1
|
Hoogerheide DP, Rostovtseva TK, Bezrukov SM. Exploring lipid-dependent conformations of membrane-bound α-synuclein with the VDAC nanopore. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2021; 1863:183643. [PMID: 33971161 PMCID: PMC8255272 DOI: 10.1016/j.bbamem.2021.183643] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/21/2021] [Accepted: 04/26/2021] [Indexed: 02/07/2023]
Abstract
Regulation of VDAC by α-synuclein (αSyn) is a rich and instructive example of protein-protein interactions catalyzed by a lipid membrane surface. αSyn, a peripheral membrane protein involved in Parkinson's disease pathology, is known to bind to membranes in a transient manner. αSyn's negatively charged C-terminal domain is then available to be electromechanically trapped by the VDAC β-barrel, a process that is observed in vitro as the reversible reduction of ion flow through a single voltage-biased VDAC nanopore. Binding of αSyn to the lipid bilayer is a prerequisite of the channel-protein interaction; surprisingly, however, we find that the strength of αSyn binding to the membrane does not correlate in any simple way with its efficiency of blocking VDAC, suggesting that the lipid-dependent conformations of the membrane-bound αSyn control the interaction. Quantitative models of the free energy landscape governing the capture and release processes allow us to discriminate between several αSyn (sub-) conformations on the membrane surface. These results, combined with known structural features of αSyn on anionic lipid membranes, point to a model in which the lipid composition determines the fraction of αSyn molecules for which the charged C terminal domain is constrained to be close, but not tightly bound, to the membrane surface and thus readily captured by the VDAC nanopore. We speculate that changes in the mitochondrial membrane lipid composition may be key regulators of the αSyn-VDAC interaction and consequently of VDAC-facilitated transport of ions and metabolites in and out of mitochondria and, i.e. mitochondrial metabolism.
Collapse
Affiliation(s)
- David P Hoogerheide
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Tatiana K Rostovtseva
- Section on Molecular Transport, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Sergey M Bezrukov
- Section on Molecular Transport, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
2
|
Rosencrans WM, Rajendran M, Bezrukov SM, Rostovtseva TK. VDAC regulation of mitochondrial calcium flux: From channel biophysics to disease. Cell Calcium 2021; 94:102356. [PMID: 33529977 PMCID: PMC7914209 DOI: 10.1016/j.ceca.2021.102356] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/06/2021] [Accepted: 01/06/2021] [Indexed: 12/14/2022]
Abstract
Voltage-dependent anion channel (VDAC), the most abundant mitochondrial outer membrane protein, is important for a variety of mitochondrial functions including metabolite exchange, calcium transport, and apoptosis. While VDAC's role in shuttling metabolites between the cytosol and mitochondria is well established, there is a growing interest in understanding the mechanisms of its regulation of mitochondrial calcium transport. Here we review the current literature on VDAC's role in calcium signaling, its biophysical properties, physiological function, and pathology focusing on its importance in cardiac diseases. We discuss the specific biophysical properties of the three VDAC isoforms in mammalian cells-VDAC 1, 2, and 3-in relationship to calcium transport and their distinct roles in cell physiology and disease. Highlighting the emerging evidence that cytosolic proteins interact with VDAC and regulate its calcium permeability, we advocate for continued investigation into the VDAC interactome at the contact sites between mitochondria and organelles and its role in mitochondrial calcium transport.
Collapse
Affiliation(s)
- William M Rosencrans
- Section on Molecular Transport, Eunice Kennedy Shriver. National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Megha Rajendran
- Section on Molecular Transport, Eunice Kennedy Shriver. National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Sergey M Bezrukov
- Section on Molecular Transport, Eunice Kennedy Shriver. National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Tatiana K Rostovtseva
- Section on Molecular Transport, Eunice Kennedy Shriver. National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, United States.
| |
Collapse
|
3
|
Beiersdorf J, Hevesi Z, Calvigioni D, Pyszkowski J, Romanov R, Szodorai E, Lubec G, Shirran S, Botting CH, Kasper S, Guy GW, Gray R, Di Marzo V, Harkany T, Keimpema E. Adverse effects of Δ9-tetrahydrocannabinol on neuronal bioenergetics during postnatal development. JCI Insight 2020; 5:135418. [PMID: 33141759 PMCID: PMC7714410 DOI: 10.1172/jci.insight.135418] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 10/28/2020] [Indexed: 11/22/2022] Open
Abstract
Ongoing societal changes in views on the medical and recreational roles of cannabis increased the use of concentrated plant extracts with a Δ9-tetrahydrocannabinol (THC) content of more than 90%. Even though prenatal THC exposure is widely considered adverse for neuronal development, equivalent experimental data for young age cohorts are largely lacking. Here, we administered plant-derived THC (1 or 5 mg/kg) to mice daily during P5–P16 and P5–P35 and monitored its effects on hippocampal neuronal survival and specification by high-resolution imaging and iTRAQ proteomics, respectively. We found that THC indiscriminately affects pyramidal cells and both cannabinoid receptor 1+ (CB1R)+ and CB1R– interneurons by P16. THC particularly disrupted the expression of mitochondrial proteins (complexes I–IV), a change that had persisted even 4 months after the end of drug exposure. This was reflected by a THC-induced loss of membrane integrity occluding mitochondrial respiration and could be partially or completely rescued by pH stabilization, antioxidants, bypassed glycolysis, and targeting either mitochondrial soluble adenylyl cyclase or the mitochondrial voltage-dependent anion channel. Overall, THC exposure during infancy induces significant and long-lasting reorganization of neuronal circuits through mechanisms that, in large part, render cellular bioenergetics insufficient to sustain key developmental processes in otherwise healthy neurons. Repeated THC exposure in juvenile mice compromises the limbic circuitry, with life-long impairment to the respiration of neurons.
