| | - Mohamed Fares
- School of Chemistry, University of Wollongong, Wollongong 2522, New South Wales, Australia
| | - Laila A Ramadan
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo 11829, Egypt
| | - Samar S Azab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt.
| |
Collapse
|
22
|
Solanki M, Pointon A, Jones B, Herbert K. Cytochrome P450 2J2: Potential Role in Drug Metabolism and Cardiotoxicity. Drug Metab Dispos 2018; 46:1053-1065. [PMID: 29695613 DOI: 10.1124/dmd.117.078964] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 04/19/2018] [Indexed: 02/13/2025] Open
Abstract
Drug-induced cardiotoxicity may be modulated by endogenous arachidonic acid (AA)-derived metabolites known as epoxyeicosatrienoic acids (EETs) synthesized by cytochrome P450 2J2 (CYP2J2). The biologic effects of EETs, including their protective effects on inflammation and vasodilation, are diverse because, in part, of their ability to act on a variety of cell types. In addition, CYP2J2 metabolizes both exogenous and endogenous substrates and is involved in phase 1 metabolism of a variety of structurally diverse compounds, including some antihistamines, anticancer agents, and immunosuppressants. This review addresses current understanding of the role of CYP2J2 in the metabolism of xenobiotics and endogenous AA, focusing on the effects on the cardiovascular system. In particular, we have promoted here the hypothesis that CYP2J2 influences drug-induced cardiotoxicity through potentially conflicting effects on the production of protective EETs and the metabolism of drugs.
Collapse
Affiliation(s)
- Meetal Solanki
- Department of Cardiovascular Sciences, University of Leicester, Clinical Sciences, Glenfield Hospital, Leicester (M.S., K.H.), and Safety and ADME Translational Sciences Department, Drug Safety and Metabolism (A.P.), and DMPK, Oncology, IMED Biotech Unit (B.J.), AstraZeneca, Cambridge, United Kingdom
| | - Amy Pointon
- Department of Cardiovascular Sciences, University of Leicester, Clinical Sciences, Glenfield Hospital, Leicester (M.S., K.H.), and Safety and ADME Translational Sciences Department, Drug Safety and Metabolism (A.P.), and DMPK, Oncology, IMED Biotech Unit (B.J.), AstraZeneca, Cambridge, United Kingdom
| | - Barry Jones
- Department of Cardiovascular Sciences, University of Leicester, Clinical Sciences, Glenfield Hospital, Leicester (M.S., K.H.), and Safety and ADME Translational Sciences Department, Drug Safety and Metabolism (A.P.), and DMPK, Oncology, IMED Biotech Unit (B.J.), AstraZeneca, Cambridge, United Kingdom
| | - Karl Herbert
- Department of Cardiovascular Sciences, University of Leicester, Clinical Sciences, Glenfield Hospital, Leicester (M.S., K.H.), and Safety and ADME Translational Sciences Department, Drug Safety and Metabolism (A.P.), and DMPK, Oncology, IMED Biotech Unit (B.J.), AstraZeneca, Cambridge, United Kingdom
| |
Collapse
|
23
|
Abstract
Recent data demonstrated the role of CYP1B1 in cardiovascular disease. It was, therefore, necessary to examine whether the inhibition of CYP1B1 and hence inhibiting the formation of its metabolites, using 2,4,3',5'-tetramethoxystilbene (TMS), would have a cardioprotective effect against angiotensin II (Ang II)-induced cardiac hypertrophy. For this purpose, male Sprague Dawley rats were treated with Ang II with or without TMS (300 μg/kg every third day i.p.). Thereafter, cardiac hypertrophy and the formation of mid-chain HETEs and arachidonic acid were assessed. In vitro, RL-14 cells were treated with Ang II (10 μM) in the presence and absence of TMS (0.5 μM). Then, reactive oxygen species, mitogen-activated protein kinase phosphorylation levels, and nuclear factor-kappa B-binding activity were determined. Our results demonstrated that TMS protects against Ang II-induced cardiac hypertrophy as indicated by the improvement in cardiac functions shown by the echocardiography as well as by reversing the increase in heart weight to tibial length ratio caused by Ang II. In addition, the cardioprotective effect of TMS was associated with a significant decrease in cardiac mid-chain HETEs levels. Mechanistically, TMS inhibited reactive oxygen species formation, the phosphorylation of ERK1/2, p38 mitogen-activated protein kinase, and the binding of p65 NF-κB.
