1
|
McPartland M, Ashcroft F, Wagner M. Plastic chemicals disrupt molecular circadian rhythms via adenosine 1 receptor in vitro. ENVIRONMENT INTERNATIONAL 2025; 198:109422. [PMID: 40179621 DOI: 10.1016/j.envint.2025.109422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/28/2025] [Accepted: 03/27/2025] [Indexed: 04/05/2025]
Abstract
The adenosine 1 receptor (A1R) is a G protein-coupled receptor that transduces signals to regulate sleep-wake cycles and circadian rhythms. Plastic products contain thousands of chemicals, known to disrupt physiological function. Recent research has demonstrated that some of these chemicals are also A1R agonists, however, the extent to which such activation propagates downstream and results in cellular alterations remains unknown. Thus, we investigate whether chemicals extracted from polyurethane (PUR) and polyvinyl chloride (PVC) plastics disrupt circadian rhythms via agonism of A1R. We confirm that plastic chemicals in both plastics activate A1R and inhibit intracellular cAMP in U2OS cells. Notably, this inhibition is comparable to that induced by the highly specific A1R agonist 2'-MeCCPA. To assess circadian disruption, we quantify temporal expression patterns of the clock genes PER2 and CRY2 at 4-h intervals over 48 h. Here, exposure to plastic chemicals shifts the phase in the oscillatory expression cycles of both clock genes by 9-17 min. Importantly, these effects are dose-dependent and reversible when A1R is inhibited by a pharmacological antagonist. This demonstrates that plastic chemicals can disrupt circadian processes by interfering with A1R signaling and suggests a novel mechanism by which these and other chemicals may contribute to non-communicable diseases.
Collapse
Affiliation(s)
- Molly McPartland
- Department of Biology, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway.
| | - Felicity Ashcroft
- Department of Biology, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Martin Wagner
- Department of Biology, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway.
| |
Collapse
|
2
|
Xin M, Bi F, Wang C, Huang Y, Xu Y, Liang S, Cai T, Xu X, Dong L, Li T, Wang X, Fang Y, Xu Z, Wang M, Song X, Zheng Y, Sun W, Li L. The circadian rhythm: A new target of natural products that can protect against diseases of the metabolic system, cardiovascular system, and nervous system. J Adv Res 2025; 69:495-514. [PMID: 38631431 PMCID: PMC11954810 DOI: 10.1016/j.jare.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/17/2024] [Accepted: 04/07/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND The treatment of metabolic system, cardiovascular system, and nervous system diseases remains to be explored. In the internal environment of organisms, the metabolism of substances such as carbohydrates, lipids and proteins (including biohormones and enzymes) exhibit a certain circadian rhythm to maintain the energy supply and material cycle needed for the normal activities of organisms. As a key factor for the health of organisms, the circadian rhythm can be disrupted by pathological conditions, and this disruption accelerates the progression of diseases and results in a vicious cycle. The current treatments targeting the circadian rhythm for the treatment of metabolic system, cardiovascular system, and nervous system diseases have certain limitations, and the identification of safer and more effective circadian rhythm regulators is needed. AIM OF THE REVIEW To systematically assess the possibility of using the biological clock as a natural product target for disease intervention, this work reviews a range of evidence on the potential effectiveness of natural products targeting the circadian rhythm to protect against diseases of the metabolic system, cardiovascular system, and nervous system. This manuscript focuses on how natural products restore normal function by affecting the amplitude of the expression of circadian factors, sleep/wake cycles and the structure of the gut microbiota. KEY SCIENTIFIC CONCEPTS OF THE REVIEW This work proposes that the circadian rhythm, which is regulated by the amplitude of the expression of circadian rhythm-related factors and the sleep/wake cycle, is crucial for diseases of the metabolic system, cardiovascular system and nervous system and is a new target for slowing the progression of diseases through the use of natural products. This manuscript provides a reference for the molecular modeling of natural products that target the circadian rhythm and provides a new perspective for the time-targeted action of drugs.