Collapse
Affiliation(s)
- Johannes Beiersdorf
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Zsofia Hevesi
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Daniela Calvigioni
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | | | - Roman Romanov
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Edit Szodorai
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Gert Lubec
- Paracelsus Private Medical University, Salzburg, Austria
| | - Sally Shirran
- School of Chemistry, University of St. Andrews, St. Andrews, United Kingdom
| | | | - Siegfried Kasper
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | | | - Roy Gray
- GW Phamaceuticals, Salisbury, Wiltshire, United Kingdom
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli, Italy.,Canada Excellence Research Chair, Institut Universitaire de Cardiologie et de Pneumologie de Québec and Institut sur la Nutrition et les Aliments Fonctionnels, Université Laval, Québec, Québec, Canada
| | - Tibor Harkany
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria.,Department of Neuroscience, Biomedikum D7, Karolinska Institutet, Solna, Sweden
| | - Erik Keimpema
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
4
|
Muntoni F, Bertini E, Comi G, Kirschner J, Lusakowska A, Mercuri E, Scoto M, van der Pol WL, Vuillerot C, Burdeska A, El-Khairi M, Fontoura P, Ives J, Gorni K, Reid C, Fuerst-Recktenwald S. Long-term follow-up of patients with type 2 and non-ambulant type 3 spinal muscular atrophy (SMA) treated with olesoxime in the OLEOS trial. Neuromuscul Disord 2020; 30:959-969. [PMID: 33246887 DOI: 10.1016/j.nmd.2020.10.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/15/2020] [Accepted: 10/20/2020] [Indexed: 12/11/2022]
Abstract
In a previous Phase 2 study, olesoxime had a favorable safety profile. Although the primary endpoint was not met, analyses suggested that olesoxime might help in the maintenance of motor function in patients with Types 2/3 SMA. This open-label extension study (OLEOS) further characterizes the safety, tolerability and efficacy of olesoxime over longer therapy durations. In OLEOS, no new safety risks were identified. Compared to matched natural history data, patients treated with olesoxime demonstrated small, non-significant changes in motor function over 52 weeks. Motor function scores were stable for 52 weeks but declined over the remainder of the study. The greatest decline in motor function was seen in patients ≤15 years old, and those with Type 2 SMA had faster motor function decline versus those with Type 3 SMA. Previous treatment with olesoxime in the Phase 2 study was not protective of motor function in OLEOS. Respiratory outcomes were stable in patients with Type 3 SMA >15 years old but declined in patients with Type 2 SMA and in patients with Type 3 SMA ≤15 years old. Overall, with no stabilization of functional measures observed over 130 weeks, OLEOS did not support significant benefit of olesoxime in patients with SMA.
Collapse
Affiliation(s)
- Francesco Muntoni
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health and Great Ormond Street Hospital for Children, London, UK; NIHR Biomedical Research Centre, UCL Great Ormond Street Institute of Child Health and Great Ormond Street Hospital NHS Trust, London, UK.
| | - Enrico Bertini
- Unit of Neuromuscular and Neurodegenerative Disorders, Bambino Gesù Children's Research Hospital IRCCS, Rome, Italy
| | - Giacomo Comi
- Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan, Neurology Unit, I.R.C.C.S. Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Janbernd Kirschner
- Department of Neuropediatrics and Muscle Disorders, Medical Center-University of Freiburg, Freiburg, Germany; Department of Neuropediatrics, University Hospital Bonn, Bonn, Germany
| | - Anna Lusakowska
- Department of Neurology, Medical University of Warsaw, Warsaw, Poland
| | - Eugenio Mercuri
- Paediatric Neurology and Nemo Center, Catholic University and Policlinico Gemelli, Rome, Italy
| | - Mariacristina Scoto
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health and Great Ormond Street Hospital for Children, London, UK
| | - W Ludo van der Pol
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Carole Vuillerot
- Department of Paediatric Physical Medicine and Rehabilitation, Hôpital Femme Mère Enfant, Centre Hospitalier Universitaire de Lyon, France; NeuroMyogene Institute, CNRS UMR 5310, INSERM U1217, Université de Lyon, Lyon, France
| | - Alexander Burdeska
- Pharma Development, Safety, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | | | - Paulo Fontoura
- Neuroscience Product Development, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Jane Ives
- Roche Products Limited, Welwyn Garden City, UK
| | - Ksenija Gorni
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Carol Reid
- Roche Products Limited, Welwyn Garden City, UK
| | | | | |
Collapse
|
5
|
Eckert GP, Eckert SH, Eckmann J, Hagl S, Muller WE, Friedland K. Olesoxime improves cerebral mitochondrial dysfunction and enhances Aβ levels in preclinical models of Alzheimer's disease. Exp Neurol 2020; 329:113286. [PMID: 32199815 DOI: 10.1016/j.expneurol.2020.113286] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 02/15/2020] [Accepted: 03/17/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Approved drugs for Alzheimer's disease (AD) only have a symptomatic effects and do not intervene causally in the course of the disease. Olesoxime (TRO19622) has been tested in AD disease models characterized by improved amyloid precursor protein processing (AβPP) and mitochondrial dysfunction. METHODS Three months old Thy-1-AβPPSL (tg) and wild type mice (wt) received TRO19622 (100 mg/kg b.w.) in supplemented food pellets for 15 weeks (tg TRO19622). Mitochondrial membrane potential (MMP) and adenosine triphosphate (ATP) levels were determined in dissociated brain cells (DBC). Respiration was analyzed in mitochondria isolated from brain tissue. Citrate synthase (CS) activity and beta-amyloid peptide (Aβ1-40) levels were determined in brain tissue. Malondialdehyde (MDA) levels were determined as an indicator for lipid peroxidation. DBC and brain homogenates were additionally stressed with Rotenone and FeCl2, respectively. Mitochondrial respiration and Aβ1-40 levels were also determined in HEK-AβPPsw-cells. RESULTS Treatment of mice did not affect the body weight. TRO19622 was absorbed after oral treatment (plasma levels: 6,2 μg/ml). Mitochondrial respiration was significantly reduced in brains of tg-mice. Subsequently, DBC isolated from brains of tg-mice showed significantly lower MMP but not ATP levels. TRO19622 increased the activity of respiratory chain complexes and reversed complex IV (CIV) activity and MMP. Moreover, DBC isolated from brains of tg TRO19622 mice were protected from Rotenone induced inhibition of complex I activity. TRO19622 also increased the respiratory activity in HEKsw-cells. MDA basal levels were significantly higher in brain homogenates isolated from tg-mice. TRO19622 treatment had no effects on lipid peroxidation. TRO19622 increased cholesterol levels but did not change membrane fluidity of synaptosomal plasma and mitochondrial membranes isolated from brain of mice. TRO19622 significantly increased levels of Aβ1-40 in both, in brains of tg TRO19622 mice and in HEKsw cells. CONCLUSIONS TRO19622 improves mitochondrial dysfunction but enhances Aβ levels in disease models of AD. Further studies must evaluate whether TRO19622 offers benefits at the mitochondrial level despite the increased formation of Aβ, which could be harmful.
