1
|
Li C, Wang Y, Zhang W, Yang X, Wang Y, Hou G, Wang D, Han B, Zhang Y. The antitumor mechanisms of glabridin and drug delivery strategies for enhancing its bioavailability. Front Oncol 2024; 14:1506588. [PMID: 39723390 PMCID: PMC11668808 DOI: 10.3389/fonc.2024.1506588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 11/22/2024] [Indexed: 12/28/2024] Open
Abstract
Glabridin, a flavonoid derived from the plant Glycyrrhiza glabra, has garnered significant attention due to its diverse pharmacological effects, including antioxidant, antibacterial, anti-inflammatory, hypolipidemic, and hypoglycemic activities. Studies have shown that glabridin exhibits substantial antitumor activity by modulating the proliferation, apoptosis, metastasis, and invasion of cancer cells through the targeting of various signaling pathways, thus indicating its potential as a therapeutic agent for malignant tumors. To enhance its solubility, stability, and bioavailability, several drug delivery systems have been developed, including liposomes, cyclodextrin inclusion complexes, nanoparticles, and polymeric micelles. These de.livery systems have shown promise in preclinical studies but face challenges in clinical translation, such as issues with biocompatibility, delivery efficiency, and long-term stability. A comprehensive analysis of the antitumor mechanism of glabridin and its novel drug delivery system is still lacking. Therefore, the authors performed a comprehensive review of recent literature on the antitumor effects of glabridin and its novel drug delivery systems, covering the antitumor mechanism, action targets, and novel drug delivery systems, offering new theoretical insights and development directions for its further advancement and clinical application.
Collapse
Affiliation(s)
- Chong Li
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yu Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Wenjing Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Xiaoman Yang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yufang Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Guanqun Hou
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Dongli Wang
- Department of Spleen and Stomach, Hospital Affiliated to Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Bingbing Han
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yimin Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
2
|
van Dinteren S, Araya-Cloutier C, Bastiaan-Net S, Boudewijn A, van Heek T, Vincken JP, Witkamp R, Meijerink J. Biotransformation and Epithelial Toxicity of Prenylated Phenolics from Licorice Roots ( Glycyrrhiza spp.) in 3D Apical-Out Mucus-Producing Human Enteroids. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20396-20409. [PMID: 39240776 PMCID: PMC11421016 DOI: 10.1021/acs.jafc.4c03120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/06/2024] [Accepted: 08/24/2024] [Indexed: 09/08/2024]
Abstract
Apical-out enteroids mimic the in vivo environment well due to their accessible apical surface and mucus layer, making them an ideal model for studying the impact of (bioactive) food compounds. Generated human ileal apical-out enteroids showed a fucose-containing mucus layer surrounding the apical brush border on their exposure side, indicating their physiological relevance. Effects on the mucosal epithelium of antibacterial prenylated phenolics (glabridin, licochalcone A, and glycycoumarin) from licorice roots were investigated for cytotoxicity, cell viability, barrier integrity, and biotransformation. At concentrations up to 500 μg mL-1, licochalcone A and glycycoumarin did not significantly affect apical-out enteroids, with cytotoxicities of -6 ± 2 and -2 ± 2% and cell viabilities of 77 ± 22 and 77 ± 13%, respectively (p > 0.05). Conversely, 500 μg mL-1 glabridin induced significant cytotoxicity (31 ± 25%, p < 0.05) and reduced cell viability (21 ± 14%, p < 0.01). Apical-out enteroids revealed differential sensitivities to prenylated phenolics not observed in apical-in enteroids and Caco-2 cells. Both enteroid models showed phase II biotransformation but differed in the extent of glucuronide conversion. The apical mucus layer of apical-out enteroids likely contributed to these differential interactions, potentially due to differences in electrostatic repulsion. This study underscores the relevance of 3D apical-out enteroid models and highlights the promise of prenylated phenolics for antimicrobial applications.
Collapse
Affiliation(s)
- Sarah van Dinteren
- Division
of Human Nutrition and Health, Wageningen
University, P.O. Box 17, Wageningen 6700 AA, The Netherlands
- Laboratory
of Food Chemistry, Wageningen University, P.O. Box 17, Wageningen 6700 AA, The Netherlands
| | - Carla Araya-Cloutier
- Laboratory
of Food Chemistry, Wageningen University, P.O. Box 17, Wageningen 6700 AA, The Netherlands
| | - Shanna Bastiaan-Net
- Wageningen
Food & Biobased Research, Wageningen
University & Research, P.O. Box 17, Wageningen 6700 AA, The Netherlands
| | - Anouk Boudewijn
- Wageningen
Food & Biobased Research, Wageningen
University & Research, P.O. Box 17, Wageningen 6700 AA, The Netherlands
| | - Tjarda van Heek
- Department
of Abdominal Surgery, Hospital Gelderse
Vallei, Willy Brandtlaan 10, Ede 6716 RP, The Netherlands
| | - Jean-Paul Vincken
- Laboratory
of Food Chemistry, Wageningen University, P.O. Box 17, Wageningen 6700 AA, The Netherlands
| | - Renger Witkamp
- Division
of Human Nutrition and Health, Wageningen
University, P.O. Box 17, Wageningen 6700 AA, The Netherlands
| | - Jocelijn Meijerink
- Division
of Human Nutrition and Health, Wageningen
University, P.O. Box 17, Wageningen 6700 AA, The Netherlands
| |
Collapse
|
3
|
Xian L, Xiong Y, Qin L, Wei L, Zhou S, Wang Q, Fu Q, Chen M, Qin Y. Jun/Fos promotes migration and invasion of hepatocellular carcinoma cells by enhancing BORIS promoter activity. Int J Biochem Cell Biol 2024; 169:106540. [PMID: 38281696 DOI: 10.1016/j.biocel.2024.106540] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 01/16/2024] [Accepted: 01/24/2024] [Indexed: 01/30/2024]
Abstract
The Brother of the Regulator of Imprinted Sites (BORIS), as a specific indicator of hepatocellular carcinoma, exhibits a significant increase in expression. However, its upstream regulatory network remains enigmatic. Previous research has indicated a strong correlation between the Hippo pathway and the progression of hepatocellular carcinoma. It is well established that the Activator Protein-1 (AP-1) frequently engages in interactions with the Hippo pathway. Thus, we attempt to prove whether Jun and Fos, a major member of the AP-1 family, are involved in the regulation of BORIS expression. Bioinformatics analysis revealed the existence of binding sites for Jun and Fos within the BORIS promoter. Through a series of overexpression and knockdown experiments, we corroborated that Jun and Fos have the capacity to augment BORIS expression, thereby fostering the migration and invasion of hepatocellular carcinoma cells. Moreover, Methylation-Specific PCR and Bisulfite Sequencing PCR assays revealed that Jun and Fos do not have a significant impact on the demethylation of the BORIS promoter. However, luciferase reporter and chromatin immunoprecipitation experiments substantiated that Jun and Fos could directly bind to the BORIS promoter, thereby enhancing its transcription. In conclusion, these results suggest that Jun and Fos can promote the development of hepatocellular carcinoma by directly regulating the expression of BORIS. These findings may provide experimental evidence positioning BORIS as a novel target for the clinical intervention of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Longjun Xian
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, No. 17, Section 3, South Renmin Road, Chengdu 610041, Sichuan Province, China
| | - Yimei Xiong
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, No. 17, Section 3, South Renmin Road, Chengdu 610041, Sichuan Province, China
| | - Lu Qin
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, No. 17, Section 3, South Renmin Road, Chengdu 610041, Sichuan Province, China
| | - Ling Wei
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, No. 17, Section 3, South Renmin Road, Chengdu 610041, Sichuan Province, China
| | - Siqi Zhou
- Department of Surgery Division of Liver Transplantation, West China Hospital, Sichuan University, 37 Guo Xue Rd., Chengdu 610041, Sichuan Province, China
| | - Qinda Wang
- Department of Surgery Division of Liver Transplantation, West China Hospital, Sichuan University, 37 Guo Xue Rd., Chengdu 610041, Sichuan Province, China
| | - Qiang Fu
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, No. 17, Section 3, South Renmin Road, Chengdu 610041, Sichuan Province, China
| | - Mingmei Chen
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, No. 17, Section 3, South Renmin Road, Chengdu 610041, Sichuan Province, China.
| | - Yang Qin
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, No. 17, Section 3, South Renmin Road, Chengdu 610041, Sichuan Province, China.
| |
Collapse
|
4
|
Dinteren SV, Araya-Cloutier C, Robaczewska E, den Otter M, Witkamp R, Vincken JP, Meijerink J. Switching the polarity of mouse enteroids affects the epithelial interplay with prenylated phenolics from licorice ( Glycyrrhiza) roots. Food Funct 2024; 15:1852-1866. [PMID: 38086658 DOI: 10.1039/d3fo02961a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
The utility of 3D-small intestinal organoid (enteroid) models for evaluating effects of e.g. food (related) compounds is limited due to the apical epithelium facing the interior. To overcome this limitation, we developed a novel 3D-apical-out enteroid model for mice, which allows apical exposure. Using this model, we evaluated the effects on the enteroids' intestinal epithelium (including cytotoxicity, cell viability, and biotransformation) after exposure to glabridin, a prenylated secondary metabolite with antimicrobial properties from licorice roots (Glycyrrhiza glabra). Apical-out enteroids were five times less sensitive to glabridin exposure compared to conventional apical-in enteroids, with obtained cytotoxicities of 1.5 mM and 0.31 mM, respectively. Apical-out enteroids showed a luminal/apical layer of fucose rich mucus, which may contribute to the protection against potential cytotoxicity of glabridin. Furthermore, in apical-in enteroids IC50 values for cytotoxicity were determined for licochalcone A, glycycoumarin, and glabridin, the species-specific prenylated phenolics from the commonly used G. inflata, G. uralensis, and G. glabra, respectively. Both enteroid models differed in their functional phase II biotransformation capacity, where glabridin was transformed to glucuronide- and sulfate-conjugates. Lastly, our results indicate that the prenylated phenolics do not show cytotoxicity in mouse enteroids at previously reported minimum inhibitory concentrations (MICs) against a diverse set of Gram positive bacteria. Altogether, we show that apical-out enteroids provide a better mimic of the gastrointestinal tract compared to conventional enteroids and are consequently a superior model to study effects of food (related) compounds. This work revealed that prenylated phenolics with promising antibacterial activity show no harmful effects in the GI-tract at their MICs and therefore may offer a new perspective to control unwanted microbial growth.
Collapse
Affiliation(s)
- Sarah van Dinteren
- Division of Human Nutrition and Health, Wageningen University, P.O. box 17, 6700 AA Wageningen, The Netherlands.
- Laboratory of Food Chemistry, Wageningen University, P.O. box 17, 6700 AA Wageningen, The Netherlands
| | - Carla Araya-Cloutier
- Laboratory of Food Chemistry, Wageningen University, P.O. box 17, 6700 AA Wageningen, The Netherlands
| | - Edyta Robaczewska
- Division of Human Nutrition and Health, Wageningen University, P.O. box 17, 6700 AA Wageningen, The Netherlands.
| | - Mellody den Otter
- Division of Human Nutrition and Health, Wageningen University, P.O. box 17, 6700 AA Wageningen, The Netherlands.
| | - Renger Witkamp
- Division of Human Nutrition and Health, Wageningen University, P.O. box 17, 6700 AA Wageningen, The Netherlands.
| | - Jean-Paul Vincken
- Laboratory of Food Chemistry, Wageningen University, P.O. box 17, 6700 AA Wageningen, The Netherlands
| | - Jocelijn Meijerink
- Division of Human Nutrition and Health, Wageningen University, P.O. box 17, 6700 AA Wageningen, The Netherlands.
| |
Collapse
|
5
|
Lin H, Ai D, Liu Q, Wang X, Chen Q, Hong Z, Tao Y, Gao J, Wang L. Natural isoflavone glabridin targets PI3Kγ as an adjuvant to increase the sensitivity of MDA-MB-231 to tamoxifen and DU145 to paclitaxel. J Steroid Biochem Mol Biol 2024; 236:106426. [PMID: 37984749 DOI: 10.1016/j.jsbmb.2023.106426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/21/2023] [Accepted: 11/16/2023] [Indexed: 11/22/2023]
Abstract
Glabridin is a natural isoflavone with estrogen receptor agonism and significant anti-tumor activity. Additionally, glabridin has a regulation effect on PI3K/AKT/mTOR pathway, but its exact target remains unclear. In this study, we evaluated the antitumor activity of glabridin against breast cancer and prostate cancer cells, and further clarified its targeting to PI3K. We found that glabridin could significantly inhibit the cell viability of human breast cancer and prostate cancer cell lines. It induced caspase activation cascade and cell apoptosis through decreasing the mitochondrial transmembrane potential and increasing the intracellular reactive oxygen species (ROS). Moreover, glabridin could attenuate epithelial-mesenchymal transition (EMT) progression by inhibiting cell migration. PharmMapper calculation showed that PI3Kγ might be the most potential target protein because of the highest Normal Fit score (0.9735) and z'-score (0.9797). Molecular docking and bio-layer interferometry (BLI) analysis further demonstrated the PI3Kγ targeting of glabridin. In vivo experiments showed that glabridin can effectively inhibit the tumor growth of breast cancer xenograft model, and does not show obvious hepatorenal toxicity. Moreover, glabridin could effectively promote the anti-proliferation and pro-apoptotic effects of tamoxifen on MDA-MB-231 cell and taxol on DU145 cell. Elucidating the targeting of glabridin to PI3K may lay a theoretical foundation for the structural derivatization of glabridin, which is expected to greatly promote the application and development of glabridin in the field of cancer therapy.
