1
|
Gilyazova I, Gimalova G, Nizamova A, Galimova E, Ishbulatova E, Pavlov V, Khusnutdinova E. Non-Coding RNAs as Key Regulators in Lung Cancer. Int J Mol Sci 2023; 25:560. [PMID: 38203731 PMCID: PMC10778604 DOI: 10.3390/ijms25010560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/21/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
For several decades, most lung cancer investigations have focused on the search for mutations in candidate genes; however, in the last decade, due to the fact that most of the human genome is occupied by sequences that do not code for proteins, much attention has been paid to non-coding RNAs (ncRNAs) that perform regulatory functions. In this review, we principally focused on recent studies of the function, regulatory mechanisms, and therapeutic potential of ncRNAs including microRNA (miRNA), long ncRNA (lncRNA), and circular RNA (circRNA) in different types of lung cancer.
Collapse
Affiliation(s)
- Irina Gilyazova
- Institute of Biochemistry and Genetics, Ufa Federal Research Center of Russian Academy of Sciences, 450054 Ufa, Russia
- Institute of Urology and Clinical Oncology, Department of Medical Genetics and Fundamental Medicine, Bashkir State Medical University, 450008 Ufa, Russia
| | - Galiya Gimalova
- Institute of Biochemistry and Genetics, Ufa Federal Research Center of Russian Academy of Sciences, 450054 Ufa, Russia
- Institute of Urology and Clinical Oncology, Department of Medical Genetics and Fundamental Medicine, Bashkir State Medical University, 450008 Ufa, Russia
| | - Aigul Nizamova
- Institute of Biochemistry and Genetics, Ufa Federal Research Center of Russian Academy of Sciences, 450054 Ufa, Russia
| | - Elmira Galimova
- Department of Pathological Physiology, Bashkir State Medical University, 450008 Ufa, Russia
| | - Ekaterina Ishbulatova
- Institute of Urology and Clinical Oncology, Department of Medical Genetics and Fundamental Medicine, Bashkir State Medical University, 450008 Ufa, Russia
| | - Valentin Pavlov
- Institute of Urology and Clinical Oncology, Department of Urology, Bashkir State Medical University, 450008 Ufa, Russia
| | - Elza Khusnutdinova
- Institute of Biochemistry and Genetics, Ufa Federal Research Center of Russian Academy of Sciences, 450054 Ufa, Russia
- Institute of Urology and Clinical Oncology, Department of Medical Genetics and Fundamental Medicine, Bashkir State Medical University, 450008 Ufa, Russia
| |
Collapse
|
2
|
Liu R, Jiang C, Zhao Z, Lv Y, Wang G. Rosavin exerts an antitumor role and inactivates the MAPK/ERK pathway in small-cell lung carcinoma in vitro. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2023; 73:269-280. [PMID: 37307376 DOI: 10.2478/acph-2023-0015] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/03/2022] [Indexed: 06/14/2023]
Abstract
This study attempts to explore the function and mechanism of action of rosavin in small-cell lung cancer (SCLC) in vitro. The viability and clone formation of SCLC cells were assessed using cell counting kit-8 and colony formation assays, respectively. Apoptosis and cell cycle were detected using flow cytometry and cell cycle analysis, respectively. Wound healing and transwell assays were performed to evaluate the migration and invasion of SCLC cells. Besides, protein levels of p-ERK, ERK, p-MEK and MEK were determined using Western blot analysis. Rosavin repressed the viability and clone formation of SCLC cells, and promoted apoptosis and G0/G1 arrest of SCLC cells. At the same time, rosavin suppressed migration and invasion of SCLC cells. Moreover, protein levels of p-ERK/ERK and p-MEK/MEK were decreased after rosavin addition in SCLC cells. Rosavin impaired malignant behaviors of SCLC cells, which may be associated with inhibition of the MAPK/ERK pathway in vitro.