Collapse
Affiliation(s)
- Gunter P Eckert
- Institute of Nutritional Sciences, Justus-Liebig-University, Giessen, Germany.
| | - Schamim H Eckert
- Institute of Pharmacology, Goethe University, Frankfurt, Germany
| | - Janett Eckmann
- Institute of Pharmacology, Goethe University, Frankfurt, Germany
| | - Stephanie Hagl
- Institute of Pharmacology, Goethe University, Frankfurt, Germany
| | - Walter E Muller
- Institute of Pharmacology, Goethe University, Frankfurt, Germany
| | - Kristina Friedland
- Institute of Pharmacology, Johannes-Gutenberg University, Mainz, Germany
| |
Collapse
|
6
|
Weber JJ, Clemensson LE, Schiöth HB, Nguyen HP. Olesoxime in neurodegenerative diseases: Scrutinising a promising drug candidate. Biochem Pharmacol 2019; 168:305-318. [PMID: 31283931 DOI: 10.1016/j.bcp.2019.07.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 07/03/2019] [Indexed: 12/14/2022]
Abstract
Over the last years, the experimental compound olesoxime, a mitochondria-targeting cholesterol derivative, has emerged as a promising drug candidate for neurodegenerative diseases. Numerous preclinical studies have successfully proved olesoxime's neuroprotective properties in cell and animal models of clinical conditions such as amyotrophic lateral sclerosis, Huntington disease, Parkinson disease, peripheral neuropathy and spinal muscular atrophy. The beneficial effects were attributed to olesoxime's potential impact on oxidative stress, mitochondrial permeability transition or cholesterol homoeostasis. Although no significant benefits have been demonstrated in patients of amyotrophic lateral sclerosis, and only the first 12 months of a phase II/III clinical trial showed an improvement in motor symptoms of spinal muscular atrophy, this orphan drug may still offer undiscovered potential in the treatment of neurological diseases. In our earlier preclinical studies, we demonstrated that administration of olesoxime in mouse and rat models of Huntington disease improved psychiatric and molecular phenotypes. Aside from stabilising mitochondrial function, the drug reduced the overactivation of calpains, a class of calcium-dependent proteases entangled in neurodegenerative conditions. This observation may be credited to olesoxime's action on calcium dyshomeostasis, a further hallmark in neurodegeneration, and linked to its targets TSPO and VDAC, two proteins of the outer mitochondrial membrane associated with mitochondrial calcium handling. Further research into the mode of action of olesoxime under pathological conditions, including its effect on neuronal calcium homeostasis, may strengthen the untapped potential of olesoxime or other similar compounds as a therapeutic for neurodegenerative diseases.
Collapse
Affiliation(s)
- Jonasz Jeremiasz Weber
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany.
| | | | - Helgi Birgir Schiöth
- Department of Neuroscience, Uppsala University, Uppsala, Sweden; Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow, Russia.
| | - Huu Phuc Nguyen
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany; Department of Human Genetics, Ruhr-University Bochum, Bochum, Germany.
| |
Collapse
|
7
|
Shorrock HK, Gillingwater TH, Groen EJN. Overview of Current Drugs and Molecules in Development for Spinal Muscular Atrophy Therapy. Drugs 2019; 78:293-305. [PMID: 29380287 PMCID: PMC5829132 DOI: 10.1007/s40265-018-0868-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Spinal muscular atrophy (SMA) is a neurodegenerative disease primarily characterized by a loss of spinal motor neurons, leading to progressive paralysis and premature death in the most severe cases. SMA is caused by homozygous deletion of the survival motor neuron 1 (SMN1) gene, leading to low levels of SMN protein. However, a second SMN gene (SMN2) exists, which can be therapeutically targeted to increase SMN levels. This has recently led to the first disease-modifying therapy for SMA gaining formal approval from the US Food and Drug Administration (FDA) and European Medicines Agency (EMA). Spinraza (nusinersen) is a modified antisense oligonucleotide that targets the splicing of SMN2, leading to increased SMN protein levels, capable of improving clinical phenotypes in many patients. In addition to Spinraza, several other therapeutic approaches are currently in various stages of clinical development. These include SMN-dependent small molecule and gene therapy approaches along with SMN-independent strategies, such as general neuroprotective factors and muscle strength-enhancing compounds. For each therapy, we provide detailed information on clinical trial design and pharmacological/safety data where available. Previous clinical studies are also discussed to provide context on SMA clinical trial development and the insights these provided for the design of current studies.
