1
|
Suzuki S, Akahane T, Tanimoto A, Higashi M, Kitazono I, Kirishima M, Nishigaki M, Ikeda T, Kanemitsu S, Nakazawa J, Akahane E, Nishihara H, Uozumi K, Yoshimitsu M, Ishitsuka K, Ueno SI. Comparison of actionable alterations in cancers with kinase fusion, mutation, and copy number alteration. PLoS One 2025; 20:e0305025. [PMID: 39847581 PMCID: PMC11756797 DOI: 10.1371/journal.pone.0305025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 01/06/2025] [Indexed: 01/25/2025] Open
Abstract
Kinase-related gene fusion and point mutations play pivotal roles as drivers in cancer, necessitating optimized, targeted therapy against these alterations. The efficacy of molecularly targeted therapeutics varies depending on the specific alteration, with great success reported for such therapeutics in the treatment of cancer with kinase fusion proteins. However, the involvement of actionable alterations in solid tumors, especially regarding kinase fusions, remains unclear. Therefore, in this study, we aimed to compare the number of actionable alterations in patients with tyrosine or serine/threonine kinase domain fusions, mutations, and copy number alterations (CNAs). We analyzed 613 patients with 40 solid cancer types who visited our division between June 2020 and April 2024. Furthermore, to detect alterations involving multiple-fusion calling, we performed comprehensive genomic sequencing using FoundationOne® companion diagnostic (F1CDx) and FoundationOne® Liquid companion diagnostic (F1LCDx). Patient characteristics and genomic profiles were analyzed to assess the frequency and distribution of actionable alterations across different cancer types. Notably, 44 of the 613 patients had fusions involving kinases, transcriptional regulators, or tumor suppressors. F1CDx and F1LCDx detected 13 cases with kinase-domain fusions. We identified 117 patients with kinase-domain mutations and 58 with kinase-domain CNAs. The number of actionable alterations in patients with kinase-domain fusion, mutation, or CNA (median [interquartile range; IQR]) was 2 (1-3), 5 (3-7), and 6 (4-8), respectively. Patients with kinase fusion had significantly fewer actionable alterations than those with kinase-domain mutations and CNAs. However, those with fusion involving tumor suppressors tended to have more actionable alterations (median [IQR]; 4 [2-9]). Cancers with kinase fusions exhibited fewer actionable alterations than those with kinase mutations and CNAs. These findings underscore the importance of detecting kinase alterations and indicate the pivotal role of kinase fusions as strong drivers of cancer development, highlighting their potential as prime targets for molecular therapeutics.
Collapse
Affiliation(s)
- Shinsuke Suzuki
- Cancer Center, Kagoshima University Hospital, Kagoshima, Japan
- Department of Clinical Oncology, Course of Advanced Therapeutics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
- Department of Hematology and Rheumatology, Kagoshima University Hospital, Kagoshima, Japan
| | - Toshiaki Akahane
- Cancer Center, Kagoshima University Hospital, Kagoshima, Japan
- Department of Pathology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Akihide Tanimoto
- Department of Pathology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Michiyo Higashi
- Department of Pathology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Ikumi Kitazono
- Department of Pathology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Mari Kirishima
- Department of Pathology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | | | - Toshiro Ikeda
- Department of Genetic Counseling, Kagoshima University Hospital, Kagoshima, Japan
| | | | - Junichi Nakazawa
- Department of Medical Oncology, Kagoshima City Hospital, Kagoshima, Japan
| | - Erina Akahane
- Cancer Center, Kagoshima University Hospital, Kagoshima, Japan
| | - Hiroshi Nishihara
- Keio Cancer Center, Keio University School of Medicine, Tokyo, Japan
| | - Kimiharu Uozumi
- Department of Medical Oncology, National Hospital Organization Kagoshima Medical Center, Kagoshima, Japan
| | - Makoto Yoshimitsu
- Department of Hematology and Rheumatology, Kagoshima University Hospital, Kagoshima, Japan
| | - Kenji Ishitsuka
- Department of Hematology and Rheumatology, Kagoshima University Hospital, Kagoshima, Japan
| | - Shin-ichi Ueno
- Cancer Center, Kagoshima University Hospital, Kagoshima, Japan
- Department of Clinical Oncology, Course of Advanced Therapeutics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| |
Collapse
|
2
|
Zhang P, Chu Q. Identification of BRCA new prognostic targets and neoantigen candidates from fusion genes. Discov Oncol 2024; 15:805. [PMID: 39692896 DOI: 10.1007/s12672-024-01571-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 11/11/2024] [Indexed: 12/19/2024] Open
Abstract
Cancer-associated gene fusions serve as a potential source of highly immunogenic neoantigens. In this study, we identified fusion proteins from fusion genes and extracted fusion peptides to accurately predict Breast cancer (BRCA) neo-antigen candidates by high-throughput artificial intelligence computation. Firstly, Deepsurv was used to evaluate the prognosis of patients, providing a landscape of prognostic fusion genes in BRCA. Next, AGFusion was utilized to generate full-length fusion protein sequences and annotate functional domains. Advanced neural networks and Transformer-based analyses were implemented to predict the binding of fusion peptides to 112 types of HLA, thereby forming a new immunotherapy candidates' library of BRCA neo-antigens (n = 7791, covering 88.41% of patients). Among them, 15 neo-antigens were validated and factually translated into mass spectrometry data of BRCA patients. Finally, AlphaFold2 was applied to predict the binding sites of these neo-antigens to MHC (HLA) molecules. Notably, we identified a prognostic neoantigen from the TBC1D4-COMMD6 fusion that significantly improves patient prognosis and extensively binds to 16 types of HLA alleles. These highly immunogenic and tumor-specific neoantigens offer emerging targets for personalized cancer immunotherapies and act as prospective predictors for tumor survival prognosis and responses to immune checkpoint therapies.
Collapse
Affiliation(s)
- Pei Zhang
- Beijing Institute of Technology, No.5 South Zhongguancun Rd, Haidian District, Beijing, 100081, China
| | - Qingzhao Chu
- Beijing Institute of Technology, No.5 South Zhongguancun Rd, Haidian District, Beijing, 100081, China.
| |
Collapse
|
3
|
Okamoto N, Yagi K, Imawaka S, Takaoka M, Aizawa F, Niimura T, Goda M, Miyata K, Kawada K, Izawa‐Ishizawa Y, Sakaguchi S, Ishizawa K. Asciminib, a novel allosteric inhibitor of BCR-ABL1, shows synergistic effects when used in combination with imatinib with or without drug resistance. Pharmacol Res Perspect 2024; 12:e1214. [PMID: 39031848 PMCID: PMC11191601 DOI: 10.1002/prp2.1214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/25/2024] [Accepted: 04/15/2024] [Indexed: 07/22/2024] Open
Abstract
In the treatment of chronic myeloid leukemia (CML), resistance to BCR-ABL inhibitors makes it difficult to continue treatment and is directly related to life expectancy. Therefore, asciminib was introduced to the market as a useful drug for overcoming drug resistance. While combining molecular targeted drugs is useful to avoid drug resistance, the new BCR-ABL inhibitor asciminib and conventional BCR-ABL inhibitors should be used as monotherapy in principle. Therefore, we investigated the synergistic effect and mechanism of the combination of asciminib and imatinib. We generated imatinib-resistant cells using the human CML cell line K562, examined the effects of imatinib and asciminib exposure on cell survival using the WST-8 assay, and comprehensively analyzed genetic variation related to drug resistance using RNA-seq and real-time PCR. A synergistic effect was observed when imatinib and asciminib were combined with or without imatinib resistance. Three genes, GRRP1, ESPN, and NOXA1, were extracted as the sites of action of asciminib. Asciminib in combination with BCR-ABL inhibitors may improve the therapeutic efficacy of conventional BCR-ABL inhibitors and prevent the development of resistance. Its dosage may be effective even at minimal doses that do not cause side effects. Further verification of this mechanism of action is needed. Additionally, cross-resistance between BCR-ABL inhibitors and asciminib may occur, which needs to be clarified through further validation as soon as possible.
Collapse
MESH Headings
- Imatinib Mesylate/pharmacology
- Humans
- Fusion Proteins, bcr-abl/antagonists & inhibitors
- Fusion Proteins, bcr-abl/genetics
- Drug Synergism
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- K562 Cells
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Protein Kinase Inhibitors/pharmacology
- Cell Survival/drug effects
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Antineoplastic Agents/pharmacology
- Niacinamide/analogs & derivatives
- Pyrazoles
Collapse
Affiliation(s)
- Naoki Okamoto
- Department of Clinical Pharmacology and TherapeuticsTokushima University Graduate School of Biomedical SciencesTokushimaJapan
- Department of PharmacyTokushima University HospitalTokushimaJapan
| | - Kenta Yagi
- Department of Clinical Pharmacology and TherapeuticsTokushima University Graduate School of Biomedical SciencesTokushimaJapan
- Clinical Research Center for Developmental TherapeuticsTokushima University HospitalTokushimaJapan
| | - Sayaka Imawaka
- Department of Clinical Pharmacology and TherapeuticsTokushima University Graduate School of Biomedical SciencesTokushimaJapan
| | - Mayu Takaoka
- Department of Clinical Pharmacology and TherapeuticsTokushima University Graduate School of Biomedical SciencesTokushimaJapan
| | - Fuka Aizawa
- Department of Clinical Pharmacology and TherapeuticsTokushima University Graduate School of Biomedical SciencesTokushimaJapan
- Department of PharmacyTokushima University HospitalTokushimaJapan
| | - Takahiro Niimura
- Department of Clinical Pharmacology and TherapeuticsTokushima University Graduate School of Biomedical SciencesTokushimaJapan
- Clinical Research Center for Developmental TherapeuticsTokushima University HospitalTokushimaJapan
| | - Mitsuhiro Goda
- Department of Clinical Pharmacology and TherapeuticsTokushima University Graduate School of Biomedical SciencesTokushimaJapan
- Department of PharmacyTokushima University HospitalTokushimaJapan
| | - Koji Miyata
- Department of Clinical Pharmacology and TherapeuticsTokushima University Graduate School of Biomedical SciencesTokushimaJapan
| | - Kei Kawada
- Department of Clinical Pharmacology and TherapeuticsTokushima University Graduate School of Biomedical SciencesTokushimaJapan
- Department of Clinical Pharmacy Practice PedagogyTokushima University Graduate School of Biomedical SciencesTokushimaJapan
| | - Yuki Izawa‐Ishizawa
- Department of Clinical Pharmacology and TherapeuticsTokushima University Graduate School of Biomedical SciencesTokushimaJapan
- Department of General MedicineTaoka HospitalTokushimaJapan
| | - Satoshi Sakaguchi
- Clinical Research Center for Developmental TherapeuticsTokushima University HospitalTokushimaJapan
- Department of Respiratory Medicine and RheumatologyTokushima University Graduate School of Biomedical SciencesTokushimaJapan
| | - Keisuke Ishizawa
- Department of Clinical Pharmacology and TherapeuticsTokushima University Graduate School of Biomedical SciencesTokushimaJapan
- Department of PharmacyTokushima University HospitalTokushimaJapan
- Clinical Research Center for Developmental TherapeuticsTokushima University HospitalTokushimaJapan
| |
Collapse
|
4
|
Cui Y, Li Y, Ji J, Hu N, Min K, Ying W, Fan L, Hong M, Li J, Sun Z, Qu X. Dynamic Single-Cell RNA-Seq reveals mechanism of Selinexor-Resistance in Chronic myeloid leukemia. Int Immunopharmacol 2024; 134:112212. [PMID: 38728882 DOI: 10.1016/j.intimp.2024.112212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/23/2024] [Accepted: 05/02/2024] [Indexed: 05/12/2024]
Abstract
Chronic myeloid leukemia (CML) is a type of hematologic malignancies caused by BCR-ABL chimeric oncogene. Resistance to tyrosine kinase inhibitors (TKIs) leads to the progression of CML into advanced stages. Selinexor is a small molecule inhibitor that targets a nuclear transporter called Exportin 1. Combined with imatinib, selinexor has been shown to disrupt nuclear-cytoplasmic transport signal of leukemia stem cells, resulting in cell death. The objective of this study was to investigate the mechanism of drug resistance to selinexor in CML. We established K562 cell line resistant to selinexor and conducted single cell dynamic transcriptome sequencing to analyze the heterogeneity within the parental and selinexor resistant cell populations. We identified specific gene expression changes associated with resistance to selinexor. Our results revealed differential expression patterns in genes such as MT2A, TFPI, MTND3, and HMGCS1 in the total RNA, as well as MT-TW, DNAJB1, and HSPB1 in the newly synthesized RNA, between the parental and drug-resistant groups. By applying pseudo-time analysis, we discovered that a specific cluster of cells exhibited characteristics of tumor stem cells. Furthermore, we observed a gradual decrease in the expression of ferroptosis-related molecules as drug resistance developed. In vitro experiments confirmed that the combination of a ferroptosis inducer called RSL3 effectively overcame drug resistance. In conclusion, this study revealed the resistance mechanism of selinexor in CML. In conclusion, we identified a subgroup of CML cells with tumor stem cell properties and demonstrated that ferroptosis inducer improved the efficacy of selinexor in overcoming drug resistance.
Collapse
Affiliation(s)
- Yunqi Cui
- Department of Hematology, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, Jiangsu, China
| | - Yating Li
- Department of Hematology, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, Jiangsu, China
| | - Jiamei Ji
- Department of Hematology, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, Jiangsu, China
| | - Na Hu
- Department of Hematology, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, Jiangsu, China; Department of Hematology, The Affiliated Suqian First People's Hospital of Nanjing Medical University, 120 Suzhi Road, Suqian 223812, Jiangsu, China
| | - Ke Min
- Department of Hematology, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, Jiangsu, China
| | - Wanting Ying
- Department of Hematology, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, Jiangsu, China
| | - Lei Fan
- Department of Hematology, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, Jiangsu, China
| | - Ming Hong
- Department of Hematology, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, Jiangsu, China.
| | - Jianyong Li
- Department of Hematology, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, Jiangsu, China.
| | - Zhengxu Sun
- Department of Hematology, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, Jiangsu, China.
| | - Xiaoyan Qu
- Department of Hematology, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, Jiangsu, China.
| |
Collapse
|
5
|
Liu J, Zhao HL, He L, Yu RL, Kang CM. Discovery and design of dual inhibitors targeting Sphk1 and Sirt1. J Mol Model 2023; 29:141. [PMID: 37059848 DOI: 10.1007/s00894-023-05551-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 04/05/2023] [Indexed: 04/16/2023]
Abstract
CONTEXT Leukaemia has become a serious threat to human health. Although tyrosine kinase inhibitors (TKIs) have been developed as targets for the remedy of leukaemia, drug resistance occurs. Research demonstrated that the simultaneous targeting of sphingosine kinase 1 (Sphk1) and Sirtuin 1 (Sirt1) can downregulate myeloid cell leukaemia-1 (MCL-1), overcome the resistance of tyrosine kinase inhibitors, and play a synergistic inhibitory impact on leukaemia treatment. METHODS In this study, virtual screening of 7.06 million small molecules was done by sphingosine kinase 1 and Sirtuin 1 pharmacophore models using Schrödinger version 2019; after that, ADME and Toxicity molecule properties were predicted using Discovery Studio. Molecular docking using Schrödinger selected five molecules, which have the best binding affinity with sphingosine kinase 1 and Sirtuin 1. The five molecules and reference inhibitors were constructed with a total of 12 systems with GROMACS that carried out 100 ns molecular dynamics simulation and molecular mechanics/Poisson-Boltzmann surface area (MM/PBSA) calculation. Due to compound 3 has the lowest binding energy, its structure was modified. A series of compounds docked with sphingosine kinase 1 and Sirtuin 1, respectively. Among them, QST-LC03, QST-LD05, QST-LE03, and QST-LE04 have the better binding affinity than reference inhibitors. Moreover, the SwissADME and PASS platforms predict that 1, 3, QST-LC03, and QST-LE04 have further study value.