Collapse
Affiliation(s)
- Meiling Xin
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China; National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100000, China
| | - Fangjie Bi
- Heart Center, Zibo Central Hospital, Zibo, Shandong 255000, China
| | - Chao Wang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Yuhong Huang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Yujia Xu
- Department of Echocardiography, Zibo Central Hospital, Zibo, Shandong 255000, China
| | - Shufei Liang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Tianqi Cai
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Xiaoxue Xu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Ling Dong
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Tianxing Li
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100000, China; Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xueke Wang
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100000, China; The Second Clinical Medical College, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Yini Fang
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100000, China; Basic Medical College, Zhejiang Chinese Medical University, Hangzhou 310053 China
| | - Zhengbao Xu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Meng Wang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Xinhua Song
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China.
| | - Yanfei Zheng
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100000, China.
| | - Wenlong Sun
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China.
| | - Lingru Li
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100000, China.
| |
Collapse
|
3
|
Kobayashi Y, Lu Y, Li N, Endo N, Sotome K, Ueno K, Tahara Y, Ishihara A. A new phthalide derivative from the mushroom Cyclocybe cf. erebia culture filtrate affects the phase of circadian rhythms in mouse fibroblasts. Biosci Biotechnol Biochem 2025; 89:354-361. [PMID: 39657072 DOI: 10.1093/bbb/zbae187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 11/29/2024] [Indexed: 12/17/2024]
Abstract
Circadian rhythms are biological systems that provide approximately 24-h cycles for the behavior and physiological functions of organisms. As diverse modern lifestyles often cause disturbances in circadian rhythms, new approaches to their regulation are required. Therefore, new compounds that affect circadian rhythms have been explored in edible mushrooms. The extract from the culture filtrate of Cyclocybe cf. erebia showed activity that advanced the circadian rhythm in a bioassay with mouse fibroblasts expressing the LUCIFERASE protein under the control of the Period2 promoter. Bioassay-guided fractionation of the extract resulted in the isolation of the compound. Spectroscopic analyses identified the compound as a phthalide derivative, and the compound was named cyclocybelide. Treatment of mouse fibroblasts with the compound shifted the circadian rhythm forward, irrespective of the timing of treatment. In addition, some phthalide derivatives with hydroxy and methoxy groups showed similar effects on circadian rhythms.
Collapse
Affiliation(s)
- Yusei Kobayashi
- The United Graduate School of Agricultural Sciences, Tottori University, Tottori, Japan
| | - Yuanyuan Lu
- Department of Public Health and Health Policy, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Nan Li
- Department of Public Health and Health Policy, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Naoki Endo
- Fungus/Mushroom Resource and Research Center, Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Kozue Sotome
- Fungus/Mushroom Resource and Research Center, Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Kotomi Ueno
- Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Yu Tahara
- Department of Public Health and Health Policy, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Atsushi Ishihara
- Fungus/Mushroom Resource and Research Center, Faculty of Agriculture, Tottori University, Tottori, Japan
- Faculty of Agriculture, Tottori University, Tottori, Japan
| |
Collapse
|
4
|
Wei Y, Miao Z, Ye H, Wu M, Wei X, Zhang Y, Cai L. The Effect of Caffeine Exposure on Sleep Patterns in Zebrafish Larvae and Its Underlying Mechanism. Clocks Sleep 2024; 6:749-763. [PMID: 39584977 PMCID: PMC11586999 DOI: 10.3390/clockssleep6040048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 11/26/2024] Open
Abstract
The effect of caffeine on the behavior and sleep patterns of zebrafish larvae, as well as its underlying mechanisms, has been a topic of great interest. This study aimed to investigate the impact of caffeine on zebrafish larval sleep/wake behavior and the expression of key regulatory genes such as cAMP-response element binding protein (CREB) and adenosine (ADA) in the sleep pathway. To begin, the study determined the optimal dose and duration of caffeine exposure, with the optimal doses found to be 31.25 μM, 62.5 μM, and 120 μM. Similarly, the optimal exposure time was established as no more than 120 h, ensuring a mortality rate of less than 10%. The confirmation of these conditions was achieved through the assessment of angiogenesis and the inflammatory reaction. As a result, the treatment time point of 24 h post-fertilization (hpf) was selected to examine the effects of caffeine on zebrafish larval sleep rhythm (48 h, with a light cycle of 14:10). Furthermore, the study analyzed the expression of clock genes (bmal1a, per1b, per2, per3, cry2), adenosine receptor genes (adora1a, adora1b, adora2aa, adora2ab, adora2b), and key regulatory factors (CREB and ADA). The research confirmed that caffeine could induce sleep pattern disorders, significantly upregulate adenosine receptor genes (adora1a, adora1b, adora2a, adora2ab, adora2b) (p < 0.05), and markedly decrease the total sleep time and sleep efficiency of the larvae. Additionally, the activity of ADA significantly increased during the exposure (p < 0.001), and the tissue-specific expression of CREB was also significantly increased, as assessed by immunofluorescence. Caffeine may regulate circadian clock genes through the ADA/ADORA/CREB pathway. These findings not only enhance our understanding of the effects of caffeine on zebrafish larvae but also provide valuable insights into the potential impact of caffeine on human behavior and sleep.