Collapse
Affiliation(s)
- Hongyan Lin
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Dongxuan Ai
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Qingqing Liu
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Xinling Wang
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Qingqing Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Zhongbin Hong
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Yuheng Tao
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Jian Gao
- School of Medicine, Anhui University of Science and Technology, Huainan 232002, Anhui, China.
| | - Liqun Wang
- School of Pharmacy, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
6
|
Lu D, Yang Y, Du Y, Zhang L, Yang Y, Tibenda JJ, Nan Y, Yuan L. The Potential of Glycyrrhiza from "Medicine Food Homology" in the Fight against Digestive System Tumors. Molecules 2023; 28:7719. [PMID: 38067451 PMCID: PMC10708138 DOI: 10.3390/molecules28237719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/14/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
Glycyrrhiza has a long history of applications and a wide range of pharmacological effects. It is known as the "king of all herbs". Glycyrrhiza is effective in clearing heat, detoxifying, relieving cough, and tonifying qi and has good bioactivity in multiple inflammatory, immune, and tumor diseases. This review aims to summarize the origin, distribution, and anti-digestive system tumor mechanism of glycyrrhiza and its homologous applications in medicine and food. The active compounds include triterpenoids, flavonoids, and coumarins, which are widely used in clinical treatments, disease prevention, and daily foods because of their "enhancement of efficacy" and "reduction of toxicity" against digestive system tumors. This paper reviews the use of glycyrrhiza in digestive system tumors and provides an outlook on future research and clinical applications.
Collapse
Affiliation(s)
- Doudou Lu
- School of Clinical Medicine, Ningxia Medical University, Yinchuan 750004, China;
| | - Yating Yang
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan 750004, China;
| | - Yuhua Du
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; (Y.D.); (J.J.T.)
| | - Lei Zhang
- Key Laboratory of Hui Ethnic Medicine Modernization of Ministry of Education, Ningxia Medical University, Yinchuan 750004, China;
| | - Yi Yang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China;
| | - Joanna Japhet Tibenda
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; (Y.D.); (J.J.T.)
| | - Yi Nan
- Key Laboratory of Hui Ethnic Medicine Modernization of Ministry of Education, Ningxia Medical University, Yinchuan 750004, China;
| | - Ling Yuan
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; (Y.D.); (J.J.T.)
| |
Collapse
|
7
|
Talib KM, Oraibi AG, Abass GI. Synthesis of Bio-Active Silver Nanoparticles against Human Lung Cancer Cell Line (A549) with Little Toxicity to Normal Cell Line (WRL68). ARCHIVES OF RAZI INSTITUTE 2023; 78:1624-1637. [PMID: 38590680 PMCID: PMC10998941 DOI: 10.22092/ari.2023.78.5.1624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 04/10/2024]
Abstract
Nanomaterials are characterized by mechanical, thermal, chemical, biological, and other properties that are different from the basic materials that make them up due to their large surface area to size ratio and quantum effect. There are multiple ways to produce nanomaterials mechanically, chemically, and physically, but they are not safe for the environment. Researchers have sought to find safe methods for the production of nanomaterials, such as green manufacturing, that is, manufacturing nanomaterials from plants. Moreover, there are other sources, such as bacteria or fungi that are used in the production of nanomaterials. This study aimed to try to find an alternative to chemically manufactured drugs, such as those used in the treatment of human cancers, through nanotechnology and from plant sources (green-biosynthesis), which is characterized by abundance and low economic cost. Silver nanoparticles were green-synthesized using an aqueous extract of the licorice plant, their properties were diagnosed, and their differences with the crude aqueous extract were determined. The sizes of nanoparticles were within the range of 60.27-89.80 nm, while the sizes of the crude aqueous extract particles were within the range of 53.96-113.1 nm. Atomic force microscopy was used to find out the shapes, topography, roughness, and protrusions of the surfaces of biosynthesized AgNPs and aqueous extract particles, where the roughness rate of the nanoparticles was 75.54 nm, while it appeared. In vitro test of AgNPs showed a higher anti-lung cancer activity against the A549 cell line than that of the extract at an inhibitory concentration for half of the cells used in the experiment (IC50) of 58.78 µg/ml while the IC50 of the extract was 67.44 µg/ml. The results showed that the toxicity of AgNPs on the normal hepatocyte line (WRL68) was less than that of the aqueous extract, with IC50 concentrations of 244.2 and 147.0 µg/ml, respectively. It is worth mentioning that the lower IC50 led to higher toxicity.
Collapse
Affiliation(s)
- K M Talib
- The Iraqi Ministry of Education, Karkh II Education Directorate, Baghdad, Iraq
| | - A G Oraibi
- Department of Plant Biotechnology, College of Biotechnology, Al-Nahrain University, Jadriya, Baghdad, Iraq
| | - G I Abass
- Iraqi University, College of Education, Baghdad, Iraq
| |
Collapse
|
8
|
Dutt Y, Pandey RP, Dutt M, Gupta A, Vibhuti A, Raj VS, Chang CM, Priyadarshini A. Liposomes and phytosomes: Nanocarrier systems and their applications for the delivery of phytoconstituents. Coord Chem Rev 2023; 491:215251. [DOI: 10.1016/j.ccr.2023.215251] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2025]
|
9
|
Jamwal A, Chand J, Dash A, Bhatt S, Dhiman S, Wazir P, Singh B, Goswami A, Nandi U. Glabridin plays dual action to intensify anti-metastatic potential of paclitaxel via impeding CYP2C8 in liver and CYP2J2/EETs in tumor of an orthotopic mouse model of breast cancer. Chem Biol Interact 2023; 382:110605. [PMID: 37419298 DOI: 10.1016/j.cbi.2023.110605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/05/2023] [Accepted: 06/13/2023] [Indexed: 07/09/2023]
Abstract
In spite of unprecedented advances in modern cancer therapy, there is still a dearth of targeted therapy to circumvent triple-negative breast cancer (TNBC). Paclitaxel is the front-line therapy against TNBC, but the main constraints of its treatment are dose-related adverse effects and emerging chemoresistance. In this context, glabridin (phytoconstituent from Glycyrrhiza glabra) is reported to hit multiple signalling pathways at the in-vitro level, but hardly any information is known at the in-vivo level. We aimed here to elucidate glabridin potential with an underlying mechanism in combination with a low dose of paclitaxel using a highly aggressive mouse mammary carcinoma model. Glabridin potentiated the anti-metastatic efficacy of paclitaxel by substantially curtailing tumor burden and diminishing lung nodule formation. Moreover, glabridin remarkably attenuated epithelial-mesenchymal transition (EMT) traits of hostile cancer cells via up-regulating (E-cadherin & occludin) and down-regulating (Vimentin & Zeb1) vital EMT markers. Besides, glabridin amplified apoptotic induction effect of paclitaxel in tumor tissue by declining or elevating pro-apoptotic (Procaspase-9 or Cleaved Caspase-9 & Bax) and reducing anti-apoptotic (Bcl-2) markers. Additionally, concomitant treatment of glabridin and paclitaxel predominantly lessened CYP2J2 expression with marked lowering of epoxyeicosatrienoic acid (EET)'s levels in tumor tissue to reinforce the anti-tumor impact. Simultaneous administration of glabridin with paclitaxel notably enhanced plasma exposure and delayed clearance of paclitaxel, which was mainly arbitrated by CYP2C8-mediated slowdown of paclitaxel metabolism in the liver. The fact of intense CYP2C8 inhibitory action of glabridin was also ascertained using human liver microsomes. Concisely, glabridin plays a dual role in boosting anti-metastatic activity by augmenting paclitaxel exposure via CYP2C8 inhibition-mediated delaying paclitaxel metabolism and limiting tumorigenesis via CYP2J2 inhibition-mediated restricting EETs level. Considering the safety, reported protective efficacy, and the current study results of boosted anti-metastatic effects, further investigations are warranted as a promising neoadjuvant therapy for crux paclitaxel chemoresistance and cancer recurrence.
Collapse
Affiliation(s)
- Ashiya Jamwal
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Jagdish Chand
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India
| | - Anshurekha Dash
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Shipra Bhatt
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Sumit Dhiman
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India
| | - Priya Wazir
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India
| | - Buddh Singh
- Natural Product and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India
| | - Anindya Goswami
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.
| | - Utpal Nandi
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.
| |
Collapse
|
10
|
Lv HW, Wang QL, Luo M, Zhu MD, Liang HM, Li WJ, Cai H, Zhou ZB, Wang H, Tong SQ, Li XN. Phytochemistry and pharmacology of natural prenylated flavonoids. Arch Pharm Res 2023; 46:207-272. [PMID: 37055613 PMCID: PMC10101826 DOI: 10.1007/s12272-023-01443-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 03/07/2023] [Indexed: 04/15/2023]
Abstract
Prenylated flavonoids are a special kind of flavonoid derivative possessing one or more prenyl groups in the parent nucleus of the flavonoid. The presence of the prenyl side chain enriched the structural diversity of flavonoids and increased their bioactivity and bioavailability. Prenylated flavonoids show a wide range of biological activities, such as anti-cancer, anti-inflammatory, neuroprotective, anti-diabetic, anti-obesity, cardioprotective effects, and anti-osteoclastogenic activities. In recent years, many compounds with significant activity have been discovered with the continuous excavation of the medicinal value of prenylated flavonoids, and have attracted the extensive attention of pharmacologists. This review summarizes recent progress on research into natural active prenylated flavonoids to promote new discoveries of their medicinal value.
Collapse
Affiliation(s)
- Hua-Wei Lv
- College of Pharmaceutical Science & Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, 310014, Hang zhou, P. R. China
| | - Qiao-Liang Wang
- College of Pharmaceutical Science & Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, 310014, Hang zhou, P. R. China
| | - Meng Luo
- College of Pharmaceutical Science & Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, 310014, Hang zhou, P. R. China
| | - Meng-Di Zhu
- Research Center of Analysis and Measurement, Zhejiang University of Technology University, 310014, Hang Zhou, P. R. China
| | - Hui-Min Liang
- College of Pharmaceutical Science & Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, 310014, Hang zhou, P. R. China
| | - Wen-Jing Li
- College of Pharmaceutical Science & Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, 310014, Hang zhou, P. R. China
| | - Hai Cai
- College of Pharmaceutical Science & Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, 310014, Hang zhou, P. R. China
| | - Zhong-Bo Zhou
- School of Pharmacy, Youjiang Medical University for Nationalities, 533000, Baise, P. R. China
| | - Hong Wang
- College of Pharmaceutical Science & Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, 310014, Hang zhou, P. R. China
| | - Sheng-Qiang Tong
- College of Pharmaceutical Science & Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, 310014, Hang zhou, P. R. China.
| | - Xing-Nuo Li
- College of Pharmaceutical Science & Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, 310014, Hang zhou, P. R. China.
| |
Collapse
|
11
|
Zhang J, Wu X, Zhong B, Liao Q, Wang X, Xie Y, He X. Review on the Diverse Biological Effects of Glabridin. Drug Des Devel Ther 2023; 17:15-37. [PMID: 36647530 PMCID: PMC9840373 DOI: 10.2147/dddt.s385981] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Glabridin is a prenylated isoflavan from the roots of Glycyrrhiza glabra Linne and has posed great impact on the areas of drug development and medicine, due to various biological properties such as anti-inflammation, anti-oxidation, anti-tumor, anti-microorganism, bone protection, cardiovascular protection, neuroprotection, hepatoprotection, anti-obesity, and anti-diabetes. Many signaling pathways, including NF-κB, MAPK, Wnt/β-catenin, ERα/SRC-1, PI3K/AKT, and AMPK, have been implicated in the regulatory activities of glabridin. Interestingly, glabridin has been considered as an inhibitor of tyrosinase, P-glycoprotein (P-gp), and CYP2E1 and an activator of peroxisome proliferator-activated receptor γ (PPARγ), although their molecular regulating mechanisms still need further investigation. However, poor water solubility and low bioavailability have greatly limited the clinical applications of glabridin. Hopefully, several effective strategies, such as nanoemulsions, microneedles, and smartPearls formulation, have been developed for improvement.