Collapse
|
24
|
Maayah ZH, Abdelhamid G, Elshenawy OH, El-Sherbeni AA, Althurwi HN, McGinn E, Dawood D, Alammari AH, El-Kadi AOS. The Role of Soluble Epoxide Hydrolase Enzyme on Daunorubicin-Mediated Cardiotoxicity. Cardiovasc Toxicol 2017; 18:268-283. [DOI: 10.1007/s12012-017-9437-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
25
|
Jamieson KL, Endo T, Darwesh AM, Samokhvalov V, Seubert JM. Cytochrome P450-derived eicosanoids and heart function. Pharmacol Ther 2017; 179:47-83. [PMID: 28551025 DOI: 10.1016/j.pharmthera.2017.05.005] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
26
|
Liu JY, Morisseau C, Huang H, Hammock BD. Screening of soluble epoxide hydrolase inhibitory ingredients from traditional Chinese medicines for anti-inflammatory use. JOURNAL OF ETHNOPHARMACOLOGY 2016; 194:475-482. [PMID: 27702689 PMCID: PMC5584568 DOI: 10.1016/j.jep.2016.09.044] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 09/12/2016] [Accepted: 09/21/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Inhibition of soluble epoxide hydrolase (sEH) has been extensively reported to be anti-inflammatory in multiple animal models. Some anti-inflammatory traditional Chinese medicines (TCMs) and a few natural compounds were also found to be inhibitory to sEH in vitro. AIM OF THE STUDY To determine whether the active intergradient (AI) against sEH of anti-inflammatory TCMs in vitro is anti-inflammatory in vivo and the sEH inhibitory action of the AI contributes to its anti-inflammatory effect in vivo. MATERIALS AND METHODS In vitro inhibition assay of the sEH was conducted for the methanol and ethanol extracts of 27 anti-inflammatory TCMs. Two potent extracts were subject to further separation guided by bioassay to afford promising AI against sEH in vitro [Fr.5 of the crude ethanol extract of Rhizoma coptidis (FFCERC)]. Finally, the in vivo anti-inflammatory effect and sEH inhibitory potency of FFCERC was evaluated in a lipopolysacchride (LPS)-challenged murine model of acute systemic inflammation. The inflammatory status was characterized by the inflammatory cytokines TNF-α and interleukin-6 (IL-6) and sEH inhibitory function was evaluated by the plasma levels of epoxyeicosantrienoic acids (EETs) and dihydroxyeicosatrienoic acids (DHETs), which are the sEH mediated substrates and products, respectively. RESULTS At the concentration of 25µg/mL, the crude ethanol extracts of 6 TCMs including Herba Asari, Radix Polygalae, Fructus Amomi, Radix Astragali, Radix Scutellariae, and Rhizoma Coptidis were potent against sEH. The crude extracts of Herba Asari and Rhizoma Coptidis were selected for further separation to afford FFCERC as the most promising AI for in vivo evaluation. Oral administration of FFCERC attenuated the significant increase in TNF-α and IL-6 caused by LPS challenge in a dose-dependent manner. In parallel, oral administration of FFCERC shifted the changes in plasma levels of EETs and DHETs caused by LPS-challenge like a synthetic sEH inhibitor. CONCLUSIONS A sEH inhibitory AI from Rhizoma Coptidis is anti-inflammatory and the inhibition of sEH contributes to this biological effect, indicating that sEH may be at least one of multiple therapeutic targets for relevant TCMs.
Collapse
Affiliation(s)
- Jun-Yan Liu
- Center for Nephrology and Clinical Metabolomics, Division of Nephrology and Rheumatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Mid Yanchang Rd, Shanghai 200072, PR China; Department of Entomology and Nematology, UCD Comprehensive Cancer Center, University of California, One Shields Avenue, Davis, CA 95616, United States.
| | - Christophe Morisseau
- Department of Entomology and Nematology, UCD Comprehensive Cancer Center, University of California, One Shields Avenue, Davis, CA 95616, United States
| | - Huazhang Huang
- Department of Entomology and Nematology, UCD Comprehensive Cancer Center, University of California, One Shields Avenue, Davis, CA 95616, United States
| | - Bruce D Hammock
- Department of Entomology and Nematology, UCD Comprehensive Cancer Center, University of California, One Shields Avenue, Davis, CA 95616, United States
| |
Collapse
|
27
|
Syed AA, Lahiri S, Mohan D, Valicherla GR, Gupta AP, Kumar S, Maurya R, Bora HK, Hanif K, Gayen JR. Cardioprotective Effect of Ulmus wallichiana Planchon in β-Adrenergic Agonist Induced Cardiac Hypertrophy. Front Pharmacol 2016; 7:510. [PMID: 28066255 PMCID: PMC5174112 DOI: 10.3389/fphar.2016.00510] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 12/09/2016] [Indexed: 01/01/2023] Open
Abstract
Ulmus wallichiana Planchon (Family: Ulmaceae), a traditional medicinal plant, was used in fracture healing in the folk tradition of Uttarakhand, Himalaya, India. The present study investigated the cardioprotective effect of ethanolic extract (EE) and butanolic fraction (BF) of U. wallichiana in isoprenaline (ISO) induced cardiac hypertrophy in Wistar rats. Cardiac hypertrophy was induced by ISO (5 mg/kg/day, subcutaneously) in rats. Treatment was performed by oral administration of EE and BF of U. wallichiana (500 and 50 mg/kg/day). The blood pressure (BP) and heart rate (HR) were measured by non-invasive blood pressure measurement technique. Plasma renin, Ang II, NO, and cGMP level were estimated using an ELISA kit. Angiotensin converting enzyme activity was estimated. BP and HR were significantly increased in ISO group (130.33 ± 1.67 mmHg vs. 111.78 ± 1.62 mmHg, p < 0.001 and 450.51 ± 4.90 beats/min vs. 347.82 ± 6.91 beats/min, respectively, p < 0.001). The BP and HR were significantly reduced (EE: 117.53 ± 2.27 mmHg vs. 130.33 ± 1.67 mmHg, p < 0.001, BF: 119.74 ± 3.32 mmHg vs. 130.33 ± 1.67 mmHg, p < 0.001); HR: (EE: 390.22 ± 8.24 beats/min vs. 450.51 ± 4.90 beats/min, p < 0.001, BF: 345.38 ± 6.79 beats/min vs. 450.51 ± 4.90 beats/min, p < 0.001) after the treatment of EE and BF of U. wallichiana, respectively. Plasma renin, Ang II, ACE activity was decreased and NO, cGMP level were increased. The EE and BF of U. wallichiana down regulated the expression of ANP, BNP, TNF-α, IL-6, MMP9, β1-AR, TGFβ1 and up regulated NOS3, ACE2 and Mas expression level, respectively. Thus, this study demonstrated that U. wallichiana has cardioprotective effect against ISO induced cardiac hypertrophy.