Collapse
Affiliation(s)
- Yuanzheng Wei
- Guangdong Provincial Biotechnology Research Institute (Guangdong Provincial Laboratory Animals Monitoring Center), Guangzhou 510663, China; (Y.W.); (Z.M.); (H.Y.); (M.W.)
| | - Zongyu Miao
- Guangdong Provincial Biotechnology Research Institute (Guangdong Provincial Laboratory Animals Monitoring Center), Guangzhou 510663, China; (Y.W.); (Z.M.); (H.Y.); (M.W.)
| | - Huixin Ye
- Guangdong Provincial Biotechnology Research Institute (Guangdong Provincial Laboratory Animals Monitoring Center), Guangzhou 510663, China; (Y.W.); (Z.M.); (H.Y.); (M.W.)
| | - Meihui Wu
- Guangdong Provincial Biotechnology Research Institute (Guangdong Provincial Laboratory Animals Monitoring Center), Guangzhou 510663, China; (Y.W.); (Z.M.); (H.Y.); (M.W.)
| | - Xinru Wei
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou 510006, China;
| | - Yu Zhang
- Guangdong Provincial Biotechnology Research Institute (Guangdong Provincial Laboratory Animals Monitoring Center), Guangzhou 510663, China; (Y.W.); (Z.M.); (H.Y.); (M.W.)
| | - Lei Cai
- Guangdong Provincial Biotechnology Research Institute (Guangdong Provincial Laboratory Animals Monitoring Center), Guangzhou 510663, China; (Y.W.); (Z.M.); (H.Y.); (M.W.)
| |
Collapse
|
5
|
Yang R, Lei Q, Liu Z, Shan X, Han S, Tang Y, Niu F, Liu H, Jiang W, Wei W, Han T. Relationship between timing of coffee and tea consumption with mortality (total, cardiovascular disease and diabetes) in people with diabetes: the U.S. National Health and Nutrition Examination Survey, 2003-2014. BMC Med 2024; 22:526. [PMID: 39523296 PMCID: PMC11552133 DOI: 10.1186/s12916-024-03736-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Previous observational studies have suggested diabetic patients should synchronize their foods and nutrient intake with their biological rhythm; however, the optimal intake time of coffee and tea for reducing all-cause and disease-specific mortality in diabetes is still unknown. This study aims to examine by investigating the association of timing for coffee and tea consumption with long-term survival in people with diabetes. METHODS A total of 5378 people with diabetes who enrolled in the National Health and Nutrition Examination Survey from 2003 to 2014 were recruited for this study. Coffee and tea intakes were measured by a 24-h dietary recall, which were divided by different time intervals across the day, including dawn to forenoon, forenoon to noon, noon to evening, and evening to dawn. Weighted cox proportional hazards regression models were developed to evaluate the survival-relationship of coffee and tea consumption with mortality of all-cause, cardiovascular disease (CVD), stroke, and diabetes. RESULTS During 47,361 person-year follow up, total 1639 death cases were documented, including 731 CVD deaths, 467 heart disease deaths, 99 stroke deaths, and 462 diabetes deaths. After adjustment for potential confounders, compared with participants without drinking coffee during dawn to forenoon, drinking coffee at this period was associated with increased mortality risk of all-cause (HR 1.25, 95% CI 1.05-1.50), CVD (HR 1.41, 95% CI 1.07-1.86), heart-disease (HR 1.47, 95% CI 1.05-2.07), and diabetes (HR 1.50, 95% CI 1.10-2.04). In contrast, drinking coffee during forenoon to noon had lower mortality risk of all-cause (HR 0.80, 95% CI 0.69-0.92), CVD (HR 0.79, 95% CI 0.63-0.99), and heart disease (HR 0.70, 95% CI 0.52-0.94). Similarly, drinking tea during forenoon to noon had lower risk of CVD mortality (HR = 0.62, 95% CI 0.44-0.87). CONCLUSIONS This study suggests that drinking coffee in dawn to forenoon is linked to a higher risk of death, but having coffee and tea from forenoon to noon is linked to a lower risk of overall mortality, CVD, and heart disease in individuals with diabetes.