Collapse
Affiliation(s)
- Hannah K Shorrock
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Hugh Robson Building, 15 George Square, Edinburgh, EH8 9XD, UK.,Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Hugh Robson Building, 15 George Square, Edinburgh, EH8 9XD, UK
| | - Thomas H Gillingwater
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Hugh Robson Building, 15 George Square, Edinburgh, EH8 9XD, UK.,Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Hugh Robson Building, 15 George Square, Edinburgh, EH8 9XD, UK
| | - Ewout J N Groen
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Hugh Robson Building, 15 George Square, Edinburgh, EH8 9XD, UK. .,Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Hugh Robson Building, 15 George Square, Edinburgh, EH8 9XD, UK.
| |
Collapse
|
8
|
Kaviani M, Keshtkar S, Azarpira N, Aghdaei MH, Geramizadeh B, Karimi MH, Shamsaeefar A, Motazedian N, Nikeghbalian S, Al-Abdullah IH, Ghahremani MH. Cytoprotective effects of olesoxime on isolated human pancreatic islets in order to attenuate apoptotic pathway. Biomed Pharmacother 2019; 112:108674. [PMID: 30784942 DOI: 10.1016/j.biopha.2019.108674] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 02/06/2019] [Accepted: 02/06/2019] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Islet transplantation is considered as a promising approach in the treatment of diabetes type 1. In this regard, optimal culture of the pancreatic islets is promising in the success of transplantation. In the present study, the effect of olesoxime, as an antiapoptotic substance, was evaluated on human islet culture. EXPERIMENTAL APPROACH The pancreatic islets were isolated by mechanical and enzymatic techniques. After overnight recovery, the islets were treated by different concentrations of olesoxime for 24 and 72 h. Then, they were examined in terms of viability, apoptosis, genes and proteins expression including BAX, BCL2, active caspase-3, and insulin. Moreover, the islets function was evaluated through the glucose-induced insulin and C-peptide secretion assay. KEY RESULTS Our findings showed that the islets increased in apoptosis and the decreased in viability after 72 h; also, insulin and C-peptide secretion reduced. However, in the presence of olesoxime, BAX/BCL2 ratio and the activation of caspase-3 were decreased. Therefore, olesoxime could improve the viability of the islets with the decrease of apoptosis. CONCLUSION The application of olesoxime can reduce the stressful condition for the islets in vitro and subsequently improve their viability and functionality.
Collapse
Affiliation(s)
- Maryam Kaviani
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Somayeh Keshtkar
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | | | - Bita Geramizadeh
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Alireza Shamsaeefar
- Shiraz Organ Transplant Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nasrin Motazedian
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saman Nikeghbalian
- Shiraz Organ Transplant Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ismail H Al-Abdullah
- Department of Translational Research and Cellular Therapeutics, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, USA
| | - Mohammad Hossein Ghahremani
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology-Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Lu Y, Ma J, Song Z, Ye Y, Fu PP, Lin G. The role of formation of pyrrole-ATP synthase subunit beta adduct in pyrrolizidine alkaloid-induced hepatotoxicity. Arch Toxicol 2018; 92:3403-3414. [PMID: 30244272 DOI: 10.1007/s00204-018-2309-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 09/13/2018] [Indexed: 01/28/2023]
Abstract
Pyrrolizidine alkaloids (PAs) are one of the most significant groups of hepatotoxic phytotoxins. It is well-studied that metabolic activation of PAs generates reactive pyrrolic metabolites that rapidly bind to cellular proteins to form pyrrole-protein adducts leading to hepatotoxicity. Pyrrole-protein adducts all contain an identical core pyrrole moiety regardless of structures of the different PAs; however, the proteins forming pyrrole-protein adducts are largely unknown. The present study revealed that ATP synthase subunit beta (ATP5B), a critical subunit of mitochondrial ATP synthase, was a protein bound to the reactive pyrrolic metabolites forming pyrrole-ATP5B adduct. Using both anti-ATP5B antibody and our prepared anti-pyrrole-protein antibody, pyrrole-ATP5B adduct was identified in the liver of rats, hepatic sinusoidal endothelial cells, and HepaRG hepatocytes treated with retrorsine, a well-studied representative hepatotoxic PA. HepaRG cells were then used to further explore the consequence of pyrrole-ATP5B adduct formation. After treatment with retrorsine, significant amounts of pyrrole-ATP5B adduct were formed in HepaRG cells, resulting in remarkably reduced ATP synthase activity and intracellular ATP level. Subsequently, mitochondrial membrane potential and respiration were reduced, leading to mitochondria-mediated apoptotic cell death. Moreover, pre-treatment of HepaRG cells with a mitochondrial membrane permeability transition pore inhibitor significantly reduced retrorsine-induced toxicity, further revealing that mitochondrial dysfunction caused by pyrrole-ATP5B adduct formation significantly contributed to PA intoxication. Our findings for the first time identified ATP5B as a protein covalently bound to the reactive pyrrolic metabolites of PAs to form pyrrole-ATP5B adduct, which impairs mitochondrial function and significantly contributes to PA-induced hepatotoxicity.
Collapse
Affiliation(s)
- Yao Lu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.,Joint Research Laboratory for Promoting Globalization of Traditional Chinese Medicines between The Chinese University of Hong Kong, Hong Kong SAR and Shanghai Institute of Materia Medica, China Academy of Sciences, Shanghai, China
| | - Jiang Ma
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.,Joint Research Laboratory for Promoting Globalization of Traditional Chinese Medicines between The Chinese University of Hong Kong, Hong Kong SAR and Shanghai Institute of Materia Medica, China Academy of Sciences, Shanghai, China
| | - Zijing Song
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.,Joint Research Laboratory for Promoting Globalization of Traditional Chinese Medicines between The Chinese University of Hong Kong, Hong Kong SAR and Shanghai Institute of Materia Medica, China Academy of Sciences, Shanghai, China
| | - Yang Ye
- Joint Research Laboratory for Promoting Globalization of Traditional Chinese Medicines between The Chinese University of Hong Kong, Hong Kong SAR and Shanghai Institute of Materia Medica, China Academy of Sciences, Shanghai, China.,Shanghai Institute of Materia Medica, China Academy of Sciences, Shanghai, China
| | - Peter P Fu
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, USA
| | - Ge Lin
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China. .,Joint Research Laboratory for Promoting Globalization of Traditional Chinese Medicines between The Chinese University of Hong Kong, Hong Kong SAR and Shanghai Institute of Materia Medica, China Academy of Sciences, Shanghai, China.