Collapse
Affiliation(s)
- Jianhong Zhang
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, People’s Republic of China,Ganzhou Key Laboratory of Hepatocellular Carcinoma, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, People’s Republic of China
| | - Xinhui Wu
- Department of General Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, People’s Republic of China
| | - Baiyin Zhong
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, People’s Republic of China
| | - Qicheng Liao
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, People’s Republic of China
| | - Xin Wang
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, People’s Republic of China
| | - Yuankang Xie
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, People’s Republic of China
| | - Xiao He
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, People’s Republic of China,Correspondence: Xiao He, Email
| |
Collapse
|
12
|
Ahmad R, Alqathama A, Aldholmi M, Riaz M, Mukhtar MH, Aljishi F, Althomali E, Alamer MA, Alsulaiman M, Ayashy A, Alshowaiki M. Biological Screening of Glycyrrhiza glabra L. from Different Origins for Antidiabetic and Anticancer Activity. Pharmaceuticals (Basel) 2022; 16:ph16010007. [PMID: 36678504 PMCID: PMC9860537 DOI: 10.3390/ph16010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/08/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Geographical variation may affect the phytochemistry as well as the biological activities of Glycyrrhiza glabra (licorice) root. Herein, a series of biological activities were performed to evaluate the impact of geographical origin on the biological potential of eight different licorice samples. METHODOLOGY Cell culture studies were performed for cytotoxicity (MCF7, HCT116, HepG2, and MRC5), glucose uptake assay (HepG2), and glutathione peroxidase activity (HepG2), whereas α-amylase inhibition activity was tested for antidiabetic potential. RESULTS The Indian sample was observed to be more cytotoxic against MCF7 (22%) and HCT116 (43%) with an IC50 value of 56.10 (±2.38) μg/mL against the MCF7 cell line. The glucose uptake was seen with a mean value of 96 (±2.82) and a range of 92-101%. For glutathione peroxidase activity (GPx), the Syrian (0.31 ± 0.11) and Pakistani samples (0.21 ± 0.08) revealed a significant activity, whereas the Palestinian (70 ± 0.09) and Indian samples (68±0.06) effectively inhibited the α-amylase activity, with the lowest IC50 value (67.11 ± 0.97) μg/mL for the Palestinian sample. The statistical models of PCA (principal component analysis) and K-mean cluster analysis were performed to correlate the geographical origin, extract yield, and biological activities for the eight licorice samples of different origins. CONCLUSION The licorice samples exhibited significant cytotoxic, GPx, and α-amylase inhibitory activity. The samples with higher extract yield showed more potential in these biological activities.
Collapse
Affiliation(s)
- Rizwan Ahmad
- Department of Natural Products and Alternative Medicine, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
- Correspondence: or
| | - Aljawharah Alqathama
- Department of Pharmacognosy, Faculty of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Mohammed Aldholmi
- Department of Natural Products and Alternative Medicine, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Muhammad Riaz
- Department of Pharmacy, Shaheed Benazir Bhutto University, Sheringal 18050, Khyber Pakhtunkhwa, Pakistan
| | | | - Fatema Aljishi
- Department of Natural Products and Alternative Medicine, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Ebtihal Althomali
- Department of Natural Products and Alternative Medicine, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | | | - Mohammed Alsulaiman
- College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Abdulmalik Ayashy
- College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Mohsen Alshowaiki
- College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| |
Collapse
|
13
|
Zhang F, Wang F, Li W, Liang L, Sang X. The toxicity mechanism of glabridin in prostate cancer cells is involved in reactive oxygen species-dependent PI3K/Akt pathway: Integrated utilization of bioinformatic analysis and in vitro test validation. ENVIRONMENTAL TOXICOLOGY 2022; 37:2937-2946. [PMID: 36029289 DOI: 10.1002/tox.23649] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/03/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Glabridin is a prenylated isoflavonoid with considerable anticancer property. Reactive oxygen species (ROS) have evolved as regulators of many cellular signaling pathways in prostate cancer (PC). However, the role of ROS signaling in the anticancer activity of glabridin has not been investigated. Here, we attempted to evaluate the effect of glabridin on PC and the involvement of ROS signaling. Intracellular ROS and mitochondrial ROS (mitoROS) production in PC cell lines, DU-145 and LNCaP, were measured by H2DCFDA and MitoSOX Red staining, respectively. MTT assay was used to analyze the cellular viability. EdU staining assay was conducted to analyze the cell proliferation. To analyze apoptotic rate, TUNEL assay was performed. Caspase-3 activity was detected to reflect cell apoptosis. Western blot was carried out to detect the expression levels of Akt and p-Akt. We found that intracellular ROS and mitoROS levels were dose-dependently upregulated after glabridin treatment in both DU-145 and LNCaP cells, which was reversed by the treatment of ROS inhibitor, N-acetyl-L-cysteine (NAC). Glabridin inhibited the cell viability and reduced the number of EdU-positive DU-145 and LNCaP cells, which were respectively proved by MTT assay and EdU staining assay. Glabridin promoted cell death with increased apoptotic rate and caspase-3 activity in DU-145 and LNCaP cells. The effects of glabridin on cell proliferation and apoptosis were reversed by NAC. Moreover, glabridin suppressed the ratio of p-Akt/Akt, while NAC mitigated the decreased p-Akt/Akt ratio. In addition, the effects of glabridin on cell proliferation and apoptosis were also attenuated by Akt activator, SC79. Collectively, our results demonstrated that glabridin suppressed proliferation and induced apoptosis in PC cells via regulating ROS-mediated PI3K/Akt pathway. These findings suggested that glabridin might hold a promising prospective as a therapeutic agent against PC.
Collapse
Affiliation(s)
- Fengyan Zhang
- Food Department, Qingdao Institute for Food and Drug Control, Qingdao, China
| | - Fufang Wang
- Research and Development Department, Henan Hongzhu Taizhijia Medical Service Co. Ltd, Zhengzhou, China
| | - Wenjie Li
- Department of Pharmacy, Qingdao Chengyang People's Hospital, Qingdao, China
| | | | - Xicheng Sang
- Research and Development Department, Qingdao Hongzhu Biotechnology Co., Ltd, Qingdao, China
| |
Collapse
|
14
|
Tuli HS, Garg VK, Mehta JK, Kaur G, Mohapatra RK, Dhama K, Sak K, Kumar A, Varol M, Aggarwal D, Anand U, Kaur J, Gillan R, Sethi G, Bishayee A. Licorice ( Glycyrrhiza glabra L.)-Derived Phytochemicals Target Multiple Signaling Pathways to Confer Oncopreventive and Oncotherapeutic Effects. Onco Targets Ther 2022; 15:1419-1448. [PMID: 36474507 PMCID: PMC9719702 DOI: 10.2147/ott.s366630] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/18/2022] [Indexed: 09/10/2023] Open
Abstract
Cancer is a highly lethal disease, and its incidence has rapidly increased worldwide over the past few decades. Although chemotherapeutics and surgery are widely used in clinical settings, they are often insufficient to provide the cure for cancer patients. Hence, more effective treatment options are highly needed. Although licorice has been used as a medicinal herb since ancient times, the knowledge about molecular mechanisms behind its diverse bioactivities is still rather new. In this review article, different anticancer properties (antiproliferative, antiangiogenic, antimetastatic, antioxidant, and anti-inflammatory effects) of various bioactive constituents of licorice (Glycyrrhiza glabra L.) are thoroughly described. Multiple licorice constituents have been shown to bind to and inhibit the activities of various cellular targets, including B-cell lymphoma 2, cyclin-dependent kinase 2, phosphatidylinositol 3-kinase, c-Jun N-terminal kinases, mammalian target of rapamycin, nuclear factor-κB, signal transducer and activator of transcription 3, vascular endothelial growth factor, and matrix metalloproteinase-3, resulting in reduced carcinogenesis in several in vitro and in vivo models with no evident toxicity. Emerging evidence is bringing forth licorice as an anticancer agent as well as bottlenecks in its potential clinical application. It is expected that overcoming toxicity-related obstacles by using novel nanotechnological methods might importantly facilitate the use of anticancer properties of licorice-derived phytochemicals in the future. Therefore, anticancer studies with licorice components must be continued. Overall, licorice could be a natural alternative to the present medication for eradicating new emergent illnesses while having just minor side effects.
Collapse
Affiliation(s)
- Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana-Ambala, Haryana, India
| | - Vivek Kumar Garg
- Department of Medical Lab Technology, University Institute of Applied Health Sciences, Chandigarh University, Mohali, Punjab, India
| | - Jinit K Mehta
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, Shri Vile Parle Kelavani Mandal, Narsee Monjee Institute of Management Studies, Mumbai, Maharashtra, India
| | - Ginpreet Kaur
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, Shri Vile Parle Kelavani Mandal, Narsee Monjee Institute of Management Studies, Mumbai, Maharashtra, India
| | - Ranjan K Mohapatra
- Department of Chemistry, Government College of Engineering, Keonjhar, Odisha, India
| | - Kuldeep Dhama
- Division of Pathology, Indian Council of Agricultural Research-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | | | - Ajay Kumar
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Mehmet Varol
- Department of Molecular Biology and Genetics, Faculty of Science, Mugla Sitki Kocman University, Mugla, Turkey
| | - Diwakar Aggarwal
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana-Ambala, Haryana, India
| | - Uttpal Anand
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Jagjit Kaur
- Centre of Excellence in Nanoscale Biophotonics, Graduate School of Biomedical Engineering, Faculty of Engineering, The University of New South Wales, Sydney, Australia
| | - Ross Gillan
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, USA
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, USA
| |
Collapse
|
15
|
Metabolic Profiling of Glabridin in Rat Plasma, Urine, Bile, and Feces After Intragastric and Intravenous Administration. Eur J Drug Metab Pharmacokinet 2022; 47:879-887. [DOI: 10.1007/s13318-022-00797-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2022] [Indexed: 11/25/2022]
|
16
|
Zhang Q, Qian D, Tang DD, Liu J, Wang LY, Chen W, Wu CJ, Peng W. Glabridin from Glycyrrhiza glabra Possesses a Therapeutic Role against Keloid via Attenuating PI3K/Akt and Transforming Growth Factor-β1/SMAD Signaling Pathways. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10782-10793. [PMID: 36005946 DOI: 10.1021/acs.jafc.2c02045] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Glabridin (Gla) is a typical flavonoid isolated from the Glycyrrhiza glabra with various bioactivities and is a common additive in many cosmetics. In our study, we evaluated the antiscarring effect of Gla from G. glabra in a rabbit ear hyperplastic scar model. Hematoxylin and eosin staining and Masson staining were applied to determine the pathological changes and collagen fibers of scar tissue in rabbits. The results suggested that Gla could reduce rabbit ear scar hyperplasia, inhibit inflammation, and decrease collagen production. Furthermore, the in vitro cell experiments were applied to determine the effects of Gla on human keloid fibroblasts (HKFs), and we observed that Gla suppressed the HKF cells' proliferation via inducing apoptosis. Subsequently, we found that Gla reduced collagen production in HKF cells. The further molecular mechanisms investigations suggested that Gla played a therapeutic role against keloid by attenuating PI3K/Akt and TGFβ1/SMAD pathways. Our study would be beneficial for extending the applications of the known sweet plant of G. glabra.
Collapse
Affiliation(s)
- Qing Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, P. R. China
| | - Die Qian
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, P. R. China
| | - Dan-Dan Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, P. R. China
| | - Jia Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, P. R. China
| | - Lin-Yu Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, P. R. China
| | - Wenwen Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, P. R. China
- Department of Pharmacy, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610091, P. R. China
| | - Chun-Jie Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, P. R. China
| | - Wei Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, P. R. China
| |
Collapse
|
17
|
Structural and Functional Properties of Activator Protein-1 in Cancer and Inflammation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:9797929. [PMID: 35664945 PMCID: PMC9162854 DOI: 10.1155/2022/9797929] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 04/25/2022] [Accepted: 05/14/2022] [Indexed: 11/23/2022]
Abstract
The transcriptional machinery is composed of numerous factors that help to regulate gene expression in cells. The function and the fundamental role of transcription factors in different human diseases and cancer have been extensively researched. Activator protein-1 (AP-1) is an inducible transcription factor that consists of a diverse group of members including Jun, Fos, Maf, and ATF. AP-1 involves a number of processes such as proliferation, migration, and survival in cells. Dysfunctional AP-1 activity is seen in several diseases, especially cancer and inflammatory disorders. The AP-1 proteins are controlled by mitogen-activated protein kinases (MAPKs) and the NF-κB pathway. AP-1 inhibitors can be actively pursued as drug discovery targets in cancer therapy when used as a treatment to halt tumor progression. The consumption of phytochemicals in the diet is related to decreasing the incidence of cancer and proves to exhibit anticancer properties. Natural product targets AP-1 are effective cancer prevention and treatment options for various cancer types. Targeting AP-1 with natural products is an effective cancer treatment option for different cancer types. This review summarizes AP-1 subunit proteins, their structures, AP-1-related signaling, and its modulation by natural bioactive compounds.