Collapse
Affiliation(s)
- Rui Liu
- 1Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences (South Campus) Beijing 102618, China
| | - Cuihong Jiang
- 1Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences (South Campus) Beijing 102618, China
| | - Zhizheng Zhao
- 1Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences (South Campus) Beijing 102618, China
| | - Yutong Lv
- 1Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences (South Campus) Beijing 102618, China
| | - Gaoxing Wang
- 1Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences (South Campus) Beijing 102618, China
| |
Collapse
|
3
|
Non-coding genome in small cell lung cancer between theoretical view and clinical applications. Semin Cancer Biol 2022; 86:237-250. [PMID: 35367369 DOI: 10.1016/j.semcancer.2022.03.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/22/2022] [Accepted: 03/26/2022] [Indexed: 01/27/2023]
Abstract
Small cell lung cancer (SCLC) is a highly aggressive cancer of the neuroendocrine system, characterized by poor differentiation, rapid growth, and poor overall survival (OS) of patients. Despite the recent advances in the treatment of SCLC recently, the 2-year survival rate of patients with the cancer is only 14-15%, occasioned by the acquired resistance to drugs and serious off-target effects. In humans, the coding region is only 2% of the total genome, and 20% of that is associated with human diseases. Beyond the coding genome are RNAs, promoters, enhancers, and other intricate elements. The non-coding regulatory regions, mainly the non-coding RNAs (ncRNAs), regulate numerous biological activities including cell proliferation, metastasis, and drug resistance. As such, they are potential diagnostic or prognostic biomarkers, and also potential therapeutic targets for SCLC. Therefore, understanding how non-coding elements regulate SCLC development and progression holds significant clinical implications. Herein, we summarized the recent discoveries on the relationship between the non-coding elements including long non-coding RNAs (lncRNA), microRNAs (miRNAs), circular RNA (circRNA), enhancers as well as promotors, and the pathogenesis of SCLC and their potential clinical applications.
Collapse
|
4
|
Wang Z, Kan G, Sheng C, Yao C, Mao Y, Chen S. ARHGEF19 regulates MAPK/ERK signaling and promotes the progression of small cell lung cancer. Biochem Biophys Res Commun 2020; 533:792-799. [PMID: 32993957 DOI: 10.1016/j.bbrc.2020.09.085] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 12/17/2022]
Abstract
Small cell lung cancer (SCLC) is an aggressive lung tumor subtype with poor survival. To identify genes that differentially expressed in SCLC with tumor promotion activity as candidate therapeutic targets, we analyzed the expression of 50 RhoGEFs family genes in published microarray data of SCLC and normal tissues (Gene Expression Omnibus (GEO) dataset GSE43346). We identified ARHGEF19, a member of RhoGEFs family, as an overexpressed oncogene in SCLC. ARHGEF19 is up-regulated in SCLC tissues and ranks first in RhoGEFs family genes. Enforced ARHGEF19 expression promotes SCLC cell proliferation in vitro and its knockdown decreases cell proliferation in vitro and in vivo. ARHGEF19-DH and -PD domain interacts with HRAS and activates the MAPK/ERK pathway in SCLC cells and SCLC xenografts. Our study presents evidences that ARHGEF19 overexpression promotes SCLC cell growth and activates the MAPK/ERK pathway. These findings would shed light on the development of new therapeutics for SCLC management.
Collapse
Affiliation(s)
- Ziyang Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, PR China
| | - Guangyan Kan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, PR China
| | - Chunjie Sheng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, PR China
| | - Chen Yao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, PR China
| | - Yizhi Mao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, PR China
| | - Shuai Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, PR China.
| |
Collapse
|
5
|
Vališ K, Novák P. Targeting ERK-Hippo Interplay in Cancer Therapy. Int J Mol Sci 2020; 21:ijms21093236. [PMID: 32375238 PMCID: PMC7247570 DOI: 10.3390/ijms21093236] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/26/2020] [Accepted: 04/27/2020] [Indexed: 02/06/2023] Open
Abstract
Extracellular signal-regulated kinase (ERK) is a part of the mitogen-activated protein kinase (MAPK) signaling pathway which allows the transduction of various cellular signals to final effectors and regulation of elementary cellular processes. Deregulation of the MAPK signaling occurs under many pathological conditions including neurodegenerative disorders, metabolic syndromes and cancers. Targeted inhibition of individual kinases of the MAPK signaling pathway using synthetic compounds represents a promising way to effective anti-cancer therapy. Cross-talk of the MAPK signaling pathway with other proteins and signaling pathways have a crucial impact on clinical outcomes of targeted therapies and plays important role during development of drug resistance in cancers. We discuss cross-talk of the MAPK/ERK signaling pathway with other signaling pathways, in particular interplay with the Hippo/MST pathway. We demonstrate the mechanism of cell death induction shared between MAPK/ERK and Hippo/MST signaling pathways and discuss the potential of combination targeting of these pathways in the development of more effective anti-cancer therapies.
