1
|
Shen X, Miao S, Zhang Y, Guo X, Li W, Mao X, Zhang Q. Stearic acid metabolism in human health and disease. Clin Nutr 2025; 44:222-238. [PMID: 39709650 DOI: 10.1016/j.clnu.2024.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/25/2024] [Accepted: 12/07/2024] [Indexed: 12/24/2024]
Abstract
Named after the Greek term for "hard fat", stearic acid has gradually entered people's field of vision. As an important component of various physiological cellular functions, stearic acid plays a regulatory role in diverse aspects of energy metabolism and signal transduction. Its applications range from serving as a bodily energy source to participating in endogenous biosynthesis. Similar to palmitate, stearic acid serves as a primary substrate for the stearoyl coenzyme A desaturase, which catalyzes the conversion of stearate to oleate and is involved in the synthesis of triglyceride and other complex lipids. Additionally, stearic acid functions as a vital signaling molecule in pathological processes such as cardiovascular diseases, diabetes development, liver injury and even nervous system disorders. Therefore, we conduct a comprehensive review of stearic acid, summarizing its role in various diseases and attempting to provide a systematic overview of its homeostasis, physiological functions, and pathological process. From a medical standpoint, we also explore potential applications and discuss stearic acid as a potential therapeutic target for the treatment of human diseases.
Collapse
Affiliation(s)
- Xinyi Shen
- Department of Urology, Affiliated Hospital of Qingdao University, Qingdao, China; School of Basic Medicine, Qingdao University, Qingdao, China
| | - Shuo Miao
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Yaping Zhang
- Department of Operating Room, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xingying Guo
- Department of Operating Room, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wenxian Li
- Department of Urology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xin Mao
- Department of Urology, Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Qingsong Zhang
- Department of Urology, Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
2
|
Kukucka T, Ferencova N, Visnovcova Z, Ondrejka I, Hrtanek I, Kovacova V, Macejova A, Mlyncekova Z, Tonhajzerova I. Mechanisms Involved in the Link between Depression, Antidepressant Treatment, and Associated Weight Change. Int J Mol Sci 2024; 25:4511. [PMID: 38674096 PMCID: PMC11050075 DOI: 10.3390/ijms25084511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
Major depressive disorder is a severe mood disorder associated with a marked decrease in quality of life and social functioning, accompanied by a risk of suicidal behavior. Therefore, seeking out and adhering to effective treatment is of great personal and society-wide importance. Weight changes associated with antidepressant therapy are often cited as the reason for treatment withdrawal and thus are an important topic of interest. There indeed exists a significant mechanistic overlap between depression, antidepressant treatment, and the regulation of appetite and body weight. The suggested pathomechanisms include the abnormal functioning of the homeostatic (mostly humoral) and hedonic (mostly dopaminergic) circuits of appetite regulation, as well as causing neuromorphological and neurophysiological changes underlying the development of depressive disorder. However, this issue is still extensively discussed. This review aims to summarize mechanisms linked to depression and antidepressant therapy in the context of weight change.
Collapse
Affiliation(s)
- Tomas Kukucka
- Clinic of Psychiatry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Hospital Martin, 03659 Martin, Slovakia; (T.K.); (I.O.); (I.H.); (V.K.); (A.M.); (Z.M.)
| | - Nikola Ferencova
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia; (N.F.); (Z.V.)
| | - Zuzana Visnovcova
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia; (N.F.); (Z.V.)
| | - Igor Ondrejka
- Clinic of Psychiatry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Hospital Martin, 03659 Martin, Slovakia; (T.K.); (I.O.); (I.H.); (V.K.); (A.M.); (Z.M.)
| | - Igor Hrtanek
- Clinic of Psychiatry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Hospital Martin, 03659 Martin, Slovakia; (T.K.); (I.O.); (I.H.); (V.K.); (A.M.); (Z.M.)
| | - Veronika Kovacova
- Clinic of Psychiatry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Hospital Martin, 03659 Martin, Slovakia; (T.K.); (I.O.); (I.H.); (V.K.); (A.M.); (Z.M.)
| | - Andrea Macejova
- Clinic of Psychiatry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Hospital Martin, 03659 Martin, Slovakia; (T.K.); (I.O.); (I.H.); (V.K.); (A.M.); (Z.M.)
| | - Zuzana Mlyncekova
- Clinic of Psychiatry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Hospital Martin, 03659 Martin, Slovakia; (T.K.); (I.O.); (I.H.); (V.K.); (A.M.); (Z.M.)