Collapse
Affiliation(s)
- Anees A Syed
- Division of Pharmacokinetics and Metabolism, Council of Scientific and Industrial Research-Central Drug Research Institute Lucknow, India
| | - Shibani Lahiri
- Division of Pharmacokinetics and Metabolism, Council of Scientific and Industrial Research-Central Drug Research Institute Lucknow, India
| | - Divya Mohan
- Division of Pharmacology, Council of Scientific and Industrial Research-Central Drug Research Institute Lucknow, India
| | - Guru R Valicherla
- Division of Pharmacokinetics and Metabolism, Council of Scientific and Industrial Research-Central Drug Research InstituteLucknow, India; Academy of Scientific and Innovative ResearchNew Delhi, India
| | - Anand P Gupta
- Division of Pharmacokinetics and Metabolism, Council of Scientific and Industrial Research-Central Drug Research Institute Lucknow, India
| | - Sudhir Kumar
- Division of Medicinal and Process Chemistry, Council of Scientific and Industrial Research-Central Drug Research Institute Lucknow, India
| | - Rakesh Maurya
- Academy of Scientific and Innovative ResearchNew Delhi, India; Division of Medicinal and Process Chemistry, Council of Scientific and Industrial Research-Central Drug Research InstituteLucknow, India
| | - Himanshu K Bora
- Division of Laboratory Animals, Council of Scientific and Industrial Research-Central Drug Research Institute Lucknow, India
| | - Kashif Hanif
- Division of Pharmacology, Council of Scientific and Industrial Research-Central Drug Research InstituteLucknow, India; Academy of Scientific and Innovative ResearchNew Delhi, India
| | - Jiaur R Gayen
- Division of Pharmacokinetics and Metabolism, Council of Scientific and Industrial Research-Central Drug Research InstituteLucknow, India; Academy of Scientific and Innovative ResearchNew Delhi, India
| |
Collapse
|
28
|
Wang B, Zeng H, Wen Z, Chen C, Wang DW. CYP2J2 and its metabolites (epoxyeicosatrienoic acids) attenuate cardiac hypertrophy by activating AMPKα2 and enhancing nuclear translocation of Akt1. Aging Cell 2016; 15:940-52. [PMID: 27416746 PMCID: PMC5013012 DOI: 10.1111/acel.12507] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2016] [Indexed: 12/17/2022] Open
Abstract
Cytochrome P450 epoyxgenase 2J2 and epoxyeicosatrienoic acids (EETs) are known to protect against cardiac hypertrophy and heart failure, which involve the activation of 5′‐AMP‐activated protein kinase (AMPK) and Akt. Although the functional roles of AMPK and Akt are well established, the significance of cross talk between them in the development of cardiac hypertrophy and antihypertrophy of CYP2J2 and EETs remains unclear. We investigated whether CYP2J2 and its metabolites EETs protected against cardiac hypertrophy by activating AMPKα2 and Akt1. Moreover, we tested whether EETs enhanced cross talk between AMPKα2 and phosphorylated Akt1 (p‐Akt1), and stimulated nuclear translocation of p‐Akt1, to exert their antihypertrophic effects. AMPKα2−/− mice that overexpressed CYP2J2 in heart were treated with Ang II for 2 weeks. Interestingly, overexpression of CYP2J2 suppressed cardiac hypertrophy and increased levels of atrial natriuretic peptide (ANP) in the heart tissue and plasma of wild‐type mice but not AMPKα2−/− mice. The CYP2J2 metabolites, 11,12‐EET, activated AMPKα2 to induce nuclear translocation of p‐Akt1 selectively, which increased the production of ANP and therefore inhibited the development of cardiac hypertrophy. Furthermore, by co‐immunoprecipitation analysis, we found that AMPKα2β2γ1 and p‐Akt1 interact through the direct binding of the AMPKγ1 subunit to the Akt1 protein kinase domain. This interaction was enhanced by 11,12‐EET. Our studies reveal a novel mechanism in which CYP2J2 and EETs enhanced Akt1 nuclear translocation through interaction with AMPKα2β2γ1 and protect against cardiac hypertrophy and suggest that overexpression of CYP2J2 might have clinical potential to suppress cardiac hypertrophy and heart failure.
Collapse
Affiliation(s)
- Bei Wang
- Division of Cardiology Department of Internal Medicine Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan 430030 China
| | - Hesong Zeng
- Division of Cardiology Department of Internal Medicine Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan 430030 China
| | - Zheng Wen
- Division of Cardiology Department of Internal Medicine Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan 430030 China
| | - Chen Chen
- Division of Cardiology Department of Internal Medicine Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan 430030 China
| | - Dao Wen Wang
- Division of Cardiology Department of Internal Medicine Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan 430030 China
| |
Collapse
|
29
|
Maayah ZH, Abdelhamid G, El-Kadi AOS. Development of cellular hypertrophy by 8-hydroxyeicosatetraenoic acid in the human ventricular cardiomyocyte, RL-14 cell line, is implicated by MAPK and NF-κB. Cell Biol Toxicol 2016; 31:241-59. [PMID: 26493311 DOI: 10.1007/s10565-015-9308-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 10/14/2015] [Indexed: 01/17/2023]
Abstract
Recent studies have established the role of mid-chain hydroxyeicosatetraenoic acids (mid-chain HETEs) in the development of cardiovascular disease. Among these mid-chains, 8-HETE has been reported to have a proliferator and proinflammatory action. However, whether 8-HETE can induce cardiac hypertrophy has never been investigated before. Therefore, the overall objectives of the present study are to elucidate the potential hypertrophic effect of 8-HETE in the human ventricular cardiomyocytes, RL-14 cells, and to explore the mechanism(s) involved. Our results showed that 8-HETE induced cellular hypertrophy in RL-14 cells as evidenced by the induction of cardiac hypertrophy markers ANP, BNP, α-MHC, and β-MHC in a concentration- and time-dependent manner as well as the increase in cell surface area. Mechanistically, 8-HETE was able to induce the NF-κB activity as well as it significantly induced the phosphorylation of ERK1/2. The induction of cellular hypertrophy was associated with a proportional increase in the formation of dihydroxyeicosatrienoic acids (DHETs) parallel to the increase of soluble epoxide hydrolase (sEH) enzyme activity. Blocking the induction of NF-κB, ERK1/2, and sEH signaling pathways significantly inhibited 8-HETE-induced cellular hypertrophy. Our study provides the first evidence that 8-HETE induces cellular hypertrophy in RL-14 cells through MAPK- and NF-κB-dependent mechanism
Collapse
|
30
|
He J, Wang C, Zhu Y, Ai D. Soluble epoxide hydrolase: A potential target for metabolic diseases. J Diabetes 2016; 8:305-13. [PMID: 26621325 DOI: 10.1111/1753-0407.12358] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 11/16/2015] [Accepted: 11/22/2015] [Indexed: 12/12/2022] Open
Abstract
Epoxyeicosatrienoic acids (EETs), important lipid mediators derived from arachidonic acid, have many beneficial effects in metabolic diseases, including atherosclerosis, hypertension, cardiac hypertrophy, diabetes, non-alcoholic fatty liver disease, and kidney disease. Epoxyeicosatrienoic acids can be further hydrolyzed to less active diols by the enzyme soluble epoxide hydrolase (sEH). Increasing evidence suggests that inhibition of sEH increases levels of EETs, which have anti-inflammatory effects and can prevent the development of hypertension, atherosclerosis, heart failure, fatty liver, and multiple organ fibrosis. Arachidonic acid is the most abundant omega-6 polyunsaturated fatty acid (PUFA) and shares the same set of enzymes with omega-3 PUFAs, such as docosahexaenoic acid and eicosapentaenoic acid. The omega-3 PUFAs and metabolites, such as regioisomeric epoxyeicosatetraenoic acids and epoxydocosapentaenoic acids, have been reported to have strong vasodilatory and anti-inflammatory effects. Therefore, sEH may be a potential therapeutic target for metabolic disorders. In this review, we focus on our and other recent studies of the functions of sEH, including the effects of its eicosanoid products from both omega-3 and omega-6 PUFAs, in various metabolic diseases. We also discuss the possible cellular and molecular mechanisms underlying the regulation of sEH.