| |
Collapse
|
10
|
Fang S, Hou Y, Ling L, Wang D, Ismail M, Du Y, Zhang Y, Yao C, Li X. Dimeric camptothecin derived phospholipid assembled liposomes with high drug loading for cancer therapy. Colloids Surf B Biointerfaces 2018; 166:235-244. [DOI: 10.1016/j.colsurfb.2018.02.046] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 02/02/2018] [Accepted: 02/20/2018] [Indexed: 12/13/2022]
|
11
|
Bertini E, Dessaud E, Mercuri E, Muntoni F, Kirschner J, Reid C, Lusakowska A, Comi GP, Cuisset JM, Abitbol JL, Scherrer B, Ducray PS, Buchbjerg J, Vianna E, van der Pol WL, Vuillerot C, Blaettler T, Fontoura P. Safety and efficacy of olesoxime in patients with type 2 or non-ambulatory type 3 spinal muscular atrophy: a randomised, double-blind, placebo-controlled phase 2 trial. Lancet Neurol 2017; 16:513-522. [PMID: 28460889 DOI: 10.1016/s1474-4422(17)30085-6] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 01/27/2017] [Accepted: 03/13/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND Spinal muscular atrophy (SMA) is a progressive motor neuron disease causing loss of motor function and reduced life expectancy, for which limited treatment is available. We investigated the safety and efficacy of olesoxime in patients with type 2 or non-ambulatory type 3 SMA. METHODS This randomised, double-blind, placebo-controlled, phase 2 study was done in 22 neuromuscular care centres in Belgium, France, Germany, Italy, Netherlands, Poland, and the UK. Safety and efficacy of olesoxime were assessed in patients aged 3-25 years with genetically confirmed type 2 or non-ambulatory type 3 SMA. A centralised, computerised randomisation process allocated patients (2:1 with stratification by SMA type and centre) to receive olesoxime (10 mg/kg per day) in an oral liquid suspension or placebo for 24 months. Patients, investigators assessing outcomes, and sponsor study personnel were masked to treatment assignment. The primary outcome measure was change from baseline compared with 24 months between the two treatment groups in functional domains 1 and 2 of the Motor Function Measure (MFM D1 + D2) assessed in the full analysis population. A shorter, 20-item version of the MFM, which was specifically adapted for young children, was used to assess patients younger than 6 years. Safety was assessed in all patients who received one or more doses of the study drug. The trial is registered with ClinicalTrials.gov, number NCT01302600. FINDINGS The trial was done between Nov 18, 2010, and Oct 9, 2013. Of 198 patients screened, 165 were randomly assigned to olesoxime (n=108) or placebo (n=57). Five patients in the olesoxime group were not included in the primary outcome analysis because of an absence of post-baseline assessments. The change from baseline to month 24 on the primary outcome measure was 0·18 for olesoxime and -1·82 for placebo (treatment difference 2·00 points, 96% CI -0·25 to 4·25, p=0·0676). Olesoxime seemed to be safe and generally well tolerated, with an adverse event profile similar to placebo. The most frequent adverse events in the olesoxime group were pyrexia (n=34), cough (n=32), nasopharyngitis (n=25), and vomiting (n=25). There were two patient deaths (one in each group), but these were not deemed to be related to the study treatment. INTERPRETATION Olesoxime was safe at the doses studied, for the duration of the trial. Although the primary endpoint was not met, secondary endpoints and sensitivity analyses suggest that olesoxime might maintain motor function in patients with type 2 or type 3 SMA over a period of 24 months. Based on these results, olesoxime might provide meaningful clinical benefits for patients with SMA and, given its mode of action, might be used in combination with other drugs targeting other mechanisms of disease, although additional evidence is needed. FUNDING AFM Téléthon and Trophos SA.
Collapse
Affiliation(s)
- Enrico Bertini
- Department of Neurosciences and Neurorehabilitation, Bambino Gesù Children's Research Hospital IRCCS, Rome, Italy.
| | | | - Eugenio Mercuri
- Paediatric Neurology and Nemo Center, Catholic University and Policlinico Gemelli, Rome, Italy
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health and Great Ormond Street Hospital for Children, London, UK
| | - Janbernd Kirschner
- Department of Neuropediatrics and Muscle Disorders, Medical Center-University of Freiburg, Freiburg, Germany
| | - Carol Reid
- Biostatistics, Roche Products Limited, Welwyn Garden City, UK
| | - Anna Lusakowska
- Department of Neurology, Medical University of Warsaw, Warsaw, Poland
| | - Giacomo P Comi
- Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Jean-Marie Cuisset
- Department of Neuropediatrics, Neuromuscular Disease Reference Centre, Roger-Salengro Hospital, Regional University Teaching Hospital, Lille, France
| | | | - Bruno Scherrer
- Bruno Scherrer Conseil, Saint-Arnoult-en-Yvelines, France
| | - Patricia Sanwald Ducray
- Roche Pharma Research and Early Development, Clinical Pharmacology, Roche Innovation Center Basel, Switzerland
| | - Jeppe Buchbjerg
- Neuroscience Product Development, F Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Eduardo Vianna
- Neuroscience Product Development, F Hoffmann-La Roche Ltd, Basel, Switzerland
| | - W Ludo van der Pol
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, Netherlands
| | - Carole Vuillerot
- Department of Paediatric Physical Medicine and Rehabilitation, Hôpital Femme Mère Enfant, Centre Hospitalier Universitaire de Lyon, France
| | - Thomas Blaettler
- Neuroscience Product Development, F Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Paulo Fontoura
- Neuroscience Product Development, F Hoffmann-La Roche Ltd, Basel, Switzerland
| | | |
Collapse
|
12
|
Magalon K, Le Grand M, El Waly B, Moulis M, Pruss R, Bordet T, Cayre M, Belenguer P, Carré M, Durbec P. Olesoxime favors oligodendrocyte differentiation through a functional interplay between mitochondria and microtubules. Neuropharmacology 2016; 111:293-303. [DOI: 10.1016/j.neuropharm.2016.09.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 07/18/2016] [Accepted: 09/07/2016] [Indexed: 11/25/2022]
|
13
|
Ono Y, Saido TC, Sorimachi H. Calpain research for drug discovery: challenges and potential. Nat Rev Drug Discov 2016; 15:854-876. [PMID: 27833121 DOI: 10.1038/nrd.2016.212] [Citation(s) in RCA: 200] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Calpains are a family of proteases that were scientifically recognized earlier than proteasomes and caspases, but remain enigmatic. However, they are known to participate in a multitude of physiological and pathological processes, performing 'limited proteolysis' whereby they do not destroy but rather modulate the functions of their substrates. Calpains are therefore referred to as 'modulator proteases'. Multidisciplinary research on calpains has begun to elucidate their involvement in pathophysiological mechanisms. Therapeutic strategies targeting malfunctions of calpains have been developed, driven primarily by improvements in the specificity and bioavailability of calpain inhibitors. Here, we review the calpain superfamily and calpain-related disorders, and discuss emerging calpain-targeted therapeutic strategies.