Collapse
Affiliation(s)
- Karel Vališ
- Correspondence: (K.V.); (P.N.); Tel.: +420-325873610 (P.N.)
| | - Petr Novák
- Correspondence: (K.V.); (P.N.); Tel.: +420-325873610 (P.N.)
| |
Collapse
|
6
|
Song T, Wang P, Yu X, Wang A, Chai G, Fan Y, Zhang Z. Systems analysis of phosphorylation-regulated Bcl-2 interactions establishes a model to reconcile the controversy over the significance of Bcl-2 phosphorylation. Br J Pharmacol 2019; 176:491-504. [PMID: 30500985 PMCID: PMC6329625 DOI: 10.1111/bph.14555] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 10/23/2018] [Accepted: 10/25/2018] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE The biological significance of the multi-site phosphorylation of Bcl-2 at its loop region (T69, S70 and S87) has remained controversial for decades. This is a major obstacle for understanding apoptosis and anti-tumour drug development. EXPERIMENTAL APPROACH We established a mathematical model into which a phosphorylation and de-phosphorylation process of Bcl-2 was integrated. Paclitaxel-treated breast cancer cells were used as experimental models. Changes in the kinetics of binding with its critical partners, induced by phosphorylation of Bcl-2 were experimentally obtained by surface plasmon resonance, using a phosphorylation-mimicking mutant EEE-Bcl-2 (T69E, S70E and S87E). KEY RESULTS Mathematical simulations combined with experimental validation showed that phosphorylation regulates Bcl-2 with different dynamics depending on the extent of Bcl-2 phosphorylation and the phosphorylated Bcl-2-induced changes in binding kinetics. In response to Bcl-2 homology 3 (BH3)-only protein Bmf stress, Bcl-2 phosphorylation switched from diminishing to enhancing the Bcl-2 anti-apoptotic ability with increased phosphorylation of Bcl-2, and the turning point was 50% Bcl-2 phosphorylation induced by 0.2 μM paclitaxel treatment. In contrast, Bcl-2 phosphorylation enhanced the anti-apoptotic ability of Bcl-2 towards other BH3-only proteins Bim, Bad and Puma, throughout the entire phosphorylation procedure. CONCLUSIONS AND IMPLICATIONS The model could accurately predict the effects of anti-tumour drugs that involve the Bcl-2 family pathway, as shown with ABT-199 or etoposide.