Collapse
Affiliation(s)
- Jinlong He
- Collaborative Innovation Center of Tianjin for Medical Epigenetics, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Chunjiong Wang
- Collaborative Innovation Center of Tianjin for Medical Epigenetics, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Yi Zhu
- Collaborative Innovation Center of Tianjin for Medical Epigenetics, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Ding Ai
- Collaborative Innovation Center of Tianjin for Medical Epigenetics, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| |
Collapse
|
31
|
Wang Q, Huo L, He J, Ding W, Su H, Tian D, Welch C, Hammock BD, Ai D, Zhu Y. Soluble epoxide hydrolase is involved in the development of atherosclerosis and arterial neointima formation by regulating smooth muscle cell migration. Am J Physiol Heart Circ Physiol 2015; 309:H1894-903. [PMID: 26453326 DOI: 10.1152/ajpheart.00289.2015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 08/18/2015] [Indexed: 02/05/2023]
Abstract
Epoxyeicosatrienoic acids (EETs) have beneficial effects on cardiovascular disease. Soluble epoxide hydrolase (sEH) metabolizes EETs to less active diols, thus diminishing their biological activity. sEH inhibitors can suppress the progression of atherosclerotic lesions in animal models. However, the regulation of sEH in vascular smooth muscle cells (VSMCs) and role of sEH in patients with atherosclerosis have not been evaluated. We hypothesize that sEH in VSMCs plays a pivotal role in atherosclerosis and injury-induced neointima formation. In this study, sEH expression in human autopsy atherosclerotic plaque was determined by immunohistochemistry. In cultured rat and human VSMCs, the phenotypic switching marker and sEH expression induced by platelet-derived growth factor-BB (PDGF-BB) were examined by Western blot analysis. Carotid-artery balloon injury was performed after adenovirus-mediated overexpression of sEH or oral administration of a potent sEH inhibitor in Sprague-Dawley rats. sEH was highly expressed in VSMCs of the intima and media within human atherosclerotic plaque. In vitro, PDGF-BB upregulated the expression in VSMCs after transcription and promoted cell proliferation and migration; the latter effect could be largely attenuated by an sEH inhibitor. Adenovirus-mediated overexpression of sEH could mimic the effect of PDGF-BB and induce VSMC proliferation and migration. In vivo, the sEH inhibitor led to a significant decrease in injury-induced neointima formation in a rat carotid-artery injury model. These data establish the effect of sEH expression on atherosclerotic progression and vascular remodeling after injury, thus identifying a novel integrative role for sEH in VSMC phenotypic modulation and migration. Blocking sEH activity may be a potential therapeutic approach for ameliorating vascular occlusive disease.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Animals
- Atherosclerosis/enzymology
- Atherosclerosis/genetics
- Atherosclerosis/pathology
- Atherosclerosis/prevention & control
- Becaplermin
- Carotid Artery Injuries/enzymology
- Carotid Artery Injuries/genetics
- Carotid Artery Injuries/pathology
- Carotid Artery Injuries/therapy
- Cell Dedifferentiation
- Cell Movement/drug effects
- Cell Proliferation
- Cells, Cultured
- Coronary Artery Disease/enzymology
- Coronary Artery Disease/genetics
- Coronary Artery Disease/pathology
- Disease Models, Animal
- Disease Progression
- Eicosanoids/metabolism
- Enzyme Inhibitors/pharmacology
- Epoxide Hydrolases/antagonists & inhibitors
- Epoxide Hydrolases/genetics
- Epoxide Hydrolases/metabolism
- Female
- Humans
- Male
- Middle Aged
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/enzymology
- Myocytes, Smooth Muscle/pathology
- Neointima
- Phenotype
- Phenylurea Compounds/pharmacology
- Piperidines/pharmacology
- Proto-Oncogene Proteins c-sis/pharmacology
- Rats, Sprague-Dawley
- Signal Transduction
- Time Factors
- Transfection
- Vascular Remodeling
- Young Adult
Collapse
Affiliation(s)
- Qingjie Wang
- Department of Pathology, Shantou University Medical College, Shantou, Guangdong, China; Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Leijun Huo
- Department of Pathology, Shantou University Medical College, Shantou, Guangdong, China
| | - Jinlong He
- Department of Physiology and Pathophysiology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Wenshuang Ding
- Department of Pathology, Shantou University Medical College, Shantou, Guangdong, China
| | - Hang Su
- Department of Pathology, Shantou University Medical College, Shantou, Guangdong, China
| | - Dongping Tian
- Department of Pathology, Shantou University Medical College, Shantou, Guangdong, China
| | - Carrie Welch
- Division of Molecular Medicine, Department of Medicine, Columbia University, New York, New York; and
| | - Bruce D Hammock
- Department of Entomology and Comprehensive Cancer Center, University of California, Davis, California
| | - Ding Ai
- Department of Physiology and Pathophysiology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Yi Zhu