Collapse
Affiliation(s)
- Ruiming Yang
- Department of Endocrinology, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Nutrition and Food Hygiene, School of Public Health, National Key Discipline, Harbin Medical University, Harbin, China
- Key Laboratory of Precision Nutrition and Health, Ministry of Education, Harbin Medical University, Harbin, China
| | - Qianqian Lei
- Department of Respiratory and Critical Care Medicine, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, China
| | - Zijie Liu
- Department of Nutrition and Food Hygiene, School of Public Health, National Key Discipline, Harbin Medical University, Harbin, China
- Key Laboratory of Precision Nutrition and Health, Ministry of Education, Harbin Medical University, Harbin, China
| | - Xinyu Shan
- Department of Nutrition and Food Hygiene, School of Public Health, National Key Discipline, Harbin Medical University, Harbin, China
| | - Sijia Han
- Department of Nutrition and Food Hygiene, School of Public Health, National Key Discipline, Harbin Medical University, Harbin, China
- Key Laboratory of Precision Nutrition and Health, Ministry of Education, Harbin Medical University, Harbin, China
| | - Yiwei Tang
- Department of Nutrition and Food Hygiene, School of Public Health, National Key Discipline, Harbin Medical University, Harbin, China
- Key Laboratory of Precision Nutrition and Health, Ministry of Education, Harbin Medical University, Harbin, China
| | - Fengru Niu
- Department of Nutrition and Food Hygiene, School of Public Health, National Key Discipline, Harbin Medical University, Harbin, China
- Key Laboratory of Precision Nutrition and Health, Ministry of Education, Harbin Medical University, Harbin, China
| | - Hui Liu
- Department of Nutrition and Food Hygiene, School of Public Health, National Key Discipline, Harbin Medical University, Harbin, China
- Key Laboratory of Precision Nutrition and Health, Ministry of Education, Harbin Medical University, Harbin, China
| | - Wenbo Jiang
- Department of Nutrition and Food Hygiene, School of Public Health, National Key Discipline, Harbin Medical University, Harbin, China.
- Key Laboratory of Precision Nutrition and Health, Ministry of Education, Harbin Medical University, Harbin, China.
| | - Wei Wei
- Department of Nutrition and Food Hygiene, School of Public Health, National Key Discipline, Harbin Medical University, Harbin, China.
- Key Laboratory of Precision Nutrition and Health, Ministry of Education, Harbin Medical University, Harbin, China.
| | - Tianshu Han
- Department of Endocrinology, the Second Affiliated Hospital of Harbin Medical University, Harbin, China.
- Department of Nutrition and Food Hygiene, School of Public Health, National Key Discipline, Harbin Medical University, Harbin, China.
- Key Laboratory of Precision Nutrition and Health, Ministry of Education, Harbin Medical University, Harbin, China.
| |
Collapse
|
6
|
Yayla A, Karaman Özlü Z, Uymaz Aras G. Caffeine and Sleep in Preventing Post-spinal Headache: Which One is More Effective? Biol Res Nurs 2024; 26:498-507. [PMID: 38676282 DOI: 10.1177/10998004241249938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
OBJECTIVE The study aimed to determine the effects of caffeine consumption and sleep on post-spinal headache after spinal anesthesia. BACKGROUND Post-spinal headache is among the most well-known and common complications of spinal anesthesia. Although caffeine consumption is recommended to prevent headache after spinal anesthesia, caffeine does not prevent headache and causes sleep-related problems. No study in the literature found a correlation between sleep and caffeine consumption after spinal anesthesia and post-spinal headache. METHODS The research is a descriptive and cross-sectional study. The study sample comprised 425 patients who underwent elective surgery in a research hospital. The research data were collected by face-to-face interviews between April 2021 and December 2023. The "Sociodemographic and Clinical Characteristics Form," "Richard-Campbell Sleep Scale," "Insomnia Severity Index," and "Visual Analog Scale" were used in data collection. Factors affecting post-spinal headache were determined using binary logistic regression analysis. RESULTS According to the binary logistic regression, the insomnia severity score (OR = 1.234; p < .001), sleep quality score (OR = .992; p < .01), postoperative sleep duration (OR = .619; p < .05), and not consuming coffee (OR = .035; p < .001) are statistically significant predictors of post-spinal headache and explain 57.7% of the variance. A one-unit increase in patients' insomnia severity increased the probability of experiencing a post-spinal headache by 23.4%. With a one-unit increase in sleep quality, there was an 8% decrease in the probability of experiencing spinal headache, and a 3.81% decrease in the probability of experiencing post-spinal headache with an increase in sleep duration after surgery. The probability of experiencing post-spinal headache was 0.35 times higher in individuals who did not consume caffeine after surgery than in those who consumed it. CONCLUSION The present study demonstrated that insomnia severity and sleep quality were more effective than caffeine consumption in preventing post-spinal headache. Insomnia and decreased sleep quality may cause a significant burden in developing post-spinal headache in patients and may cause post-spinal headache to be observed more frequently. Therefore, the use of caffeine in preventing or reducing post-spinal headache may adversely affect the duration and quality of sleep and increase the severity of insomnia.