Collapse
|
18
|
Park JE, Kang E, Han JS. HM-chromanone attenuates TNF-α-mediated inflammation and insulin resistance by controlling JNK activation and NF-κB pathway in 3T3-L1 adipocytes. Eur J Pharmacol 2022; 921:174884. [PMID: 35288193 DOI: 10.1016/j.ejphar.2022.174884] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/14/2022] [Accepted: 03/09/2022] [Indexed: 11/03/2022]
Abstract
Obesity is a major public health problem worldwide and causes inflammation and insulin resistance in adipose tissue. We investigated the ability of (E)-5-hydroxy-7-methoxy-3-(2'-hydroxybenzyl)-4-chromanone (HM-chromanone) isolated from Portulaca oleracea to attenuate the activation of inflammatory cytokines and signaling pathways associated with tumor necrosis factor (TNF)-α-mediated inflammation and insulin resistance in 3T3-L1 adipocytes. TNF-α triggers the release of inflammatory cytokines and activation of the mitogen-activated protein kinase and nuclear factor (NF)-κB signaling pathways. In this study, HM-chromanone inhibited the production of inflammatory cytokines and chemokines [TNF-α, interleukin (IL)-6, IL-1β, and monocyte chemoattractant protein 1] involved in inflammation and insulin resistance. Furthermore, TNF-α treatment increased c-Jun-NH2 terminal kinase (JNK) phosphorylation, whereas HM-chromanone significantly decreased JNK phosphorylation in a dose-dependent manner. TNF-α treatment increased the activation of inhibitor kappa B (IκB) kinase (IKK), IκBα, and NF-κBp65 compared with that of the control. However, HM-chromanone significantly blocked IKK, IκBα, and NF-κBp65 activation. Upon adipocyte stimulation with TNF-α, phosphorylated insulin receptor substrate (pIRS)-1 serine 307 levels increased and pIRS-1 tyrosine 612 levels decreased compared with those of the control. Upon treatment with HM-chromanone, serine 307 phosphorylation of IRS-1 was inhibited and tyrosine 612 phosphorylation of IRS-1 was increased. Thus, HM-chromanone improved TNF-α-mediated inflammation and insulin resistance by regulating JNK activation and the NF-κB pathway, thereby reducing inflammatory cytokine secretion and inhibiting serine phosphorylation of IRS-1 in the insulin signaling pathway. These results suggest the potential of HM-chromanone to improve inflammatory conditions and insulin resistance in adipocytes.
Collapse
Affiliation(s)
- Jea Eun Park
- Department of Food Science and Nutrition, Pusan National University, Busan, 46241, South Korea.
| | - Eunji Kang
- Department of Food Science and Nutrition, Pusan National University, Busan, 46241, South Korea.
| | - Ji Sook Han
- Department of Food Science and Nutrition, Pusan National University, Busan, 46241, South Korea.
| |
Collapse
|
19
|
Mabrouk AA, Eltablawy NA, El-Allawy RM, Abdel Maksoud H, Elsenosi YA. The ameliorating effect of Terminalia muelleri extract on oxidative stress–related factors in induced hepatocellular carcinoma rat model. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2021.101482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Wu Y, Wang Z, Du Q, Zhu Z, Chen T, Xue Y, Wang Y, Zeng Q, Shen C, Jiang C, Liu L, Zhu H, Liu Q. Pharmacological Effects and Underlying Mechanisms of Licorice-Derived Flavonoids. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:9523071. [PMID: 35082907 PMCID: PMC8786487 DOI: 10.1155/2022/9523071] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 12/17/2021] [Indexed: 12/12/2022]
Abstract
Glycyrrhizae Radix et Rhizoma is the most frequently prescribed natural medicine in China and has been used for more than 2,000 years. The flavonoids of licorice have garnered considerable attention in recent decades due to their structural diversity and myriad pharmacological effects, especially as novel therapeutic agents against inflammation and cancer. Although many articles have been published to summarize different pharmacological activities of licorice in recent years, the systematic summary for flavonoid components is not comprehensive. Therefore, in this review, we summarized the pharmacological and mechanistic data from recent researches on licorice flavonoids and their bioactive components.
Collapse
Affiliation(s)
- Yufan Wu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Zhuxian Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Qunqun Du
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Zhaoming Zhu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Tingting Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Yaqi Xue
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Yuan Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Quanfu Zeng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Chunyan Shen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Cuiping Jiang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Li Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Hongxia Zhu
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China
| | - Qiang Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
21
|
van Dinteren S, Meijerink J, Witkamp R, van Ieperen B, Vincken JP, Araya-Cloutier C. Valorisation of liquorice ( Glycyrrhiza) roots: antimicrobial activity and cytotoxicity of prenylated (iso)flavonoids and chalcones from liquorice spent ( G. glabra, G. inflata, and G. uralensis). Food Funct 2022; 13:12105-12120. [DOI: 10.1039/d2fo02197h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Prenylated phenolics are antimicrobials found in liquorice (Glycyrrhiza spp.).
Collapse
Affiliation(s)
- Sarah van Dinteren
- Laboratory of Food Chemistry, Wageningen University, P.O. box 17, 6700 AA Wageningen, The Netherlands
- Division of Human Nutrition and Health, Wageningen University, P.O. box 17, 6700 AA Wageningen, The Netherlands
| | - Jocelijn Meijerink
- Division of Human Nutrition and Health, Wageningen University, P.O. box 17, 6700 AA Wageningen, The Netherlands
| | - Renger Witkamp
- Division of Human Nutrition and Health, Wageningen University, P.O. box 17, 6700 AA Wageningen, The Netherlands
| | - Bo van Ieperen
- Division of Human Nutrition and Health, Wageningen University, P.O. box 17, 6700 AA Wageningen, The Netherlands
| | - Jean-Paul Vincken
- Laboratory of Food Chemistry, Wageningen University, P.O. box 17, 6700 AA Wageningen, The Netherlands
| | - Carla Araya-Cloutier
- Laboratory of Food Chemistry, Wageningen University, P.O. box 17, 6700 AA Wageningen, The Netherlands
| |
Collapse
|
22
|
Rodriguez S, Skeet K, Mehmetoglu-Gurbuz T, Goldfarb M, Karri S, Rocha J, Shahinian M, Yazadi A, Poudel S, Subramani R. Phytochemicals as an Alternative or Integrative Option, in Conjunction with Conventional Treatments for Hepatocellular Carcinoma. Cancers (Basel) 2021; 13:cancers13225753. [PMID: 34830907 PMCID: PMC8616323 DOI: 10.3390/cancers13225753] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/10/2021] [Accepted: 11/15/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Hepatocellular carcinoma (HCC) is globally ranked as the sixth most diagnosed cancer, and the second most deadly cancer. To worsen matters, there are only limited therapeutic options currently available; therefore, it is necessary to find a reservoir from which new HCC treatments may be acquired. The field of phytomedicine may be the solution to this problem, as it offers an abundance of plant-derived molecules, which show capabilities of being effective against HCC proliferation, invasion, migration, and metastasis. In our review, we collect and analyze current evidence regarding these promising phytochemical effects on HCC, and delve into their potential as future chemotherapies. Additionally, information on the signaling behind these numerous phytochemicals is provided, in an attempt to understand their mechanisms. This review makes accessible the current body of knowledge pertaining to phytochemicals as HCC treatments, in order to serve as a reference and inspiration for further research into this subject. Abstract Hepatocellular carcinoma (HCC) is the most abundant form of liver cancer. It accounts for 75–85% of liver cancer cases and, though it ranks globally as the sixth most common cancer, it ranks second in cancer-related mortality. Deaths from HCC are usually due to metastatic spread of the cancer. Unfortunately, there are many challenges and limitations with the latest HCC therapies and medications, making it difficult for patients to receive life-prolonging care. As there is clearly a high demand for alternative therapy options for HCC, it is prudent to turn to plants for the solution, as their phytochemicals have long been used and revered for their many medicinal purposes. This review explores the promising phytochemical compounds identified from pre-clinical and clinical trials being used either independently or in conjunction with already existing cancer therapy treatments. The phytochemicals discussed in this review were classified into several categories: lipids, polyphenols, alkaloids, polysaccharides, whole extracts, and phytochemical combinations. Almost 80% of the compounds failed to progress into clinical studies due to lack of information regarding the toxicity to normal cells and bioavailability. Although large obstacles remain, phytochemicals can be used either as an alternative or integrative therapy in conjunction with existing HCC chemotherapies. In conclusion, phytochemicals have great potential as treatment options for hepatocellular carcinoma.
Collapse
Affiliation(s)
- Sheryl Rodriguez
- Center of Emphasis in Cancer Research, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (S.R.); (T.M.-G.); (S.P.)
| | - Kristy Skeet
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX 79905, USA; (K.S.); (J.R.); (M.S.); (A.Y.)
| | - Tugba Mehmetoglu-Gurbuz
- Center of Emphasis in Cancer Research, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (S.R.); (T.M.-G.); (S.P.)
| | - Madeline Goldfarb
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (M.G.); (S.K.)
| | - Shri Karri
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (M.G.); (S.K.)
| | - Jackelyn Rocha
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX 79905, USA; (K.S.); (J.R.); (M.S.); (A.Y.)
| | - Mark Shahinian
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX 79905, USA; (K.S.); (J.R.); (M.S.); (A.Y.)
| | - Abdallah Yazadi
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX 79905, USA; (K.S.); (J.R.); (M.S.); (A.Y.)
| | - Seeta Poudel
- Center of Emphasis in Cancer Research, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (S.R.); (T.M.-G.); (S.P.)
| | - Ramadevi Subramani
- Center of Emphasis in Cancer Research, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (S.R.); (T.M.-G.); (S.P.)
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX 79905, USA; (K.S.); (J.R.); (M.S.); (A.Y.)
- Correspondence: ; Tel.: +1-915-215-6851
| |
Collapse
|
23
|
Pharmacological properties of glabridin (a flavonoid extracted from licorice): A comprehensive review. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104638] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
24
|
Zhang HF, Gao X, Wang X, Chen X, Huang Y, Wang L, Xu ZW. The mechanisms of renin-angiotensin system in hepatocellular carcinoma: From the perspective of liver fibrosis, HCC cell proliferation, metastasis and angiogenesis, and corresponding protection measures. Biomed Pharmacother 2021; 141:111868. [PMID: 34328104 DOI: 10.1016/j.biopha.2021.111868] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/04/2021] [Accepted: 06/28/2021] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide, of which the occurrence and development involve a variety of pathophysiological processes, such as liver fibrosis, hepatocellular malignant proliferation, metastasis, and tumor angiogenesis. Some important cytokines, such as TGF-β, PI3K, protein kinase B (Akt), VEGF and NF-κB, can regulate the growth, proliferation, diffusion, metastasis, and apoptosis of HCC cells by acting on the corresponding signaling pathways. Besides, many studies have shown that the formation of HCC is closely related to the main components of renin-angiotensin system (RAS), such as Ang II, ACE, ACE2, MasR, AT1R, and AT2R. Therefore, this review focused on liver fibrosis, HCC cell proliferation, metastasis, tumor angiogenesis, and corresponding protective measures. ACE-Ang II-AT1 axis and ACE2-Ang-(1-7)-MasR axis were taken as the main lines to introduce the mechanism of RAS in the occurrence and development of HCC, so as to provide references for future clinical work and scientific research.
Collapse
Affiliation(s)
- Hai-Feng Zhang
- Department of Clinical Medical, the First Clinical Medical College of Anhui Medical University, Hefei, Anhui 230032, China
| | - Xiang Gao
- Department of Clinical Medical, the First Clinical Medical College of Anhui Medical University, Hefei, Anhui 230032, China
| | - Xuan Wang
- Department of Clinical Medical, the Second Clinical Medical College of Anhui Medical University, Hefei, Anhui 230032, China
| | - Xin Chen
- Department of Clinical Medical, the Second Clinical Medical College of Anhui Medical University, Hefei, Anhui 230032, China
| | - Yu Huang
- Department of Clinical Medical, the First Clinical Medical College of Anhui Medical University, Hefei, Anhui 230032, China
| | - Lang Wang
- Department of Clinical Medical, the First Clinical Medical College of Anhui Medical University, Hefei, Anhui 230032, China
| | - Zhou-Wei Xu
- Department of Emergency Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China; Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, Anhui 230032, China.
| |
Collapse
|
25
|
Tang S, Cai S, Ji S, Yan X, Zhang W, Qiao X, Zhang H, Ye M, Yu S. Isoangustone A induces autophagic cell death in colorectal cancer cells by activating AMPK signaling. Fitoterapia 2021; 152:104935. [PMID: 34004245 DOI: 10.1016/j.fitote.2021.104935] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/09/2021] [Accepted: 05/10/2021] [Indexed: 12/19/2022]
Abstract
Phytochemicals, especially flavonoids, have been widely investigated for their diversified pharmacological activities including anticancer activities. Previously we identified isoangustone A from licorice-derived compounds as a potent inducer of cell death. In the present study, the exact mechanism by which isoangustone A induced cell death was further investigated, with autophagy as an indispensible part of this process. Isoangustone A treatment activated autophagic signaling and induced a complete autophagic flux in colorectal cancer cells. Knockdown of ATG5 or pre-treatment with autophagy inhibitors significantly reversed isoangustone A-induced apoptotic signaling and loss of cell viability, suggesting autophagy plays an important role in isoangustone A-induced cell death. Isoangustone A inhibited Akt/mTOR signaling, and overexpressing of a constitutively activated Akt mildly suppressed isoangustone A-induced cell death. More importantly, isoangustone A inhibited cellular ATP level and activated AMPK, and pre-treatment with AMPK inhibitor or overexpression of dominant negative AMPKα2 significantly reversed isoangustone A-induced autophagy and cell death. Further study shows isoangustone A dose-dependently inhibited mitochondrial respiration, which could be responsible for isoangustone A-induced activation of AMPK. Finally, isoangustone A at a dosage of 10 mg/kg potently activated AMPK and autophagic signaling in and inhibited the growth of SW480 human colorectal xenograft in vivo. Taken together, induction of autophagy through activation of AMPK is an important mechanism by which isoangustone A inhibits tumor growth, and isoangustone A deserves further investigation as a promising anti-cancer agent.