| | - Ingrid Tonhajzerova
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| |
Collapse
|
3
|
Castro AL, Frankot M, Moran TH, Iñiguez SD, Treesukosol Y. Acute and long-lasting effects of adolescent fluoxetine exposure on feeding behavior in Sprague-Dawley rats. Dev Psychobiol 2022; 64:e22345. [PMID: 36426786 PMCID: PMC10681029 DOI: 10.1002/dev.22345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 09/14/2022] [Accepted: 10/07/2022] [Indexed: 11/24/2022]
Abstract
The antidepressant medication fluoxetine (FLX) is frequently prescribed for the management of mood-related illnesses in the adolescent population-yet its long-term neurobehavioral consequences are not understood. To investigate how juvenile FLX exposure influences feeding behavior in adulthood, we conducted two experiments. In Experiment 1, adolescent male and female Sprague-Dawley rats were administered with 20 mg/kg/day FLX (postnatal day [PND] 35-49) and exposed to a binge access paradigm in adulthood (PND72+) to evaluate potential alterations for sweetened-fat preference. No long-term FLX-induced differences in preference for sweetened fat versus chow, nor total caloric intake, were noted; however, females displayed higher preference for sweetened fat compared to males. In Experiment 2, PND35 male rats received FLX (PND35-49) and were exposed to chronic variable stress (CVS) in adulthood (PND74-88). During treatment, FLX decreased body weight and intake (meal size), but not total meal number. Also, no differences in meal pattern parameters were observed after FLX completion. Likewise, no differences in meal pattern parameters to a palatable diet (45% fat, 17% sucrose) presented from PND74 to PND88, even after CVS, were observed. Our findings indicate that juvenile FLX reduces body weight gain acutely via reduced meal size intake; however, no long-term changes in ad libitum feeding behavior or binge access to a palatable stimulus are evident.
Collapse
Affiliation(s)
- Alexis L. Castro
- Department of Psychology, California State University, Long Beach, Long Beach, California, USA
| | - Michelle Frankot
- Department of Psychology, California State University, Long Beach, Long Beach, California, USA
- Department of Psychology, West Virginia University, Morgantown, West Virginia, USA
| | - Timothy H. Moran
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Sergio D. Iñiguez
- Department of Psychology, The University of Texas at El Paso, El Paso, Texas, USA
| | - Yada Treesukosol
- Department of Psychology, California State University, Long Beach, Long Beach, California, USA
| |
Collapse
|
4
|
Yousefvand S, Hamidi F. Role of Lateral Hypothalamus Area in the Central Regulation of Feeding. Int J Pept Res Ther 2022. [DOI: 10.1007/s10989-022-10391-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Li Y, Chen L, Zhao W, Sun L, Zhang R, Zhu S, Xie K, Feng X, Wu X, Sun Z, Shu G, Wang S, Gao P, Zhu X, Wang L, Jiang Q. Food reward depends on TLR4 activation in dopaminergic neurons. Pharmacol Res 2021; 169:105659. [PMID: 33971268 DOI: 10.1016/j.phrs.2021.105659] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/30/2021] [Accepted: 04/30/2021] [Indexed: 01/07/2023]
Abstract
The rising prevalence of obesity and being overweight is a worldwide health concern. Food reward dysregulation is the basic factor for the development of obesity. Dopamine (DA) neurons in the ventral tegmental area (VTA) play a vital role in food reward. Toll-like receptor 4 (TLR4) is a transmembrane pattern recognition receptor that can be activated by saturated fatty acids. Here, we show that the deletion of TLR4 specifically in DA neurons increases body weight, increases food intake, and decreases food reward. Conditional deletion of TLR4 also decreased the activity of DA neurons while suppressing the expression of tyrosine hydroxylase (TH) in the VTA, which regulates the concentration of DA in the nucleus accumbens (NAc) to affect food reward. Meanwhile, AAV-Cre-GFP mediated VTA-specific TLR4-deficient mice recapitulates food reward of DAT-TLR4-KO mice. Food reward could be rescued by re-expressing TLR4 in VTA DA neurons. Moreover, effects of intra-VTA infusion of lauric acid (a saturated fatty acid with 12 carbon) on food reward were abolished in mice lacking TLR4 in DA neurons. Our study demonstrates the critical role of TLR4 signaling in regulating the activity of VTA DA neurons and the normal function of the mesolimbic DA system that may contribute to food reward.