Collapse
Affiliation(s)
- Jin Liu
- School of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Hui-Lin Zhao
- School of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Lei He
- School of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Ri-Lei Yu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Cong-Min Kang
- School of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| |
Collapse
|
6
|
Qin R, Wang T, He W, Wei W, Liu S, Gao M, Huang Z. Jak2/STAT6/c-Myc pathway is vital to the pathogenicity of Philadelphia-positive acute lymphoblastic leukemia caused by P190 BCR-ABL. Cell Commun Signal 2023; 21:27. [PMID: 36721266 PMCID: PMC9887777 DOI: 10.1186/s12964-023-01039-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/02/2023] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND The Philadelphia chromosome encodes the BCR-ABL fusion protein, which has two primary subtypes, P210 and P190. P210 and P190 cause Philadelphia-positive chronic myeloid leukemia (Ph+ CML) and Philadelphia-positive acute lymphoblastic leukemia (Ph+ ALL), respectively. The Ph+ ALL is more malignant than Ph+ CML in disease phenotype and progression. This implies the key pathogenic molecules and regulatory mechanisms caused by BCR-ABL in two types of leukemia are different. It is reported that STAT6 was significantly activated only in P190 transformed cells. However, the potential role and the mechanism of STAT6 activation in Ph+ ALL and its activation mechanism by P190 are still unknown. METHODS The protein and mRNA levels of STAT6, c-Myc, and other molecules were measured by western blot and quantitative real-time PCR. The STAT6 inhibitor AS1517499 was used to specifically inhibit p-STAT6. The effect of p-STAT6 inhibition on Ph+ CML and Ph+ ALL cells was identified by CCK-8 and FCM assay. Dual luciferase reporter and ChIP assay were performed to confirm the direct binding between STAT6 and c-Myc. The impact of STAT6 inhibition on tumor progression was detected in Ph+ CML and Ph+ ALL mouse models. RESULTS Our results demonstrated that P210 induced CML-like disease, and P190 caused the more malignant ALL-like disease in mouse models. STAT6 was activated in P190 cell lines but not in P210 cell lines. Inhibition of STAT6 suppressed the malignancy of Ph+ ALL in vitro and in vivo, whereas it had little effect on Ph+ CML. We confirmed that p-STAT6 regulated the transcription of c-Myc, and STAT6 was phosphorylated by p-Jak2 in P190 cell lines, which accounted for the discrepant expression of p-STAT6 in P190 and P210 cell lines. STAT6 inhibition synergized with imatinib in Ph+ ALL cells. CONCLUSIONS Our study suggests that STAT6 activation plays an essential role in the development of Ph+ ALL and may be a potential therapeutic target in Ph+ ALL. Video abstract.
Collapse
Affiliation(s)
- Run Qin
- grid.203458.80000 0000 8653 0555Key Laboratory of Laboratory Medical Diagnostics Designated By the Ministry of Education, Department of Clinical Hematology, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Teng Wang
- grid.412461.40000 0004 9334 6536Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wei He
- grid.203458.80000 0000 8653 0555Key Laboratory of Laboratory Medical Diagnostics Designated By the Ministry of Education, Department of Clinical Hematology, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Wei Wei
- grid.203458.80000 0000 8653 0555Key Laboratory of Laboratory Medical Diagnostics Designated By the Ministry of Education, Department of Clinical Hematology, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Suotian Liu
- grid.203458.80000 0000 8653 0555Key Laboratory of Laboratory Medical Diagnostics Designated By the Ministry of Education, Department of Clinical Hematology, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Miao Gao
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, No. 1, Youyi Road, Yuzhong District, Chongqing, 400016, China.
| | - Zhenglan Huang
- Key Laboratory of Laboratory Medical Diagnostics Designated By the Ministry of Education, Department of Clinical Hematology, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
7
|
Skelding KA, Barry DL, Theron DZ, Lincz LF. Bone Marrow Microenvironment as a Source of New Drug Targets for the Treatment of Acute Myeloid Leukaemia. Int J Mol Sci 2022; 24:563. [PMID: 36614005 PMCID: PMC9820412 DOI: 10.3390/ijms24010563] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/05/2022] [Accepted: 12/22/2022] [Indexed: 12/30/2022] Open
Abstract
Acute myeloid leukaemia (AML) is a heterogeneous disease with one of the worst survival rates of all cancers. The bone marrow microenvironment is increasingly being recognised as an important mediator of AML chemoresistance and relapse, supporting leukaemia stem cell survival through interactions among stromal, haematopoietic progenitor and leukaemic cells. Traditional therapies targeting leukaemic cells have failed to improve long term survival rates, and as such, the bone marrow niche has become a promising new source of potential therapeutic targets, particularly for relapsed and refractory AML. This review briefly discusses the role of the bone marrow microenvironment in AML development and progression, and as a source of novel therapeutic targets for AML. The main focus of this review is on drugs that modulate/target this bone marrow microenvironment and have been examined in in vivo models or clinically.
Collapse
Affiliation(s)
- Kathryn A. Skelding
- Cancer Cell Biology Research Group, School of Biomedical Sciences and Pharmacy, College of Health Medicine and Wellbeing, The University of Newcastle, Callaghan, NSW 2308, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Daniel L. Barry
- Cancer Cell Biology Research Group, School of Biomedical Sciences and Pharmacy, College of Health Medicine and Wellbeing, The University of Newcastle, Callaghan, NSW 2308, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Danielle Z. Theron
- Cancer Cell Biology Research Group, School of Biomedical Sciences and Pharmacy, College of Health Medicine and Wellbeing, The University of Newcastle, Callaghan, NSW 2308, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Lisa F. Lincz
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
- Hunter Hematology Research Group, Calvary Mater Newcastle Hospital, Waratah, NSW 2298, Australia
| |
Collapse
|
8
|
Mojtahedi H, Yazdanpanah N, Rezaei N. Chronic myeloid leukemia stem cells: targeting therapeutic implications. Stem Cell Res Ther 2021; 12:603. [PMID: 34922630 PMCID: PMC8684082 DOI: 10.1186/s13287-021-02659-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/06/2021] [Indexed: 02/07/2023] Open
Abstract
Chronic myeloid leukemia (CML) is a clonal myeloproliferative neoplasm driven by BCR-ABL1 oncoprotein, which plays a pivotal role in CML pathology, diagnosis, and treatment as confirmed by the success of tyrosine kinase inhibitor (TKI) therapy. Despite advances in the development of more potent tyrosine kinase inhibitors, some mechanisms particularly in terms of CML leukemic stem cell (CML LSC) lead to intrinsic or acquired therapy resistance, relapse, and disease progression. In fact, the maintenance CML LSCs in patients who are resistance to TKI therapy indicates the role of CML LSCs in resistance to therapy through survival mechanisms that are not completely dependent on BCR-ABL activity. Targeting therapeutic approaches aim to eradicate CML LSCs through characterization and targeting genetic alteration and molecular pathways involving in CML LSC survival in a favorable leukemic microenvironment and resistance to apoptosis, with the hope of providing a functional cure. In other words, it is possible to develop the combination therapy of TKs with drugs targeting genes or molecules more specifically, which is required for survival mechanisms of CML LSCs, while sparing normal HSCs for clinical benefits along with TKIs.
Collapse
Affiliation(s)
- Hanieh Mojtahedi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Niloufar Yazdanpanah
- Research Center for Immunodeficiencies, Children's Medical Center Hospital, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, 14194, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center Hospital, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, 14194, Tehran, Iran.
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Aranda-Tavío H, Recio C, Martín-Acosta P, Guerra-Rodríguez M, Brito-Casillas Y, Blanco R, Junco V, León J, Montero JC, Gandullo-Sánchez L, McNaughton-Smith G, Zapata JM, Pandiella A, Amesty A, Estévez-Braun A, Fernández-Pérez L, Guerra B. JKST6, a novel multikinase modulator of the BCR-ABL1/STAT5 signaling pathway that potentiates direct BCR-ABL1 inhibition and overcomes imatinib resistance in chronic myelogenous leukemia. Biomed Pharmacother 2021; 144:112330. [PMID: 34673425 DOI: 10.1016/j.biopha.2021.112330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 11/16/2022] Open
Abstract
Chronic myelogenous leukemia (CML) is a hematological malignancy that highly depends on the BCR-ABL1/STAT5 signaling pathway for cell survival. First-line treatments for CML consist of tyrosine kinase inhibitors that efficiently target BCR-ABL1 activity. However, drug resistance and intolerance are still therapeutic limitations in Ph+ cells. Therefore, the development of new anti-CML drugs that exhibit alternative mechanisms to overcome these limitations is a desirable goal. In this work, the antitumoral activity of JKST6, a naphthoquinone-pyrone hybrid, was assessed in imatinib-sensitive and imatinib-resistant human CML cells. Live-cell imaging analysis revealed JKST6 potent antiproliferative activity in 2D and 3D CML cultures. JKST6 provoked cell increase in the subG1 phase along with a reduction in the G0/G1 phase and altered the expression of key proteins involved in the control of mitosis and DNA damage. Rapid increases in Annexin V staining and activation/cleavage of caspases 8, 9 and 3 were observed after JKST6 treatment in CML cells. Of interest, JKST6 inhibited BCR-ABL1/STAT5 signaling through oncokinase downregulation that was preceded by rapid polyubiquitination. In addition, JKST6 caused a transient increase in JNK and AKT phosphorylation, whereas the phosphorylation of P38-MAPK and Src was reduced. Combinatory treatment unveiled synergistic effects between imatinib and JKST6. Notably, JKST6 maintained its antitumor efficacy in BCR-ABL1-T315I-positive cells and CML cells that overexpress BCR-ABL and even restored imatinib efficacy after a short exposure time. These findings, together with the observed low toxicity of JKST6, reveal a novel multikinase modulator that might overcome the limitations of BCR-ABL1 inhibitors in CML therapy.
Collapse
Affiliation(s)
- Haidée Aranda-Tavío
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Farmacología Molecular y Traslacional (BIOPharm), Universidad de Las Palmas de Gran Canaria (ULPGC), Las Palmas de Gran Canaria, Spain
| | - Carlota Recio
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Farmacología Molecular y Traslacional (BIOPharm), Universidad de Las Palmas de Gran Canaria (ULPGC), Las Palmas de Gran Canaria, Spain
| | - Pedro Martín-Acosta
- Instituto Universitario de Bio-Orgánica "Antonio González" (IUBO), Departamento de Química Orgánica, QUIBIONAT, Universidad de La Laguna (ULL), La Laguna, Spain
| | - Miguel Guerra-Rodríguez
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Farmacología Molecular y Traslacional (BIOPharm), Universidad de Las Palmas de Gran Canaria (ULPGC), Las Palmas de Gran Canaria, Spain
| | - Yeray Brito-Casillas
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Farmacología Molecular y Traslacional (BIOPharm), Universidad de Las Palmas de Gran Canaria (ULPGC), Las Palmas de Gran Canaria, Spain
| | - Rosa Blanco
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, Santander, Spain
| | - Vanessa Junco
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, Santander, Spain
| | - Javier León
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, Santander, Spain
| | - Juan Carlos Montero
- Instituto de Biología Molecular y Celular del Cáncer, CSIC and CIBERONC. Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Lucía Gandullo-Sánchez
- Instituto de Biología Molecular y Celular del Cáncer, CSIC and CIBERONC. Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | | | - Juan Manuel Zapata
- Instituto de Investigaciones Biomédicas "Alberto Sols" - CSIC, Universidad Autónoma de Madrid, Madrid, Spain
| | - Atanasio Pandiella
- Instituto de Biología Molecular y Celular del Cáncer, CSIC and CIBERONC. Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Angel Amesty
- Instituto Universitario de Bio-Orgánica "Antonio González" (IUBO), Departamento de Química Orgánica, QUIBIONAT, Universidad de La Laguna (ULL), La Laguna, Spain
| | - Ana Estévez-Braun
- Instituto Universitario de Bio-Orgánica "Antonio González" (IUBO), Departamento de Química Orgánica, QUIBIONAT, Universidad de La Laguna (ULL), La Laguna, Spain
| | - Leandro Fernández-Pérez
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Farmacología Molecular y Traslacional (BIOPharm), Universidad de Las Palmas de Gran Canaria (ULPGC), Las Palmas de Gran Canaria, Spain.
| | - Borja Guerra
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Farmacología Molecular y Traslacional (BIOPharm), Universidad de Las Palmas de Gran Canaria (ULPGC), Las Palmas de Gran Canaria, Spain.
| |
Collapse
|
10
|
Li Y, Gao Y, Liang B, Nie W, Zhao L, Wang L. Combined effects on leukemia cell growth by targeting sphingosine kinase 1 and sirtuin 1 signaling. Exp Ther Med 2020; 20:262. [PMID: 33199987 PMCID: PMC7664611 DOI: 10.3892/etm.2020.9392] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 09/08/2020] [Indexed: 12/17/2022] Open
Abstract
Targeting multiple signaling pathways is a potential novel therapeutic strategy for the treatment of leukemias. Leukemia cells express high levels of sphingosine kinase 1 (Sphk1) and sirtuin 1 (SIRT1). However, to the best of our knowledge, their interaction and potential synergistic inhibitory effects on the growth and survival of leukemia cells have not been investigated. The present study revealed the role of the Sphk1/S1P/SIRT1 axis in K562, KCL22 and TF1 cells and hypothesized that the inhibition of Sphk1 and SIRT1 had synergistic effects on the growth and survival of leukemia cells. Cell viability was tested using a Cell Counting Kit-8 assay and cell colony forming assay. Cell apoptosis was detected using Annexin V-APC/PI staining. The stages of the cell cycle were measured using PI staining. Protein levels were measured by western blotting. Treatment of leukemia cells with S1P resulted in the upregulation of SIRT1 expression, whereas inhibition of Sphk1 induced SIRT1 downregulation in leukemia cells. Both SKI-II and EX527 actively suppressed growth, blocked cell cycle progression and induced apoptosis of leukemia cells. Furthermore, inhibition of Sphk1 and SIRT1 exhibited suppressive effects on the growth and survival of leukemia cells. Notably, the inhibition of Sphk1 and SIRT1 suppressed cell growth and induced apoptosis of T-315I mutation-harboring cells. Additionally, treatment with SKI-II and EX527 suppressed the ERK and STAT5 pathways in leukemia cells. These data indicated that targeting the Sphk1/S1P/SIRT1 axis may be a novel therapeutic strategy for the treatment of leukemia.