Collapse
Affiliation(s)
- Ayşegül Yayla
- Department of Surgical Nursing, Faculty of Nursing, Atatürk University, Erzurum, Turkey
| | - Zeynep Karaman Özlü
- Department of Surgical Nursing, Faculty of Nursing, Anesthesiology Clinical Research Office, Ataturk University, Erzurum, Turkey
| | - Gülistan Uymaz Aras
- Medical Services and Techniques Department, Vocational School of Health Services, Ardahan, Turkey
| |
Collapse
|
7
|
Tahara Y, Ding J, Ito A, Shibata S. Sweetened caffeine drinking revealed behavioral rhythm independent of the central circadian clock in male mice. NPJ Sci Food 2024; 8:51. [PMID: 39160163 PMCID: PMC11333706 DOI: 10.1038/s41538-024-00295-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 07/25/2024] [Indexed: 08/21/2024] Open
Abstract
Caffeine consumption is associated with the evening chronotype, and caffeine administration in mice results in prolonged period of the circadian rhythm in locomotor activity. However, as caffeine is bitter, sweetened caffeine is preferred by humans and mice; yet, its impact on the circadian clock has not been explored. In this study, mice were provided with freely available sweetened caffeine to investigate its effects on behavioral rhythms and peripheral clocks. Mice that freely consumed sweetened caffeine shifted from nocturnal to diurnal activity rhythms. In addition to the light-dark entrained behavioral rhythm component, some animals exhibited free-running period longer than 24-h. Intraperitoneal administration of caffeine at the beginning of the light phase also acutely induced diurnal behavior. The behavioral rhythms with long period (26-30 h) due to sweetened caffeine were observed even in mice housed under constant light or with a lesioned central circadian clock located in the suprachiasmatic nucleus of the hypothalamus; however, the rhythmicity was unstable. PER2::LUCIFERASE rhythms in peripheral tissues, such as the kidney, as measured via in vivo whole-body imaging during caffeine consumption, showed reduced amplitude and desynchronized phases among individuals. These results indicate that consumption of sweetened caffeine induces diurnal and long-period behavioral rhythms irrespective of the central clock, causing desynchronization of the clock in the body.
Collapse
Affiliation(s)
- Yu Tahara
- Department of Public Health and Health Policy, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734-0037, Japan.
- School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, 162-0056, Japan.
| | - Jingwei Ding
- Department of Public Health and Health Policy, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734-0037, Japan
| | - Akito Ito
- School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, 162-0056, Japan
| | - Shigenobu Shibata
- Department of Public Health and Health Policy, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734-0037, Japan
- School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, 162-0056, Japan
| |
Collapse
|
8
|
Park J, Kim DY, Oh ES, Han IO. Light-Dependent Circadian Rhythm Governs O-GlcNAc Cycling to Influence Cognitive Function in Adult Zebrafish. J Pineal Res 2024; 76:e13001. [PMID: 39092800 DOI: 10.1111/jpi.13001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024]
Abstract
This study explores the 24-h rhythmic cycle of protein O-GlcNAcylation within the brain and highlights its crucial role in regulating the circadian cycle and neuronal function based on zebrafish as an animal model. In our experiments, disruption of the circadian rhythm, achieved through inversion of the light-dark cycle or daytime melatonin treatment, not only impaired the rhythmic changes of O-GlcNAcylation along with altering expression patterns of O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA) in zebrafish brain but also significantly impeded learning and memory function. In particular, circadian disruption affected rhythmic expression of protein O-GlcNAcylation and OGT in the nuclear fraction. Notably, the circadian cycle induces rhythmic alterations in O-GlcNAcylation of H2B histone protein that correspond to changes in H3 trimethylation. Disruption of the cycle interfered with these periodic histone code alterations. Pharmacological inhibition of OGT with OSMI-1 disrupted the wake-sleep patterns of zebrafish without affecting expression of circadian rhythm-regulating genes. OSMI-1 inhibited the expression of c-fos, bdnf, and calm1, key genes associated with brain function and synaptic plasticity, and decreased the binding of O-GlcNAcylated H2B and OGT to promoter regions of these genes. The collective findings support the potential involvement of circadian cycling of the O-GlcNAc histone code in regulating synaptic plasticity and brain function. Overall, data from this study provide evidence that protein O-GlcNAcylation serves as a pivotal posttranslational mechanism integrating circadian signals and neuronal function to regulate rhythmic physiology.