Collapse
Affiliation(s)
- Yongxiang Li
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangzhou, Guangdong 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Lvshuang Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangzhou, Guangdong 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Weijie Zhao
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangzhou, Guangdong 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Lijuan Sun
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangzhou, Guangdong 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Ruixue Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangzhou, Guangdong 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Shuqing Zhu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangzhou, Guangdong 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Kailai Xie
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangzhou, Guangdong 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Xiajie Feng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangzhou, Guangdong 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Xin Wu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangzhou, Guangdong 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Zhonghua Sun
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangzhou, Guangdong 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Gang Shu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangzhou, Guangdong 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Songbo Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangzhou, Guangdong 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Ping Gao
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangzhou, Guangdong 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Xiaotong Zhu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangzhou, Guangdong 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Lina Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangzhou, Guangdong 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| | - Qingyan Jiang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangzhou, Guangdong 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| |
Collapse
|
6
|
Yao T, He J, Cui Z, Wang R, Bao K, Huang Y, Wang R, Liu T. Central 5-HTR2C in the Control of Metabolic Homeostasis. Front Endocrinol (Lausanne) 2021; 12:694204. [PMID: 34367066 PMCID: PMC8334728 DOI: 10.3389/fendo.2021.694204] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/06/2021] [Indexed: 11/29/2022] Open
Abstract
The 5-hydroxytryptamine 2C receptor (5-HTR2C) is a class G protein-coupled receptor (GPCR) enriched in the hypothalamus and the brain stem, where it has been shown to regulate energy homeostasis, including feeding and glucose metabolism. Accordingly, 5-HTR2C has been the target of several anti-obesity drugs, though the associated side effects greatly curbed their clinical applications. Dissecting the specific neural circuits of 5-HTR2C-expressing neurons and the detailed molecular pathways of 5-HTR2C signaling in metabolic regulation will help to develop better therapeutic strategies towards metabolic disorders. In this review, we introduced the regulatory role of 5-HTR2C in feeding behavior and glucose metabolism, with particular focus on the molecular pathways, neural network, and its interaction with other metabolic hormones, such as leptin, ghrelin, insulin, and estrogens. Moreover, the latest progress in the clinical research on 5-HTR2C agonists was also discussed.
Collapse
Affiliation(s)
- Ting Yao
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University School of Medicine, Xi’an, China
- *Correspondence: Ting Yao, ; Ru Wang, ; Tiemin Liu,
| | - Jiehui He
- School of Life Sciences, Fudan University, Shanghai, China
| | - Zhicheng Cui
- School of Life Sciences, Fudan University, Shanghai, China
| | - Ruwen Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Kaixuan Bao
- Human Phenome Institute, Fudan University, Shanghai, China
| | - Yiru Huang
- School of Life Sciences, Fudan University, Shanghai, China
| | - Ru Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
- *Correspondence: Ting Yao, ; Ru Wang, ; Tiemin Liu,
| | - Tiemin Liu
- School of Life Sciences, Fudan University, Shanghai, China
- Human Phenome Institute, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
- *Correspondence: Ting Yao, ; Ru Wang, ; Tiemin Liu,
| |
Collapse
|
7
|
Li Y, Wu H, Zhang R, Shu G, Wang S, Gao P, Zhu X, Jiang Q, Wang L. Diet containing stearic acid increases food reward-related behaviors in mice compared with oleic acid. Brain Res Bull 2020; 164:45-54. [PMID: 32822805 DOI: 10.1016/j.brainresbull.2020.08.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 07/30/2020] [Accepted: 08/10/2020] [Indexed: 10/23/2022]
Abstract
Obesity is currently a worldwide phenomenon. The consumption of calorie-rich foods is responsible for most obesity cases, but not all humans exposed to high-calorie diets develop obesity. According to recent studies, exposure to fat-rich diets may be the actual cause of obesity. Dietary long-chain fatty acids affect brain function and are linked to food intake and motivation-related behaviors. Recently, many studies have shown that different types of fatty acids play different roles in animals. In our study, the effects of stearic acid (a saturated fatty acid) and oleic acid (a monounsaturated fatty acid) in diets on hedonic feeding behaviors were investigated, and changes of feeding-related protein levels in the brain were detected to explore the possible mechanism underlying the effects of these fatty acids. As a result, mice fed a diet containing stearic acid, compared to a diet containing oleic acid, exhibited increased food intake, hedonic eating, and an operant response to sucrose and locomotor activity. Furthermore, stearic acid corresponded to a higher level of leptin in serum than oleic acid. In addition, the stearic acid treated group had lower protein levels of p-JAK2 and p-STAT3 in the VTA and a higher dopamine concentration in the NAc than the oleic acid-treated group. Meanwhile, the protein level of TH in the NAc was higher and the protein level of the DA transporter in the VTA was lower in the stearic acid-fed group than in the oleic acid-fed group. In conclusion, these findings indicated that a diet containing stearic acid can increase hedonic feeding behavior and affect mesolimbic dopamine system signals in mice. Moreover, the lowering of serum leptin and leptin signaling in the VTA may contribute to this effect.