Collapse
Affiliation(s)
- Yasuko Ono
- Calpain Project, Department of Advanced Science for Biomolecules, Tokyo Metropolitan Institute of Medical Science (IGAKUKEN), 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Hiroyuki Sorimachi
- Calpain Project, Department of Advanced Science for Biomolecules, Tokyo Metropolitan Institute of Medical Science (IGAKUKEN), 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| |
Collapse
|
14
|
Weber JJ, Ortiz Rios MM, Riess O, Clemens LE, Nguyen HP. The calpain-suppressing effects of olesoxime in Huntington's disease. Rare Dis 2016; 4:e1153778. [PMID: 27141414 PMCID: PMC4838320 DOI: 10.1080/21675511.2016.1153778] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 01/25/2016] [Accepted: 02/04/2016] [Indexed: 02/08/2023] Open
Abstract
Olesoxime, a small molecule drug candidate, has recently attracted attention due to its significant beneficial effects in models of several neurodegenerative disorders including Huntington's disease. Olesoxime's neuroprotective effects have been assumed to be conveyed through a direct, positive influence on mitochondrial function. In a long-term treatment study in BACHD rats, the latest rat model of Huntington's disease, olesoxime revealed a positive influence on mitochondrial function and improved specific behavioral and neuropathological phenotypes. Moreover, a novel target of the compound was discovered, as olesoxime was found to suppress the activation of the calpain proteolytic system, a major contributor to the cleavage of the disease-causing mutant huntingtin protein into toxic fragments, and key player in degenerative processes in general. Results from a second model of Huntington's disease, the HdhQ111 knock-in mouse, confirm olesoxime's calpain-suppressing effects and support the therapeutic value of olesoxime for Huntington's disease and other disorders involving calpain overactivation.
Collapse
Affiliation(s)
- Jonasz J Weber
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany; Centre for Rare Diseases, University of Tuebingen, Tuebingen, Germany
| | - Midea M Ortiz Rios
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany; Centre for Rare Diseases, University of Tuebingen, Tuebingen, Germany
| | - Olaf Riess
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany; Centre for Rare Diseases, University of Tuebingen, Tuebingen, Germany
| | - Laura E Clemens
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany; Centre for Rare Diseases, University of Tuebingen, Tuebingen, Germany; Current institution: QPS Austria, Grambach, Austria
| | - Huu P Nguyen
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany; Centre for Rare Diseases, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
15
|
Clemens LE, Weber JJ, Wlodkowski TT, Yu-Taeger L, Michaud M, Calaminus C, Eckert SH, Gaca J, Weiss A, Magg JCD, Jansson EKH, Eckert GP, Pichler BJ, Bordet T, Pruss RM, Riess O, Nguyen HP. Olesoxime suppresses calpain activation and mutant huntingtin fragmentation in the BACHD rat. Brain 2015; 138:3632-53. [PMID: 26490331 DOI: 10.1093/brain/awv290] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 08/11/2015] [Indexed: 12/14/2022] Open
Abstract
Huntington's disease is a fatal human neurodegenerative disorder caused by a CAG repeat expansion in the HTT gene, which translates into a mutant huntingtin protein. A key event in the molecular pathogenesis of Huntington's disease is the proteolytic cleavage of mutant huntingtin, leading to the accumulation of toxic protein fragments. Mutant huntingtin cleavage has been linked to the overactivation of proteases due to mitochondrial dysfunction and calcium derangements. Here, we investigated the therapeutic potential of olesoxime, a mitochondria-targeting, neuroprotective compound, in the BACHD rat model of Huntington's disease. BACHD rats were treated with olesoxime via the food for 12 months. In vivo analysis covered motor impairments, cognitive deficits, mood disturbances and brain atrophy. Ex vivo analyses addressed olesoxime's effect on mutant huntingtin aggregation and cleavage, as well as brain mitochondria function. Olesoxime improved cognitive and psychiatric phenotypes, and ameliorated cortical thinning in the BACHD rat. The treatment reduced cerebral mutant huntingtin aggregates and nuclear accumulation. Further analysis revealed a cortex-specific overactivation of calpain in untreated BACHD rats. Treated BACHD rats instead showed significantly reduced levels of mutant huntingtin fragments due to the suppression of calpain-mediated cleavage. In addition, olesoxime reduced the amount of mutant huntingtin fragments associated with mitochondria, restored a respiration deficit, and enhanced the expression of fusion and outer-membrane transport proteins. In conclusion, we discovered the calpain proteolytic system, a key player in Huntington's disease and other neurodegenerative disorders, as a target of olesoxime. Our findings suggest that olesoxime exerts its beneficial effects by improving mitochondrial function, which results in reduced calpain activation. The observed alleviation of behavioural and neuropathological phenotypes encourages further investigations on the use of olesoxime as a therapeutic for Huntington's disease.