Collapse
Affiliation(s)
- Shunan Tang
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University School of Pharmaceutical Sciences, Beijing 100191, PR China; Department of Molecular and Cellular Pharmacology, Peking University School of Pharmaceutical Sciences, Beijing 100191, PR China
| | - Sina Cai
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University School of Pharmaceutical Sciences, Beijing 100191, PR China; Department of Molecular and Cellular Pharmacology, Peking University School of Pharmaceutical Sciences, Beijing 100191, PR China
| | - Shuai Ji
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University School of Pharmaceutical Sciences, Beijing 100191, PR China; Department of Natural Medicines, Peking University School of Pharmaceutical Sciences, Beijing 100191, PR China
| | - Xiaojin Yan
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University School of Pharmaceutical Sciences, Beijing 100191, PR China; Department of Molecular and Cellular Pharmacology, Peking University School of Pharmaceutical Sciences, Beijing 100191, PR China
| | - Weijia Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University School of Pharmaceutical Sciences, Beijing 100191, PR China; Department of Molecular and Cellular Pharmacology, Peking University School of Pharmaceutical Sciences, Beijing 100191, PR China
| | - Xue Qiao
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University School of Pharmaceutical Sciences, Beijing 100191, PR China; Department of Natural Medicines, Peking University School of Pharmaceutical Sciences, Beijing 100191, PR China
| | - Hongquan Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University School of Pharmaceutical Sciences, Beijing 100191, PR China; Department of Anatomy, Histology and Embryology, Peking University School of Basic Medicinal Sciences, PR China
| | - Min Ye
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University School of Pharmaceutical Sciences, Beijing 100191, PR China; Department of Natural Medicines, Peking University School of Pharmaceutical Sciences, Beijing 100191, PR China.
| | - Siwang Yu
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University School of Pharmaceutical Sciences, Beijing 100191, PR China; Department of Molecular and Cellular Pharmacology, Peking University School of Pharmaceutical Sciences, Beijing 100191, PR China.
| |
Collapse
|
26
|
Cayetano-Salazar L, Olea-Flores M, Zuñiga-Eulogio MD, Weinstein-Oppenheimer C, Fernández-Tilapa G, Mendoza-Catalán MA, Zacapala-Gómez AE, Ortiz-Ortiz J, Ortuño-Pineda C, Navarro-Tito N. Natural isoflavonoids in invasive cancer therapy: From bench to bedside. Phytother Res 2021; 35:4092-4110. [PMID: 33720455 DOI: 10.1002/ptr.7072] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 02/08/2021] [Accepted: 02/23/2021] [Indexed: 01/23/2023]
Abstract
Cancer is a public health problem worldwide, and one of the crucial steps within tumor progression is the invasion and metastasis of cancer cells, which are directly related to cancer-associated deaths in patients. Recognizing the molecular markers involved in invasion and metastasis is essential to find targeted therapies in cancer. Interestingly, about 50% of the discovered drugs used in chemotherapy have been obtained from natural sources such as plants, including isoflavonoids. Until now, most drugs are used in chemotherapy targeting proliferation and apoptosis-related molecules. Here, we review recent studies about the effect of isoflavonoids on molecular targets and signaling pathways related to invasion and metastasis in cancer cell cultures, in vivo assays, and clinical trials. This review also reports that glycitein, daidzein, and genistein are the isoflavonoids most studied in preclinical and clinical trials and displayed the most anticancer activity targeting invasion-related proteins such as MMP-2 and MMP-9 and also EMT-associated proteins. Therefore, the diversity of isoflavonoids is promising molecules to be used as chemotherapeutic in invasive cancer. In the future, more clinical trials are needed to validate the effectiveness of the various natural isoflavonoids in the treatment of invasive cancer.
Collapse
Affiliation(s)
- Lorena Cayetano-Salazar
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Gro, Mexico
| | - Monserrat Olea-Flores
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Gro, Mexico
| | - Miriam D Zuñiga-Eulogio
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Gro, Mexico
| | | | - Gloria Fernández-Tilapa
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Gro, Mexico
| | - Miguel A Mendoza-Catalán
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Gro, Mexico
| | - Ana E Zacapala-Gómez
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Gro, Mexico
| | - Julio Ortiz-Ortiz
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Gro, Mexico
| | - Carlos Ortuño-Pineda
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Gro, Mexico
| | - Napoleón Navarro-Tito
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Gro, Mexico
| |
Collapse
|
27
|
Alshehri MA, Alshehri MM, Albalawi NN, Al-Ghamdi MA, Al-Gayyar MMH. Heparan sulfate proteoglycans and their modification as promising anticancer targets in hepatocellular carcinoma. Oncol Lett 2021; 21:173. [PMID: 33552290 PMCID: PMC7798035 DOI: 10.3892/ol.2021.12434] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 12/08/2020] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common types of primary liver cancer. Despite advancements in the treatment strategies of HCC, there is an urgent requirement to identify and develop novel therapeutic drugs that do not lead to resistance. These novel agents should have the potential to influence the primary mechanisms participating in the pathogenesis of HCC. Heparan sulfate proteoglycans (HSPGs) are major elements of the extracellular matrix that perform structural and signaling functions. HSPGs protect against invasion of tumor cells by preventing cell infiltration and intercellular adhesion. Several enzymes, such as heparanase, matrix metalloproteinase-9 and sulfatase-2, have been reported to affect HSPGs, leading to their degradation and thus enhancing tumor invasion. In addition, some compounds that are produced from the degradation of HSPGs, including glypican-3 and syndecan-1, enhance tumor progression. Thus, the identification of enzymes that affect HSPGs or their degradation products in HCC may lead to the development of novel therapeutic targets. The present review discusses the main enzymes and compounds associated with HSPGs, and their involvement with the pathogenicity of HCC.
Collapse
Affiliation(s)
- Mohammed A Alshehri
- PharmD Program, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Moath M Alshehri
- PharmD Program, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Naif N Albalawi
- PharmD Program, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Moshari A Al-Ghamdi
- PharmD Program, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Mohammed M H Al-Gayyar
- PharmD Program, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia.,Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| |
Collapse
|
28
|
Curcumin Analogue L48H37 Suppresses Human Osteosarcoma U2OS and MG-63 Cells' Migration and Invasion in Culture by Inhibition of uPA via the JAK/STAT Signaling Pathway. Molecules 2020; 26:molecules26010030. [PMID: 33374783 PMCID: PMC7795127 DOI: 10.3390/molecules26010030] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/15/2020] [Accepted: 12/19/2020] [Indexed: 12/16/2022] Open
Abstract
Osteosarcoma, the most prevalent malignant bone tumor in the pediatric age group, is responsible for the great majority of cancer-associated deaths owing to its highly metastatic potential. The anti-metastatic effects of the new curcumin analogue L48H37 in human osteosarcoma are still unknown; hence, we investigated whether L48H37 represses human osteosarcoma cells’ biological behavior of migratory potential and invasive activities and attempted to delve into its underlying mechanisms. L48H37 up to 5 μM inhibited, without cytotoxicity, the motility, migration, and invasion of human osteosarcoma U2OS and MG-63 cells. In U2OS cells, the human protease array revealed an obvious decrease in urokinase plasminogen activator (uPA) expression after L48H37 treatment, and L48H37 actually reduced the level, protein and mRNA expression, and promoter activity of uPA dose-dependently. L48H37 decreased the phosphorylation of STAT3, JAK1, JAK2, and JAK3 in U2OS cells, but did not affect the phosphorylation of ERK, JNK, p38, and Akt. Using colivelin, an activator of STAT3, the L48H37-induced decrease in uPA and migratory potential could be countered as expected. Collectively, L48H37 represses the invasion and migration capabilities of U2OS and MG-63 cells by the suppression of uPA expression and the inhibition of JAK/STAT signaling. These results suggest that L48H37 may be a potential candidate for anti-metastatic treatment of human osteosarcoma.
Collapse
|
29
|
Solid-State Fermentation of Aspergillus niger to Optimize Extraction Process of Isoliquiritigenin from Glycyrrhiza uralensis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:8927858. [PMID: 33354225 PMCID: PMC7737459 DOI: 10.1155/2020/8927858] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/16/2020] [Accepted: 11/22/2020] [Indexed: 12/12/2022]
Abstract
We successfully extracted isoliquiritigenin from Glycyrrhiza uralensis via fermentation with Aspergillus niger and ultrasonic-assisted extraction. In brief, we used A. niger fermentation to culture G. uralensis powder, and we optimized some key parameters such as reaction conditions of pH, inoculation concentration of A. niger, fermentation time, and solid-liquid ratio. Based on a single-factor experiment, we utilized the response surface methodology (RSM) approach to optimize this extraction procedure. Using the RSM approach, optimized conditions of pH = 3.694, the solid-liquid ratio = 1 : 2.155, and the inoculation concentration of A. niger = 1466745 were selected. Optimized conditions resulted in an extraction efficiency of 1.525 mg/g. These results showed that the extraction of isoliquiritigenin was most affected by pH and then the time of fermentation and the solid-liquid ratio. Overall, the developed extraction technique yielded 5 times the amount of isoliquiritigenin when compared to traditional methods.
Collapse
|
30
|
Huang T, Guo YZ, Yue X, Zhang GP, Zhang Y, Kuang M, Peng BG, Li SQ. Cripto-1 promotes tumor invasion and predicts poor outcomes in hepatocellular carcinoma. Carcinogenesis 2020; 41:571-581. [PMID: 32648918 DOI: 10.1093/carcin/bgz133] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/19/2019] [Accepted: 08/25/2019] [Indexed: 12/16/2022] Open
Abstract
Cripto-1 (CR1), an oncofetal protein, had been implied to reactivate in some cancers. However, the relationship between CR1 expression and patient outcomes and the tumor biological function of CR1 contributing to invasion and metastasis in hepatocellular carcinoma (HCC) is poorly defined. In this study, we demonstrated that CR1 was expressed in over 80% of HCCs in a training cohort (n = 242) and a validation cohort (n = 159). High CR1 expression was significantly correlated with aggressive HCC phenotypes (i.e. portal vein tumor thrombus, microscopic vascular invasion, multiple tumors and poor tumor differentiation). In both the training and validation cohorts, patients with high CR1 expression had remarkably shorter disease-free survival and overall survival rates than those with low CR1 expression. A series in vitro and in vivo assays showed that CR1 substantially promoted HCC cell migration, invasion and metastasis. Mechanistically, we demonstrated that CR1 induced HCC cells to undergo epithelial-mesenchymal transition through activating the Akt/NFκB/p65 signaling. Chromatin immunoprecipitation assay showed that NFκB/p65 enhanced CR1 expression by binding its promoter. Thus, CR1 and NFκB/p65 form a positive feedback loop that sustained the process of migration and invasion of HCC. Therefore, CR1 plays an important role in HCC invasion and metastasis and may be an effective and reliable prognostic biomarker for HCC recurrence after resection. Targeting CR1 may be a promising treatment for HCC.
Collapse
Affiliation(s)
- Tao Huang
- Department of Liver Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yi-Zhan Guo
- Department of Liver Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Department of Surgery, University of Virginia, Charlottesville, VA, USA
| | - Xiao Yue
- Department of Liver Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Guo-Pei Zhang
- Department of Liver Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yi Zhang
- Department of Liver Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ming Kuang
- Department of Liver Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Bao-Gang Peng
- Department of Liver Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shao-Qiang Li
- Department of Liver Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
31
|
Montané X, Kowalczyk O, Reig-Vano B, Bajek A, Roszkowski K, Tomczyk R, Pawliszak W, Giamberini M, Mocek-Płóciniak A, Tylkowski B. Current Perspectives of the Applications of Polyphenols and Flavonoids in Cancer Therapy. Molecules 2020; 25:E3342. [PMID: 32717865 PMCID: PMC7435624 DOI: 10.3390/molecules25153342] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/17/2020] [Accepted: 07/21/2020] [Indexed: 12/13/2022] Open
Abstract
The development of anticancer therapies that involve natural drugs has undergone exponential growth in recent years. Among the natural compounds that produce beneficial effects on human health, polyphenols have shown potential therapeutic applications in cancer due to their protective functions in plants, their use as food additives, and their excellent antioxidant properties. The possibility of combining conventional drugs-which are usually more aggressive than natural compounds-with polyphenols offers very valuable advantages such as the building of more efficient anticancer therapies with less side effects on human health. This review shows a wide range of trials in which polyphenolic compounds play a crucial role as anticancer medicines alone or in combination with other drugs at different stages of cancer: cancer initiation, promotion, and growth or progression. Moreover, the future directions in applications of various polyphenols in cancer therapy are emphasized.