Collapse
Affiliation(s)
- Jiwon Park
- Department of Biomedical Science, Program in Biomedical Science and Engineering, Department of Physiology and Biophysics, College of Medicine, Inha University, Incheon, Korea
| | - Dong Yeol Kim
- Department of Biomedical Science, Program in Biomedical Science and Engineering, Department of Physiology and Biophysics, College of Medicine, Inha University, Incheon, Korea
| | - Eok-Soo Oh
- Department of Life Sciences, Ewha Womans University, Seoul, Korea
| | - Inn-Oc Han
- Department of Biomedical Science, Program in Biomedical Science and Engineering, Department of Physiology and Biophysics, College of Medicine, Inha University, Incheon, Korea
| |
Collapse
|
9
|
McHill AW, Butler MP. Eating Around the Clock: Circadian Rhythms of Eating and Metabolism. Annu Rev Nutr 2024; 44:25-50. [PMID: 38848598 PMCID: PMC11849495 DOI: 10.1146/annurev-nutr-062122-014528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
The time of day that we eat is increasingly recognized as contributing as importantly to overall health as the amount or quality of the food we eat. The endogenous circadian clock has evolved to promote intake at optimal times when an organism is intended to be awake and active, but electric lights and abundant food allow eating around the clock with deleterious health outcomes. In this review, we highlight literature pertaining to the effects of food timing on health, beginning with animal models and then translation into human experiments. We emphasize the pitfalls and opportunities that technological advances bring in bettering understanding of eating behaviors and their association with health and disease. There is great promise for restricting the timing of food intake both in clinical interventions and in public health campaigns for improving health via nonpharmacological therapies.
Collapse
Affiliation(s)
- Andrew W McHill
- Sleep, Chronobiology, and Health Laboratory, School of Nursing, Oregon Health & Science University, Portland, Oregon, USA
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, Oregon, USA
| | - Matthew P Butler
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, USA;
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
10
|
Ryan C, Tahara Y, Haraguchi A, Lu Y, Shibata S. Nobiletin Stimulates Adrenal Hormones and Modulates the Circadian Clock in Mice. Nutrients 2024; 16:1491. [PMID: 38794729 PMCID: PMC11123956 DOI: 10.3390/nu16101491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/06/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Polymethoxyflavonoids, such as nobiletin (abundant in Citrus depressa), have been reported to have antioxidant, anti-inflammatory, anticancer, and anti-dementia effects, and are also a circadian clock modulator through retinoic acid receptor-related orphan receptor (ROR) α/γ. However, the optimal timing of nobiletin intake has not yet been determined. Here, we explored the time-dependent treatment effects of nobiletin and a possible novel mechanistic idea for nobiletin-induced circadian clock regulation in mice. In vivo imaging showed that the PER2::LUC rhythm in the peripheral organs was altered in accordance with the timing of nobiletin administration (100 mg/kg). Administration at ZT4 (middle of the light period) caused an advance in the peripheral clock, whereas administration at ZT16 (middle of the dark period) caused an increase in amplitude. In addition, the intraperitoneal injection of nobiletin significantly and potently stimulated corticosterone and adrenaline secretion and caused an increase in Per1 expression in the peripheral tissues. Nobiletin inhibited phosphodiesterase (PDE) 4A1A, 4B1, and 10A2. Nobiletin or rolipram (PDE4 inhibitor) injection, but not SR1078 (RORα/γ agonist), caused acute Per1 expression in the peripheral tissues. Thus, the present study demonstrated a novel function of nobiletin and the regulation of the peripheral circadian clock.
Collapse
Affiliation(s)
- Conn Ryan
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo 162-0056, Japan; (C.R.); (A.H.); (S.S.)
| | - Yu Tahara
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo 162-0056, Japan; (C.R.); (A.H.); (S.S.)
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-0037, Japan;
| | - Atsushi Haraguchi
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo 162-0056, Japan; (C.R.); (A.H.); (S.S.)
| | - Yuanyuan Lu
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-0037, Japan;
| | - Shigenobu Shibata
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo 162-0056, Japan; (C.R.); (A.H.); (S.S.)