Collapse
Affiliation(s)
- Ting Song
- State Key Laboratory of Fine Chemicals, School of ChemistryDalian University of TechnologyDalianChina
| | - Peiran Wang
- State Key Laboratory of Fine Chemicals, School of ChemistryDalian University of TechnologyDalianChina
| | - Xiaoyan Yu
- School of Life Science and TechnologyDalian University of TechnologyDalianChina
| | - Anhui Wang
- School of Innovation ExperimentDalian University of TechnologyDalianChina
| | - Gaobo Chai
- School of Life Science and TechnologyDalian University of TechnologyDalianChina
| | - Yudan Fan
- School of Life Science and TechnologyDalian University of TechnologyDalianChina
| | - Zhichao Zhang
- State Key Laboratory of Fine Chemicals, School of ChemistryDalian University of TechnologyDalianChina
| |
Collapse
|
7
|
Poly-L-Arginine Induces Apoptosis of NCI-H292 Cells via ERK1/2 Signaling Pathway. J Immunol Res 2018; 2018:3651743. [PMID: 30013990 PMCID: PMC6022307 DOI: 10.1155/2018/3651743] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 04/22/2018] [Accepted: 05/06/2018] [Indexed: 12/31/2022] Open
Abstract
Cationic protein is a cytotoxic protein secreted by eosinophils and takes part in the damage of airway epithelium in asthma. Poly-L-arginine (PLA), a synthetic cationic protein, is widely used to mimic the biological function of the natural cationic protein in vitro. Previous studies demonstrated the damage of the airway epithelial cells by cationic protein, but the molecular mechanism is unclear. The purpose of this study aimed at exploring whether PLA could induce apoptosis of human airway epithelial cells (NCI-H292) and the underlying mechanism. Methods. The morphology of apoptotic cells was observed by transmission electron microscopy. The rate of apoptosis was analyzed by flow cytometry (FCM). The expressions of the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2), Bcl-2/Bax, and cleaved caspase-3 were assessed by western blot. Results. PLA can induce apoptosis in NCI-H292 cells in a concentration-dependent manner. Moreover, the phosphorylation of the ERK1/2 and the unbalance of Bcl2/Bax, as well as the activation of caspase-3, were involved in the PLA-induced apoptosis. Conclusions. PLA can induce the apoptosis in NCI-H292 cells, and this process at least involved the ERK1/2 and mitochondrial pathway. The results could have some indications in revealing the apoptotic damage of the airway epithelial cells. Besides, inhibition of cationic protein-induced apoptotic death in airway epithelial cells could be considered as a potential target of anti-injury or antiremodeling in asthmatics.
Collapse
|
8
|
Drug-resistance in doxorubicin-resistant FL5.12 hematopoietic cells: elevated MDR1, drug efflux and side-population positive and decreased BCL2-family member expression. Oncotarget 2017; 8:113013-113033. [PMID: 29348885 PMCID: PMC5762570 DOI: 10.18632/oncotarget.22956] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 11/20/2017] [Indexed: 12/20/2022] Open
Abstract
Chemotherapeutic drug treatment can result in the emergence of drug-resistant cells. By culturing an interleukin-3 (IL-3)-dependent cell line, FL5.12 cells in the presence of the chemotherapeutic drug doxorubicin, we isolated FL/Doxo cells which are multi-drug resistant. Increased levels of drug efflux were detected in FL/Doxo cells which could be inhibited by the MDR1 inhibitor verapamil but not by the MRP1 inhibitor MK571. The effects of TP53 and MEK1 were examined by infection of FL/Doxo cells with retroviruses encoding either a dominant negative TP-53 gene (FL/Doxo+ TP53 (DN) or a constitutively-activated MEK-1 gene (FL/Doxo + MEK1 (CA). Elevated MDR1 but not MRP1 mRNA transcripts were detected by quantitative RT-PCR in the drug-resistant cells while transcripts encoding anti-apoptotic genes such as: BCL2, BCLXL and MCL1 were observed at higher levels in the drug-sensitive FL5.12 cells. The percentage of cells that were side-population positive was increased in the drug-resistant cells compared to the parental line. Drug-resistance and side-positive population cells have been associated with cancer stem cells (CSC). Our studies suggest mechanisms which could allow the targeting of these molecules to prevent drug-resistance.