Collapse
Affiliation(s)
- Xavier Montané
- Department of Chemical Engineering, University Rovira i Virgili, Av. Països Catalans 26, Campus Sescelades, 43007 Tarragona, Spain; (B.R.-V.); (M.G.)
| | - Oliwia Kowalczyk
- Research and Education Unit for Communication in Healthcare Department of Cardiac Surgery, Ludwik Rydygier Collegium Medicum in Bydgoszcz Nicolaus Copernicus University in Torun, M. Curie Sklodowskiej St. 9, 85-094 Bydgoszcz, Poland;
- Kazimierz Wielki University, Jagiellonska St. 11, 95-067 Bydgoszcz, Poland
| | - Belen Reig-Vano
- Department of Chemical Engineering, University Rovira i Virgili, Av. Països Catalans 26, Campus Sescelades, 43007 Tarragona, Spain; (B.R.-V.); (M.G.)
| | - Anna Bajek
- Department of Tissue Engineering Chair of Urology, Ludwik Rydygier Collegium Medicum in Bydgoszcz Nicolaus Copernicus University in Torun, Karlowicza St. 24, 85-092 Bydgoszcz, Poland;
| | - Krzysztof Roszkowski
- Department of Oncology, Nicolaus Copernicus University in Torun, Romanowskiej St. 2, 85-796 Bydgoszcz, Poland;
| | - Remigiusz Tomczyk
- Department of Cardiac Surgery, Ludwik Rydygier Collegium Medicum in Bydgoszcz Nicolaus Copernicus University in Torun, M. Curie Sklodowskiej St. 9, 85-094 Bydgoszcz, Poland; (R.T.); (W.P.)
| | - Wojciech Pawliszak
- Department of Cardiac Surgery, Ludwik Rydygier Collegium Medicum in Bydgoszcz Nicolaus Copernicus University in Torun, M. Curie Sklodowskiej St. 9, 85-094 Bydgoszcz, Poland; (R.T.); (W.P.)
| | - Marta Giamberini
- Department of Chemical Engineering, University Rovira i Virgili, Av. Països Catalans 26, Campus Sescelades, 43007 Tarragona, Spain; (B.R.-V.); (M.G.)
| | - Agnieszka Mocek-Płóciniak
- Department of General and Environmental Microbiology, University of Life Sciences Poznan, ul. Szydłowska 50, 60-656 Poznań, Poland;
| | - Bartosz Tylkowski
- Eurecat, Centre Tecnològic de Catalunya. Chemical Technologies Unit, Marcel·lí Domingo s/n, 43007 Tarragona, Spain
| |
Collapse
|
32
|
Zhang E, Yin S, Zhao S, Zhao C, Yan M, Fan L, Hu H. Protective effects of glycycoumarin on liver diseases. Phytother Res 2020; 34:1191-1197. [PMID: 31840883 DOI: 10.1002/ptr.6598] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 11/01/2019] [Accepted: 11/27/2019] [Indexed: 12/18/2022]
Abstract
Licorice, an edible and medicinal plant, has long been used to treat various diseases, including liver diseases. Glycycoumarin (GCM) is a representative coumarin compound in licorice with favorable bioavailability feature. Recent studies by us demonstrated that GCM is highly effective against alcoholic liver disease, nonalcoholic fatty liver disease, acetaminophen-induced hepatotoxicity, and liver cancer through mechanisms involved in activation of Nrf2 antioxidant system, stimulation of AMPK-mediated energy homeostasis, induction of autophagy degradation process, and inhibiting oncogenic kinase T-lymphokine-activated killer cell-originated protein kinase activity. In this review, we summarize the findings on the hepatoprotective effect of GCM, discuss the signaling pathways underlying GCM-induced protective effect on liver diseases, and propose the issues that need to be addressed to promote further development of GCM as a clinically useful hepatoprotective agent.
Collapse
Affiliation(s)
- Enxiang Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Shutao Yin
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Shuang Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Chong Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Mingzhu Yan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Lihong Fan
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Hongbo Hu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
33
|
Zhang J, Li X, Huang L. Anticancer activities of phytoconstituents and their liposomal targeting strategies against tumor cells and the microenvironment. Adv Drug Deliv Rev 2020; 154-155:245-273. [PMID: 32473991 PMCID: PMC7704676 DOI: 10.1016/j.addr.2020.05.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/07/2020] [Accepted: 05/20/2020] [Indexed: 12/13/2022]
Abstract
Various bioactive ingredients have been extracted from Chinese herbal medicines (CHMs) that affect tumor progression and metastasis. To further understand the mechanisms of CHMs in cancer therapy, this article summarizes the effects of five categories of CHMs and their active ingredients on tumor cells and the tumor microenvironment. Despite their treatment potential, the undesirable physicochemical properties (poor permeability, instability, high hydrophilicity or hydrophobicity, toxicity) and unwanted pharmacokinetic profiles (short half-life in blood and low bioavailability) restrict clinical studies of CHMs. Therefore, development of liposomes through relevant surface modifying techniques to achieve targeted CHM delivery for cancer cells, i.e., extracellular and intracellular targets and targets in tumor microenvironment or vasculature, have been reviewed. Current challenges of liposomal targeting of these phytoconstituents and future perspective of CHM applications are discussed to provide an informative reference for interested readers.
Collapse
Affiliation(s)
- Jing Zhang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Xiang Li
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Leaf Huang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States.
| |
Collapse
|
34
|
Zhong L, Wu Y, Geng J, Lei X, Wu Q, Chen T. Glabridin downregulates lipopolysaccharide-induced oxidative stress and neuroinflammation in BV-2 microglial cells via suppression of nuclear factor-κB signaling pathway. Pharmacogn Mag 2020. [DOI: 10.4103/pm.pm_497_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
35
|
Modarresi M, Hajialyani M, Moasefi N, Ahmadi F, Hosseinzadeh L. Evaluation of the Cytotoxic and Apoptogenic Effects of Glabridin and Its Effect on Cytotoxicity and Apoptosis Induced by Doxorubicin Toward Cancerous Cells. Adv Pharm Bull 2019; 9:481-489. [PMID: 31592119 PMCID: PMC6773930 DOI: 10.15171/apb.2019.057] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/18/2019] [Accepted: 05/04/2019] [Indexed: 12/19/2022] Open
Abstract
Purposes: In the present study, we tried for the first time to examine the anti-proliferative and
anti-apoptogenic effect of Glabridin (Glab) toward three groups of cancer cells (SKNMC,
H1299, and A2780). Furthermore, the possibility of co-administration of Glab with doxorubicin
(DOX) to these cells was also examined to find out whether Glab can potentiate the cytotoxic
effect of this chemotherapy agent.
Methods: Different cellular assays (MTT, caspase-3 activity, MMP, RT-PCR analysis) were carried
out on the cancer cells treated with Glab.
Results: Cellular toxicity assay revealed that Glab can potentially reduce the viability of these
cells with IC50 concentrations up to 10, 12, and 38 μM toward A2780, SKNMC, and H1299 cell
lines, respectively. The results of MMP and caspase-3 activity assays, in association with the
results corresponding to the BAX and Bcl-2 gene expressions, altogether revealed that Glab can
exert apoptogenic effect on these cells. The intrinsic mitochondrial pathway was found to be
the main mechanism, in which Glab induced apoptosis toward H1299 cells and SKNMC cells,
while the apoptosis mechanism for A2780 cells could be probably through extrinsic pathway.
Glab also potentiated the cytotoxic effect of DOX and its accumulation in H1299 cell line.
Conclusion: The results of this study revealed the promising cytotoxic role of Glab on different
carcinoma cells. These data also suggested that co-chemotherapy method using Glab could be
effective for treatment of cancer, but further in-vivo and clinical studies are still needed to assure
these results.
Collapse
Affiliation(s)
- Masoud Modarresi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Marziyeh Hajialyani
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Narges Moasefi
- Medical Biology Research Center , Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Farahnaz Ahmadi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Leila Hosseinzadeh
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| |
Collapse
|
36
|
Gioti K, Papachristodoulou A, Benaki D, Beloukas A, Vontzalidou A, Aligiannis N, Skaltsounis AL, Mikros E, Tenta R. Glycyrrhiza glabra-Enhanced Extract and Adriamycin Antiproliferative Effect on PC-3 Prostate Cancer Cells. Nutr Cancer 2019; 72:320-332. [PMID: 31274029 DOI: 10.1080/01635581.2019.1632357] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Prostate cancer is the second most commonly diagnosed cancer in men worldwide, which is almost incurable, once it progresses into the metastatic stage. Adriamycin (ADR) is a known chemotherapeutic agent that causes severe side effects. In recent years, studies in natural plant products have revealed their anticancer activities. In particular, Glycyrrhiza glabra enhanced extract (GGE), commonly known as licorice, has been reported to exert antiproliferative properties against cancer cells. In this study, the cytotoxic potential of GGE was assessed in PC-3 cells, when it is administrated alone or in combination with Adriamycin. PC-3 cells were treated with GGE and/or ADR, and the inhibition of cell proliferation was evaluated by the MTT assay. Cell cycle alterations and apoptosis rate were measured through flow cytometry. Expression levels of autophagy-related genes were evaluated with specific ELISA kits, Western blotting, and real-time PCR, while NMR spectrometry was used to identify the implication of specific metabolites. Our results demonstrated that GGE alone or in co-treatment with ADR shows antiproliferative properties against PC-3 cells, which are mediated by both apoptosis and autophagy mechanisms.
Collapse
Affiliation(s)
- Katerina Gioti
- School of Health Sciences and Education, Department of Nutrition and Dietetics, Harokopio University, Athens, Greece
| | - Anastasia Papachristodoulou
- School of Health Sciences and Education, Department of Nutrition and Dietetics, Harokopio University, Athens, Greece.,Faculty of Pharmacy, Department of Pharmaceutical Chemistry, University of Athens, Zografou, Greece
| | - Dimitra Benaki
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, University of Athens, Zografou, Greece
| | - Apostolos Beloukas
- Department of Biomedical Sciences, University of West Attica, Athens, Greece.,Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Argyro Vontzalidou
- Faculty of Pharmacy, Department of Pharmacognosy and Natural Products Chemistry, University of Athens, Zografou, Greece
| | - Nektarios Aligiannis
- Faculty of Pharmacy, Department of Pharmacognosy and Natural Products Chemistry, University of Athens, Zografou, Greece
| | - Alexios-Leandros Skaltsounis
- Faculty of Pharmacy, Department of Pharmacognosy and Natural Products Chemistry, University of Athens, Zografou, Greece
| | - Emmanuel Mikros
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, University of Athens, Zografou, Greece
| | - Roxane Tenta
- School of Health Sciences and Education, Department of Nutrition and Dietetics, Harokopio University, Athens, Greece
| |
Collapse
|
37
|
TFAP4 Promotes Hepatocellular Carcinoma Invasion and Metastasis via Activating the PI3K/AKT Signaling Pathway. DISEASE MARKERS 2019; 2019:7129214. [PMID: 31281549 PMCID: PMC6590577 DOI: 10.1155/2019/7129214] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 04/29/2019] [Accepted: 05/06/2019] [Indexed: 12/12/2022]
Abstract
Transcription factor activating enhancer binding protein 4 (TFAP4) is established as a regulator of human cancer genesis and progression. Overexpression of TFAP4 indicates poor prognosis in various malignancies. The current study was performed to quantify TFAP4 expression as well as to further determine its potential prognostic value and functional role in patients with hepatocellular carcinoma (HCC). We identified that the expression of TFAP4 mRNA in 369 tumor tissues was higher than that in 160 normal liver tissues. Upregulated TFAP4 expressions were discovered in HCC cell lines compared to the healthy liver cell line, and similarly, the levels of TFAP4 were higher in tumor tissues than its expression in paratumor tissues. High mRNA and protein expression of TFAP4 was associated with worse overall survival (OS) and disease-free survival (DFS). Additionally, TFAP4 expression emerged as a risk factor independently affecting both OS and DFS of HCC patients. Functional studies demonstrated that TFAP4 increased HCC cell migration and invasion. Further investigations found that TFAP4 promotes invasion and metastasis by inducing epithelial-mesenchymal transition (EMT) and regulating MMP-9 expression via activating the PI3K/AKT signaling pathway in HCC. In conclusion, our study demonstrated that TFAP4 is a valuable prognostic biomarker in determining the likelihood of tumor metastasis and recurrence, as well as the long-term survival rates of HCC patients. Exploring the regulatory mechanism of TFAP4 will also contribute to the development of new prevention and treatment strategies for HCC.