Collapse
Affiliation(s)
- Yongxiang Li
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangzhou, Guangdong 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Hanyu Wu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangzhou, Guangdong 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Ruixue Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangzhou, Guangdong 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Gang Shu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangzhou, Guangdong 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Songbo Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangzhou, Guangdong 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Ping Gao
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangzhou, Guangdong 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Xiaotong Zhu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangzhou, Guangdong 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Qingyan Jiang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangzhou, Guangdong 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| | - Lina Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangzhou, Guangdong 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| |
Collapse
|
8
|
Microstructure analysis of sucrose ingestion in the course of chronic treatment with imipramine. Physiol Behav 2020; 224:113032. [PMID: 32598942 DOI: 10.1016/j.physbeh.2020.113032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/22/2020] [Accepted: 06/24/2020] [Indexed: 12/11/2022]
Abstract
The analysis of licking microstructure provides measures which might be interpreted in terms of psychological constructs, such as pleasure and motivation, relevant for the interpretation of the effects of antidepressant drugs. The aim of this study was to characterise the effect of the prototypical antidepressant imipramine on the microstructure of licking for a 10% sucrose solution. In particular, ten 30-min sessions were performed in the course of a daily 21 day treatment with imipramine - 5, 10 and 20 mg/kg/die administered intraperitoneally. To interpret drug effects in relation to the presumed concentration of imipramine and its active metabolite desipramine, the experimental sessions were performed in an alternate order either 1-h or 24-h after imipramine administration. In the sessions performed 1-h after drug administration, the results showed a dose-dependent reduction of sucrose ingestion, accounted for by a reduction of the licking burst number. Moreover, reduced intra-burst lick rate and increased latency to lick were observed with the highest doses. Imipramine effect in the sessions performed 24-h after drug administration was similar but less pronounced. These results are consistent with the hypothesis that the reduction of sucrose ingestion might be due to reduced motivation and/or to a potentiation of satiety signals. These effects appear to be related, at least in part, to brain drug levels at testing time, and do not seem related to the mechanisms underlying the antidepressant therapeutic effect. However, these results might be relevant in explaining the effects of imipramine in models of drug-seeking and on body weight.
Collapse
|
9
|
Hicks C, Sabino V, Cottone P. The Alpha-1 Adrenergic Receptor Antagonist Prazosin Reduces Binge-Like Eating in Rats. Nutrients 2020; 12:nu12061569. [PMID: 32481494 PMCID: PMC7352795 DOI: 10.3390/nu12061569] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/18/2020] [Accepted: 05/26/2020] [Indexed: 01/19/2023] Open
Abstract
Background: Binge-eating disorder is a pervasive addiction-like disorder that is defined by excessive and uncontrollable consumption of food within brief periods of time. The aim of the current study was to examine the role of the brain noradrenergic system in binge-like eating through the use of the alpha-1 adrenergic receptor antagonist prazosin. Methods: For this purpose, we employed a limited access model whereby male Wistar rats were allowed to nosepoke for either chow (Chow rats) or a sugary, highly palatable food (Palatable rats) for 1 h/day. The effects of prazosin (0, 0.5, 1 and 2 mg/kg, i.p.) were tested in a fixed ratio 1 (FR1) and progressive ratio (PR) schedule of reinforcement. Results: The results show that prazosin preferentially reduced the responses for palatable food in a FR1 reinforcement schedule; when tested in a PR schedule of reinforcement, prazosin increased breakpoint in both Chow and Palatable rats, but more potently and more efficaciously in the latter. Our results suggest that prazosin treatment preferentially increased the motivational properties of the palatable diet. Conclusions: The current findings provide the characterization of the effects of prazosin on binge-like eating and offer support to the existing literature showing the important role of the noradrenergic system in addiction-like behavior.
Collapse
|
10
|
Meijboom FLB, Kostrzewa E, Leenaars CHC. Joining forces: the need to combine science and ethics to address problems of validity and translation in neuropsychiatry research using animal models. Philos Ethics Humanit Med 2020; 15:1. [PMID: 31969164 PMCID: PMC6977256 DOI: 10.1186/s13010-019-0085-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 11/25/2019] [Indexed: 05/12/2023] Open
Abstract
BACKGROUND Current policies regulating the use of animals for scientific purposes are based on balancing between potential gain of knowledge and suffering of animals used in experimentation. The balancing process is complicated, on the one hand by plurality of views on our duties towards animals, and on the other hand by more recent discussions on uncertainty in the probability of reaching the final aim of the research and problems of translational failure. METHODS The study combines ethical analysis based on a literature review with neuropsychiatry-related preclinical research as a case study. RESULTS Based on the analysis and the case study we show that neuropsychiatry-related preclinical research is an especially interesting case from an ethical perspective. The 3R principles (Replacement, Reduction and Refinement) are used to minimize the negative consequences for the animals used in research. However, neuropsychiatric research is characterized by specific challenges in assessing the probability of success of reaching the final aim, due to our limited mechanistic knowledge of human neuropsychiatric illness. Consequently, the translational value of the currently used animal models may be difficult to prove, which undermines the validity of these models and complicated the ethical assessment. CONCLUSIONS We conclude that a combined approach that deals with both science and the ethical dimensions is necessary to address the problems of validity and translation in neuropsychiatry-related preclinical research. We suggest this approach to comprise first, improved experimental methods, e.g. by using systematic reviews, second, a more patients-based approach that leads to models that reflect interindividual variation better, and third, more interdisciplinary cooperation.