- Department of Physiology and Pathophysiology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Medical University, Tianjin, China;
| |
Collapse
|
32
|
19-Hydroxyeicosatetraenoic acid and isoniazid protect against angiotensin II-induced cardiac hypertrophy. Toxicol Appl Pharmacol 2015; 289:550-9. [DOI: 10.1016/j.taap.2015.10.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 10/03/2015] [Accepted: 10/06/2015] [Indexed: 11/22/2022]
|
33
|
Althurwi HN, Maayah ZH, Elshenawy OH, El-Kadi AOS. Early Changes in Cytochrome P450s and Their Associated Arachidonic Acid Metabolites Play a Crucial Role in the Initiation of Cardiac Hypertrophy Induced by Isoproterenol. Drug Metab Dispos 2015; 43:1254-66. [PMID: 26033621 DOI: 10.1124/dmd.115.063776] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 06/01/2015] [Indexed: 02/13/2025] Open
Abstract
Cytochrome P450 enzymes (P450s), along with their cardioprotective metabolites the epoxyeicosatrienoic acids (EETs) and cardiotoxic metabolite 20-hydroxyeicosatetraeonic acid (20-HETE), were found to be altered in cardiac hypertrophy; however, it is unclear whether these changes are causal or epiphenomenon. Therefore, we hypothesized that P450s and their metabolites play a crucial role in the initiation of cardiac hypertrophy. To test our hypothesis, rats and RL-14 cells were treated with the hypertrophic agonist isoproterenol for different time periods. Thereafter, in vivo heart function and wall thickness were assessed using echocardiography. Moreover, the role of P450 epoxygenases, ω-hydroxylases, and soluble epoxide hydrolase (sEH) were determined at mRNA, protein, and activity levels using real-time polymerase chain reaction, Western blot, and liquid chromatography-mass spectrometry, respectively. Our results show that in vivo and in vitro hypertrophy was initiated after 72 hours and 6 hours of isoproterenol treatment, respectively. Studies performed at the prehypertrophy phase showed a significant decrease in P450 epoxygenases along with a significant induction of sEH activity. Consequently, lower EET and higher dihydroxyeicosatrienoic acid levels were observed during this phase. However, significant increases in P450 ω-hydroxylase along with its associated metabolite, 20-HETE, were detected only in vivo. Interestingly, increasing EET levels by P450 epoxygenase induction, sEH inhibition, or exogenous administration of EET prevented the initiation of cardiac hypertrophy through a nuclear factor-κB-mediated mechanism. Taken together, these findings reveal a crucial role of P450 epoxygenases and EETs in the development of cardiac hypertrophy, which could uncover novel targets for prevention of heart failure at early stages.
Collapse
Affiliation(s)
- Hassan N Althurwi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Zaid H Maayah
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Osama H Elshenawy
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Ayman O S El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
34
|
Qin J, Sun D, Jiang H, Kandhi S, Froogh G, Hwang SH, Hammock BD, Wolin MS, Thompson CI, Hintze TH, Huang A. Inhibition of soluble epoxide hydrolase increases coronary perfusion in mice. Physiol Rep 2015; 3:3/6/e12427. [PMID: 26071213 PMCID: PMC4510629 DOI: 10.14814/phy2.12427] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Roles of soluble epoxide hydrolase (sEH), the enzyme responsible for hydrolysis of epoxyeicosatrienoic acids (EETs) to their diols (DHETs), in the coronary circulation and cardiac function remain unknown. We tested the hypothesis that compromising EET hydrolysis/degradation, via sEH deficiency, lowers the coronary resistance to promote cardiac perfusion and function. Hearts were isolated from wild type (WT), sEH knockout (KO) mice and WT mice chronically treated with t-TUCB (sEH inhibitor), and perfused with constant flow at different pre-loads. Compared to WT controls, sEH-deficient hearts required significantly greater basal coronary flow to maintain the perfusion pressure at 100 mmHg and exhibited a greater reduction in vascular resistance during tension-induced heart work, implying a better coronary perfusion during cardiac performance. Cardiac contractility, characterized by developed tension in response to changes in preload, was potentially increased in sEH-KO hearts, manifested by an enlarged magnitude at each step-wise increase in end-diastolic to peak-systolic tension. 14,15-EEZE (EET antagonist) prevented the adaptation of coronary circulation in sEH null hearts whereas responses in WT hearts were sensitive to the inhibition of NO. Cardiac expression of EET synthases (CYP2J2/2C29) was comparable in both genotypic mice whereas, levels of 14,15-, 11,12- and 8,9-EETs were significantly higher in sEH-KO hearts, accompanied with lower levels of DHETs. In conclusion, the elevation of cardiac EETs, as a function of sEH deficiency, plays key roles in the adaptation of coronary flow and cardiac function.