Collapse
Affiliation(s)
- Laura E Clemens
- 1 Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Calwerstrasse 7, 72076 Tuebingen, Germany 2 Centre for Rare Diseases, University of Tuebingen, Calwerstrasse 7, 72076 Tuebingen, Germany
| | - Jonasz J Weber
- 1 Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Calwerstrasse 7, 72076 Tuebingen, Germany 2 Centre for Rare Diseases, University of Tuebingen, Calwerstrasse 7, 72076 Tuebingen, Germany
| | - Tanja T Wlodkowski
- 1 Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Calwerstrasse 7, 72076 Tuebingen, Germany 2 Centre for Rare Diseases, University of Tuebingen, Calwerstrasse 7, 72076 Tuebingen, Germany
| | - Libo Yu-Taeger
- 1 Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Calwerstrasse 7, 72076 Tuebingen, Germany 2 Centre for Rare Diseases, University of Tuebingen, Calwerstrasse 7, 72076 Tuebingen, Germany
| | - Magali Michaud
- 3 Trophos SA., Parc Scientifique de Luminy Case 931, 13288 Marseille Cedex 9, France
| | - Carsten Calaminus
- 4 Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, University of Tuebingen, Roentgenweg 13, 72076 Tuebingen, Germany
| | - Schamim H Eckert
- 5 Department of Pharmacology, Goethe University Frankfurt am Main, Max-von-Laue Str. 9, 60438 Frankfurt, Germany
| | - Janett Gaca
- 5 Department of Pharmacology, Goethe University Frankfurt am Main, Max-von-Laue Str. 9, 60438 Frankfurt, Germany
| | - Andreas Weiss
- 6 Novartis Institutes for BioMedical Research, Klybeckstrasse 141, 4057 Basel, Switzerland
| | - Janine C D Magg
- 1 Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Calwerstrasse 7, 72076 Tuebingen, Germany 2 Centre for Rare Diseases, University of Tuebingen, Calwerstrasse 7, 72076 Tuebingen, Germany
| | - Erik K H Jansson
- 1 Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Calwerstrasse 7, 72076 Tuebingen, Germany 2 Centre for Rare Diseases, University of Tuebingen, Calwerstrasse 7, 72076 Tuebingen, Germany
| | - Gunter P Eckert
- 5 Department of Pharmacology, Goethe University Frankfurt am Main, Max-von-Laue Str. 9, 60438 Frankfurt, Germany
| | - Bernd J Pichler
- 4 Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, University of Tuebingen, Roentgenweg 13, 72076 Tuebingen, Germany
| | - Thierry Bordet
- 3 Trophos SA., Parc Scientifique de Luminy Case 931, 13288 Marseille Cedex 9, France
| | - Rebecca M Pruss
- 3 Trophos SA., Parc Scientifique de Luminy Case 931, 13288 Marseille Cedex 9, France
| | - Olaf Riess
- 1 Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Calwerstrasse 7, 72076 Tuebingen, Germany 2 Centre for Rare Diseases, University of Tuebingen, Calwerstrasse 7, 72076 Tuebingen, Germany
| | - Huu P Nguyen
- 1 Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Calwerstrasse 7, 72076 Tuebingen, Germany 2 Centre for Rare Diseases, University of Tuebingen, Calwerstrasse 7, 72076 Tuebingen, Germany
| |
Collapse
|
16
|
Gouarné C, Tracz J, Paoli MG, Deluca V, Seimandi M, Tardif G, Xilouri M, Stefanis L, Bordet T, Pruss RM. Protective role of olesoxime against wild-type α-synuclein-induced toxicity in human neuronally differentiated SHSY-5Y cells. Br J Pharmacol 2014; 172:235-45. [PMID: 25220617 DOI: 10.1111/bph.12939] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 09/04/2014] [Accepted: 09/08/2014] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND PURPOSE Parkinson's disease (PD) is usually diagnosed clinically from classical motor symptoms, while definitive diagnosis is made postmortem, based on the presence of Lewy bodies and nigral neuron cell loss. α-Synuclein (ASYN), the main protein component of Lewy bodies, clearly plays a role in the neurodegeneration that characterizes PD. Additionally, mutation in the SNCA gene or copy number variations are associated with some forms of familial PD. Here, the objective of the study was to evaluate whether olesoxime, a promising neuroprotective drug can prevent ASYN-mediated neurotoxicity. EXPERIMENTAL APPROACH We used here a novel, mechanistically approachable and attractive cellular model based on the inducible overexpression of human wild-type ASYN in neuronally differentiated human neuroblastoma (SHSY-5Y) cells. This model demonstrates gradual cellular degeneration, coinciding temporally with the appearance of soluble and membrane-bound ASYN oligomers and cell death combining both apoptotic and non-apoptotic pathways. KEY RESULTS Olesoxime fully protected differentiated SHSY-5Y cells from cell death, neurite retraction and cytoplasmic shrinkage induced by moderate ASYN overexpression. This protection was associated with a reduction in cytochrome c release from mitochondria and caspase-9 activation suggesting that olesoxime prevented ASYN toxicity by preserving mitochondrial integrity and function. In addition, olesoxime displayed neurotrophic effects on neuronally differentiated SHSY-5Y cells, independent of ASYN expression, by promoting their differentiation. CONCLUSIONS AND IMPLICATIONS Because ASYN is a common underlying factor in many cases of PD, olesoxime could be a promising therapy to slow neurodegeneration in PD.