Collapse
Affiliation(s)
- Franck L B Meijboom
- Ethiek Instituut, Universiteit Utrecht, Yalelaan 2, 3584 CM, Utrecht, The Netherlands.
- Faculty of Veterinary Medicine, Universiteit Utrecht, Yalelaan 2, 3584 CM, Utrecht, The Netherlands.
| | - Elzbieta Kostrzewa
- Ethiek Instituut, Universiteit Utrecht, Yalelaan 2, 3584 CM, Utrecht, The Netherlands
| | - Cathalijn H C Leenaars
- Faculty of Veterinary Medicine, Universiteit Utrecht, Yalelaan 2, 3584 CM, Utrecht, The Netherlands
- SYRCLE, Radboud University Medical Center, Nijmegen, The Netherlands
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| |
Collapse
|
11
|
McElroy SL, Guerdjikova AI, Mori N, Romo-Nava F. Progress in Developing Pharmacologic Agents to Treat Bulimia Nervosa. CNS Drugs 2019; 33:31-46. [PMID: 30523523 DOI: 10.1007/s40263-018-0594-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This paper reviews past and current progress in developing pharmacologic agents for the treatment of individuals with bulimia nervosa (BN). We searched the literature and clinical trial registries for compounds studied in BN, the related condition, binge eating disorder (BED), and preclinical models of binge-eating behavior. Drug classes evaluated included antidepressants, antiepileptic drugs, stimulants and other medications for attention-deficit/hyperactivity disorder, opioid antagonists, and weight loss agents, among others. The only available drugs with established efficacy in BN at this time include antidepressants (especially selective serotonin reuptake inhibitors [SSRIs]) and the antiepileptic topiramate, though the efficacy of these compounds is modest at best. The only medications we found currently receiving empirical study in people with BN were fluoxetine, other serotonergic antidepressants, intranasal naloxone, lisdexamfetamine dimesylate, phentermine-topiramate combination, the antiandrogenic oral contraceptive ethinyl estradiol plus drospirenone, and prazosin. Preclinical models suggest that nociceptin receptor antagonists, the selective serotonin 5-HT2C receptor agonist lorcaserin, monoamine stabilizers, and selective orexin-1 receptor antagonists might be helpful. We found no evidence of a drug developed specifically for the treatment of individuals with BN. Future areas for research in the pharmacotherapy of BN are suggested. Importantly, until drugs are developed specifically for eating disorders, drugs developed for other conditions that are centrally acting and associated with beneficial psychotropic effects and/or reduced appetite or weight loss might be considered for repurposing in BN.
Collapse
Affiliation(s)
- Susan L McElroy
- Lindner Center of HOPE, Mason, OH, USA. .,University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Anna I Guerdjikova
- Lindner Center of HOPE, Mason, OH, USA.,University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | | | - Francisco Romo-Nava
- Lindner Center of HOPE, Mason, OH, USA.,University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
12
|
Dagan Y, Yager J. Severe bupropion XR abuse in a patient with long-standing bulimia nervosa and complex PTSD. Int J Eat Disord 2018; 51:1207-1209. [PMID: 30230570 DOI: 10.1002/eat.22948] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/17/2018] [Accepted: 08/04/2018] [Indexed: 11/07/2022]
Abstract
OBJECTIVE Although abuse of bupropion to achieve euphoria or a stimulant-like effect has been described in the literature, to our knowledge abuse of bupropion XR to control binge eating and reduce appetite by a patient with eating disorder has not been previously reported. METHOD We report the case of a 22-year-old woman with bulimia nervosa and complex PTSD who abused bupropion XR to doses that at peak reached 3,000-4,500 mg/day. She suffered from adverse effects including headaches, tachycardia, anxiety, insomnia, and, finally, grand mal seizures. RESULTS Unable to control the abuse on her own, she sought inpatient treatment, following which she remained off bupropion XR for a year. However, she subsequently relapsed. DISCUSSION The stimulant, euphoriant, and anorexic effects of bupropion XR contribute to its potential for abuse, particularly among patients with eating disorders. Clinicians are reminded to screen for anorexia nervosa and bulimia nervosa histories prior to prescribing this medication, and to consider its abuse among eating disorder patients presenting with seizures. For patients abusing this medication, motivational interviewing in the context of a strong, ongoing therapeutic relationship might help to achieve sustained periods of abstinence.