Collapse
|
9
|
Yang H, Lee MH, Park I, Jeon H, Choi J, Seo S, Kim SW, Koh GY, Park KS, Lee DH. HSP90 inhibitor (NVP-AUY922) enhances the anti-cancer effect of BCL-2 inhibitor (ABT-737) in small cell lung cancer expressing BCL-2. Cancer Lett 2017; 411:19-26. [PMID: 28987383 DOI: 10.1016/j.canlet.2017.09.040] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 09/20/2017] [Accepted: 09/24/2017] [Indexed: 12/13/2022]
Abstract
Small cell lung cancer (SCLC) cannot be efficiently controlled using existing chemotherapy and radiotherapy approaches, indicating the need for new therapeutic strategies. Although ABT-737, a B-cell lymphoma-2 (BCL-2) inhibitor, exerts anticancer effects against BCL-2-expressing SCLC, monotherapy with ABT-737 is associated with limited clinical activity because of the development of resistance and toxicity. Here, we examined whether combination therapy with ABT-737 and heat shock protein 90 (HSP90) inhibitor NVP-AUY922 exerted synergistic anticancer effects on SCLC. We found that the combination of ABT-737 and NVP-AUY922 synergistically induced the apoptosis of BCL-2-expressing SCLC cells. NVP-AUY922 downregulated the expression of AKT and ERK, which activate MCL-1 to induce resistance against ABT-737. The synergistic effect was also partly due to blocking NF-κB activation, which induces anti-apoptosis protein expressions. However, interestingly, targeting BCL-2 and MCL-1 or BCL2 and NF-κB did not induce the cytotoxicity. In conclusion, our study showed that combination of BCL2 inhibitor with HSP90 inhibitor increased activity in in vitro and in vivo study in only BCL-2 expressing SCLC compared to either single BCL2 inhibitor or HSP inhibitor. The enhanced activity might be led by blocking several apoptotic pathways simultaneously rather than a specific pathway.
Collapse
Affiliation(s)
- Hannah Yang
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Mi-Hee Lee
- Department of Oncology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Intae Park
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Hanwool Jeon
- Department of Oncology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Junyoung Choi
- Department of Oncology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Seyoung Seo
- Department of Oncology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Sang-We Kim
- Department of Oncology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Gou Young Koh
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea; Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Kang-Seo Park
- Department of Oncology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, Republic of Korea; Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.
| | - Dae Ho Lee
- Department of Oncology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, Republic of Korea.
| |
Collapse
|
10
|
Xie B, Xie X, Rao B, Liu S, Liu H. Molecular Mechanisms Underlying the Inhibitory Effects of Qingzaojiufei Decoction on Tumor Growth in Lewis Lung Carcinoma. Integr Cancer Ther 2017; 17:467-476. [PMID: 28617188 PMCID: PMC6041919 DOI: 10.1177/1534735417694953] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Objective: Qingzaojiufei decoction (QD) is an empirical herbal
formula from traditional Chinese medicine that is used for the treatment of
lung-related diseases. However, the effect of QD on the growth of lung tumor
cells has not been investigated. The aim of this study was to examine the
antitumor activity of QD in Lewis lung carcinomas (LLC) in vivo and in vitro,
and to elucidate the underlying mechanisms. Methods: The LLC cells
were used to assess the antitumor activity of QD by Cell Counting Kit-8 assay in
vitro. In vivo, mice were randomly assigned to 5 groups (n = 10/group): the
model control (MC) group was intragastrically administered physiological saline
(0.9% NaCl) twice daily from day 2 after tumor implantation for 2 weeks. The QD
groups were intragastrically administered QD twice daily from 2 weeks before to
2 weeks after tumor implantation for 4 weeks. The mRNA levels were detected by
quantitative polymerase chain reaction, the proteins expression was determined
by immunohistochemistry or western blotting. Results: Compared with
the model group, QD showed inhibition of proliferation of LLC cells and
reductions in tumor weight and proliferating cell nuclear antigen protein
expression. Furthermore, QD up-regulated p53 mRNA expression, and downregulated
c-myc and Bcl-2 mRNA expression, while MMP-9, VEGF, and VEGFR protein expression
was suppressed. Phosphorylated ERK1/2 levels were also reduced by QD in a
dose-dependent manner. Conclusion: Our findings suggest that QD
inhibited lung tumor growth and proliferation, by activation of tumor suppressor
genes, inactivation of oncogenes, suppressing the potential for invasion and
metastasis, and attenuating angiogenesis. The ERK/VEGF/MMPs signaling pathways
may play an important role in QD-induced inhibition of malignant tumor cell
proliferation.