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-0037, Japan;
| |
Collapse
|
11
|
Kobayashi Y, Akagi Y, Tsubaki K, Shimoda E, Kikuchi T, Endo N, Ichiyanagi T, Nakagiri A, Nishida T, Ishihara A. Identification of Cyclocybe erebia metabolites that affect the circadian rhythm of Eluc expression under control of Bmal1 promoter in mouse fibroblast cells. J Biosci Bioeng 2023; 136:278-286. [PMID: 37550133 DOI: 10.1016/j.jbiosc.2023.06.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 06/15/2023] [Accepted: 06/29/2023] [Indexed: 08/09/2023]
Abstract
Pharmacological intervention of circadian rhythms is a potentially useful approach for ameliorating various health problems caused by disturbed circadian rhythms including sleep disorder and metabolic diseases. To find compounds that affect circadian rhythms, we screened mushroom extracts using mouse cells expressing the luciferase gene under the control of the mouse Bmal1 promoter. The culture filtrate extract from the basidiomycete Cyclocybe erebia enhanced the oscillation of bioluminescence caused by the expression of the luciferase gene and prolonged the period of bioluminescence. Bioassay-guided fractionation of the extract resulted in purification of compounds 1 and 2. Spectroscopic analyses along with single-crystal X-ray diffraction analysis, revealed that these compounds were diterpenoids with a unique skeleton and a fused ring system comprising 3-, 7-, and 5-membered rings. Compounds 1 and 2 were named cyclocircadins A and B, respectively. These findings suggested that natural diterpenoids could be a source of compounds with the activity affecting circadian rhythms.
Collapse
Affiliation(s)
- Yusei Kobayashi
- The United Graduate School of Agricultural Sciences, Tottori University, 4-101 Koyamacho-minami, Tottori 680-8553, Japan; GPC Laboratory, Tottori Bio-Frontier, 86 Nishi-cho, Yonago, Tottori 683-0826, Japan
| | - Yasunori Akagi
- GPC Laboratory, Tottori Bio-Frontier, 86 Nishi-cho, Yonago, Tottori 683-0826, Japan
| | - Kaori Tsubaki
- GPC Laboratory, Tottori Bio-Frontier, 86 Nishi-cho, Yonago, Tottori 683-0826, Japan
| | - Emiko Shimoda
- Fungus/Mushroom Resource and Research Center, Faculty of Agriculture, Tottori University, 4-101, Koyamacho-minami, Tottori 680-8553, Japan
| | - Takashi Kikuchi
- Rigaku Corporation, 3-9-12 Matsubara-cho, Akishima-shi, Tokyo 196-8666, Japan
| | - Naoki Endo
- Fungus/Mushroom Resource and Research Center, Faculty of Agriculture, Tottori University, 4-101, Koyamacho-minami, Tottori 680-8553, Japan
| | - Tsuyoshi Ichiyanagi
- Fungus/Mushroom Resource and Research Center, Faculty of Agriculture, Tottori University, 4-101, Koyamacho-minami, Tottori 680-8553, Japan
| | - Akira Nakagiri
- Fungus/Mushroom Resource and Research Center, Faculty of Agriculture, Tottori University, 4-101, Koyamacho-minami, Tottori 680-8553, Japan
| | - Tadashi Nishida
- GPC Laboratory, Tottori Bio-Frontier, 86 Nishi-cho, Yonago, Tottori 683-0826, Japan
| | - Atsushi Ishihara
- Fungus/Mushroom Resource and Research Center, Faculty of Agriculture, Tottori University, 4-101, Koyamacho-minami, Tottori 680-8553, Japan.
| |
Collapse
|
12
|
Tahara Y, Qian J, Oike H, Escobar C. Editorial: The present and future of chrono-nutrition studies. Front Nutr 2023; 10:1183320. [PMID: 37077906 PMCID: PMC10106774 DOI: 10.3389/fnut.2023.1183320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 03/23/2023] [Indexed: 04/05/2023] Open
Affiliation(s)
- Yu Tahara
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- *Correspondence: Yu Tahara
| | - Jingyi Qian
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA, United States
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, United States
| | - Hideaki Oike
- Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Carolina Escobar
- Departamento de Anatomía, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
13
|
Segu A, Kannan NN. The duration of caffeine treatment plays an essential role in its effect on sleep and circadian rhythm. SLEEP ADVANCES : A JOURNAL OF THE SLEEP RESEARCH SOCIETY 2023; 4:zpad014. [PMID: 37193284 PMCID: PMC10108652 DOI: 10.1093/sleepadvances/zpad014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/28/2023] [Indexed: 05/18/2023]
Abstract
Sleep is regulated by the homeostatic system and the circadian clock. Caffeine intake promotes wakefulness in Drosophila. In humans, caffeine is consumed on a daily basis and hence it is important to understand the effect of prolonged caffeine intake on both circadian and homeostatic regulation of sleep. Furthermore, sleep changes with age and the impact of caffeine on age-dependent sleep fragmentation are yet to be understood. Hence in the present study, we examined the effect of short exposure to caffeine on homeostatic sleep and age-dependent sleep fragmentation in Drosophila. We further assessed the effect of prolonged exposure to caffeine on homeostatic sleep and circadian clock. The results of our study showed that short exposure to caffeine reduces sleep and food intake in mature flies. It also enhances sleep fragmentation with increasing age. However, we have not assessed the effect of caffeine on food intake in older flies. On the other hand, prolonged caffeine exposure did not exert any significant effect on the duration of sleep and food intake in mature flies. Nevertheless, prolonged caffeine ingestion decreased the morning and evening anticipatory activity in these flies indicating that it affects the circadian rhythm. These flies also exhibited phase delay in the clock gene timeless transcript oscillation and exhibited either behavioral arrhythmicity or a longer free-running period under constant darkness. In summary, the results of our studies showed that short exposure to caffeine increases the sleep fragmentation with age whereas prolonged caffeine exposure disrupts the circadian clock.