Collapse
Affiliation(s)
- Yael Dagan
- The Jerusalem Mental Health Center, Kfar Shaul Psychiatric Hospital affiliated with The Hebrew University-Hadassah School of Medicine, Jerusalem, Israel
| | - Joel Yager
- Department of Psychiatry, School of Medicine, University of Colorado Denver, Aurora, Colorado
| |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW The objective of this paper is to review the role that hedonic factors, emotions and self-regulation systems have over eating behaviours from animal models to humans. RECENT FINDINGS Evidence has been found to suggest that for some high-risk individuals, obesity/binge eating may develop as an impulsive reaction to negative emotions that over time becomes a compulsive habit. Animal models highlight the neural mechanisms that might underlie this process and suggest similarities with substance use disorders. Emotional difficulties and neurobiological factors have a role in the aetiology of eating and weight disorders. Precise treatments targeted at these mechanisms may be of help for people who have difficulties with compulsive overeating.
Collapse
Affiliation(s)
- Robert Turton
- Department of Psychological Medicine, Section of Eating Disorders, King's College London, Institute of Psychiatry, Psychology and Neuroscience, 103 Denmark Hill, London, SE5 8AZ, UK.
| | - Rayane Chami
- Department of Psychological Medicine, Section of Eating Disorders, King's College London, Institute of Psychiatry, Psychology and Neuroscience, 103 Denmark Hill, London, SE5 8AZ, UK
| | - Janet Treasure
- Department of Psychological Medicine, Section of Eating Disorders, King's College London, Institute of Psychiatry, Psychology and Neuroscience, 103 Denmark Hill, London, SE5 8AZ, UK
| |
Collapse
|
14
|
Xu P, He Y, Cao X, Valencia-Torres L, Yan X, Saito K, Wang C, Yang Y, Hinton A, Zhu L, Shu G, Myers MG, Wu Q, Tong Q, Heisler LK, Xu Y. Activation of Serotonin 2C Receptors in Dopamine Neurons Inhibits Binge-like Eating in Mice. Biol Psychiatry 2017; 81:737-747. [PMID: 27516377 PMCID: PMC5148733 DOI: 10.1016/j.biopsych.2016.06.005] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 05/24/2016] [Accepted: 06/03/2016] [Indexed: 01/08/2023]
Abstract
BACKGROUND Neural networks that regulate binge eating remain to be identified, and effective treatments for binge eating are limited. METHODS We combined neuroanatomic, pharmacologic, electrophysiological, Cre-lox, and chemogenetic approaches to investigate the functions of 5-hydroxytryptamine (5-HT) 2C receptor (5-HT2CR) expressed by dopamine (DA) neurons in the regulation of binge-like eating behavior in mice. RESULTS We showed that 5-HT stimulates DA neural activity through a 5-HT2CR-mediated mechanism, and activation of this midbrain 5-HT→DA neural circuit effectively inhibits binge-like eating behavior in mice. Notably, 5-HT medications, including fluoxetine, d-fenfluramine, and lorcaserin (a selective 5-HT2CR agonist), act on 5-HT2CRs expressed by DA neurons to inhibit binge-like eating in mice. CONCLUSIONS We identified the 5-HT2CR population in DA neurons as one potential target for antibinge therapies, and provided preclinical evidence that 5-HT2CR agonists could be used to treat binge eating.
Collapse
Affiliation(s)
- Pingwen Xu
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Yanlin He
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Xuehong Cao
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | | | - Xiaofeng Yan
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Kenji Saito
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Chunmei Wang
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Yongjie Yang
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Antentor Hinton
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Liangru Zhu
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas,Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, China
| | - Gang Shu
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Martin G. Myers
- Department of Internal Medicine and Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Qi Wu
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Qingchun Tong
- Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas
| | - Lora K. Heisler
- Rowett Institute of Nutrition and Health, Foresterhill, Aberdeen, United Kingdom
| | - Yong Xu
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas; Children's Nutrition Research Center, and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas.