Collapse
Affiliation(s)
- Bin Xie
- 1 Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Xiong Xie
- 1 Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Bin Rao
- 1 Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Shengzhang Liu
- 1 Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Hongning Liu
- 1 Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| |
Collapse
|
11
|
Wang J, Xin T. [Effect and Significance of BIM on Non-small Cell Lung Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2016; 19:789-792. [PMID: 27866524 PMCID: PMC5999635 DOI: 10.3779/j.issn.1009-3419.2016.11.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
B细胞淋巴瘤-2促细胞凋亡(B-cell lymphoma 2 interacting mediator of cell death, BIM)基因作为抑癌基因,在调控细胞凋亡中起重要作用。在非小细胞肺癌(non-small cell lung cancer, NSCLC)中,BIM表达水平的下调或功能缺陷会降低酪氨酸激酶抑制剂(tyrosine kinase inhibitors, TKIs)及化疗药物的疗效并影响术后患者的预后。本文将对BIM的结构、功能以及BIM在NSCLC治疗中的作用及意义进行介绍。
Collapse
Affiliation(s)
- Jingfang Wang
- Department of Medical Oncology, the 2nd Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Tao Xin
- Department of Medical Oncology, the 2nd Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| |
Collapse
|
12
|
Song T, Wang Z, Zhang Z. Substituted indole Mcl-1 inhibitors: a patent evaluation (WO2015148854A1). Expert Opin Ther Pat 2016; 26:1227-1238. [DOI: 10.1080/13543776.2016.1240786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Ting Song
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian, China
| | - Ziqian Wang
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian, China
| | - Zhichao Zhang
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian, China
| |
Collapse
|
13
|
Sun H, Luo G, Chen D, Xiang Z. A Comprehensive and System Review for the Pharmacological Mechanism of Action of Rhein, an Active Anthraquinone Ingredient. Front Pharmacol 2016; 7:247. [PMID: 27582705 PMCID: PMC4987408 DOI: 10.3389/fphar.2016.00247] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 07/27/2016] [Indexed: 11/30/2022] Open
Abstract
Rhein is a major medicinal ingredient isolated from several traditional Chinese medicines, including Rheum palmatum L., Aloe barbadensis Miller, Cassia angustifolia Vahl., and Polygonum multiflorum Thunb. Rhein has various pharmacological activities, such as anti-inflammatory, antitumor, antioxidant, antifibrosis, hepatoprotective, and nephroprotective activities. Although more than 100 articles in PubMed are involved in the pharmacological mechanism of action of rhein, only a few focus on the relationship of crosstalk among multiple pharmacological mechanisms. The mechanism of rhein involves multiple pathways which contain close interactions. From the overall perspective, the pathways which are related to the targets of rhein, are initiated by the membrane receptor. Then, MAPK and PI3K-AKT parallel signaling pathways are activated, and several downstream pathways are affected, thereby eventually regulating cell cycle and apoptosis. The therapeutic effect of rhein, as a multitarget molecule, is the synergistic and comprehensive result of the involvement of multiple pathways rather than the blocking or activation of a single signaling pathway. We review the pharmacological mechanisms of action of rhein by consulting literature published in the last 100 years in PubMed. We then summarize these pharmacological mechanisms from a comprehensive, interactive, and crosstalk perspective. In general, the molecular mechanism of action of drug must be understood from a systematic and holistic perspective, which can provide a theoretical basis for precise treatment and rational drug use.
Collapse
Affiliation(s)
- Hao Sun
- School of Pharmaceutical Sciences, Wenzhou Medical University Wenzhou, China
| | - Guangwen Luo
- School of Pharmaceutical Sciences, Wenzhou Medical University Wenzhou, China
| | - Dahui Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University Wenzhou, China
| | - Zheng Xiang
- School of Pharmaceutical Sciences, Wenzhou Medical University Wenzhou, China
| |
Collapse
|
14
|
Cristea S, Sage J. Is the Canonical RAF/MEK/ERK Signaling Pathway a Therapeutic Target in SCLC? J Thorac Oncol 2016; 11:1233-1241. [PMID: 27133774 DOI: 10.1016/j.jtho.2016.04.018] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 04/11/2016] [Accepted: 04/19/2016] [Indexed: 12/23/2022]
Abstract
The activity of the RAF/MEK/ERK signaling pathway is critical for the proliferation of normal and cancerous cells. Oncogenic mutations driving the development of lung adenocarcinoma often activate this signaling pathway. In contrast, pathway activity levels and their biological roles are not well established in small cell lung cancer (SCLC), a fast-growing neuroendocrine lung cancer subtype. Here we discuss the function of the RAF/MEK/ERK kinase pathway and the mechanisms leading to its activation in SCLC cells. In particular, we argue that activation of this pathway may be beneficial to the survival, proliferation, and spread of SCLC cells in response to multiple stimuli. We also consider evidence that high levels of RAF/MEK/ERK pathway activity may be detrimental to SCLC tumors, including in part by interfering with their neuroendocrine fate. On the basis of these observations, we examined when small molecules targeting kinases in the RAF/MEK/ERK pathway may be useful therapeutically in patients with SCLC, including in combination with other therapeutic agents.