Collapse
Affiliation(s)
- C Gouarné
- Trophos, Parc Scientifique de Luminy, Luminy Biotech Entreprises, Marseille, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Richter F, Gao F, Medvedeva V, Lee P, Bove N, Fleming SM, Michaud M, Lemesre V, Patassini S, De La Rosa K, Mulligan CK, Sioshansi PC, Zhu C, Coppola G, Bordet T, Pruss RM, Chesselet MF. Chronic administration of cholesterol oximes in mice increases transcription of cytoprotective genes and improves transcriptome alterations induced by alpha-synuclein overexpression in nigrostriatal dopaminergic neurons. Neurobiol Dis 2014; 69:263-75. [PMID: 24844147 DOI: 10.1016/j.nbd.2014.05.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Revised: 05/02/2014] [Accepted: 05/06/2014] [Indexed: 12/14/2022] Open
Abstract
Cholesterol-oximes TRO19622 and TRO40303 target outer mitochondrial membrane proteins and have beneficial effects in preclinical models of neurodegenerative diseases leading to their advancement to clinical trials. Dopaminergic neurons degenerate in Parkinson's disease (PD) and are prone to oxidative stress and mitochondrial dysfunction. In order to provide insights into the neuroprotective potential of TRO19622 and TRO40303 for dopaminergic neurons in vivo, we assessed their effects on gene expression in laser captured nigrostriatal dopaminergic neurons of wildtype mice and of mice that over-express alpha-synuclein, a protein involved in both familial and sporadic forms of PD (Thy1-aSyn mice). Young mice were fed the drugs in food pellets or a control diet from 1 to 4months of age, approximately 10months before the appearance of striatal dopamine loss in this model. Unbiased weighted gene co-expression network analysis (WGCNA) of transcriptional changes revealed effects of cholesterol oximes on transcripts related to mitochondria, cytoprotection and anti-oxidant response in wild-type and transgenic mice, including increased transcription of stress defense (e.g. Prdx1, Prdx2, Glrx2, Hspa9, Pink1, Drp1, Trak1) and dopamine-related (Th, Ddc, Gch1, Dat, Vmat2, Drd2, Chnr6a) genes. Even at this young age transgenic mice showed alterations in transcripts implicated in mitochondrial function and oxidative stress (e.g. Bcl-2, Bax, Casp3, Nos2), and both drugs normalized about 20% of these alterations. Young Thy1-aSyn mice exhibit motor deficits that differ from parkinsonism and are established before the onset of treatment; these deficits were not improved by cholesterol oximes. However, high doses of TRO40303 improved olfaction and produced the same effects as dopamine agonists on a challenging beam test, specifically an increase in footslips, an observation congruent with its effects on transcripts involved in dopamine synthesis. High doses of TRO19622 increased alpha-synuclein aggregates in the substantia nigra; this effect, not seen with TRO40303 was inconsistent and may represent a protective mechanism as in other neurodegenerative diseases. Overall, the results suggest that cholesterol oximes, while not improving early effects of alpha-synuclein overexpression on motor behavior or pathology, may ameliorate the function and resilience of dopaminergic neurons in vivo and support further studies of neuroprotection in models with dopaminergic cell loss.
Collapse
Affiliation(s)
- Franziska Richter
- Department of Neurology, The David Geffen School of Medicine at UCLA, 710 Westwood Plaza, Los Angeles, CA 90095-1769, USA
| | - Fuying Gao
- Department of Psychiatry, Semel Institute for Neuroscience and Human Behavior, The David Geffen School of Medicine at UCLA, 710 Westwood Plaza, Los Angeles, CA 90095-1769, USA
| | - Vera Medvedeva
- Department of Neurology, The David Geffen School of Medicine at UCLA, 710 Westwood Plaza, Los Angeles, CA 90095-1769, USA
| | - Patrick Lee
- Department of Neurology, The David Geffen School of Medicine at UCLA, 710 Westwood Plaza, Los Angeles, CA 90095-1769, USA
| | - Nicholas Bove
- Department of Neurology, The David Geffen School of Medicine at UCLA, 710 Westwood Plaza, Los Angeles, CA 90095-1769, USA
| | - Sheila M Fleming
- Department of Neurology, The David Geffen School of Medicine at UCLA, 710 Westwood Plaza, Los Angeles, CA 90095-1769, USA
| | - Magali Michaud
- Trophos S.A. Parc Scientifique de Luminy, Case 931, 13288 Marseille Cedex 9, France
| | - Vincent Lemesre
- Department of Neurology, The David Geffen School of Medicine at UCLA, 710 Westwood Plaza, Los Angeles, CA 90095-1769, USA
| | - Stefano Patassini
- Department of Neurology, The David Geffen School of Medicine at UCLA, 710 Westwood Plaza, Los Angeles, CA 90095-1769, USA
| | - Krystal De La Rosa
- Department of Neurology, The David Geffen School of Medicine at UCLA, 710 Westwood Plaza, Los Angeles, CA 90095-1769, USA
| | - Caitlin K Mulligan
- Department of Neurology, The David Geffen School of Medicine at UCLA, 710 Westwood Plaza, Los Angeles, CA 90095-1769, USA
| | - Pedrom C Sioshansi
- Department of Neurology, The David Geffen School of Medicine at UCLA, 710 Westwood Plaza, Los Angeles, CA 90095-1769, USA
| | - Chunni Zhu
- Department of Neurology, The David Geffen School of Medicine at UCLA, 710 Westwood Plaza, Los Angeles, CA 90095-1769, USA
| | - Giovanni Coppola
- Department of Neurology, The David Geffen School of Medicine at UCLA, 710 Westwood Plaza, Los Angeles, CA 90095-1769, USA; Department of Psychiatry, Semel Institute for Neuroscience and Human Behavior, The David Geffen School of Medicine at UCLA, 710 Westwood Plaza, Los Angeles, CA 90095-1769, USA
| | - Thierry Bordet
- Trophos S.A. Parc Scientifique de Luminy, Case 931, 13288 Marseille Cedex 9, France
| | - Rebecca M Pruss
- Trophos S.A. Parc Scientifique de Luminy, Case 931, 13288 Marseille Cedex 9, France
| | - Marie-Françoise Chesselet
- Department of Neurology, The David Geffen School of Medicine at UCLA, 710 Westwood Plaza, Los Angeles, CA 90095-1769, USA.
| |
Collapse
|