Collapse
|
38
|
Kapkoti DS, Singh S, Alam S, Khan F, Luqman S, Bhakuni RS. In vitro antiproliferative activity of glabridin derivatives and their in silico target identification. Nat Prod Res 2018; 34:1735-1742. [PMID: 30580626 DOI: 10.1080/14786419.2018.1530228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Novel Mannich base derivatives of glabridin were synthesized and their antiproliferative activity were performed along with our previously reported glabridin-chalcone hybrids molecules (GCHMs) against various human cell lines MDA-MB-231 (breast adenocarcinoma), HEK-293 (embryonic kidney cell line), K562 (leukemia), MCF-7 (breast adenocarcinoma), HeLa (cervix adenocarcinoma), HepG2 (hepatocellular carcinoma) and WRL-68 (hepatic carcinoma). The result showed that the glabridin significantly reduced cell proliferation with IC50 ranges from 3.67 to 58.30 µM against all the tested cell lines. The remarkable reduction in antiproliferative activity 2',4'-dimethoxyglabridin and GCHMs compounds with phenolic OH groups protected by methoxy (OCH3) groups suggested that the free OH groups are essential factor for the antiproliferative activity of glabridin and its derivatives. The Mannich base derivatives of glabridin showed moderate activity IC50 (2.20->95.78 µM). Furthermore, in silico target identification analysis revealed that AKT1, DECR1 and NOS1 are the potential targets for glabridin and their derivatives.
Collapse
Affiliation(s)
- Deepak Singh Kapkoti
- Medicinal Chemistry Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Shilpi Singh
- Molecular Bioprospection Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Sarfaraz Alam
- Metabolic and Structural Biology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Feroz Khan
- Metabolic and Structural Biology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Suaib Luqman
- Molecular Bioprospection Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Rajendra Singh Bhakuni
- Medicinal Chemistry Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| |
Collapse
|
39
|
Qu D, Cui F, Lu D, Yang Y, Xu Y. DEP domain containing 1 predicts prognosis of hepatocellular carcinoma patients and regulates tumor proliferation and metastasis. Cancer Sci 2018; 110:157-165. [PMID: 30417471 PMCID: PMC6317931 DOI: 10.1111/cas.13867] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/01/2018] [Accepted: 11/03/2018] [Indexed: 12/14/2022] Open
Abstract
DEP domain containing 1 (DEPDC1) protein is a novel oncoantigen upregulated in multiple types of cancers which present oncogenic activity and high immunogenicity. However, the function and therapeutic potential of DEPDC1 in hepatocellular carcinoma (HCC) remain unclear. In the present study, we showed that DEPDC1 was frequently upregulated in HCC and associated with cancer diagnosis and poor prognosis for HCC patients. Moreover, DEPDC1 promotes HCC cell proliferation in vitro as well as carcinogenesis in vivo. Notably, DEPDC1 overexpression also increases the neoplasm metastasis ability of HCC cells both in vivo and in vitro. Gene set enrichment analysis results showed that DEPDC1 expression is positively correlated with K‐RAS signal pathway, pathways in cancer and WNT/β‐catenin signal pathway, all of which are closely associated with specific cancer‐related gene sets. Our study provides the basis for further investigation of the molecular mechanism by which DEPDC1 promotes the development and metastasis of HCC.
Collapse
Affiliation(s)
- Di Qu
- Department of Oncology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Feng Cui
- Department of Oncology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dan Lu
- Department of Oncology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yu Yang
- Department of Oncology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yuqing Xu
- Department of Oncology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
40
|
Natural activators of adenosine 5′-monophosphate (AMP)-activated protein kinase (AMPK) and their pharmacological activities. Food Chem Toxicol 2018; 122:69-79. [DOI: 10.1016/j.fct.2018.09.079] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 08/23/2018] [Accepted: 09/30/2018] [Indexed: 12/25/2022]
|
41
|
Zhu W, Li W, Geng Q, Wang X, Sun W, Jiang H, Pu X. Silence of Stomatin-Like Protein 2 Represses Migration and Invasion Ability of Human Liver Cancer Cells via Inhibiting the Nuclear Factor Kappa B (NF-κB) Pathway. Med Sci Monit 2018; 24:7625-7632. [PMID: 30359340 PMCID: PMC6213821 DOI: 10.12659/msm.909156] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 03/07/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Liver cancer is the third leading cause of tumor-related deaths worldwide. Stomatin-like protein 2 (STOML2) is obviously upregulated in various tumors. In this study, we explored the potential roles and mechanisms of si-STOML2 in the migration and invasion of human hepatoma LM3 cells. MATERIAL AND METHODS The expression levels of STOML2 in tissues and cells were separately analyzed with quantitative real-time PCR (qRT-PCR) and Western blotting. The viability, migration, and invasion of cells were assessed by cell counting kit-8 (CCK-8), wound healing, and transwell analysis, respectively. The mRNA and protein levels of various factors were separately measured using qRT-PCR and Western blotting. Correlation analysis between the expression of STOML2 and the clinicopathological features of liver cancer patients was evaluated using the chi-square test. RESULTS Surprisingly, our results showed that STOML2 was upregulated in liver cancer tissue and cells, and this upregulation was linked to tumor size, histologic grade, and metastasis, but was not associated with sex, age, or TNM stage. The knockdown of STOML2 significantly repressed the viability, migration, and invasion of LM3 cells. We also observed that silencing STOML2 markedly downregulated the expression levels of matrix metalloproteinase-2 (MMP-2), MMP-9, metastatic tumor antigen 1 (MTA1), and nuclear factor kappa B (NF-κB), and upregulated levels of E-cadherin, tissue inhibitor of metalloproteinases 2 (TIMP2), and the inhibitor of kappa B (IκB). CONCLUSIONS STOML2 has a vital role in the progression of liver cancer. STOML2 silencing in LM3 cells obviously repressed the abilities of migration and invasion via suppressing the NF-κB pathway.
Collapse
Affiliation(s)
- Wenyu Zhu
- Department of Oncology, The Affiliated Changzhou No. 2 People’s Hospital with Nanjing Medical University, Changzhou, Jiangsu, P.R. China
| | - Wei Li
- Department of Oncology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Qian Geng
- Department of Oncology, The Affiliated Changzhou No. 2 People’s Hospital with Nanjing Medical University, Changzhou, Jiangsu, P.R. China
| | - Xiaoying Wang
- Department of Oncology, The Affiliated Changzhou No. 2 People’s Hospital with Nanjing Medical University, Changzhou, Jiangsu, P.R. China
| | - Wei Sun
- Department of Oncology, The Affiliated Changzhou No. 2 People’s Hospital with Nanjing Medical University, Changzhou, Jiangsu, P.R. China
| | - Hua Jiang
- Department of Oncology, The Affiliated Changzhou No. 2 People’s Hospital with Nanjing Medical University, Changzhou, Jiangsu, P.R. China
| | - Xiaolin Pu
- Department of Oncology, The Affiliated Changzhou No. 2 People’s Hospital with Nanjing Medical University, Changzhou, Jiangsu, P.R. China
| |
Collapse
|
42
|
Kim DH, Park SJ, Lee SY, Yoon HS, Park CM. Silymarin Attenuates Invasion and Migration through the Regulation of Epithelial-mesenchymal Transition in Huh7 Cells. KOREAN JOURNAL OF CLINICAL LABORATORY SCIENCE 2018. [DOI: 10.15324/kjcls.2018.50.3.337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Do-Hoon Kim
- Department of Clinical Laboratory Science, Dong-Eui University, Busan, Korea
| | - So-Jeong Park
- Department of Clinical Laboratory Science, Dong-Eui University, Busan, Korea
| | - Seung-Yeon Lee
- Department of Clinical Laboratory Science, Dong-Eui University, Busan, Korea
| | - Hyun-Seo Yoon
- Department of Dental Hygiene, Dong-Eui University, Busan, Korea
| | - Chung Mu Park
- Department of Clinical Laboratory Science, Dong-Eui University, Busan, Korea
| |
Collapse
|
43
|
Jie Z, Xie Z, Zhao X, Sun X, Yu H, Pan X, Shen S, Qin A, Fang X, Fan S. Glabridin inhibits osteosarcoma migration and invasion via blocking the p38- and JNK-mediated CREB-AP1 complexes formation. J Cell Physiol 2018; 234:4167-4178. [PMID: 30146723 DOI: 10.1002/jcp.27171] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 07/17/2018] [Indexed: 01/11/2023]
Abstract
Osteosarcoma is the most common bone malignancy, and it seriously affects the quality of life of affected children and adolescents. Glabridin (GLA), a major component of licorice root extract, has been reported to exert antitumor effects against a variety of tumor types; however, its effects on osteosarcoma have not been elucidated. In the current study, we investigate the effects and potential antimetastatic mechanisms of GLA on osteosarcoma in vitro and in vivo. Flow cytometry showed that GLA induced G2/M cell cycle phase arrest and promoted cell apoptosis. Transwell and wound-healing assays showed that GLA significantly decreased the migration and invasion of osteosarcoma cells. Further western blotting and quantitative real-time polymerase chain reaction showed that the expression of matrix metalloproteinase (MMP)-2 and MMP-9 in MG63 and HOS cells were reduced after GLA treatment. Moreover, western blotting demonstrated that GLA downregulated the phosphorylation of p38 mitogen-activated protein kinases and c-Jun N-terminal kinase. A coimmunoprecipitation assay illustrated that formation of cAMP response element-binding protein (CREB)-activating protein 1 (AP1) complexes and the DNA binding activities of CREB and AP1 in MG63 and HOS cells were impaired following treatment with GLA. Finally, GLA inhibited tumor growth and suppressed osteosarcoma cell metastasis in vivo. Overall, our findings highlight the potential of GLA as a therapeutic agent for the prevention and treatment of tumor metastasis.
Collapse
Affiliation(s)
- Zhiwei Jie
- Department of Orthopaedics, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China
| | - Ziang Xie
- Department of Orthopaedics, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China
| | - Xiangde Zhao
- Department of Orthopaedics, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China
| | - Xuewu Sun
- Department of Orthopaedics, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China
| | - Hejun Yu
- Department of Orthopaedics, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xin Pan
- Department of Orthopaedics, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China
| | - Shuying Shen
- Department of Orthopaedics, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China
| | - An Qin
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Ninth People's Hospital, Shanghai, China
| | - Xiangqian Fang
- Department of Orthopaedics, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shunwu Fan
- Department of Orthopaedics, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
44
|
Chen CT, Chen YT, Hsieh YH, Weng CJ, Yeh JC, Yang SF, Lin CW, Yang JS. Glabridin induces apoptosis and cell cycle arrest in oral cancer cells through the JNK1/2 signaling pathway. ENVIRONMENTAL TOXICOLOGY 2018; 33:679-685. [PMID: 29663662 DOI: 10.1002/tox.22555] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 03/07/2018] [Accepted: 03/17/2018] [Indexed: 06/08/2023]
Abstract
Glabridin, a flavonoid extracted from licorice (Glycyrrhiza glabra), possesses various biological properties, including anticancer activities. However, the effect of glabridin on oral cancer cell apoptosis and the underlying molecular mechanisms has not been elucidated. In this study, we demonstrated that glabridin treatment significantly inhibits cell proliferation in human oral cancer SCC-9 and SAS cell lines. Flow cytometric assays demonstrated that glabridin induced several features of apoptosis, such as sub-G1 phase cell increase and phosphatidylserine externalization. Furthermore, glabridin induced apoptosis dose-dependently in SCC-9 cells through caspase-3, -8, and -9 activation and poly (ADP-ribose) polymerase cleavage. Moreover, glabridin increased the phosphorylation of the extracellular signal-regulated kinase, p38, and c-Jun N-terminal kinase (JNK) pathways in a dose-dependent manner. Moreover, the inhibition of the JNK1/2 inhibitor significantly reversed the glabridin-induced activation of the caspase pathway. In conclusion, our findings suggest that glabridin induces oral cancer cell apoptosis through the JNK1/2 pathway and is a potential therapeutic agent for oral cancer.
Collapse
Affiliation(s)
- Chang-Tai Chen
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yi-Tzu Chen
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yi-Hsien Hsieh
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan
| | - Chia-Jui Weng
- Departmrnt of Living Services Industry, Tainan University of Technology, Tainan City, Taiwan
| | - Jung-Chun Yeh
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chiao-Wen Lin
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Jia-Sin Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
45
|
Zhang L, Chen H, Wang M, Song X, Ding F, Zhu J, Li X. Effects of glabridin combined with 5-fluorouracil on the proliferation and apoptosis of gastric cancer cells. Oncol Lett 2018; 15:7037-7045. [PMID: 29725429 PMCID: PMC5920351 DOI: 10.3892/ol.2018.8260] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 01/08/2018] [Indexed: 12/17/2022] Open
Abstract
Gastric cancer most commonly occurs in East Asia, and China accounts for more than half the of world's gastric cancer burden. Despite the efficacy of chemotherapy for patients, this treatment leads to significant patient inconvenience, toxicity and cost. The present study aimed to assess a non-toxic agent, glabridin, as a future chemotherapeutic approach for treating gastric cancer. Using cell proliferation, apoptosis, invasion, and colony formation assays, it was determined that glabridin alone, or in combination with 5-fluorouracil (5-FU), inhibited MKN-45 cell proliferation and invasion, and increased apoptosis. These effects were accompanied by downregulation of p16, E-cadherin and apoptosis regulator Bcl-2 protein, and upregulation of N-cadherin, apoptosis regulator BAX and caspases 3, 8 and 9. The results demonstrated that glabridin may inhibit the malignant proliferation of the human gastric cancer MKN-45 cell line and enhance the efficiency of 5-FU. The data indicate that the p16, and potentially the p16/cyclin-dependent kinase 4/cyclin D1 pathway, may be a novel target for gastric cancer therapy.