| |
Collapse
|
15
|
Bojanowska E, Ciosek J. Can We Selectively Reduce Appetite for Energy-Dense Foods? An Overview of Pharmacological Strategies for Modification of Food Preference Behavior. Curr Neuropharmacol 2016; 14:118-42. [PMID: 26549651 PMCID: PMC4825944 DOI: 10.2174/1570159x14666151109103147] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 09/19/2015] [Accepted: 10/31/2015] [Indexed: 12/11/2022] Open
Abstract
Excessive intake of food, especially palatable and energy-dense carbohydrates and fats, is
largely responsible for the growing incidence of obesity worldwide. Although there are a number of
candidate antiobesity drugs, only a few of them have been proven able to inhibit appetite for palatable
foods without the concurrent reduction in regular food consumption. In this review, we discuss the
interrelationships between homeostatic and hedonic food intake control mechanisms in promoting
overeating with palatable foods and assess the potential usefulness of systemically administered pharmaceuticals that
impinge on the endogenous cannabinoid, opioid, aminergic, cholinergic, and peptidergic systems in the modification of
food preference behavior. Also, certain dietary supplements with the potency to reduce specifically palatable food intake
are presented. Based on human and animal studies, we indicate the most promising therapies and agents that influence the
effectiveness of appetite-modifying drugs. It should be stressed, however, that most of the data included in our review
come from preclinical studies; therefore, further investigations aimed at confirming the effectiveness and safety of the
aforementioned medications in the treatment of obese humans are necessary.
Collapse
Affiliation(s)
- Ewa Bojanowska
- Department of Behavioral Pathophysiology, Institute of General and Experimental Pathology, Medical University of Lodz, 60 Narutowicza Street, 90-136 Lodz, Poland.
| | | |
Collapse
|
16
|
Removal of high-fat diet after chronic exposure drives binge behavior and dopaminergic dysregulation in female mice. Neuroscience 2016; 326:170-179. [PMID: 27063418 DOI: 10.1016/j.neuroscience.2016.04.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 03/08/2016] [Accepted: 04/01/2016] [Indexed: 12/28/2022]
Abstract
A significant contributor to the obesity epidemic is the overconsumption of highly palatable, energy dense foods. Chronic intake of palatable foods is associated with neuroadaptations within the mesocorticolimbic dopamine system adaptations which may lead to behavioral changes, such as overconsumption or bingeing. We examined behavioral and molecular outcomes in mice that were given chronic exposure to a high-fat diet (HFD; 12weeks), with the onset of the diet either in adolescence or adulthood. To examine whether observed effects could be reversed upon removal of the HFD, animals were also studied 4weeks after a return to chow feeding. Most notably, female mice, particularly those exposed to HFD starting in adolescence, demonstrated the emergence of binge-like behavior when given restricted access to a palatable food. Further, changes in dopamine-related gene expression and dopamine content in the prefrontal cortex were observed. Some of these HFD-driven phenotypes reversed upon removal of the diet, whereas others were initiated by removal of the diet. These findings have implications for obesity management and interventions, as both pharmacological and behavioral therapies are often combined with dietary interventions (e.g., reduction in calorie dense foods).
Collapse
|
17
|
Sasaki T, Kinoshita Y, Matsui S, Kakuta S, Yokota-Hashimoto H, Kinoshita K, Iwasaki Y, Kinoshita T, Yada T, Amano N, Kitamura T. N-methyl-d-aspartate receptor coagonist d-serine suppresses intake of high-preference food. Am J Physiol Regul Integr Comp Physiol 2015; 309:R561-75. [PMID: 26157056 DOI: 10.1152/ajpregu.00083.2015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 07/07/2015] [Indexed: 12/20/2022]
Abstract
d-Serine is abundant in the forebrain and physiologically important for modulating excitatory glutamatergic neurotransmission as a coagonist of synaptic N-methyl-d-aspartate (NMDA) receptor. NMDA signaling has been implicated in the control of food intake. However, the role of d-serine on appetite regulation is unknown. To clarify the effects of d-serine on appetite, we investigated the effect of oral d-serine ingestion on food intake in three different feeding paradigms (one-food access, two-food choice, and refeeding after 24-h fasting) using three different strains of male mice (C57Bl/6J, BKS, and ICR). The effect of d-serine was also tested in leptin signaling-deficient db/db mice and sensory-deafferented (capsaicin-treated) mice. The expression of orexigenic neuropeptides [neuropeptide Y (Npy) and agouti-related protein (Agrp)] in the hypothalamus was compared in fast/refed experiments. Conditioned taste aversion for high-fat diet (HFD) was tested in the d-serine-treated mice. Under the one-food-access paradigm, some of the d-serine-treated mice showed starvation, but not when fed normal chow. HFD feeding with d-serine ingestion did not cause aversion. Under the two-food-choice paradigm, d-serine suppressed the intake of high-preference food but not normal chow. d-Serine also effectively suppressed HFD intake but not normal chow in db/db mice and sensory-deafferented mice. In addition, d-serine suppressed normal chow intake after 24-h fasting despite higher orexigenic gene expression in the hypothalamus. d-Serine failed to suppress HFD intake in the presence of L-701,324, the selective and full antagonist at the glycine-binding site of the NMDA receptor. Therefore, d-serine suppresses the intake of high-preference food through coagonism toward NMDA receptors.