Collapse
Affiliation(s)
- Jun Qin
- Department of Physiology, New York Medical College, Valhalla, New York Department of GI Surgery, Renji Hospital Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Dong Sun
- Department of Physiology, New York Medical College, Valhalla, New York
| | - Houli Jiang
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Sharath Kandhi
- Department of Physiology, New York Medical College, Valhalla, New York
| | - Ghezal Froogh
- Department of Physiology, New York Medical College, Valhalla, New York
| | - Sung Hee Hwang
- Department of Entomology, University of California Davis Comprehensive Cancer Center University of California, Davis, California
| | - Bruce D Hammock
- Department of Entomology, University of California Davis Comprehensive Cancer Center University of California, Davis, California
| | - Michael S Wolin
- Department of Physiology, New York Medical College, Valhalla, New York
| | - Carl I Thompson
- Department of Physiology, New York Medical College, Valhalla, New York
| | - Thomas H Hintze
- Department of Physiology, New York Medical College, Valhalla, New York
| | - An Huang
- Department of Physiology, New York Medical College, Valhalla, New York
| |
Collapse
|
35
|
Abdelhamid G, El-Kadi AOS. Buthionine sulfoximine, an inhibitor of glutathione biosynthesis, induces expression of soluble epoxide hydrolase and markers of cellular hypertrophy in a rat cardiomyoblast cell line: roles of the NF-κB and MAPK signaling pathways. Free Radic Biol Med 2015; 82:1-12. [PMID: 25614461 DOI: 10.1016/j.freeradbiomed.2015.01.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 01/09/2015] [Accepted: 01/10/2015] [Indexed: 01/04/2023]
Abstract
Evidence suggests that upregulation of soluble epoxide hydrolase (sEH) is associated with the development of myocardial infarction, dilated cardiomyopathy, cardiac hypertrophy, and heart failure. However, the upregulation mechanism is still unknown. In this study, we treated H9C2 cells with buthionine sulfoximine (BSO) to explore whether oxidative stress upregulates sEH gene expression and to identify the molecular and cellular mechanisms behind this upregulatory response. Real-time PCR and Western blot analyses were used to measure mRNA and protein expression, respectively. We demonstrated that BSO significantly upregulated sEH at mRNA levels in a concentration- and time-dependent manner, leading to a significant increase in the cellular hypertrophic markers, atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP). Furthermore, BSO significantly increased the cytosolic phosphorylated IκB-α and translocation of NF-κB p50 subunits, as measured by Western blot analysis. This level of translocation was paralleled by an increase in the DNA-binding activity of NF-κB P50 subunits. Moreover, our results demonstrated that pretreatment with the NF-κB inhibitor PDTC significantly inhibited BSO-mediated induction of sEH and cellular hypertrophic marker gene expression in a dose-dependent manner. Additionally, mitogen-activated protein kinases (MAPKs) were transiently phosphorylated by BSO treatment. To understand further the role of MAPKs pathway in BSO-mediated induction of sEH mRNA, we examined the role of extracellular signal-regulated kinase (ERK), c-JunN-terminal kinase (JNK), and p38 MAPK. Indeed, treatment with the MEK/ERK signal transduction inhibitor, PD98059, partially blocked the activation of IκB-α and translocation of NF-κB p50 subunits induced by BSO. Moreover, pretreatment with MEK/ERK signal transduction inhibitors, PD98059 and U0126, significantly inhibited BSO-mediated induction of sEH and cellular hypertrophic marker gene expression. These results clearly demonstrated that the NF-κB signaling pathway is involved in BSO-mediated induction of sEH gene expression, and appears to be associated with the activation of the MAPK pathway. Furthermore, our findings provide a strong link between sEH-induced cardiac dysfunction and involvement of NF-κB in the development of cellular hypertrophy.
Collapse
Affiliation(s)
- Ghada Abdelhamid
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2N8
| | - Ayman O S El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2N8.
| |
Collapse
|
36
|
5-, 12- and 15-Hydroxyeicosatetraenoic acids induce cellular hypertrophy in the human ventricular cardiomyocyte, RL-14 cell line, through MAPK- and NF-κB-dependent mechanism. Arch Toxicol 2015; 90:359-73. [DOI: 10.1007/s00204-014-1419-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 11/17/2014] [Indexed: 01/01/2023]
|
37
|
Maayah ZH, Elshenawy OH, Althurwi HN, Abdelhamid G, El-Kadi AOS. Human fetal ventricular cardiomyocyte, RL-14 cell line, is a promising model to study drug metabolizing enzymes and their associated arachidonic acid metabolites. J Pharmacol Toxicol Methods 2014; 71:33-41. [PMID: 25454080 DOI: 10.1016/j.vascn.2014.11.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 11/04/2014] [Accepted: 11/23/2014] [Indexed: 02/06/2023]
Abstract
INTRODUCTION RL-14 cells, human fetal ventricular cardiomyocytes, are a commercially available cell line that has been established from non-proliferating primary cultures derived from human fetal heart tissue. However, the expression of different drug metabolizing enzymes (DMEs) in RL-14 cells has not been elucidated yet. Therefore, the main objectives of the current work were to investigate the capacity of RL-14 cells to express different cytochrome P450 (CYP) isoenzymes and correlate this expression to primary cardiomyocytes. METHODS The expression of CYP isoenzymes was determined at mRNA, protein and catalytic activity levels using real time-PCR, Western blot analysis and liquid chromatography-electron spray ionization-mass spectrometry (LC-ESI-MS), respectively. RESULTS Our results showed that RL-14 cells constitutively express CYP ω-hydroxylases, CYP1A, 1B, 4A and 4F; CYP epoxygenases, CYP2B, 2C and 2J; in addition to soluble epoxide hydrolayse (EPHX2) at mRNA and protein levels. The basal expression of CYP ω-hydroxylases, epoxygenases and EPHX2 was supported by the ability of RL-14 cells to convert arachidonic acid to its biologically active metabolites, 20-hydroxyeicosatetraenoic acids (20-HETEs), 14,15-epoxyeicosatrienoic acids (14,15-EET), 11,12-EET, 8,9-EET, 5,6-EET, 14,15-dihydroxyeicosatrienoic acid (14,15-DHET), 11,12-DHET, 8,9-DHET and 5,6-DHET. Furthermore, RL-14 cells express CYP epoxygenases and ω-hydroxylase at comparable levels to those expressed in adult and fetal human primary cardiomyocytes cells implying the importance of RL-14 cells as a model for studying DMEs in vitro. Lastly, different CYP families were induced in RL-14 cells using 2,3,7,8-tetrachlorodibenzo-p-dioxin and fenofibrate at mRNA and protein levels. DISCUSSION The current study provides the first evidence that RL-14 cells express CYP isoenzymes at comparable levels to those expressed in the primary cells and thus offers a unique in vitro model to study DMEs in the heart.