Collapse
Affiliation(s)
- Lei Zhang
- Fifth General Surgery Department, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Hongmei Chen
- Department of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Mingfei Wang
- Fifth General Surgery Department, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Xiaojing Song
- Fifth General Surgery Department, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Fanghui Ding
- Fifth General Surgery Department, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Jun Zhu
- Department of Pathology, The First Hospital of Lanzhou University, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Xun Li
- Fifth General Surgery Department, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
46
|
Stelma T, Leaner VD. KPNB1-mediated nuclear import is required for motility and inflammatory transcription factor activity in cervical cancer cells. Oncotarget 2018; 8:32833-32847. [PMID: 28427184 PMCID: PMC5464831 DOI: 10.18632/oncotarget.15834] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 02/07/2017] [Indexed: 12/14/2022] Open
Abstract
Karyopherin β1 is a nuclear import protein involved in the transport of proteins containing a nuclear localisation sequence. Elevated Karyopherin β1 expression has been reported in cancer and transformed cells and is essential for cancer cell proliferation and survival. Transcription factors such as NFĸB and AP-1 contain a nuclear localisation sequence and initiate the expression of multiple factors associated with inflammation and cancer cell biology. Our study investigated the effect of inhibiting nuclear import via Karyopherin β1 on cancer cell motility and inflammatory signaling using siRNA and the novel small molecule, Inhibitor of Nuclear Import-43, INI-43. Inhibition of Karyopherin β1 led to reduced migration and invasion of cervical cancer cells. Karyopherin β1 is essential for the translocation of NFĸB into the nucleus as nuclear import inhibition caused its cytoplasmic retention and decreased transcriptional activity. A similar decrease was seen in AP-1 transcriptional activity upon Karyopherin β1 inhibition. Consequently reduced interleukin-6, interleukin-1 beta, tumour necrosis factor alpha and granulocyte macrophage colony stimulating factor expression, target genes of NFkB and AP-1, was observed. Migration studies inhibiting individual transcription factors suggested that INI-43 may affect a combination of signaling events. Our study provides further evidence that inhibiting KPNB1 has anti-cancer effects and shows promise as a chemotherapeutic target.
Collapse
Affiliation(s)
- Tamara Stelma
- Division of Medical Biochemistry and Structural Biology, SAMRC Gynaecology Cancer Research Centre, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Virna D Leaner
- Division of Medical Biochemistry and Structural Biology, SAMRC Gynaecology Cancer Research Centre, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
47
|
Lee PH, Chu PM, Hsieh PL, Yang HW, Chueh PJ, Huang YF, Liao YW, Yu CC. Glabridin inhibits the activation of myofibroblasts in human fibrotic buccal mucosal fibroblasts through TGF-β/smad signaling. ENVIRONMENTAL TOXICOLOGY 2018; 33:248-255. [PMID: 29119715 DOI: 10.1002/tox.22512] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 10/26/2017] [Accepted: 10/27/2017] [Indexed: 05/20/2023]
Abstract
Oral submucous fibrosis (OSF) has been recognized as one of the oral potentially malignant disorders. Areca nut chewing is implicated in this pathological fibrosis, and it causes chronic inflammation and persistent activation of myofibroblasts. As yet, existing treatments only provide temporary symptomatic relief and there is a lack of an effective intervention to cure OSF. Therefore, development of approaches to ameliorate myofibroblast activities becomes a crucial objective to prevent the malignant progression of OSF. In this study, we examined the inhibitory effect of glabridin, an isoflavane extracted from licorice root, on the myofibroblast characteristics in human fibrotic buccal mucosal fibroblasts (fBMFs). Our results showed that myofibroblast activities, including collagen gel contractility, migration, invasion and wound healing abilities were reduced after exposure of glabridin in a dose-dependent manner. Most importantly, we demonstrated that the arecoline-induced myofiroblast activities were abolished by glabridin treatment. Additionally, the expression of the myofibroblast marker α-smooth muscle actin and other fibrogenic marker, type I collagen, in fBMFs were dose-dependently downregulated. Moreover, we showed that the production of TGF-β was suppressed by glabridin in fBMFs and the protein expression of phospho-Smad2 was decreased as well. In summary, our data suggested that glabridin repressed the myofibroblast features in fBMFs via TGF-β/Smad2 signaling pathway. Glabridin also prevented the arecoline-increased myofibroblast activities, and could serve as a natural anti-fibrosis compound for OSF.
Collapse
Affiliation(s)
- Ping-Hui Lee
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
| | - Pei-Ming Chu
- Department of Anatomy and Graduate Institute of Biomedical Sciences, School of Medicine, China Medical University, Taichung, Taiwan
| | - Pei-Ling Hsieh
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Hui-Wen Yang
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Pin Ju Chueh
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Yu-Feng Huang
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yi-Wen Liao
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
| | - Cheng-Chia Yu
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
48
|
Wan Y, Jin HJ, Zhu YY, Fang Z, Mao L, He Q, Xia YP, Li M, Li Y, Chen X, Hu B. MicroRNA-149-5p regulates blood-brain barrier permeability after transient middle cerebral artery occlusion in rats by targeting S1PR2 of pericytes. FASEB J 2018; 32:3133-3148. [PMID: 29401609 DOI: 10.1096/fj.201701121r] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Blood-brain barrier (BBB) disruption caused by reperfusion injury after ischemic stroke is an intractable event conducive to further injury. Brain pericytes play a vital role in maintaining BBB integrity by interacting with other components of the BBB. In this study, we found that sphingosine-1-phosphate receptor (S1PR)2 expressed in pericytes was significantly up-regulated after ischemia in vivo and in vitro. By using a S1PR2 antagonist (JTE-013), we showed that S1PR2 plays a critical role in the induction of BBB permeability of transient middle cerebral artery occlusion (tMCAO) rats and the in vitro BBB model. Furthermore, we discovered that S1PR2 may decrease N-cadherin expression and increase pericyte migration via NF-κB p65 signal and found that S1PR2 could be regulated by miR-149-5p negatively, which was decreased in the ischemic boundary zone and cultured pericytes after ischemia. Overexpression of miR-149-5p in cultured pericytes substantially increased N-cadherin expression and decreased pericyte migration, which decreased BBB leakage in the in vitro model. Up-regulating miR-149-5p by intracerebroventricular injection of agomir-149-5p attenuated BBB permeability and improved the outcomes of tMCAO rats significantly. Thus, our data suggest that miR-149-5p may serve as a potential target for treatment of BBB disruption after ischemic stroke.-Wan, Y., Jin, H.-J., Zhu, Y.-Y., Fang, Z., Mao, L., He, Q., Xia, Y.-P., Li, M., Li, Y., Chen, X., Hu, B. MicroRNA-149-5p regulates blood-brain barrier permeability after transient middle cerebral artery occlusion in rats by targeting S1PR2 of pericytes.
Collapse
Affiliation(s)
- Yan Wan
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui-Juan Jin
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi-Yi Zhu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhi Fang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ling Mao
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Quanwei He
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan-Peng Xia
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Man Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanan Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoqian Chen
- Department of Pathophysiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
49
|
El-Ashmawy NE, Khedr NF, El-Bahrawy HA, El-Adawy SA. Downregulation of iNOS and elevation of cAMP mediate the anti-inflammatory effect of glabridin in rats with ulcerative colitis. Inflammopharmacology 2017; 26:551-559. [PMID: 28707183 DOI: 10.1007/s10787-017-0373-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 07/01/2017] [Indexed: 12/30/2022]
Abstract
BACKGROUND Alternative medicine is widely accepted by public and becoming an attractive approach for treatment of various diseases. Glabridin (Gla), a major flavonoid present in licorice root, was reported to have antioxidant and anti-inflammatory properties. OBJECTIVE The study aimed to investigate the possible protective role of Gla against dextran sulphate sodium (DSS)-induced ulcerative colitis (UC) in rats and to clarify the molecular mechanisms underlying Gla function. METHODS Forty male Wistar rats were divided into control, colitis group (rats received 5% DSS in drinking water for 7 days), Gla group (50 mg/kg, orally, once daily), and sulfasalazine (SLZ) group (500 mg/kg, orally, once daily). Each of Gla and SLZ was administered 1 week ahead of DSS and parallel with its administration. RESULTS Gla ameliorated the inflammatory alterations induced by DSS. Gla group showed a reduction in colon concentration of tumor necrosis factor-alpha (TNF-α) and a decreased colon myeloperoxidase activity (MPO). Gla treatment downregulated inducible nitric oxide synthase (iNOS) gene expression in rat colon with a decreased content of nitric oxide (NO). Gla also increased cyclic AMP (cAMP) concentration in rat colon compared to colitis group. Such findings were comparable to or even better than those obtained by SLZ treatment. The histological features of UC such as ulceration and inflammatory cell infiltrations were improved in rat group treated by Gla. CONCLUSION Gla proved a potent anti-inflammatory role in UC through different mechanisms and, being a natural product, it could be safely used as a protective measure in inflammatory bowel diseases.
Collapse
Affiliation(s)
- Nahla E El-Ashmawy
- Biochemistry Department, Faculty of Pharmacy, Tanta University, El-Bahr Street, Tanta, El-Gharbia, 31527, Egypt
| | - Naglaa F Khedr
- Biochemistry Department, Faculty of Pharmacy, Tanta University, El-Bahr Street, Tanta, El-Gharbia, 31527, Egypt
| | - Hoda A El-Bahrawy
- Biochemistry Department, Faculty of Pharmacy, Tanta University, El-Bahr Street, Tanta, El-Gharbia, 31527, Egypt
| | - Samar A El-Adawy
- Biochemistry Department, Faculty of Pharmacy, Tanta University, El-Bahr Street, Tanta, El-Gharbia, 31527, Egypt.
| |
Collapse
|
50
|
Mu J, Zhu D, Shen Z, Ning S, Liu Y, Chen J, Li Y, Li Z. The repressive effect of miR-148a on Wnt/β-catenin signaling involved in Glabridin-induced anti-angiogenesis in human breast cancer cells. BMC Cancer 2017; 17:307. [PMID: 28464803 PMCID: PMC5414299 DOI: 10.1186/s12885-017-3298-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 04/24/2017] [Indexed: 03/04/2023] Open
Abstract
BACKGROUND Glabridin (GLA), a major component extracted from licorice root, has anti-inflammatory and antioxidant activities, but few studies report its mechanism of inhibition of angiogenesis. This study was an extension of our previous work, which demonstrated that GLA suppressed angiogenesis in human breast cancer (MDA-MB-231 and Hs-578T) cells. Breast cancer is one of the most common malignant diseases in females worldwide, and the major cause of mortality is metastasis that is primarily attributed to angiogenesis. Thus, anti-angiogenesis has become a strategy for the treatment of breast cancer. METHODS Cell viability of different concentration treatment groups were detected by Cell Counting Kit-8 assay. The expression of several related genes in the Wnt1 signaling pathway in MDA-MB-231 and Hs-578T cells treated with GLA were measured at both the transcription and translation levels using quantitative real-time PCR analyses and western blotting. Immunofluorescence assay analyzed the nuclear translocation of β-catenin. The microRNA-inhibitor was used to knockdown microRNA-148a (miR-148a) expression. Angiogenic potentials of breast cancer cells were analyzed by enzyme-linked immunosorbent assay (ELISA) and tube formation in vitro. RESULTS GLA attenuated angiogenesis by the suppression of miR-148a-mediated Wnt/β-catenin signaling pathway in two human breast cancer cell lines (MDA-MB-231 and Hs-578T). GLA also upregulated the expression of miR-148a in a dose-dependent manner, miR-148a, which could directly target Wnt-3'-untranslated regions (UTRs), and decreased the expression of Wnt1, leading to β-catenin accumulation in the membranes from the cytoplasm and nucleus. Downregulation of miR-148a contributed to the reduction of GLA-induced suppression of the Wnt/β-catenin signaling pathway, the angiogenesis and vascular endothelial grow factor (VEGF) secretion. CONCLUSIONS Our study identified a molecular mechanism of the GLA inhibition of angiogenesis through the Wnt/β-catenin signaling pathway via miR-148a, suggesting that GLA could serve as an adjuvant chemotherapeutic agent for breast cancer.
Collapse
Affiliation(s)
- Juan Mu
- Department of Nutrition and Food Hygiene, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211100 China
| | - Dongmei Zhu
- Department of Nutrition and Food Hygiene, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211100 China
| | - Zhaoxia Shen
- Department of Nutrition and Food Hygiene, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211100 China
| | - Shilong Ning
- Department of Nutrition and Food Hygiene, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211100 China
| | - Yun Liu
- Department of Nutrition and Food Hygiene, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211100 China
| | - Juan Chen
- Department of Nutrition and Food Hygiene, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211100 China
| | - Yuan Li
- Department of Nutrition and Food Hygiene, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211100 China
| | - Zhong Li
- Department of Nutrition and Food Hygiene, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211100 China
| |
Collapse
|