Collapse
Affiliation(s)
- Yuxiang Li
- School of Nursing, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yuxia Gao
- School of Nursing, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Bing Liang
- School of Nursing, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Wenbo Nie
- School of Nursing, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Lijing Zhao
- School of Nursing, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Lisheng Wang
- School of Nursing, Jilin University, Changchun, Jilin 130021, P.R. China.,Department of Molecular Diagnosis and Regenerative Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| |
Collapse
|
11
|
Liu J, Zhang Y, Huang H, Lei X, Tang G, Cao X, Peng J. Recent advances in Bcr-Abl tyrosine kinase inhibitors for overriding T315I mutation. Chem Biol Drug Des 2020; 97:649-664. [PMID: 33034143 DOI: 10.1111/cbdd.13801] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 09/13/2020] [Accepted: 09/20/2020] [Indexed: 12/18/2022]
Abstract
BCR-ABL is a gene produced by the fusion of the bcr gene and the c-abl proto-oncogene and is considered to be the main cause of chronic myelogenous leukemia (CML) production. Therefore, the development of selective Bcr-Abl kinase inhibitors is an attractive strategy for the treatment of CML. However, in the treatment of CML with a Bcr-Abl kinase inhibitor, the T315I gatekeeper mutant disrupts the important contact interaction between the inhibitor and the enzyme, resistant to the first- and second-generation drugs currently approved, such as imatinib, bosutinib, nilotinib, and dasatinib. In order to overcome this special resistance, several different strategies have been explored, and many molecules have been studied to effectively inhibit Bcr-Abl T315I. Some of these molecules are still under development, and some are being studied preclinically, and still others are in clinical research. Herein, this review reports some of the major examples of third-generation Bcr-Abl inhibitors against the T315I mutation.
Collapse
Affiliation(s)
- Juan Liu
- Institute of Pharmacy and Pharmacology, Hunan Province, Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China.,Pharmacy Department of Yiyang Central Hospital, Yiyang, China
| | - Yuan Zhang
- Institute of Pharmacy and Pharmacology, Hunan Province, Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Honglin Huang
- Institute of Pharmacy and Pharmacology, Hunan Province, Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Xiaoyong Lei
- Institute of Pharmacy and Pharmacology, Hunan Province, Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Guotao Tang
- Institute of Pharmacy and Pharmacology, Hunan Province, Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Xuan Cao
- Institute of Pharmacy and Pharmacology, Hunan Province, Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Junmei Peng
- Institute of Pharmacy and Pharmacology, Hunan Province, Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| |
Collapse
|
12
|
Shojaei M, Rezvani H, Azarkeivan A, Poopak B. ABL Kinase Domain Mutations in Iranian Chronic Myeloid Leukemia Patients with Resistance to Tyrosine Kinase Inhibitors. Lab Med 2020; 52:158-167. [PMID: 32821940 DOI: 10.1093/labmed/lmaa052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVE Tyrosine kinase inhibitors (TKIs) are considered standard first-line treatment in patients with chronic myeloid leukemia. Because ABL kinase domain mutations are the most common causes of treatment resistance, their prevalence and assessment during treatment may predict subsequent response to therapy. METHODS The molecular response in Bcr-Abl1IS was tested via quantitative real-time polymerase chain reaction. We used the direct sequencing technique to discover the mutations in the ABL kinase domain. The IRIS trial established a standard baseline for measurement - (100% BCR-ABL1 on the 'international scale') and a major molecular response (good response to therapy) was defined as a 3-log reduction in the amount of BCR-ABL1 - 0.1% BCR-ABL1 on the international scale. RESULTS We observed 11 different mutations in 13 patients, including E255K, which had the highest mutation rate. A lack of hematologic response was found in 22 patients, who showed a significantly higher incidence of mutations. CONCLUSION Detection of kinase domain mutations is a reliable method for choosing the best treatment strategy based on patients' conditions, avoiding ineffective treatments, and running high-cost protocols in patients with acquired resistance to TKIs.
Collapse
Affiliation(s)
- Mahboobeh Shojaei
- Iranian Blood Transfusion Organization, High Institute of Research and Education in Transfusion Medicine, Tehran, Iran
| | - Hamid Rezvani
- Hematology and Oncology Center, Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azita Azarkeivan
- Iranian Blood Transfusion Organization, High Institute of Research and Education in Transfusion Medicine, Tehran, Iran
| | - Behzad Poopak
- Department of Hematology, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, IR Iran
| |
Collapse
|
13
|
Lange T, Niederwieser C, Gil A, Krahl R, von Grünhagen U, Al-Ali HK, Jentsch-Ullrich K, Spohn C, Lakner V, Assmann M, Junghanss C, Cross M, Hehlmann R, Deininger M, Pfirrmann M, Niederwieser D. No advantage of Imatinib in combination with hydroxyurea over Imatinib monotherapy: a study of the East German Study Group (OSHO) and the German CML study group. Leuk Lymphoma 2020; 61:2821-2830. [PMID: 32672489 DOI: 10.1080/10428194.2020.1786556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
INTRODUCTION The combination of Imatinib (IM) and hydroxyurea (HU) was explored for the treatment of chronic myelogenous leukemia (CML). METHOD After in vitro testing and a phase I study (n = 20), 59 patients were randomized in the IM/HU and 29 in the IM arm. According to protocol, 49 propensity-score matched IM patients were included from the CML-IV study. RESULTS Additive specific inhibition of CML cells by IM/HU was detected in vitro. HU 500 mg qd in combination with IM 400 mg qd proved feasible in the phase I study. Overall, no significant difference with respect to major molecular response (MMR) at 18 months (IM/HU and IM 66%; primary endpoint) was observed. Significant differences were noted for MMR at 6 months (p = 0.04) and for cumulative incidences of adverse events (p = 0.03) in favor of IM monotherapy (secondary endpoints). CONCLUSION IM/HU combination was more potent in selectively inhibiting CML cells in vitro, but not superior to IM in vivo. (NCT02480608).
Collapse
Affiliation(s)
- Thoralf Lange
- Abteilung Hämatologie und Onkologie, Universität Leipzig, Leipzig, Germany.,Krankenhaus Weißenfels, Weißenfels, Germany
| | - Christian Niederwieser
- Klinik für Stammzelltransplantation, Universitätsklinikum Hamburg Eppendorf, Hamburg, Germany
| | - Arthur Gil
- Institut für Medizinische Informationsverarbeitung, Biometrie und Epidemiologie (IBE), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Rainer Krahl
- Abteilung Hämatologie und Onkologie, Universität Leipzig, Leipzig, Germany
| | | | - Haifa Kathrin Al-Ali
- Abteilung Hämatologie und Onkologie, Universität Leipzig, Leipzig, Germany.,Krukenberg Cancer Center, University Hospital Halle, Halle, Germany
| | | | - Claudia Spohn
- Gemeinschaftspraxis für Hämatologie und Onkologie, Halle, Germany
| | - Volker Lakner
- Gemeinschaftspraxis für Hämatologie und Onkologie, Rostock, Germany
| | | | | | - Michael Cross
- Abteilung Hämatologie und Onkologie, Universität Leipzig, Leipzig, Germany
| | - Rüdiger Hehlmann
- III. Medizinische Klinik, Universität Heidelberg, Mannheim, Germany
| | - Michael Deininger
- Division of Hematology and Hematologic Malignancies, Huntsman Cancer Institute, The University of Utah, Salt Lake City, UT, USA
| | - Markus Pfirrmann
- Institut für Medizinische Informationsverarbeitung, Biometrie und Epidemiologie (IBE), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Dietger Niederwieser
- School of Medicine, University Leipzig, Leipzig Germany.,Lithuanian University of Health Sciences, Kaunas, Lithuania.,Aichi Medical University, NagakuteAichi/Nagoya, Japan
| |
Collapse
|
14
|
Bernardo PS, Lemos LGT, de Moraes GN, Maia RC. Unraveling survivin expression in chronic myeloid leukemia: Molecular interactions and clinical implications. Blood Rev 2020; 43:100671. [PMID: 32107072 DOI: 10.1016/j.blre.2020.100671] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/15/2020] [Accepted: 01/30/2020] [Indexed: 02/07/2023]
Abstract
Chronic myeloid leukemia (CML) is a myeloproliferative disorder characterized by the BCR-ABL oncoprotein, known to drive leukemogenesis by orchestrating multiple signaling pathways ultimately involved in cell survival. Despite successful response rates of CML patients to tyrosine kinase inhibitors (TKIs), resistance eventually arises due to BCR-ABL-dependent and independent mechanisms. Survivin is an inhibitor of apoptosis protein acting in the interface between apoptosis deregulation and cell cycle progression. In CML, high levels of survivin have been associated with late stages of disease and therapy resistance. In this review, we provide an overview of important aspects concerning survivin subcellular localization and expression pattern in CML patients and cell lines. Moreover, we highlight the relevance of molecular networks involving survivin for disease progression and treatment resistance. Finally, we discuss the mechanisms accounting for survivin overexpression, as well as novel therapeutic interventions that have been designed to counteract survivin-associated malignancy in CML.
Collapse
Affiliation(s)
- Paula Sabbo Bernardo
- Laboratory of Cellular and Molecular Hemato-Oncology, Program of Molecular Hemato-Oncology, Brazilian National Cancer Institute (INCA), Rio de Janeiro, RJ, Brazil
| | - Lauana Greicy Tonon Lemos
- Laboratory of Cellular and Molecular Hemato-Oncology, Program of Molecular Hemato-Oncology, Brazilian National Cancer Institute (INCA), Rio de Janeiro, RJ, Brazil
| | - Gabriela Nestal de Moraes
- Laboratory of Cellular and Molecular Hemato-Oncology, Program of Molecular Hemato-Oncology, Brazilian National Cancer Institute (INCA), Rio de Janeiro, RJ, Brazil
| | - Raquel Ciuvalschi Maia
- Laboratory of Cellular and Molecular Hemato-Oncology, Program of Molecular Hemato-Oncology, Brazilian National Cancer Institute (INCA), Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
15
|
Sarno F, Pepe G, Termolino P, Carafa V, Massaro C, Merciai F, Campiglia P, Nebbioso A, Altucci L. Trifolium Repens Blocks Proliferation in Chronic Myelogenous Leukemia via the BCR-ABL/STAT5 Pathway. Cells 2020; 9:cells9020379. [PMID: 32041350 PMCID: PMC7072565 DOI: 10.3390/cells9020379] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/27/2020] [Accepted: 02/03/2020] [Indexed: 12/30/2022] Open
Abstract
Some species of clover are reported to have beneficial effects in human diseases. However, little is known about the activity of the forage plant Trifolium repens, or white clover, which has been recently found to exert a hepatoprotective action. Scientific interest is increasingly focused on identifying new drugs, especially natural products and their derivatives, to treat human diseases including cancer. We analyzed the anticancer effects of T. repens in several cancer cell lines. The phytochemical components of T. repens were first extracted in a methanol solution and then separated into four fractions by ultra-high-performance liquid chromatography. The effects of the total extract and each fraction on cancer cell proliferation were analyzed by MTT assay and Western blotting. T. repens and, more robustly, its isoflavonoid-rich fraction showed high cytotoxic effects in chronic myelogenous leukemia (CML) K562 cells, with IC50 values of 1.67 and 0.092 mg/mL, respectively. The block of cell growth was associated with a total inhibition of BCR-ABL/STAT5 and activation of the p38 signaling pathways. In contrast, these strongly cytotoxic effects did not occur in normal cells. Our findings suggest that the development of novel compounds derived from phytochemical molecules contained in Trifolium might lead to the identification of new therapeutic agents active against CML.
Collapse
Affiliation(s)
- Federica Sarno
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (F.S.); (V.C.); (C.M.)
| | - Giacomo Pepe
- Department of Pharmacy, School of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (G.P.); (F.M.); (P.C.)
| | - Pasquale Termolino
- Institute of Biosciences and Bioresources (IBBR), National Research Council of Italy (CNR), 80055 Portici, Italy;
| | - Vincenzo Carafa
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (F.S.); (V.C.); (C.M.)
| | - Crescenzo Massaro
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (F.S.); (V.C.); (C.M.)
| | - Fabrizio Merciai
- Department of Pharmacy, School of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (G.P.); (F.M.); (P.C.)
- PhD Program in Drug Discovery and Development, University of Salerno, 84084 Fisciano, Italy
| | - Pietro Campiglia
- Department of Pharmacy, School of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (G.P.); (F.M.); (P.C.)
- European Biomedical Research Institute of Salerno, 84125 Salerno, Italy
| | - Angela Nebbioso
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (F.S.); (V.C.); (C.M.)
- Correspondence: (A.N.); (L.A.); Tel.: +39-0815665682 (A.N.); +39-0815667569 (L.A.); Fax: +39-081450169 (A.N. & L.A.)
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (F.S.); (V.C.); (C.M.)
- Correspondence: (A.N.); (L.A.); Tel.: +39-0815665682 (A.N.); +39-0815667569 (L.A.); Fax: +39-081450169 (A.N. & L.A.)
| |
Collapse
|
16
|
Almeida TP, Ramos AA, Ferreira J, Azqueta A, Rocha E. Bioactive Compounds from Seaweed with Anti-Leukemic Activity: A Mini-Review on Carotenoids and Phlorotannins. Mini Rev Med Chem 2020; 20:39-53. [PMID: 30854962 DOI: 10.2174/1389557519666190311095655] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 04/08/2018] [Accepted: 07/23/2018] [Indexed: 12/11/2022]
Abstract
Chronic Myeloid Leukemia (CML) represents 15-20% of all new cases of leukemia and is characterized by an uncontrolled proliferation of abnormal myeloid cells. Currently, the first-line of treatment involves Tyrosine Kinase Inhibitors (TKIs), which specifically inhibits the activity of the fusion protein BCR-ABL. However, resistance, mainly due to mutations, can occur. In the attempt to find more effective and less toxic therapies, several approaches are taken into consideration such as research of new anti-leukemic drugs and "combination chemotherapy" where different drugs that act by different mechanisms are used. Here, we reviewed the molecular mechanisms of CML, the main mechanisms of drug resistance and current strategies to enhance the therapeutic effect of TKIs in CML. Despite major advances in CML treatment, new, more potent anticancer drugs and with fewer side effects are needed. Marine organisms, and particularly seaweed, have a high diversity of bioactive compounds with some of them having anticancer activity in several in vitro and in vivo models. The state-of-art suggests that their use during cancer treatment may improve the outcome. We reviewed here the yet few data supporting anti-leukemic activity of some carotenoids and phlorotannins in some leukemia models. Also, strategies to overcome drug resistance are discussed, particularly the combination of conventional drugs with natural compounds.