Collapse
Affiliation(s)
- Zaid H Maayah
- Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
| | - Osama H Elshenawy
- Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
| | - Hassan N Althurwi
- Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
| | - Ghada Abdelhamid
- Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
| | - Ayman O S El-Kadi
- Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, Edmonton, Canada.
| |
Collapse
|
38
|
Li L, Li N, Pang W, Zhang X, Hammock BD, Ai D, Zhu Y. Opposite effects of gene deficiency and pharmacological inhibition of soluble epoxide hydrolase on cardiac fibrosis. PLoS One 2014; 9:e94092. [PMID: 24718617 PMCID: PMC3981766 DOI: 10.1371/journal.pone.0094092] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Accepted: 03/10/2014] [Indexed: 01/09/2023] Open
Abstract
Arachidonic acid-derived epoxyeicosatrienoic acids (EETs) are important regulators of cardiac remodeling; manipulation of their levels is a potentially useful pharmacological strategy. EETs are hydrolyzed by soluble epoxide hydrolase (sEH) to form the corresponding diols, thus altering and reducing the activity of these oxylipins. To better understand the phenotypic impact of sEH disruption, we compared the effect of EPHX2 gene knockout (EPHX2-/-) and sEH inhibition in mouse models. Measurement of plasma oxylipin profiles confirmed that the ratio of EETs/DHETs was increased in EPHX2-/- and sEH-inhibited mice. However, plasma concentrations of 9, 11, 15, 19-HETE were elevated in EPHX2-/- but not sEH-inhibited mice. Next, we investigated the role of this difference in cardiac dysfunction induced by Angiotensin II (AngII). Both EPHX2 gene deletion and inhibition protected against AngII-induced cardiac hypertrophy. Interestingly, cardiac dysfunction was attenuated by sEH inhibition rather than gene deletion. Histochemical staining revealed that compared with pharmacological inhibition, EPHX2 deletion aggravated AngII-induced myocardial fibrosis; the mRNA levels of fibrotic-related genes were increased. Furthermore, cardiac inflammatory response was greater in EPHX2-/- than sEH-inhibited mice with AngII treatment, as evidenced by increased macrophage infiltration and expression of MCP-1 and IL-6. In vitro, AngII-upregulated MCP-1 and IL-6 expression was significantly attenuated by sEH inhibition but promoted by EPHX2 deletion in cardiofibroblasts. Thus, compared with pharmacological inhibition of sEH, EPHX2 deletion caused the shift in arachidonic acid metabolism, which may led to pathological cardiac remodeling, especially cardiac fibrosis.
Collapse
Affiliation(s)
- Lijuan Li
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China
| | - Nan Li
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China
| | - Wei Pang
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China
| | - Xu Zhang
- Department of Physiology, Tianjin Medical University, Tianjin, China
| | - Bruce D. Hammock
- Department of Entomology and Comprehensive Cancer Center, University of California Davis, Davis, California, United States of America
| | - Ding Ai
- Department of Physiology, Tianjin Medical University, Tianjin, China
- * E-mail: (YZ); (DA)
| | - Yi Zhu
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China
- Department of Physiology, Tianjin Medical University, Tianjin, China
- * E-mail: (YZ); (DA)
| |
Collapse
|
39
|
Acute mercury toxicity modulates cytochrome P450, soluble epoxide hydrolase and their associated arachidonic acid metabolites in C57Bl/6 mouse heart. Toxicol Lett 2014; 226:53-62. [DOI: 10.1016/j.toxlet.2014.01.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 01/14/2014] [Accepted: 01/15/2014] [Indexed: 02/06/2023]
|
40
|
Fenofibrate Modulates Cytochrome P450 and Arachidonic Acid Metabolism in the Heart and Protects Against Isoproterenol-induced Cardiac Hypertrophy. J Cardiovasc Pharmacol 2014; 63:167-77. [DOI: 10.1097/fjc.0000000000000036] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
41
|
El-Sherbeni AA, El-Kadi AOS. Alterations in cytochrome P450-derived arachidonic acid metabolism during pressure overload-induced cardiac hypertrophy. Biochem Pharmacol 2013; 87:456-66. [PMID: 24300133 DOI: 10.1016/j.bcp.2013.11.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Revised: 11/21/2013] [Accepted: 11/22/2013] [Indexed: 01/01/2023]
Abstract
Cardiac hypertrophy is a major risk factor for many serious heart diseases. Recent data demonstrated the role of cytochrome P450 (CYP)-derived arachidonic acid (AA) metabolites in cardiovascular pathophysiology. In the current study our aim was to determine the aberrations in CYP-mediated AA metabolism in the heart during cardiac hypertrophy. Pressure overload cardiac hypertrophy was induced in Sprague Dawley rats using the descending aortic constriction procedure. Five weeks post-surgery, the cardiac levels of AA metabolites were determined in hypertrophied and normal hearts. In addition, the formation rate of AA metabolites, as well as, CYP expression in cardiac microsomal fraction was also determined. AA metabolites were measured by liquid chromatography-electrospray ionization-mass spectroscopy, whereas, the expression of CYPs was determined by Western blot analysis. Non-parametric analysis was performed to examine the association between metabolites formation and CYP expressions. Our results showed that 5,6-, 8,9-, 11,12-, and 14,15-epoxyeicosatrienoic acids (EETs), and 5-, 12-, 15-, and 20-hydroxyeicosatetraenoic acids (HETEs) levels were increased, whereas, 19-HETE formation was decreased in hypertrophied hearts. The increase in EETs was linked to CYP2B2. On the other hand, CYP1B1 and CYP2J3 were involved in mid-chain HETE metabolism, whereas, CYP4A2/3 inhibition was involved in the decrease in 19-HETE formation in hypertrophied hearts. In conclusion, CYP1B1 played cardiotoxic role, whereas, CYP2B2, CYP2J3 and CYP4A2/3 played cardioprotective roles during pressure overload-induced cardiac hypertrophy. These CYP can be valid targets for the development of drugs to treat and prevent cardiac hypertrophy and heart failure.