Collapse
Affiliation(s)
- Sandra Cristea
- Department of Pediatrics, Stanford University, Stanford, California; Department of Genetics, Stanford University, Stanford, California
| | - Julien Sage
- Department of Pediatrics, Stanford University, Stanford, California; Department of Genetics, Stanford University, Stanford, California.
| |
Collapse
|
15
|
Zhong Z, Hu JQ, Wu XD, Sun Y, Jiang J. Anti-apoptotic effects of myocardin-related transcription factor-A on rat cardiomyocytes following hypoxia-induced injury. Can J Physiol Pharmacol 2016; 94:379-87. [PMID: 26854861 DOI: 10.1139/cjpp-2014-0461] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Myocardin-related transcription factor-A (MRTF-A) can transduce both biomechanical and humoral signals, which can positively modulate cardiac damage induced by acute myocardial infarction. However, the molecular mechanism that underlies the contribution that MRTF-A provides to the myocardium is not completely understood. The objective of this study was to investigate the effects of MRTF-A on myocardium apoptosis and its mechanisms. Our experiment results showed that MRTF-A expression increased and Bcl-2 expression reduced during myocardial ischemia–reperfusion in rat. Meanwhile, primary cardiomyocytes were pretreated with wild-type MRTF-A or siRNA of MRTF-A before exposure to hypoxia. We found that overexpression of MRTF-A in myocardial cells inhibited apoptosis and the release of cytochrome c. MRTF-A enhanced Bcl-2, which contributes to MRTF-A interaction with Bcl-2 in the nuclei of cardiomyocytes. MRTF-A upregulation expression of Bcl-2 in cardiomyocytes induced by hypoxia was inhibited by PD98059, an ERK1/2 inhibitor. In conclusions, MRTF-A improved myocardial cell survival in a cardiomyocyte model of hypoxia-induced injury; this effect was correlated with the upregulation of anti-apoptotic gene Bcl-2 through the activation of ERK1/2.
Collapse
Affiliation(s)
- Ze Zhong
- The Second Affiliated Hospital (Jiande Branch), Zhejiang University School of Medicine, JianDe 311600, China
| | - Jia-qing Hu
- The Second Affiliated Hospital (Jiande Branch), Zhejiang University School of Medicine, JianDe 311600, China
| | - Xin-dong Wu
- The Second Affiliated Hospital (Jiande Branch), Zhejiang University School of Medicine, JianDe 311600, China
| | - Yong Sun
- Department of Cardiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Jun Jiang
- Department of Cardiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| |
Collapse
|
16
|
Song T, Yu X, Liu Y, Li X, Chai G, Zhang Z. Discovery of a Small-Molecule pBcl-2 Inhibitor that Overcomes pBcl-2-Mediated Resistance to Apoptosis. Chembiochem 2015; 16:757-65. [DOI: 10.1002/cbic.201402639] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Indexed: 12/16/2022]
|
17
|
Liu Y, Xie M, Song T, Sheng H, Yu X, Zhang Z. A novel BH3 mimetic efficiently induces apoptosis in melanoma cells through direct binding to anti-apoptotic Bcl-2 family proteins, including phosphorylated Mcl-1. Pigment Cell Melanoma Res 2014; 28:161-70. [DOI: 10.1111/pcmr.12325] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Accepted: 10/08/2014] [Indexed: 12/18/2022]
Affiliation(s)
- Yubo Liu
- State Key Laboratory of Fine Chemicals; School of Chemistry; Dalian University of Technology; Dalian China
| | - Mingzhou Xie
- School of Life Science and Technology; Dalian University of Technology; Dalian China
| | - Ting Song
- State Key Laboratory of Fine Chemicals; School of Chemistry; Dalian University of Technology; Dalian China
| | - Hongkun Sheng
- State Key Laboratory of Fine Chemicals; School of Chemistry; Dalian University of Technology; Dalian China