Collapse
Affiliation(s)
- Tânia P Almeida
- Team of Histomorphology, Physiopathology and Applied Toxicology, CIIMAR/CIMAR - Interdisciplinary Center for Marine and Environmental Research, U.Porto - University of Porto, Avenida General Norton de Matos s/n, 4450-208 Matosinhos, Portugal.,Laboratory of Histology and Embryology, Department of Microscopy, ICBAS - Institute of Biomedical Sciences Abel Salazar, U.Porto - University of Porto, Rua de Jorge Viterbo Ferreira, no 228, 4050-313 Porto, Portugal.,FCUP - Faculty of Sciences, U. Porto - University of Porto (U.Porto), Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Alice A Ramos
- Team of Histomorphology, Physiopathology and Applied Toxicology, CIIMAR/CIMAR - Interdisciplinary Center for Marine and Environmental Research, U.Porto - University of Porto, Avenida General Norton de Matos s/n, 4450-208 Matosinhos, Portugal.,Laboratory of Histology and Embryology, Department of Microscopy, ICBAS - Institute of Biomedical Sciences Abel Salazar, U.Porto - University of Porto, Rua de Jorge Viterbo Ferreira, no 228, 4050-313 Porto, Portugal
| | - Joana Ferreira
- Team of Histomorphology, Physiopathology and Applied Toxicology, CIIMAR/CIMAR - Interdisciplinary Center for Marine and Environmental Research, U.Porto - University of Porto, Avenida General Norton de Matos s/n, 4450-208 Matosinhos, Portugal.,Laboratory of Histology and Embryology, Department of Microscopy, ICBAS - Institute of Biomedical Sciences Abel Salazar, U.Porto - University of Porto, Rua de Jorge Viterbo Ferreira, no 228, 4050-313 Porto, Portugal.,FCUP - Faculty of Sciences, U. Porto - University of Porto (U.Porto), Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Amaya Azqueta
- Department of Pharmacology and Toxicology, University of Navarra, C/Irunlarrea 1, CP 31008 Pamplona, Navarra, Spain
| | - Eduardo Rocha
- Team of Histomorphology, Physiopathology and Applied Toxicology, CIIMAR/CIMAR - Interdisciplinary Center for Marine and Environmental Research, U.Porto - University of Porto, Avenida General Norton de Matos s/n, 4450-208 Matosinhos, Portugal.,Laboratory of Histology and Embryology, Department of Microscopy, ICBAS - Institute of Biomedical Sciences Abel Salazar, U.Porto - University of Porto, Rua de Jorge Viterbo Ferreira, no 228, 4050-313 Porto, Portugal
| |
Collapse
|
17
|
Zhou S, Zhu X, Liu W, Cheng F, Zou P, You Y, Xiao Y, Guo A, Zhu X. Comparison of chronic myeloid leukemia stem cells and hematopoietic stem cells by global proteomic analysis. Biochem Biophys Res Commun 2020; 522:362-367. [DOI: 10.1016/j.bbrc.2019.11.092] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 11/14/2019] [Accepted: 11/14/2019] [Indexed: 01/01/2023]
|
18
|
Effect of dual inhibition of histone deacetylase and phosphatidylinositol-3 kinase in Philadelphia chromosome-positive leukemia cells. Cancer Chemother Pharmacol 2020; 85:401-412. [PMID: 31901955 DOI: 10.1007/s00280-019-04022-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 12/19/2019] [Indexed: 12/17/2022]
Abstract
PURPOSE ABL tyrosine kinase inhibitors (TKIs) have demonstrated potency in the treatment of chronic myeloid leukemia (CML) patients. However, resistance to ABL TKIs can develop in CML patients due to BCR-ABL point mutations. Furthermore, CUDC-907 is an oral inhibitor of class I phosphoinositide 3-kinase (PI3K) as well as class I and II histone deacetylase (HDAC) enzymes. METHODS In this study, we evaluated the effect of combination therapy of CUDC-907 and ABL TKIs, using BCR-ABL-positive cell lines and primary samples. RESULTS CUDC-907 treatment for 72 h resulted in cell growth inhibition. Over the same period, an increase in histone acetylation and both caspase three and poly (ADP-ribose) polymerase (PARP) enzyme activity was observed. When ABL TKI treatment and CUDC-907 treatment were combined, significantly greater cytotoxicity was observed. Moreover, combined oral therapy with ponatinib (20 mg/kg/day) and CUDC-907 (30 mg/kg/day) greatly inhibited tumor growth compared to each drug alone. Lastly, CUDC-907 treatment also inhibited the growth of Ba/F3 ponatinib-resistant cells, K562 nilotinib-resistant cells, and T315I mutant primary samples. CONCLUSION Taken together, our results indicate that administration of CUDC-907, a dual PI3K and HDAC inhibitor, may be an effective strategy against ABL TKI-resistant cells, including cells harboring the T315I mutation. Moreover, CUDC-907 may enhance the cytotoxic effects of ABL TKI when a combined treatment strategy is used against Philadelphia chromosome-positive leukemia cells.
Collapse
|
19
|
Trojani A, Pungolino E, Dal Molin A, Lodola M, Rossi G, D’Adda M, Perego A, Elena C, Turrini M, Borin L, Bucelli C, Malato S, Carraro MC, Spina F, Latargia ML, Artale S, Spedini P, Anghilieri M, Di Camillo B, Baruzzo G, De Canal G, Iurlo A, Morra E, Cairoli R. Nilotinib interferes with cell cycle, ABC transporters and JAK-STAT signaling pathway in CD34+/lin- cells of patients with chronic phase chronic myeloid leukemia after 12 months of treatment. PLoS One 2019; 14:e0218444. [PMID: 31318870 PMCID: PMC6638825 DOI: 10.1371/journal.pone.0218444] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 06/03/2019] [Indexed: 01/05/2023] Open
Abstract
Chronic myeloid leukemia (CML) is characterized by the constitutive tyrosine kinase activity of the oncoprotein BCR-ABL1 in myeloid progenitor cells that activates multiple signal transduction pathways leading to the leukemic phenotype. The tyrosine-kinase inhibitor (TKI) nilotinib inhibits the tyrosine kinase activity of BCR-ABL1 in CML patients. Despite the success of nilotinib treatment in patients with chronic-phase (CP) CML, a population of Philadelphia-positive (Ph+) quiescent stem cells escapes the drug activity and can lead to drug resistance. The molecular mechanism by which these quiescent cells remain insensitive is poorly understood. The aim of this study was to compare the gene expression profiling (GEP) of bone marrow (BM) CD34+/lin- cells from CP-CML patients at diagnosis and after 12 months of nilotinib treatment by microarray, in order to identify gene expression changes and the dysregulation of pathways due to nilotinib action. We selected BM CD34+/lin- cells from 78 CP-CML patients at diagnosis and after 12 months of first-line nilotinib therapy and microarray analysis was performed. GEP bioinformatic analyses identified 2,959 differently expressed probes and functional clustering determined some significantly enriched pathways between diagnosis and 12 months of nilotinib treatment. Among these pathways, we observed the under expression of 26 genes encoding proteins belonging to the cell cycle after 12 months of nilotinib treatment which led to the up-regulation of chromosome replication, cell proliferation, DNA replication, and DNA damage checkpoint at diagnosis. We demonstrated the under expression of the ATP-binding cassette (ABC) transporters ABCC4, ABCC5, and ABCD3 encoding proteins which pumped drugs out of the cells after 12 months of nilotinib. Moreover, GEP data demonstrated the deregulation of genes involved in the JAK-STAT signaling pathway. The down-regulation of JAK2, IL7, STAM, PIK3CA, PTPN11, RAF1, and SOS1 key genes after 12 months of nilotinib could demonstrate the up-regulation of cell cycle, proliferation and differentiation via MAPK and PI3K-AKT signaling pathways at diagnosis.
Collapse
Affiliation(s)
- Alessandra Trojani
- Division of Hematology, ASST Grande Ospedale Metropolitano Niguarda, Milano, Italy
- * E-mail:
| | - Ester Pungolino
- Division of Hematology, ASST Grande Ospedale Metropolitano Niguarda, Milano, Italy
| | | | - Milena Lodola
- Division of Hematology, ASST Grande Ospedale Metropolitano Niguarda, Milano, Italy
| | - Giuseppe Rossi
- Department of Hematology, ASST Spedali Civili, Brescia, Italy
| | - Mariella D’Adda
- Department of Hematology, ASST Spedali Civili, Brescia, Italy
| | | | - Chiara Elena
- Hematology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Mauro Turrini
- Division of Hematology, Department of Internal Medicine, Valduce Hospital, Como, Italy
| | - Lorenza Borin
- Hematology Division, San Gerardo Hospital, Monza, Italy
| | - Cristina Bucelli
- Hematology Division, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Simona Malato
- Hematology and Bone Marrow Transplantation Unit, San Raffaele Scientific Institute, Milano, Italy
| | | | - Francesco Spina
- Division of Hematology–Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | | | | | | | | | - Barbara Di Camillo
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Giacomo Baruzzo
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Gabriella De Canal
- Pathology Department, Cytogenetics, ASST Grande Ospedale Metropolitano Niguarda, Milano, Italy
| | - Alessandra Iurlo
- Hematology Division, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Enrica Morra
- Executive Committee, Rete Ematologia Lombarda, Italy
| | - Roberto Cairoli
- Division of Hematology, ASST Grande Ospedale Metropolitano Niguarda, Milano, Italy
| |
Collapse
|
20
|
Li J, Lu L, Zhang YH, Xu Y, Liu M, Feng K, Chen L, Kong X, Huang T, Cai YD. Identification of leukemia stem cell expression signatures through Monte Carlo feature selection strategy and support vector machine. Cancer Gene Ther 2019; 27:56-69. [PMID: 31138902 DOI: 10.1038/s41417-019-0105-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/28/2019] [Accepted: 05/04/2019] [Indexed: 01/09/2023]
Abstract
Acute myeloid leukemia (AML) is a type of blood cancer characterized by the rapid growth of immature white blood cells from the bone marrow. Therapy resistance resulting from the persistence of leukemia stem cells (LSCs) are found in numerous patients. Comparative transcriptome studies have been previously conducted to analyze differentially expressed genes between LSC+ and LSC- cells. However, these studies mainly focused on a limited number of genes with the most obvious expression differences between the two cell types. We developed a computational approach incorporating several machine learning algorithms, including Monte Carlo feature selection (MCFS), incremental feature selection (IFS), support vector machine (SVM), Repeated Incremental Pruning to Produce Error Reduction (RIPPER), to identify gene expression features specific to LSCs. One thousand 0ne hudred fifty-nine features (genes) were first identified, which can be used to build the optimal SVM classifier for distinguishing LSC+ and LSC- cells. Among these 1159 genes, the top 17 genes were identified as LSC-specific biomarkers. In addition, six classification rules were produced by RIPPER algorithm. The subsequent literature review on these features/genes and the classification rules and functional enrichment analyses of the 1159 features/genes confirmed the relevance of extracted genes and rules to the characteristics of LSCs.
Collapse
Affiliation(s)
- JiaRui Li
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, P. R. China.,School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Lin Lu
- Department of Radiology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Yu-Hang Zhang
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, P. R. China
| | - YaoChen Xu
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, P. R. China
| | - Min Liu
- College of Information Engineering, Shanghai Maritime University, Shanghai, 201306, P. R. China
| | - KaiYan Feng
- Department of Computer Science, Guangdong AIB Polytechnic, Guangzhou, 510507, P. R. China
| | - Lei Chen
- College of Information Engineering, Shanghai Maritime University, Shanghai, 201306, P. R. China.,Shanghai Key Laboratory of PMMP, East China Normal University, Shanghai, 200241, P. R. China
| | - XiangYin Kong
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, P. R. China.
| | - Tao Huang
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, P. R. China.
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| |
Collapse
|
21
|
Flis S, Chojnacki T. Chronic myelogenous leukemia, a still unsolved problem: pitfalls and new therapeutic possibilities. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:825-843. [PMID: 30880916 PMCID: PMC6415732 DOI: 10.2147/dddt.s191303] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Chronic myeloid leukemia (CML) is a clonal myeloproliferative disorder of hematopoietic stem cells. At the molecular level, the disorder results from t(9;22)(q34;q11) reciprocal translocation between chromosomes, which leads to the formation of an oncogenic BCR–ABL gene fusion. Instead of progress in the understanding of the molecular etiology of CML and the development of novel therapeutic strategies, clinicians still face many challenges in the effective treatment of patients. In this review, we discuss the pathways of diagnosis and treatment of patients, as well as the problems appearing in the course of disease development. We also briefly refer to several aspects regarding the current knowledge on the molecular basis of CML and new potential therapeutic targets.
Collapse
Affiliation(s)
- Sylwia Flis
- Department of Pharmacology, National Medicines Institute, 00-725 Warsaw, Poland,
| | - Tomasz Chojnacki
- Department of Hematology, Military Institute of Medicine, 04-141 Warsaw, Poland,
| |
Collapse
|
22
|
Alves R, Gonçalves AC, Jorge J, Alves J, Alves da Silva A, Freitas-Tavares P, Nascimento Costa JM, Almeida AM, Sarmento-Ribeiro AB. Everolimus in combination with Imatinib overcomes resistance in Chronic myeloid leukaemia. Med Oncol 2019; 36:30. [DOI: 10.1007/s12032-019-1253-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 01/31/2019] [Indexed: 11/28/2022]
|
23
|
Liu J, Huang H, Deng X, Xiong R, Cao X, Tang G, Wu X, Xu S, Peng J. Design, synthesis and broad-spectrum Bcr-Abl inhibitory activity of novel thiazolamide-benzamide derivatives. RSC Adv 2019; 9:2092-2101. [PMID: 35516138 PMCID: PMC9059735 DOI: 10.1039/c8ra10096a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 01/08/2019] [Indexed: 11/30/2022] Open
Abstract
Bcr-Abl plays an important role in the pathogenesis and development of chronic myeloid leukemia (CML). But Bcr-Abl is prone to mutation, so it increases the difficulty of clinical treatment. Therefore, it is crucial to design a new class of broad-spectrum Bcr-Abl inhibitors. Herein, forty novel thiazolamide-benzamide derivatives were synthesized and evaluated their broad-spectrum Bcr-Abl inhibitory activities. The newly synthesized compounds were characterized by using spectrum data (1H NMR, APCI-MS and IR) and elemental analysis. The protein kinase results indicated that eight compounds (3a, 3e, 3m, 3n, 3p, 4c, 4f, 4g) showed high activities to wild-type and T315I mutation. The most potent compound 3m exhibited an Abl IC50 value as low as 1.273 μM and showed inhibition to the T315I mutant with IC50 value 39.89 μM. 3m could prove to be a new promising lead compound for the further development of broad-spectrum Bcr-Abl inhibitors to overcome clinical acquired resistance.
Collapse
Affiliation(s)
- Juan Liu
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China Hengyang China
| | - Honglin Huang
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China Hengyang China
| | - Xiangping Deng
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China Hengyang China
| | - Runde Xiong
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China Hengyang China
| | - Xuan Cao
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China Hengyang China
| | - Guotao Tang
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China Hengyang China
| | - Xin Wu
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China Hengyang China
| | - Shiyu Xu
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China Hengyang China
| | - Junmei Peng
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China Hengyang China
| |
Collapse
|
24
|
Martín-Rodríguez P, Guerra B, Hueso-Falcón I, Aranda-Tavío H, Díaz-Chico J, Quintana J, Estévez F, Díaz-Chico B, Amesty A, Estévez-Braun A, Fernández-Pérez L. A Novel Naphthoquinone-Coumarin Hybrid That Inhibits BCR-ABL1-STAT5 Oncogenic Pathway and Reduces Survival in Imatinib-Resistant Chronic Myelogenous Leukemia Cells. Front Pharmacol 2019; 9:1546. [PMID: 30687103 PMCID: PMC6334626 DOI: 10.3389/fphar.2018.01546] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 12/18/2018] [Indexed: 01/13/2023] Open
Abstract
BCR-ABL1-STAT5 is an oncogenic signaling pathway in human chronic myelogenous leukemia (CML) and it represents a valid target for anti-CML drug design. Resistance to direct BCR-ABL1 inhibitors is a common clinical issue, so STAT5 inhibition has become an interesting alternative target. In this study, the effects of NPQ-C6, a novel naphtoquinone-coumarin conjugate, were evaluated on human CML-derived K562 cells. Live-Cell Imaging analysis revealed that NPQ-C6 inhibited 2D (IC50AUC = 1.4 ± 0.6 μM) growth of CML cells. NPQ-C6 increased sub-G1 and reduced G0/G1 cell cycle phases in a dose- and time-dependent manner. This effect on cell cycle was related to increased levels of apoptotic nuclei, cleavage of caspase-3, -9, and PARP and annexin V-positive cells. NPQ-C6 increased γH2AX, a double-strand DNA break marker. NPQ-C6 showed a wide range of modulatory effects on cell signaling through an early increased phosphorylation of JNK, P38-MAPK and AKT, and decreased phosphorylation of ERK1/2, BCR-ABL1, and STAT5. NPQ-C6 inhibited expression of c-MYC and PYM-1, two target gene products of BCR-ABL1/STAT5 signaling pathway. Cytokine-induced activation of STAT5/STAT3-dependent transcriptional and DNA binding activities were also inhibited by NPQ-C6. Notably, NPQ-C6 maintained its activity on BCR-ABL1/STAT5/c-MYC/PIM-1 oncogenic pathway in imatinib-resistant cells. Molecular modeling suggested BCR-ABL1 and JAK2 proteins as NPQ-C6 targets. In summary, our data show a novel multikinase modulator that might be therapeutically effective in BCR-ABL1-STAT5-related malignancies.