Collapse
Affiliation(s)
- Ahmed A El-Sherbeni
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E1
| | - Ayman O S El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E1.
| |
Collapse
|
42
|
Harris TR, Hammock BD. Soluble epoxide hydrolase: gene structure, expression and deletion. Gene 2013; 526:61-74. [PMID: 23701967 DOI: 10.1016/j.gene.2013.05.008] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 03/29/2013] [Accepted: 05/09/2013] [Indexed: 12/13/2022]
Abstract
Mammalian soluble epoxide hydrolase (sEH) converts epoxides to their corresponding diols through the addition of a water molecule. sEH readily hydrolyzes lipid signaling molecules, including the epoxyeicosatrienoic acids (EETs), epoxidized lipids produced from arachidonic acid by the action of cytochrome p450s. Through its metabolism of the EETs and other lipid mediators, sEH contributes to the regulation of vascular tone, nociception, angiogenesis and the inflammatory response. Because of its central physiological role in disease states such as cardiac hypertrophy, diabetes, hypertension, and pain sEH is being investigated as a therapeutic target. This review begins with a brief introduction to sEH protein structure and function. sEH evolution and gene structure are then discussed before human small nucleotide polymorphisms and mammalian gene expression are described in the context of several disease models. The review ends with an overview of studies that have employed the sEH knockout mouse model.
Collapse
Affiliation(s)
- Todd R Harris
- Department of Entomology and Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| | | |
Collapse
|
43
|
Abstract
Autonomic cardiac neurons have a common origin in the neural crest but undergo distinct developmental differentiation as they mature toward their adult phenotype. Progenitor cells respond to repulsive cues during migration, followed by differentiation cues from paracrine sources that promote neurochemistry and differentiation. When autonomic axons start to innervate cardiac tissue, neurotrophic factors from vascular tissue are essential for maintenance of neurons before they reach their targets, upon which target-derived trophic factors take over final maturation, synaptic strength and postnatal survival. Although target-derived neurotrophins have a central role to play in development, alternative sources of neurotrophins may also modulate innervation. Both developing and adult sympathetic neurons express proNGF, and adult parasympathetic cardiac ganglion neurons also synthesize and release NGF. The physiological function of these “non-classical” cardiac sources of neurotrophins remains to be determined, especially in relation to autocrine/paracrine sustenance during development.
Cardiac autonomic nerves are closely spatially associated in cardiac plexuses, ganglia and pacemaker regions and so are sensitive to release of neurotransmitter, neuropeptides and trophic factors from adjacent nerves. As such, in many cardiac pathologies, it is an imbalance within the two arms of the autonomic system that is critical for disease progression. Although this crosstalk between sympathetic and parasympathetic nerves has been well established for adult nerves, it is unclear whether a degree of paracrine regulation occurs across the autonomic limbs during development. Aberrant nerve remodeling is a common occurrence in many adult cardiovascular pathologies, and the mechanisms regulating outgrowth or denervation are disparate. However, autonomic neurons display considerable plasticity in this regard with neurotrophins and inflammatory cytokines having a central regulatory function, including in possible neurotransmitter changes. Certainly, neurotrophins and cytokines regulate transcriptional factors in adult autonomic neurons that have vital differentiation roles in development. Particularly for parasympathetic cardiac ganglion neurons, additional examinations of developmental regulatory mechanisms will potentially aid in understanding attenuated parasympathetic function in a number of conditions, including heart failure.
Collapse
Affiliation(s)
- Wohaib Hasan
- Knight Cardiovascular Institute; Oregon Health & Science University; Portland, OR USA
| |
Collapse
|
44
|
Tse MMY, Aboutabl ME, Althurwi HN, Elshenawy OH, Abdelhamid G, El-Kadi AOS. Cytochrome P450 epoxygenase metabolite, 14,15-EET, protects against isoproterenol-induced cellular hypertrophy in H9c2 rat cell line. Vascul Pharmacol 2013; 58:363-73. [PMID: 23466634 DOI: 10.1016/j.vph.2013.02.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 02/05/2013] [Accepted: 02/22/2013] [Indexed: 11/19/2022]
Abstract
We have previously shown that isoproterenol-induced cardiac hypertrophy causes significant changes to cytochromes P450 (CYPs) and soluble epoxide hydrolase (sEH) gene expression. Therefore, in this study, we examined the effect of isoproterenol in H9c2 cells, and the protective effects of 14,15-EET against isoproterenol-induced cellular hypertrophy. Isoproterenol was incubated with H9c2 cells for 24 and 48 h. To determine the protective effects of 14,15-EET, H9c2 cells were incubated with isoproterenol in the absence and presence of 14,15-EET. Thereafter, the expression of hypertrophic markers and different CYP genes were determined by real time-PCR. Our results demonstrated that isoproterenol significantly increased the expression of hypertrophic marker, atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP), parallel to a significant increase in cell surface area. Also, isoproterenol increased the mRNA expression of CYP1A1, CYP1B1, CYP2J3, CYP4F4 and CYP4F5, as well as the gene encoding sEH, EPHX2. On other hand, 14,15-EET significantly attenuated the isoproterenol-mediated induction of ANP, BNP, CYP1A1, CYP2J3, CYP4F4, CYP4F5 and EPHX2. Moreover 14,15-EET prevented the isoproterenol-mediated increase in cell surface area. Interestingly, 20-hydroxyeicosatetraenoic acid (20-HETE) treatment caused similar effects to that of isoproterenol treatment and induced cellular hypertrophy in H9c2 cells. In conclusion, isoproterenol induces cellular hypertrophy and modulates the expression of CYPs and EPHX2 in H9c2 cells. Furthermore, 14,15-EET exerts a protective effect against isoproterenol-induced cellular hypertrophy whereas, 20-HETE induced cellular hypertrophy in H9c2 cells.
Collapse
Affiliation(s)
- Mandy M Y Tse
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada
| | | | | | | | | | | |
Collapse
|