Collapse
Affiliation(s)
- Tsutomu Sasaki
- Laboratory of Metabolic Signal, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan;
| | - Yoshihiro Kinoshita
- Department of Psychiatry, School of Medicine, Shinshu University, Matsumoto, Nagano, Japan
| | - Sho Matsui
- Laboratory of Metabolic Signal, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
| | - Shigeru Kakuta
- Research Center for Human and Environmental Sciences, Shinshu University, Matsumoto, Nagano, Japan
| | - Hiromi Yokota-Hashimoto
- Laboratory of Metabolic Signal, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
| | - Kuni Kinoshita
- Department of Psychiatry, School of Medicine, Shinshu University, Matsumoto, Nagano, Japan
| | - Yusaku Iwasaki
- Division of Integrated Physiology, Department of Physiology, Jichi Medical University School of Medicine, Shimotsuke, Tochigi, Japan; and
| | - Toshio Kinoshita
- Department of Analytical Chemistry, School of Pharmacy, Kitasato University, Tokyo, Tokyo, Japan
| | - Toshihiko Yada
- Division of Integrated Physiology, Department of Physiology, Jichi Medical University School of Medicine, Shimotsuke, Tochigi, Japan; and
| | - Naoji Amano
- Department of Psychiatry, School of Medicine, Shinshu University, Matsumoto, Nagano, Japan
| | - Tadahiro Kitamura
- Laboratory of Metabolic Signal, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
| |
Collapse
|
18
|
Lawrence AJ, Cryan JF. Found in translation? Commentary on a BJP themed issue about animal models in neuropsychiatry research. Br J Pharmacol 2015; 171:4521-3. [PMID: 25257223 DOI: 10.1111/bph.12887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
This themed issue of Br J Pharmacol is dedicated to the utility and needs of animal models in psychiatry research. The following articles document strengths and weaknesses, indicate areas where better models are sorely needed and provide examples where pharmacological studies may result in mechanistic breakthrough and aid in drug development. In addition, complicating factors both in disease and treatment strategies are canvassed, such as sex differences, genetic and environmental influences. While not exhaustive, the intention was to use a number of exemplars to stimulate discussion around how animal models can aid in improving our understanding and treatment of many devastating conditions.
Collapse
Affiliation(s)
- Andrew J Lawrence
- Florey Institute of Neuroscience & Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | | |
Collapse
|
19
|
Méquinion M, Chauveau C, Viltart O. The use of animal models to decipher physiological and neurobiological alterations of anorexia nervosa patients. Front Endocrinol (Lausanne) 2015; 6:68. [PMID: 26042085 PMCID: PMC4436882 DOI: 10.3389/fendo.2015.00068] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 04/15/2015] [Indexed: 12/18/2022] Open
Abstract
Extensive studies were performed to decipher the mechanisms regulating feeding due to the worldwide obesity pandemy and its complications. The data obtained might be adapted to another disorder related to alteration of food intake, the restrictive anorexia nervosa. This multifactorial disease with a complex and unknown etiology is considered as an awful eating disorder since the chronic refusal to eat leads to severe, and sometimes, irreversible complications for the whole organism, until death. There is an urgent need to better understand the different aspects of the disease to develop novel approaches complementary to the usual psychological therapies. For this purpose, the use of pertinent animal models becomes a necessity. We present here the various rodent models described in the literature that might be used to dissect central and peripheral mechanisms involved in the adaptation to deficient energy supplies and/or the maintenance of physiological alterations on the long term. Data obtained from the spontaneous or engineered genetic models permit to better apprehend the implication of one signaling system (hormone, neuropeptide, neurotransmitter) in the development of several symptoms observed in anorexia nervosa. As example, mutations in the ghrelin, serotonin, dopamine pathways lead to alterations that mimic the phenotype, but compensatory mechanisms often occur rendering necessary the use of more selective gene strategies. Until now, environmental animal models based on one or several inducing factors like diet restriction, stress, or physical activity mimicked more extensively central and peripheral alterations decribed in anorexia nervosa. They bring significant data on feeding behavior, energy expenditure, and central circuit alterations. Animal models are described and criticized on the basis of the criteria of validity for anorexia nervosa.
Collapse
Affiliation(s)
- Mathieu Méquinion
- INSERM UMR-S1172, Development and Plasticity of Postnatal Brain, Lille, France
| | - Christophe Chauveau
- Pathophysiology of Inflammatory Bone Diseases, EA 4490, University of the Littoral Opal Coast, Boulogne sur Mer, France
| | - Odile Viltart
- INSERM UMR-S1172, Early stages of Parkinson diseases, University Lille 1, Lille, France
| |
Collapse
|