Collapse
Affiliation(s)
- Patricia Martín-Rodríguez
- Laboratorio de Farmacología Molecular y Traslacional, Instituto Universitario de Investigaciones Biomédicas y Sanitarias, Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain
| | - Borja Guerra
- Laboratorio de Farmacología Molecular y Traslacional, Instituto Universitario de Investigaciones Biomédicas y Sanitarias, Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain
| | - Idaira Hueso-Falcón
- Departamento de Química Orgánica, Instituto Universitario de Bio-Orgánica Antonio González, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Haidee Aranda-Tavío
- Laboratorio de Farmacología Molecular y Traslacional, Instituto Universitario de Investigaciones Biomédicas y Sanitarias, Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain
| | - Juan Díaz-Chico
- Laboratorio de Farmacología Molecular y Traslacional, Instituto Universitario de Investigaciones Biomédicas y Sanitarias, Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain
| | - José Quintana
- Laboratorio de Bioquímica, Instituto Universitario de Investigaciones Biomédicas y Sanitarias, Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain
| | - Francisco Estévez
- Laboratorio de Bioquímica, Instituto Universitario de Investigaciones Biomédicas y Sanitarias, Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain
| | - Bonifacio Díaz-Chico
- Laboratorio de Farmacología Molecular y Traslacional, Instituto Universitario de Investigaciones Biomédicas y Sanitarias, Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain
| | - Angel Amesty
- Departamento de Química Orgánica, Instituto Universitario de Bio-Orgánica Antonio González, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Ana Estévez-Braun
- Departamento de Química Orgánica, Instituto Universitario de Bio-Orgánica Antonio González, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Leandro Fernández-Pérez
- Laboratorio de Farmacología Molecular y Traslacional, Instituto Universitario de Investigaciones Biomédicas y Sanitarias, Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain
| |
Collapse
|
25
|
Shao L, Chang J, Feng W, Wang X, Williamson EA, Li Y, Schajnovitz A, Scadden D, Mortensen LJ, Lin CP, Li L, Paulson A, Downing J, Zhou D, Hromas RA. The Wave2 scaffold Hem-1 is required for transition of fetal liver hematopoiesis to bone marrow. Nat Commun 2018; 9:2377. [PMID: 29915352 PMCID: PMC6006146 DOI: 10.1038/s41467-018-04716-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 05/16/2018] [Indexed: 01/08/2023] Open
Abstract
The transition of hematopoiesis from the fetal liver (FL) to the bone marrow (BM) is incompletely characterized. We demonstrate that the Wiskott–Aldrich syndrome verprolin-homologous protein (WAVE) complex 2 is required for this transition, as complex degradation via deletion of its scaffold Hem-1 causes the premature exhaustion of neonatal BM hematopoietic stem cells (HSCs). This exhaustion of BM HSC is due to the failure of BM engraftment of Hem-1−/− FL HSCs, causing early death. The Hem-1−/− FL HSC engraftment defect is not due to the lack of the canonical function of the WAVE2 complex, the regulation of actin polymerization, because FL HSCs from Hem-1−/− mice exhibit no defects in chemotaxis, BM homing, or adhesion. Rather, the failure of Hem-1−/− FL HSC engraftment in the marrow is due to the loss of c-Abl survival signaling from degradation of the WAVE2 complex. However, c-Abl activity is dispensable for the engraftment of adult BM HSCs into the BM. These findings reveal a novel function of the WAVE2 complex and define a mechanism for FL HSC fitness in the embryonic BM niche. Hematopoietic stem cells (HSCs) migrate from the fetal liver to the bone marrow (BM) during embryogenesis. Here the authors show that the WAVE2 complex scaffold Hem1 is required for engraftment of HSCs in BM, not through its canonical role regulating actin polymerization, but through c-Abl survival signaling.
Collapse
Affiliation(s)
- Lijian Shao
- Department of Pharmacology, University of Illinois Chicago, Chicago, IL, 60612, USA
| | - Jianhui Chang
- Department of Pharmaceutical Sciences and Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Wei Feng
- Department of Pharmaceutical Sciences and Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Xiaoyan Wang
- Department of Pharmaceutical Sciences and Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Elizabeth A Williamson
- Department of Medicine and Pathology, University of Florida, Gainesville, FL, 32610, USA
| | - Ying Li
- Department of Medicine and Pathology, University of Florida, Gainesville, FL, 32610, USA
| | - Amir Schajnovitz
- Stem Cell and Regenerative Biology Department, Harvard University, Cambridge, 02138, MA, USA.,Center for Regenerative Medicine, Massachusetts General Hospital, Boston, 02114, MA, USA.,Harvard Stem Cell Institute, Cambridge, MA, 02138, USA
| | - David Scadden
- Stem Cell and Regenerative Biology Department, Harvard University, Cambridge, 02138, MA, USA
| | - Luke J Mortensen
- Regenerative Medicine Center, University of Georgia, Athens, GA, 30602, USA
| | - Charles P Lin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Linheng Li
- Department of Pathology and Laboratory, Medicine University of Kansas, Kansas City, 66160, KA, USA
| | - Ariel Paulson
- Department of Pathology and Laboratory, Medicine University of Kansas, Kansas City, 66160, KA, USA.,Stowers Institute for Medical Research, Kansas City, MO, 66160, USA
| | - James Downing
- Department of Pathology and Laboratory Medicine, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Daohong Zhou
- Department of Pharmaceutical Sciences and Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA. .,Department of Pharmacodynamics, University of Florida, Gainesville, FL, 32610, USA.
| | - Robert A Hromas
- Office of the Dean and the Cancer Center, Long School of Medicine, University of Texas Health Science Center, San Antonio, TX, 78229, USA.
| |
Collapse
|
26
|
Differential proteomic profile of leukemic CD34+ progenitor cells from chronic myeloid leukemia patients. Oncotarget 2018; 9:21758-21769. [PMID: 29774100 PMCID: PMC5955129 DOI: 10.18632/oncotarget.24938] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 03/06/2018] [Indexed: 12/14/2022] Open
Abstract
Chronic Myeloid Leukemia (CML) is a stem cell disease sustained by a rare population of quiescent cells which are to some extent resistant to tyrosine kinase inhibitors (TKIs). BCR-ABL oncogene activates multiple cross-talking signal transduction pathways (STP), such as RAS/MEK/ERK, PI3K/Akt, Wnt and STAT5, contributing to abnormal proliferation of clonal cells. From this perspective, the aim of this study was to analyze the expression and activation profile of STP involved in the mechanisms of cell proliferation/quiescence and survival of the progenitor CD34+ cells from chronic phase (CP) CML. Our results showed that CP-CML CD34+ progenitors were characterized by significant lower phosphorylation of proteins involved in the regulation of growth and cell survival, such as tyrosine kinases of the Src family and members of STAT family, and by a significant higher phosphorylation of p53 (Ser15), compared to normal CD34+ cells from healthy donors. Consistent with these results, cell cycle analysis demonstrated that CP-CML CD34+ cells were characterized by higher percentage of cells in G0-phase compared to normal CD34+ cells. Analysis of expression profile on proteins involved in the apoptotic machinery revealed that, in addition, CD34+ cells from CP-CML were characterized by a significant lower expression of catalase and higher expression of HSP27 and FADD. In sum, we report that CD34+ cells from CP-CML are characterized by a proteomic and phospho-proteomic profile that promotes quiescence through the inhibition of proliferation and the promotion of survival. This differential signaling activation network may be addressed by novel targeted therapies aimed at eradicating CML stem cells.
Collapse
|
27
|
Gao Q, Liang WW, Foltz SM, Mutharasu G, Jayasinghe RG, Cao S, Liao WW, Reynolds SM, Wyczalkowski MA, Yao L, Yu L, Sun SQ, Chen K, Lazar AJ, Fields RC, Wendl MC, Van Tine BA, Vij R, Chen F, Nykter M, Shmulevich I, Ding L. Driver Fusions and Their Implications in the Development and Treatment of Human Cancers. Cell Rep 2018; 23:227-238.e3. [PMID: 29617662 PMCID: PMC5916809 DOI: 10.1016/j.celrep.2018.03.050] [Citation(s) in RCA: 400] [Impact Index Per Article: 57.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 02/25/2018] [Accepted: 03/13/2018] [Indexed: 12/11/2022] Open
Abstract
Gene fusions represent an important class of somatic alterations in cancer. We systematically investigated fusions in 9,624 tumors across 33 cancer types using multiple fusion calling tools. We identified a total of 25,664 fusions, with a 63% validation rate. Integration of gene expression, copy number, and fusion annotation data revealed that fusions involving oncogenes tend to exhibit increased expression, whereas fusions involving tumor suppressors have the opposite effect. For fusions involving kinases, we found 1,275 with an intact kinase domain, the proportion of which varied significantly across cancer types. Our study suggests that fusions drive the development of 16.5% of cancer cases and function as the sole driver in more than 1% of them. Finally, we identified druggable fusions involving genes such as TMPRSS2, RET, FGFR3, ALK, and ESR1 in 6.0% of cases, and we predicted immunogenic peptides, suggesting that fusions may provide leads for targeted drug and immune therapy.
Collapse
Affiliation(s)
- Qingsong Gao
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Wen-Wei Liang
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Steven M Foltz
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Gnanavel Mutharasu
- Institute of Signal Processing, Tampere University of Technology, 33101, Tampere, Finland
| | - Reyka G Jayasinghe
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Song Cao
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Wen-Wei Liao
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | | | - Matthew A Wyczalkowski
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Lijun Yao
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Lihua Yu
- H3 Biomedicine, Inc., Cambridge, MA 02139, USA
| | - Sam Q Sun
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Ken Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77230, USA
| | - Alexander J Lazar
- Departments of Pathology, Genomic Medicine, and Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77230, USA
| | - Ryan C Fields
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA; Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Michael C Wendl
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA; Department of Genetics, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Mathematics, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Brian A Van Tine
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Ravi Vij
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Feng Chen
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Matti Nykter
- Institute for Biosciences and Medical Technology, University of Tampere, 33520 Tampere, Finland
| | | | - Li Ding
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA; Department of Genetics, Washington University in St. Louis, St. Louis, MO 63110, USA; Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA.
| |
Collapse
|
28
|
Evaluation of in vitro effects of various targeted drugs on plasma cells and putative neoplastic stem cells in patients with multiple myeloma. Oncotarget 2018; 7:65627-65642. [PMID: 27582537 PMCID: PMC5323180 DOI: 10.18632/oncotarget.11593] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 08/13/2016] [Indexed: 01/08/2023] Open
Abstract
Multiple myeloma (MM) is a malignancy characterized by monoclonal paraproteinemia and tissue plasmocytosis. In advanced MM cytopenia and osteopathy may occur. Although several effective treatment strategies have been developed in recent years, there is still a need to identify new drug targets and to develop more effective therapies for patients with advanced MM. We examined the effects of 15 targeted drugs on growth and survival of primary MM cells and 5 MM cell lines (MM.1S, NCI-H929, OPM-2, RPMI-8226, U-266). The PI3-kinase blocker BEZ235, the pan-BCL-2 inhibitor obatoclax, the Hsp90-targeting drug 17AAG, and the Polo-like kinase-1 inhibitor BI2536, were found to exert major growth-inhibitory effects in all 5 MM cell lines tested. Moreover, these drugs suppressed the in vitro proliferation of primary bone marrow-derived MM cells and induced apoptosis at pharmacologic drug concentrations. Apoptosis-inducing effects were not only seen in the bulk of MM cells but also in MM stem cell-containing CD138−/CD20+/CD27+ memory B-cell fractions. Synergistic growth-inhibitory effects were observed in MM cell lines using various drug combinations, including 17AAG+BI2536 in MM.1S, OPM-2, RPMI-8226, and U-266 cells, 17AAG+BEZ235 in MM.1S, OPM-2, RPMI-8226, and U-266 cells, 17AAG+obatoclax in MM.1S, NCI-H929, OPM-2, and RPMI-8226 cells, BI2536+BEZ235 in MM.1S, NCI-H929, OPM-2, and RPMI-8226 cells, BI2536+obatoclax in MM.1S, OPM-2 and RPMI-8226 cells, and BEZ235+obatoclax in MM.1S and RPMI-8226 cells. Together, our data show that various targeted drugs induce profound and often synergistic anti-neoplastic effects in MM cells which may have clinical implications and may contribute to the development of novel treatment strategies in advanced MM.
Collapse
|
29
|
Guerra B, Martín-Rodríguez P, Díaz-Chico JC, McNaughton-Smith G, Jiménez-Alonso S, Hueso-Falcón I, Montero JC, Blanco R, León J, Rodríguez-González G, Estévez-Braun A, Pandiella A, Díaz-Chico BN, Fernández-Pérez L. CM363, a novel naphthoquinone derivative which acts as multikinase modulator and overcomes imatinib resistance in chronic myelogenous leukemia. Oncotarget 2018; 8:29679-29698. [PMID: 27557509 PMCID: PMC5444695 DOI: 10.18632/oncotarget.11425] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 07/28/2016] [Indexed: 12/25/2022] Open
Abstract
Human Chronic Myelogenous Leukemia (CML) is a hematological stem cell disorder which is associated with activation of Bcr-Abl-Stat5 oncogenic pathway. Direct Bcr-Abl inhibitors are initially successful for the treatment of CML but over time many patients develop drug resistance. In the present study, the effects of CM363, a novel naphthoquinone (NPQ) derivative, were evaluated on human CML-derived K562 cells. CM363 revealed an effective cell growth inhibition (IC50 = 0.7 ± 0.5 μM) by inducing cancer cells to undergo cell cycle arrest and apoptosis. CM363 caused a dose- and time-dependent reduction of cells in G0/G1 and G2/M phases. This cell cycle arrest was associated with increased levels of cyclin E, pChk1 and pChk2 whereas CM363 downregulated cyclin B, cyclin D3, p27, pRB, Wee1, and BUBR1. CM363 increased the double-strand DNA break marker γH2AX. CM363 caused a time-dependent increase of annexin V-positive cells, DNA fragmentation and increased number of apoptotic nuclei. CM363 triggered the mitochondrial apoptotic pathway as reflected by a release of cytochrome C from mitochondria and induction of the cleavage of caspase-3 and -9, and PARP. CM363 showed multikinase modulatory effects through an early increased JNK phosphorylation followed by inhibition of pY-Bcrl-Abl and pY-Stat5. CM363 worked synergistically with imatinib to inhibit cell viability and maintained its activity in imatinib-resistant cells. Finally, CM363 (10 mg/Kg) suppressed the growth of K562 xenograft tumors in athymic mice. In summary, CM363 is a novel multikinase modulator that offers advantages to circumvent imanitib resistance and might be therapeutically effective in Bcrl-Abl-Stat5 related malignancies.