| | - Xiaoyan Yu
- School of Life Science and Technology; Dalian University of Technology; Dalian China
| | - Zhichao Zhang
- State Key Laboratory of Fine Chemicals; School of Chemistry; Dalian University of Technology; Dalian China
| |
Collapse
|
18
|
Jiao Q, Zou L, Liu P, Xu Q, Zhang Y, Yu Y, Zou L, Chi T, Ji X. Xanthoceraside induces apoptosis in melanoma cells through the activation of caspases and the suppression of the IGF-1R/Raf/MEK/ERK signaling pathway. J Med Food 2014; 17:1070-8. [PMID: 25116791 DOI: 10.1089/jmf.2013.3035] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Xanthoceraside, a saponin extracted from the husks of Xanthoceras sorbifolia Bunge, suppresses inflammation and oxidative stress. However, the antitumor properties of xanthoceraside as well as its mechanism of action remain unclear. Therefore, we proposed to investigate its potential anticancer property. In this study, the viability of cells was measured by the MTT assay. Cell cycle and mitochondrial membrane potential were measured by flow cytometry, and the expressions of procaspase-9, procaspase-3, Cyto.c, Apaf-1, Bcl-2, Bcl-xL, Bad, p53, and IGF-1R/Raf/MEK/ERK were tested by Western blotting. Xanthoceraside significantly inhibited the proliferation of human melanoma A375.S2 cells in a concentration- and time-dependent manner but did not impair the viability of normal cells (peripheral blood mononuclear cells). Further analysis revealed that xanthoceraside induced apoptosis by activating caspase-3 and caspase-9 in a time-dependent manner through the mitochondrial pathway but did not activate caspase-8 in the cells. In addition, xanthoceraside inhibited the expression of the insulin-like growth factor-1 receptor (IGF-1R), which is an important prosurvival, antiapoptotic signaling growth factor receptor that is frequently overexpressed in cancer cells and used as a therapeutic target for multiple cancers. Interestingly, xanthoceraside also decreased the expression of Raf, p-MEK, and p-ERK, the downstream effectors of IGF-1R. Taken together, these findings indicate that xanthoceraside induces apoptosis through a mitochondria-mediated apoptotic pathway, which is induced by the downregulation of IGF-1R/Raf/MEK/ERK cascades in A375.S2 cells.
Collapse
Affiliation(s)
- Qing Jiao
- Department of Pharmacology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University , Shenyang, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Due to their central role in the regulation of apoptosis, the antiapoptotic BCL2-proteins are highly promising targets for the development of novel anticancer treatments. To this end, several strategies have been developed to inhibit BCL2, BCL-XL, BCL-w, and MCL1. While early clinical trials in haematological malignancies demonstrated exciting single-agent activity of BCL2-inhibitors, the response in solid tumours was limited, indicating that, in solid tumours, different strategies have to be developed in order to successfully treat patients with BCL2-inhibitors. In this review, the function of the different antiapoptotic BCL2-proteins and their role in solid tumours will be discussed. In addition, a comprehensive analysis of current small molecules targeting these antiapoptotic BCL2-proteins (e.g., ABT-737, ABT-263, ABT-199, TW-37, sabutoclax, obatoclax, and MIM1) will be provided including a discussion of the results of any clinical trials. This analysis will summarise the potential of BCL2-inhibitors for the treatment of solid tumours and will unravel novel approaches to utilise these inhibitors in clinical applications.
Collapse
|