Collapse
Affiliation(s)
- Borja Guerra
- Instituto de Investigaciones Biomédicas y Sanitarias (IUIBS)-BioPharm Laboratory-Universidad de Las Palmas de Gran Canaria, Epaña.,Unidad de Apoyo a la Docencia en Enfermería-Fuerteventura, Universidad de Las Palmas de Gran Canaria, España.,Instituto Canario de Investigación sobre el Cáncer (ICIC), España
| | - Patricia Martín-Rodríguez
- Instituto de Investigaciones Biomédicas y Sanitarias (IUIBS)-BioPharm Laboratory-Universidad de Las Palmas de Gran Canaria, Epaña
| | - Juan Carlos Díaz-Chico
- Instituto de Investigaciones Biomédicas y Sanitarias (IUIBS)-BioPharm Laboratory-Universidad de Las Palmas de Gran Canaria, Epaña.,Instituto Canario de Investigación sobre el Cáncer (ICIC), España
| | | | - Sandra Jiménez-Alonso
- Instituto Canario de Investigación sobre el Cáncer (ICIC), España.,Departamento de Química Orgánica, Instituto de Bio-Orgánica Antonio González (CIBICAN), Universidad de la Laguna, España
| | | | | | - Rosa Blanco
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), España
| | - Javier León
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), España
| | | | - Ana Estévez-Braun
- Instituto Canario de Investigación sobre el Cáncer (ICIC), España.,Departamento de Química Orgánica, Instituto de Bio-Orgánica Antonio González (CIBICAN), Universidad de la Laguna, España
| | - Atanasio Pandiella
- Centro de Investigación del Cáncer, CSIC-Universidad de Salamanca, España
| | - Bonifacio Nicolás Díaz-Chico
- Instituto de Investigaciones Biomédicas y Sanitarias (IUIBS)-BioPharm Laboratory-Universidad de Las Palmas de Gran Canaria, Epaña.,Instituto Canario de Investigación sobre el Cáncer (ICIC), España.,Centro Atlántico del Medicamento (CEAMED), España
| | - Leandro Fernández-Pérez
- Instituto de Investigaciones Biomédicas y Sanitarias (IUIBS)-BioPharm Laboratory-Universidad de Las Palmas de Gran Canaria, Epaña.,Instituto Canario de Investigación sobre el Cáncer (ICIC), España
| |
Collapse
|
30
|
Arrigoni E, Del Re M, Galimberti S, Restante G, Rofi E, Crucitta S, Baratè C, Petrini M, Danesi R, Di Paolo A. Concise Review: Chronic Myeloid Leukemia: Stem Cell Niche and Response to Pharmacologic Treatment. Stem Cells Transl Med 2018; 7:305-314. [PMID: 29418079 PMCID: PMC5827745 DOI: 10.1002/sctm.17-0175] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 01/09/2018] [Indexed: 12/27/2022] Open
Abstract
Nowadays, more than 90% of patients affected by chronic myeloid leukemia (CML) survive with a good quality of life, thanks to the clinical efficacy of tyrosine kinase inhibitors (TKIs). Nevertheless, point mutations of the ABL1 pocket occurring during treatment may reduce binding of TKIs, being responsible of about 20% of cases of resistance among CML patients. In addition, the presence of leukemic stem cells (LSCs) represents the most important event in leukemia progression related to TKI resistance. LSCs express stem cell markers, including active efflux pumps and genetic and epigenetic alterations together with deregulated cell signaling pathways involved in self-renewal, such as Wnt/β-catenin, Notch, and Hedgehog. Moreover, the interaction with the bone marrow microenvironment, also known as hematopoietic niche, may influence the phenotype of surrounding cells, which evade mechanisms controlling cell proliferation and are less sensitive or frankly resistant to TKIs. This Review focuses on the role of LSCs and stem cell niche in relation to response to pharmacological treatments. A literature search from PubMed database was performed until April 30, 2017, and it has been analyzed according to keywords such as chronic myeloid leukemia, stem cell, leukemic stem cells, hematopoietic niche, tyrosine kinase inhibitors, and drug resistance. Stem Cells Translational Medicine 2018;7:305-314.
Collapse
Affiliation(s)
- Elena Arrigoni
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| | - Marzia Del Re
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| | - Sara Galimberti
- Unit of Hematology, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| | - Giuliana Restante
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| | - Eleonora Rofi
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| | - Stefania Crucitta
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| | - Claudia Baratè
- Unit of Hematology, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| | - Mario Petrini
- Unit of Hematology, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| | - Romano Danesi
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| | - Antonello Di Paolo
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| |
Collapse
|
31
|
A large-scale RNA interference screen identifies genes that regulate autophagy at different stages. Sci Rep 2018; 8:2822. [PMID: 29434216 PMCID: PMC5809370 DOI: 10.1038/s41598-018-21106-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 01/30/2018] [Indexed: 12/20/2022] Open
Abstract
Dysregulated autophagy is central to the pathogenesis and therapeutic development of cancer. However, how autophagy is regulated in cancer is not well understood and genes that modulate cancer autophagy are not fully defined. To gain more insights into autophagy regulation in cancer, we performed a large-scale RNA interference screen in K562 human chronic myeloid leukemia cells using monodansylcadaverine staining, an autophagy-detecting approach equivalent to immunoblotting of the autophagy marker LC3B or fluorescence microscopy of GFP-LC3B. By coupling monodansylcadaverine staining with fluorescence-activated cell sorting, we successfully isolated autophagic K562 cells where we identified 336 short hairpin RNAs. After candidate validation using Cyto-ID fluorescence spectrophotometry, LC3B immunoblotting, and quantitative RT-PCR, 82 genes were identified as autophagy-regulating genes. 20 genes have been reported previously and the remaining 62 candidates are novel autophagy mediators. Bioinformatic analyses revealed that most candidate genes were involved in molecular pathways regulating autophagy, rather than directly participating in the autophagy process. Further autophagy flux assays revealed that 57 autophagy-regulating genes suppressed autophagy initiation, whereas 21 candidates promoted autophagy maturation. Our RNA interference screen identified genes that regulate autophagy at different stages, which helps decode autophagy regulation in cancer and offers novel avenues to develop autophagy-related therapies for cancer.
Collapse
|
32
|
SHC004-221A1, a novel tyrosine kinase, potently inhibits T315I mutant BCR-ABL in chronic myeloid leukemia. Eur J Pharmacol 2017; 811:117-124. [DOI: 10.1016/j.ejphar.2017.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 06/02/2017] [Accepted: 06/02/2017] [Indexed: 11/23/2022]
|
33
|
Owen HC, Appiah S, Hasan N, Ghali L, Elayat G, Bell C. Phytochemical Modulation of Apoptosis and Autophagy: Strategies to Overcome Chemoresistance in Leukemic Stem Cells in the Bone Marrow Microenvironment. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2017; 135:249-278. [PMID: 28807161 DOI: 10.1016/bs.irn.2017.02.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Advances in scientific research and targeted treatment regimes have improved survival rates for many cancers over the past few decades. However, for some types of leukemia, including acute lymphoblastic and acute myeloid leukemia, mortality rates have continued to rise, with chemoresistance in leukemic stem cells (LSCs) being a major contributing factor. Most cancer drug therapies act by inducing apoptosis in dividing cells but are ineffective in targeting quiescent LSCs. Niches in the bone marrow, known as leukemic niches, behave as "sanctuaries" where LSCs acquire drug resistance. This review explores the role of the bone marrow environment in the maintenance of LSCs and its contribution to chemoresistance and considers current research on the potential use of phytochemicals to overcome chemoresistance through the modulation of signaling pathways involved in the survival and death of leukemic clonal cells and/or leukemic stem cells. Phytochemicals from traditional Chinese medicine, namely baicalein, chrysin, wogonin (constituents of Scutellaria baicalensis; huáng qín; ), curcumin (a constituent of Curcuma longa, jiāng huáng, ), and resveratrol (a constituent of Polygonum cuspidatum; hŭ zhàng, ) have been shown to induce apoptosis in leukemic cell lines, with curcumin and resveratrol also causing cell death via the induction of autophagy (a nonapoptotic pathway). In order to be effective in eliminating LSCs, it is important to target signaling pathways (such as Wnt/β-catenin, Notch, and Hedgehog). Resveratrol has been reported to induce apoptosis in leukemic cells through the inhibition of the Notch and Sonic hedgehog signaling pathways, therefore showing potential to affect LSCs. While these findings are of interest, there is a lack of reported research on the modulatory effect of phytochemicals on the autophagic cell death pathway in leukemia, and on the signaling pathways involved in the maintenance of LSCs, highlighting the need for further work in these areas.
Collapse
Affiliation(s)
- Helen C Owen
- Faculty of Science and Technology, Middlesex University, The Burroughs, Hendon, London, United Kingdom.
| | - Sandra Appiah
- Faculty of Science and Technology, Middlesex University, The Burroughs, Hendon, London, United Kingdom.
| | - Noor Hasan
- Faculty of Science and Technology, Middlesex University, The Burroughs, Hendon, London, United Kingdom
| | - Lucy Ghali
- Faculty of Science and Technology, Middlesex University, The Burroughs, Hendon, London, United Kingdom
| | - Ghada Elayat
- Faculty of Science and Technology, Middlesex University, The Burroughs, Hendon, London, United Kingdom
| | - Celia Bell
- Faculty of Science and Technology, Middlesex University, The Burroughs, Hendon, London, United Kingdom
| |
Collapse
|
34
|
Xin P, Li C, Zheng Y, Peng Q, Xiao H, Huang Y, Zhu X. Efficacy of the dual PI3K and mTOR inhibitor NVP-BEZ235 in combination with imatinib mesylate against chronic myelogenous leukemia cell lines. Drug Des Devel Ther 2017; 11:1115-1126. [PMID: 28435223 PMCID: PMC5388256 DOI: 10.2147/dddt.s132092] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin (PI3K/Akt/mTOR) pathway is a therapy target of cancer. We aimed to confirm the effect of dual PI3K/mTOR inhibitor NVP-BEZ235 on proliferation, apoptosis, and autophagy of chronic myelogenous leukemia (CML) cells and sensitivity of tyrosine kinase inhibitor in vitro. METHODS Two human CML cell lines, K562 and KBM7R (T315I mutant strain), were used. The proliferation of CML cells was detected by MTS (Owen's reagent) assay. Cell cycle and apoptosis assay were examined by flow cytometric analysis. The phosphorylation levels and the expression levels were both evaluated by Western blot analysis. NVP-BEZ235 in combination with imatinib was also used to reveal the effect on proliferation and apoptosis. RESULTS NVP-BEZ235 significantly inhibited the proliferation in a time- and dose-dependent manner, and the half-maximal inhibitory concentration values of NVP-BEZ235 inhibiting the proliferation of K562 and KBM7R were 0.37±0.21 and 0.43±0.27 μmol/L, respectively, after 48 h. Cell apoptosis assay showed that NVP-BEZ235 significantly increased the late apoptotic cells. Cell cycle analysis indicated that the cells were mostly arrested in G1/G0 phase after treatment by NVP-BEZ235. In addition, results also found that, after treatment by NVP-BEZ235, phosphorylation levels of Akt kinase and S6K kinase significantly reduced, and the expression levels of cleaved caspase-3 significantly increased; meanwhile, the expression levels of caspase-3, B-cell lymphoma-2, cyclin D1, and cyclin D2 significantly decreased, and the ratio of LC3II/LC3I was significantly increased with increased LC3II expression level. Moreover, imatinib in combination with NVP-BEZ235 induced a more pronounced colony growth inhibition than imatinib alone. CONCLUSION NVP-BEZ235 effectively inhibited cell proliferation by G0/G1 cell cycle arrest and induced apoptosis through deregulating PI3K/Akt/mTOR pathway in CML cells; in addition, NVP-BEZ235 can enhance cell autophagy, and is conducive to raising CML cell sensitivity to imatinib to inhibit the growth of imatinib-resistant cells.
Collapse
Affiliation(s)
- Pengliang Xin
- Department of Haematology, First Hospital of Quanzhou Affiliated to Fujian Medical University, Licheng, Quanzhou, Fujian Province, China
| | - Chuntuan Li
- Department of Haematology, First Hospital of Quanzhou Affiliated to Fujian Medical University, Licheng, Quanzhou, Fujian Province, China
| | - Yan Zheng
- Department of Haematology, First Hospital of Quanzhou Affiliated to Fujian Medical University, Licheng, Quanzhou, Fujian Province, China
| | - Qunyi Peng
- Department of Haematology, First Hospital of Quanzhou Affiliated to Fujian Medical University, Licheng, Quanzhou, Fujian Province, China
| | - Huifang Xiao
- Department of Haematology, First Hospital of Quanzhou Affiliated to Fujian Medical University, Licheng, Quanzhou, Fujian Province, China
| | - Yuanling Huang
- Department of Haematology, First Hospital of Quanzhou Affiliated to Fujian Medical University, Licheng, Quanzhou, Fujian Province, China
| | - Xiongpeng Zhu
- Department of Haematology, First Hospital of Quanzhou Affiliated to Fujian Medical University, Licheng, Quanzhou, Fujian Province, China
| |
Collapse
|
35
|
Casiopeina III-Ea, a copper-containing small molecule, inhibits the in vitro growth of primitive hematopoietic cells from chronic myeloid leukemia. Leuk Res 2016; 52:8-19. [PMID: 27855286 DOI: 10.1016/j.leukres.2016.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 09/01/2016] [Accepted: 11/01/2016] [Indexed: 11/21/2022]
Abstract
Several novel compounds have been developed for the treatment of different types of leukemia. In the present study, we have assessed the in vitro effects of Casiopeina III-Ea, a copper-containing small molecule, on cells from patients with Chronic Myeloid Leukemia (CML). We included primary CD34+ Lineage-negative (Lin-) cells selected from CML bone marrow, as well as the K562 and MEG01 cell lines. Bone marrow cells obtained from normal individuals - both total mononuclear cells as well as CD34+ Lin- cells- were used as controls. IC50 corresponded to 0.5μM for K562 cells, 0.63μM for MEG01 cells, 0.38μM for CML CD34+ lin- cells, and 1.0μM for normal CD34+ lin- cells. Proliferation and expansion were also inhibited to significantly higher extents in cultures of CML cells as compared to their normal counterparts. All these effects seemed to occur via a bcr-abl transcription-independent mechanism that involved a delay in cell division, an increase in cell death, generation of Reactive Oxygen Species and changes in cell cycle. Our results demonstrate that Casiopeina III-Ea possesses strong antileukemic activity in vitro, and warrant further preclinical (animal) studies to assess such effects in vivo.
Collapse
|
36
|
Ben-Batalla I, Erdmann R, Jørgensen H, Mitchell R, Ernst T, von Amsberg G, Schafhausen P, Velthaus JL, Rankin S, Clark RE, Koschmieder S, Schultze A, Mitra S, Vandenberghe P, Brümmendorf TH, Carmeliet P, Hochhaus A, Pantel K, Bokemeyer C, Helgason GV, Holyoake TL, Loges S. Axl Blockade by BGB324 Inhibits BCR-ABL Tyrosine Kinase Inhibitor-Sensitive and -Resistant Chronic Myeloid Leukemia. Clin Cancer Res 2016; 23:2289-2300. [PMID: 27856601 DOI: 10.1158/1078-0432.ccr-16-1930] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 10/27/2016] [Accepted: 10/28/2016] [Indexed: 11/16/2022]
Abstract
Purpose: BCR-ABL kinase inhibitors are employed successfully for chronic myeloid leukemia (CML) treatment. However, resistant disease and persistence of BCR-ABL1-independent leukemia stem and progenitor cells (LSPC) remain clinical challenges. The receptor tyrosine kinase Axl can mediate survival and therapy resistance of different cancer cells. We investigated the therapeutic potential of Axl inhibition in CML.Experimental Design: We used primary cells from patients with CML and TKI-sensitive and -resistant BCR-ABL1+ CML cell lines and a novel ponatinib-resistant cell line KCL-22 PonR. We analyzed the effects of genetic and pharmacologic Axl blockade by the small-molecule Axl inhibitor BGB324 in vitro and in vivo In BCR-ABL1-unmutated cells, we also investigated BGB324 in combination with imatinib.Results: We demonstrate overexpression of Axl receptor tyrosine kinase in primary cells of patients with CML compared with healthy individuals and a further increase of Axl expression in BCR-ABL TKI-resistant patients. We show that Axl blockage decreased growth of BCR-ABL TKI-sensitive CML cells including CD34+ cells and exerts additive effects with imatinib via inhibition of Stat5 activation. BGB324 also inhibits BCR-ABL TKI-resistant cells, including T315I-mutated and ponatinib-resistant primary cells. BGB324 exerted therapeutic effects in BCR-ABL1 T315I-mutated and ponatinib-resistant preclinical mouse models. Notably, BGB324 does not inhibit BCR-ABL1 and consequently inhibits CML independent of BCR-ABL1 mutational status.Conclusions: Our data show that Axl inhibition has therapeutic potential in BCR-ABL TKI-sensitive as well as -resistant CML and support the need for clinical trials. Clin Cancer Res; 23(9); 2289-300. ©2016 AACR.
Collapse
Affiliation(s)
- Isabel Ben-Batalla
- Department of Hematology and Oncology with Sections BMT and Pneumology, Hubertus Wald Tumorzentrum, University Comprehensive Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Tumor Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Robert Erdmann
- Department of Hematology and Oncology with Sections BMT and Pneumology, Hubertus Wald Tumorzentrum, University Comprehensive Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Tumor Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Heather Jørgensen
- Paul O'Gorman Leukaemia Research Centre, College of Medical, Veterinary & Life Sciences, Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Rebecca Mitchell
- Paul O'Gorman Leukaemia Research Centre, College of Medical, Veterinary & Life Sciences, Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Thomas Ernst
- Hematology/Oncology, Jena University Hospital, Jena, Germany
| | - Gunhild von Amsberg
- Department of Hematology and Oncology with Sections BMT and Pneumology, Hubertus Wald Tumorzentrum, University Comprehensive Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Philippe Schafhausen
- Department of Hematology and Oncology with Sections BMT and Pneumology, Hubertus Wald Tumorzentrum, University Comprehensive Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Janna L Velthaus
- Department of Hematology and Oncology with Sections BMT and Pneumology, Hubertus Wald Tumorzentrum, University Comprehensive Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Tumor Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stephen Rankin
- Paul O'Gorman Leukaemia Research Centre, College of Medical, Veterinary & Life Sciences, Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Richard E Clark
- Department of Haematology, Molecular and Clinical Cancer Medicine, Royal Liverpool University Hospital, Liverpool, United Kingdom
| | - Steffen Koschmieder
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Alexander Schultze
- Department of Hematology and Oncology with Sections BMT and Pneumology, Hubertus Wald Tumorzentrum, University Comprehensive Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Subir Mitra
- Department of Haematology, Milton Keynes Hospital NHS Foundation Trust, Milton Keynes, United Kingdom
| | | | - Tim H Brümmendorf
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Neurovascular Link, Vesalius Research Center, VIB, Leuven, Belgium.,Laboratory of Angiogenesis and Neurovascular Link, Vesalius Research Center, KU Leuven, Leuven, Belgium
| | | | - Klaus Pantel
- Department of Tumor Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Carsten Bokemeyer
- Department of Hematology and Oncology with Sections BMT and Pneumology, Hubertus Wald Tumorzentrum, University Comprehensive Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - G Vignir Helgason
- Wolfson Wohl Cancer Research Centre, College of Medical, Veterinary & Life Sciences, Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Tessa L Holyoake
- Paul O'Gorman Leukaemia Research Centre, College of Medical, Veterinary & Life Sciences, Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Sonja Loges
- Department of Hematology and Oncology with Sections BMT and Pneumology, Hubertus Wald Tumorzentrum, University Comprehensive Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany. .,Department of Tumor Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
37
|
Liu MY, Wang WZ, Liao FF, Wu QQ, Lin XH, Chen YH, Cheng L, Jin XB, Zhu JY. Selective and effective targeting of chronic myeloid leukemia stem cells by topoisomerase II inhibitor etoposide in combination with imatinib mesylate in vitro. Cell Biol Int 2016; 41:16-23. [PMID: 27677634 DOI: 10.1002/cbin.10686] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 09/24/2016] [Indexed: 11/06/2022]
Abstract
Imatinib mesylate (IM) and other BCR-ABL tyrosine kinase inhibitors (TKIs) have improved chronic myeloid leukemia (CML) patient survival markedly but fail to eradicate quiescent CML leukemia stem cells (LSCs). Thus, strategies targeting LSCs are required to induce long-term remission and achieve cure. Here, we investigated the ability of topoisomerase II (Top II) inhibitor etoposide (Eto) to target CML LSCs. Treatment with Eto combined with IM markedly induced apoptosis in primitive CML CD34+ CD38- stem cells resistant to eradication by IM alone, but not in normal hematopoietic stem cells, CML and normal mature CD34- cells, and other leukemia and lymphoma cell lines. The interaction of IM and Eto significantly inhibited phosphorylation of PDK1, AKT, GSK3, S6, and ERK proteins; increased the expression of pro-apoptotic gene Bax; and decreased the expression of anti-apoptotic gene c-Myc in CML CD34+ cells. Top II inhibitors treatment represents an attractive approach for targeting LSCs in CML patients undergoing TKIs monotherapy.
Collapse
Affiliation(s)
- Man-Yu Liu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, P. R. China.,Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, 510006, P. R. China
| | - Wei-Zhang Wang
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, 510006, P. R. China.,Department of Biochemistry and Molecular Biology, School of Basic Courses, Guangdong Pharmaceutical University, Guangzhou, P. R. China
| | - Fen-Fang Liao
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, 510006, P. R. China.,Department of Biochemistry and Molecular Biology, School of Basic Courses, Guangdong Pharmaceutical University, Guangzhou, P. R. China
| | - Qing-Qing Wu
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, 510006, P. R. China.,Department of Biochemistry and Molecular Biology, School of Basic Courses, Guangdong Pharmaceutical University, Guangzhou, P. R. China
| | - Xiang-Hua Lin
- Department of Clinical Laboratory, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, P. R. China
| | - Yong-Hen Chen
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, 510006, P. R. China.,Department of Biochemistry and Molecular Biology, School of Basic Courses, Guangdong Pharmaceutical University, Guangzhou, P. R. China
| | - Lin Cheng
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, 510006, P. R. China.,Department of Biochemistry and Molecular Biology, School of Basic Courses, Guangdong Pharmaceutical University, Guangzhou, P. R. China
| | - Xiao-Bao Jin
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, 510006, P. R. China
| | - Jia-Yong Zhu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, P. R. China.,Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, 510006, P. R. China
| |
Collapse
|
38
|
Immunological Analyses of Leukemia Stem Cells. Methods Mol Biol 2016. [PMID: 27581137 DOI: 10.1007/978-1-4939-4011-0_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Traditionally, the intracellular localization and expression levels of specific proteins in CML Leukemia stem cells (LSCs) have been evaluated by fluorescence immunohistochemistry (FIHC). More recently, Duolink(®) in situ PLA technology has opened up a new and more quantitative way to evaluate signal transduction, posttranslational modification, and protein-protein interaction at the single-stem-cell level. This novel methodology, which employs two antibody-based probes, has already increased our understanding of the biology of the rare CML LSC population. In the future, the use of this approach may contribute to the development of novel therapeutics aimed at eradicating CML LSCs in CML patients.
Collapse
|
39
|
Naka K, Ichinohe T. New hope for chronic myelogenous leukemia patients: dasatinib offers better efficacy with shorter treatment. Stem Cell Investig 2016; 3:19. [PMID: 27488943 DOI: 10.21037/sci.2016.05.05] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 05/23/2016] [Indexed: 11/06/2022]
Abstract
Although the discovery of tyrosine kinase inhibitors (TKIs) has dramatically improved the prognoses of chronic myelogenous leukemia (CML) patients, a cure has remained elusive. Unanswered questions include how long must a patient continue on TKI therapy, and how does a patient know when he/she can safely stop or finish this therapy? Imagawa et al. have carefully addressed these questions of safety and efficacy using a stop study of the second-generation TKI dasatinib. The results of a multicenter phase II trial termed the "dasatinib discontinuation" (DADI) trial indicated that 48% (30/63) of CML patients who had maintained a deep molecular response (DMR) to second-line or subsequent dasatinib therapy for at least for 1 year did not show any signs of disease relapse. Thus, even after it is stopped, dasatinib treatment may decrease the chance of disease relapse and provide a curative benefit to CML patients. This work by Imagawa et al. strongly supports the clinical utility of the second-generation TKI dasatinib for CML treatment.
Collapse
Affiliation(s)
- Kazuhito Naka
- 1 Department of Stem Cell Biology, 2 Department of Hematology and Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Tatsuo Ichinohe
- 1 Department of Stem Cell Biology, 2 Department of Hematology and Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
40
|
Nicolaou KC, Pulukuri KK, Yu R, Rigol S, Heretsch P, Grove CI, Hale CRH, ElMarrouni A. Total Synthesis of Δ12-Prostaglandin J3: Evolution of Synthetic Strategies to a Streamlined Process. Chemistry 2016; 22:8559-70. [DOI: 10.1002/chem.201601449] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Indexed: 01/12/2023]
Affiliation(s)
- K. C. Nicolaou
- Department of Chemistry; BioScience Research Collaborative; Rice University; 6100 Main Street Houston TX 77005 USA
| | - Kiran Kumar Pulukuri
- Department of Chemistry; BioScience Research Collaborative; Rice University; 6100 Main Street Houston TX 77005 USA
| | - Ruocheng Yu
- Department of Chemistry; BioScience Research Collaborative; Rice University; 6100 Main Street Houston TX 77005 USA
| | - Stephan Rigol
- Department of Chemistry; BioScience Research Collaborative; Rice University; 6100 Main Street Houston TX 77005 USA
| | - Philipp Heretsch
- Department of Chemistry; BioScience Research Collaborative; Rice University; 6100 Main Street Houston TX 77005 USA
| | - Charles I. Grove
- Department of Chemistry; BioScience Research Collaborative; Rice University; 6100 Main Street Houston TX 77005 USA
| | - Christopher R. H. Hale
- Department of Chemistry; BioScience Research Collaborative; Rice University; 6100 Main Street Houston TX 77005 USA
- Department of Chemistry; The Scripps Research Institute; 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Abdelatif ElMarrouni
- Department of Chemistry; BioScience Research Collaborative; Rice University; 6100 Main Street Houston TX 77005 USA
| |
Collapse
|
41
|
Sontakke P, Koczula KM, Jaques J, Wierenga ATJ, Brouwers-Vos AZ, Pruis M, Günther UL, Vellenga E, Schuringa JJ. Hypoxia-Like Signatures Induced by BCR-ABL Potentially Alter the Glutamine Uptake for Maintaining Oxidative Phosphorylation. PLoS One 2016; 11:e0153226. [PMID: 27055152 PMCID: PMC4824381 DOI: 10.1371/journal.pone.0153226] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 03/27/2016] [Indexed: 01/30/2023] Open
Abstract
The Warburg effect is probably the most prominent metabolic feature of cancer cells, although little is known about the underlying mechanisms and consequences. Here, we set out to study these features in detail in a number of leukemia backgrounds. The transcriptomes of human CB CD34+ cells transduced with various oncogenes, including BCR-ABL, MLL-AF9, FLT3-ITD, NUP98-HOXA9, STAT5A and KRASG12V were analyzed in detail. Our data indicate that in particular BCR-ABL, KRASG12V and STAT5 could impose hypoxic signaling under normoxic conditions. This coincided with an upregulation of glucose importers SLC2A1/3, hexokinases and HIF1 and 2. NMR-based metabolic profiling was performed in CB CD34+ cells transduced with BCR-ABL versus controls, both cultured under normoxia and hypoxia. Lactate and pyruvate levels were increased in BCR-ABL-expressing cells even under normoxia, coinciding with enhanced glutaminolysis which occurred in an HIF1/2-dependent manner. Expression of the glutamine importer SLC1A5 was increased in BCR-ABL+ cells, coinciding with an increased susceptibility to the glutaminase inhibitor BPTES. Oxygen consumption rates also decreased upon BPTES treatment, indicating a glutamine dependency for oxidative phosphorylation. The current study suggests that BCR-ABL-positive cancer cells make use of enhanced glutamine metabolism to maintain TCA cell cycle activity in glycolytic cells.
Collapse
MESH Headings
- Antigens, CD34/metabolism
- Apoptosis
- Blotting, Western
- Cell Cycle
- Cell Proliferation
- Cells, Cultured
- Fetal Blood/cytology
- Fetal Blood/metabolism
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Glutamine/metabolism
- Humans
- Hypoxia/physiopathology
- Immunoenzyme Techniques
- Infant, Newborn
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Magnetic Resonance Spectroscopy
- Metabolomics
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Oxidative Phosphorylation
- RNA, Messenger/genetics
- Real-Time Polymerase Chain Reaction
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction
Collapse
Affiliation(s)
- Pallavi Sontakke
- Department of Experimental Hematology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Katarzyna M. Koczula
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Jennifer Jaques
- Department of Experimental Hematology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Albertus T. J. Wierenga
- Department of Experimental Hematology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Annet Z. Brouwers-Vos
- Department of Experimental Hematology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Maurien Pruis
- Department of Experimental Hematology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ulrich L. Günther
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Edo Vellenga
- Department of Experimental Hematology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jan Jacob Schuringa
- Department of Experimental Hematology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- * E-mail:
| |
Collapse
|
42
|
CHEN JIERU, JIA XIUHONG, WANG HONG, YI YINGJIE, WANG JIANYONG, LI YOUJIE. Timosaponin A-III reverses multi-drug resistance in human chronic myelogenous leukemia K562/ADM cells via downregulation of MDR1 and MRP1 expression by inhibiting PI3K/Akt signaling pathway. Int J Oncol 2016; 48:2063-70. [DOI: 10.3892/ijo.2016.3423] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 02/14/2016] [Indexed: 11/06/2022] Open
|
43
|
The role of microenvironment and immunity in drug response in leukemia. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:414-426. [DOI: 10.1016/j.bbamcr.2015.08.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 07/13/2015] [Accepted: 08/01/2015] [Indexed: 12/22/2022]
|
44
|
Wieczorek A, Uharek L. Management of Chronic Myeloid Leukemia Patients Resistant to Tyrosine Kinase Inhibitors Treatment. Biomark Insights 2016; 10:49-54. [PMID: 26917943 PMCID: PMC4760672 DOI: 10.4137/bmi.s22431] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 09/06/2015] [Accepted: 09/08/2015] [Indexed: 11/30/2022] Open
Abstract
Chronic myeloid leukemia (CML) is a myeloproliferative disorder associated with a characteristic chromosomal translocation called the Philadelphia chromosome. This oncogene is generated by the fusion of breakpoint cluster region (BCR) and Abelson leukemia virus (ABL) genes and encodes a novel fusion gene translating into a protein with constitutive tyrosine kinase activity. The discovery and introduction of tyrosine kinase inhibitors (TKIs) irreversibly changed the landscape of CML treatment, leading to dramatic improvement in long-term survival rates. The majority of patients with CML in the chronic phase have a life expectancy comparable with that of healthy age-matched individuals. Although an enormous therapeutic improvement has been accomplished, there are still some unresolved issues in the treatment of patients with CML. One of the most important problems is based on the fact that TKIs can efficiently target proliferating mature cells but do not eradicate leukemic stem cells, allowing persistence of the malignant clone. Owing to the resistance mechanisms arising during the course of the disease, treatment with most of the approved BCR-ABL1 TKIs may become ineffective in a proportion of patients. This article highlights the different molecular mechanisms of acquired resistance being developed during treatment with TKIs as well as the pharmacological strategies to overcome it. Moreover, it gives an overview of novel drugs and therapies that are aiming in overcoming drug resistance, loss of response, and kinase domain mutations.
Collapse
Affiliation(s)
- Agnieszka Wieczorek
- Charité, Division of Hematology, Oncology and Tumor Immunology, Berlin, Germany
| | - Lutz Uharek
- Charité, Division of Hematology, Oncology and Tumor Immunology, Berlin, Germany
| |
Collapse
|
45
|
Naka K, Ishihara K, Jomen Y, Jin CH, Kim DH, Gu YK, Jeong ES, Li S, Krause DS, Kim DW, Bae E, Takihara Y, Hirao A, Oshima H, Oshima M, Ooshima A, Sheen YY, Kim SJ, Kim DK. Novel oral transforming growth factor-β signaling inhibitor EW-7197 eradicates CML-initiating cells. Cancer Sci 2016; 107:140-8. [PMID: 26583567 PMCID: PMC4768399 DOI: 10.1111/cas.12849] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 11/11/2015] [Accepted: 11/12/2015] [Indexed: 12/17/2022] Open
Abstract
Recent strategies for treating CML patients have focused on investigating new combinations of tyrosine kinase inhibitors (TKIs) as well as identifying novel translational research agents that can eradicate CML leukemia‐initiating cells (CML‐LICs). However, little is known about the therapeutic benefits such CML‐LIC targeting therapies might bring to CML patients. In this study, we investigated the therapeutic potential of EW‐7197, an orally bioavailable transforming growth factor‐β signaling inhibitor which has recently been approved as an Investigational New Drug (NIH, USA), to suppress CML‐LICs in vivo. Compared to TKI treatment alone, administration of TKI plus EW‐7197 to CML‐affected mice significantly delayed disease relapse and prolonged survival. Notably, combined treatment with EW‐7197 plus TKI was effective in eliminating CML‐LICs even if they expressed the TKI‐resistant T315I mutant BCR‐ABL1 oncogene. Collectively, these results indicate that EW‐7197 may be a promising candidate for a new therapeutic that can greatly benefit CML patients by working in combination with TKIs to eradicate CML‐LICs.
Collapse
Affiliation(s)
- Kazuhito Naka
- Exploratory Project on Cancer Stem Cells, Cancer Research Institute, Kanazawa University, Kanazawa, Japan.,Department of Stem Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Kaori Ishihara
- Exploratory Project on Cancer Stem Cells, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Yoshie Jomen
- Exploratory Project on Cancer Stem Cells, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Cheng Hua Jin
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Dong-Hyun Kim
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Korea
| | - Yoon-Kang Gu
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Korea
| | - Eun-Sook Jeong
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Korea
| | - Shaoguang Li
- Division of Hematology/Oncology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Daniela S Krause
- Institute for Tumor Biology and Experimental Therapy, Georg Speyer Haus, Goethe University, Frankfurt, Germany
| | - Dong-Wook Kim
- Department of Hematology, Seoul St. Mary's Hospital, Cancer Research Institute, The Catholic University of Korea, Seoul, Korea
| | - Eunjin Bae
- Exploratory Project on Cancer Stem Cells, Cancer Research Institute, Kanazawa University, Kanazawa, Japan.,CHA Cancer Institute and Department of Biomedical Science, CHA University, Seongnam, Korea
| | - Yoshihiro Takihara
- Department of Stem Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Atsushi Hirao
- Division of Molecular Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Hiroko Oshima
- Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Masanobu Oshima
- Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Akira Ooshima
- CHA Cancer Institute and Department of Biomedical Science, CHA University, Seongnam, Korea
| | | | - Seong-Jin Kim
- CHA Cancer Institute and Department of Biomedical Science, CHA University, Seongnam, Korea
| | - Dae-Kee Kim
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Korea
| |
Collapse
|
46
|
Guo S, Pridham KJ, Sheng Z. Detecting Autophagy and Autophagy Flux in Chronic Myeloid Leukemia Cells Using a Cyto-ID Fluorescence Spectrophotometric Assay. Methods Mol Biol 2016; 1465:95-109. [PMID: 27581142 DOI: 10.1007/978-1-4939-4011-0_9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Autophagy is a catabolic process whereby cellular components are degraded to fuel cells for longer survival during stress. Hence, autophagy plays a vital role in determining cell fate and is central for homeostasis and pathogenesis of many human diseases including chronic myeloid leukemia (CML). It has been well established that autophagy is important for the leukemogenesis as well as drug resistance in CML. Thus, autophagy is an intriguing therapeutic target. However, current approaches that detect autophagy lack reliability and often fail to provide quantitative measurements. To overcome this hurdle and facilitate the development of autophagy-related therapies, we have recently developed an autophagy assay termed as the Cyto-ID fluorescence spectrophotometric assay. This method uses a cationic fluorescence dye, Cyto-ID, which specifically labels autophagic compartments and is detected by a spectrophotometer to permit a large-scale and quantitative analysis. As such, it allows rapid, reliable, and quantitative detection of autophagy and estimation of autophagy flux. In this chapter, we further provide technical details of this method and step-by-step protocols for measuring autophagy or autophagy flux in CML cell lines as well as primary hematopoietic cells.
Collapse
Affiliation(s)
- Sujuan Guo
- Virginia Tech Carilion Research Institute, Roanoke, VA, 24016, USA
| | - Kevin J Pridham
- Virginia Tech Carilion Research Institute, Roanoke, VA, 24016, USA.,Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Zhi Sheng
- Virginia Tech Carilion Research Institute, Roanoke, VA, 24016, USA. .,Department of Biological Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, 24061, USA. .,Department of Internal Medicine, Virginia Tech Carilion School of Medicine, Roanoke, VA, 24016, USA. .,Faculty of Health Science, Virginia Tech, Blacksburg, VA, 24061, USA.
| |
Collapse
|
47
|
Naka K, Jomen Y, Ishihara K, Kim J, Ishimoto T, Bae EJ, Mohney RP, Stirdivant SM, Oshima H, Oshima M, Kim DW, Nakauchi H, Takihara Y, Kato Y, Ooshima A, Kim SJ. Dipeptide species regulate p38MAPK-Smad3 signalling to maintain chronic myelogenous leukaemia stem cells. Nat Commun 2015; 6:8039. [PMID: 26289811 PMCID: PMC4560789 DOI: 10.1038/ncomms9039] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Accepted: 07/07/2015] [Indexed: 12/13/2022] Open
Abstract
Understanding the specific survival of the rare chronic myelogenous leukaemia (CML) stem cell population could provide a target for therapeutics aimed at eradicating these cells. However, little is known about how survival signalling is regulated in CML stem cells. In this study, we survey global metabolic differences between murine normal haematopoietic stem cells (HSCs) and CML stem cells using metabolomics techniques. Strikingly, we show that CML stem cells accumulate significantly higher levels of certain dipeptide species than normal HSCs. Once internalized, these dipeptide species activate amino-acid signalling via a pathway involving p38MAPK and the stemness transcription factor Smad3, which promotes CML stem cell maintenance. Importantly, pharmacological inhibition of dipeptide uptake inhibits CML stem cell activity in vivo. Our results demonstrate that dipeptide species support CML stem cell maintenance by activating p38MAPK–Smad3 signalling in vivo, and thus point towards a potential therapeutic target for CML treatment. Chronic myelogenous leukaemia contains a stem cell fraction and targeting this population of cells is an attractive therapeutic strategy. Here, the authors demonstrate that the stem cells take up dipeptides and that inhibiting the dipeptide transporter could reduce the number of these stem cells in mice.
Collapse
Affiliation(s)
- Kazuhito Naka
- Exploratory Project on Cancer Stem Cells, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan.,Department of Stem Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Yoshie Jomen
- Exploratory Project on Cancer Stem Cells, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Kaori Ishihara
- Exploratory Project on Cancer Stem Cells, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Junil Kim
- CHA Cancer Institute and Department of Biomedical Science, CHA University, CHA Bio Complex, 335 Pangyo-ro, Bundang-ku, Seongnam, Kyunggi-do 463-400, Republic of Korea
| | - Takahiro Ishimoto
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Eun-Jin Bae
- Exploratory Project on Cancer Stem Cells, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan.,CHA Cancer Institute and Department of Biomedical Science, CHA University, CHA Bio Complex, 335 Pangyo-ro, Bundang-ku, Seongnam, Kyunggi-do 463-400, Republic of Korea
| | - Robert P Mohney
- Metabolon, Inc., 617 Davis Drive Suite 400, Durham, North Carolina 27713, USA
| | - Steven M Stirdivant
- Metabolon, Inc., 617 Davis Drive Suite 400, Durham, North Carolina 27713, USA
| | - Hiroko Oshima
- Division of Genetics, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Masanobu Oshima
- Division of Genetics, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Dong-Wook Kim
- Department of Hematology, Seoul St Mary's Hospital, Cancer Research Institute, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 137-701, Republic of Korea
| | - Hiromitsu Nakauchi
- Division of Stem Cell Therapy, Center for Stem Cell Biology and Regeneration Medicine, Institute of Medical Science, The University of Tokyo, 4-6-1 Shiroganedai, Minato-ku, Tokyo 108-8639, Japan.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive, Stanford, California 94305, USA
| | - Yoshihiro Takihara
- Department of Stem Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Yukio Kato
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Akira Ooshima
- CHA Cancer Institute and Department of Biomedical Science, CHA University, CHA Bio Complex, 335 Pangyo-ro, Bundang-ku, Seongnam, Kyunggi-do 463-400, Republic of Korea
| | - Seong-Jin Kim
- CHA Cancer Institute and Department of Biomedical Science, CHA University, CHA Bio Complex, 335 Pangyo-ro, Bundang-ku, Seongnam, Kyunggi-do 463-400, Republic of Korea
| |
Collapse
|
48
|
Pandey R, Kapur R. Targeting phosphatidylinositol-3-kinase pathway for the treatment of Philadelphia-negative myeloproliferative neoplasms. Mol Cancer 2015; 14:118. [PMID: 26062813 PMCID: PMC4464249 DOI: 10.1186/s12943-015-0388-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 05/18/2015] [Indexed: 12/24/2022] Open
Abstract
Myeloproliferative neoplasms (MPN) are a diverse group of chronic hematological disorders that involve unregulated clonal proliferation of white blood cells. Sevearl of them are associated with mutations in receptor tyrosine kinases or cytokine receptor associated tyrosine kinases rendering them independent of cytokine-mediated regulation. Classically they have been broadly divided into BCR-ABL1 fusion + ve (Ph + ve) or -ve (Ph-ve) MPNs. Identification of BCR-ABL1 tyrosine kinase as a driver of chronic myeloid leukemia (CML) and successful application of small molecule inhibitors of the tyrosine kinases in the clinic have triggered the search for kinase dependent pathways in other Ph-ve MPNs. In the past few years, identification of mutations in JAK2 associated with a majority of MPNs raised the hopes for similar success with specific targeting of JAK2. However, targeting JAK2 kinase activity has met with limited success. Subsequently, mutations in genes other than JAK2 have been identified. These mutations specifically associate with certain MPNs and can drive cytokine independent growth. Therefore, targeting alternate molecules and pathways may be more successful in management of MPNs. Among other pathways, phosphatidylinositol -3 kinase (PI3K) has emerged as a promising target as different cell surface receptor induced signaling pathways converge on the PI3K signaling axis to regulate cell metabolism, growth, proliferation, and survival. Herein, we will review the clinically relevant inhibitors of the PI3K pathway that have been evaluated or hold promise for the treatment of Ph-ve MPNs.
Collapse
Affiliation(s)
- Ruchi Pandey
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA. .,Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| | - Reuben Kapur
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA. .,Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA. .,Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA. .,Department of Molecular Biology and Biochemistry, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
49
|
Capala ME, Maat H, Bonardi F, van den Boom V, Kuipers J, Vellenga E, Giepmans BNG, Schuringa JJ. Mitochondrial Dysfunction in Human Leukemic Stem/Progenitor Cells upon Loss of RAC2. PLoS One 2015; 10:e0128585. [PMID: 26016997 PMCID: PMC4446344 DOI: 10.1371/journal.pone.0128585] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 04/28/2015] [Indexed: 11/18/2022] Open
Abstract
Leukemic stem cells (LSCs) reside within bone marrow niches that maintain their relatively quiescent state and convey resistance to conventional treatment. Many of the microenvironmental signals converge on RAC GTPases. Although it has become clear that RAC proteins fulfill important roles in the hematopoietic compartment, little has been revealed about the downstream effectors and molecular mechanisms. We observed that in BCR-ABL-transduced human hematopoietic stem/progenitor cells (HSPCs) depletion of RAC2 but not RAC1 induced a marked and immediate decrease in proliferation, progenitor frequency, cobblestone formation and replating capacity, indicative for reduced self-renewal. Cell cycle analyses showed reduced cell cycle activity in RAC2-depleted BCR-ABL leukemic cobblestones coinciding with an increased apoptosis. Moreover, a decrease in mitochondrial membrane potential was observed upon RAC2 downregulation, paralleled by severe mitochondrial ultrastructural malformations as determined by automated electron microscopy. Proteome analysis revealed that RAC2 specifically interacted with a set of mitochondrial proteins including mitochondrial transport proteins SAM50 and Metaxin 1, and interactions were confirmed in independent co-immunoprecipitation studies. Downregulation of SAM50 also impaired the proliferation and replating capacity of BCR-ABL-expressing cells, again associated with a decreased mitochondrial membrane potential. Taken together, these data suggest an important role for RAC2 in maintaining mitochondrial integrity.
Collapse
Affiliation(s)
- Marta E. Capala
- Department of Experimental Hematology, Cancer Research Center Groningen, Groningen, the Netherlands
| | - Henny Maat
- Department of Experimental Hematology, Cancer Research Center Groningen, Groningen, the Netherlands
| | - Francesco Bonardi
- Department of Experimental Hematology, Cancer Research Center Groningen, Groningen, the Netherlands
| | - Vincent van den Boom
- Department of Experimental Hematology, Cancer Research Center Groningen, Groningen, the Netherlands
| | - Jeroen Kuipers
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Edo Vellenga
- Department of Experimental Hematology, Cancer Research Center Groningen, Groningen, the Netherlands
| | - Ben N. G. Giepmans
- Department of Experimental Hematology, Cancer Research Center Groningen, Groningen, the Netherlands
| | - Jan Jacob Schuringa
- Department of Experimental Hematology, Cancer Research Center Groningen, Groningen, the Netherlands
| |
Collapse
|
50
|
Abstract
Both acute myeloid leukemia and chronic myeloid leukemia are thought to arise from a subpopulation of primitive cells, termed leukemic stem cells that share properties with somatic stem cells. Leukemic stem cells are capable of continued self-renewal, and are resistant to conventional chemotherapy and are considered to be responsible for disease relapse. In recent years, improved understanding of the underlying mechanisms of myeloid leukemia biology has led to the development of novel and targeted therapies. This review focuses on clinically relevant patent applications and their relevance within the known literature in two areas of prevailing therapeutic interest, namely monoclonal antibody therapy and small molecule inhibitors in disease-relevant signaling pathways.
Collapse
|