Collapse
Affiliation(s)
- Aishwarya Segu
- Chronobiology Laboratory, School of Biology, Indian Institute of Science Education and Research (IISER), Thiruvananthapuram, India
| | - Nisha N Kannan
- Chronobiology Laboratory, School of Biology, Indian Institute of Science Education and Research (IISER), Thiruvananthapuram, India
| |
Collapse
|
14
|
Caffeine suppresses high-fat diet-induced body weight gain in mice depending on feeding timing. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
15
|
Haraguchi A, Saito K, Tahara Y, Shibata S. Polygalae Radix shortens the circadian period through activation of the CaMKII pathway. PHARMACEUTICAL BIOLOGY 2022; 60:689-698. [PMID: 35298359 PMCID: PMC8933028 DOI: 10.1080/13880209.2022.2048863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 02/22/2022] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
CONTEXT The mammalian circadian clock system regulates physiological function. Crude drugs, containing Polygalae Radix, and Kampō, combining multiple crude drugs, have been used to treat various diseases, but few studies have focussed on the circadian clock. OBJECTIVE We examine effective crude drugs, which cover at least one or two of Kampō, for the shortening effects on period length of clock gene expression rhythm, and reveal the mechanism of shortening effects. MATERIALS AND METHODS We prepared 40 crude drugs. In the in vitro experiments, we used mouse embryonic fibroblasts from PERIOD2::LUCIFERASE knock-in mice (background; C57BL/6J mice) to evaluate the effect of crude drugs on the period length of core clock gene, Per2, expression rhythm by chronic treatment (six days) with distilled water or crude drugs (100 μg/mL). In the in vivo experiments, we evaluated the free-running period length of C57BL/6J mice fed AIN-93M or AIN-93M supplemented with 1% crude drug (6 weeks) that shortened the period length of the PERIOD2::LUCIFERASE expression rhythm in the in vitro experiments. RESULTS We found that Polygalae Radix (ED50: 24.01 μg/mL) had the most shortened PERIOD2::LUCIFERASE rhythm period length in 40 crude drugs and that the CaMKII pathway was involved in this effect. Moreover, long-term feeding with AIN-93M+Polygalae Radix slightly shortened the free-running period of the mouse locomotor activity rhythm. DISCUSSION AND CONCLUSIONS Our results indicate that Polygalae Radix may be regarded as a new therapy for circadian rhythm disorder and that the CaMKII pathway may be regarded as a target pathway for circadian rhythm disorders.
Collapse
Affiliation(s)
- Atsushi Haraguchi
- School of Advanced Science and Engineering, Laboratory of Physiology and Pharmacology, Waseda University, Tokyo, Japan
| | - Keisuke Saito
- School of Advanced Science and Engineering, Laboratory of Physiology and Pharmacology, Waseda University, Tokyo, Japan
| | - Yu Tahara
- School of Advanced Science and Engineering, Laboratory of Physiology and Pharmacology, Waseda University, Tokyo, Japan
| | - Shigenobu Shibata
- School of Advanced Science and Engineering, Laboratory of Physiology and Pharmacology, Waseda University, Tokyo, Japan
| |
Collapse
|
16
|
Dai HR, Guo HL, Hu YH, Xu J, Ding XS, Cheng R, Chen F. Precision caffeine therapy for apnea of prematurity and circadian rhythms: New possibilities open up. Front Pharmacol 2022; 13:1053210. [PMID: 36532766 PMCID: PMC9753576 DOI: 10.3389/fphar.2022.1053210] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 11/18/2022] [Indexed: 09/10/2024] Open
Abstract
Caffeine is the globally consumed psychoactive substance and the drug of choice for the treatment of apnea of prematurity (AOP), but its therapeutic effects are highly variable among preterm infants. Many of the molecular underpinnings of the marked individual response have remained elusive yet. Interestingly, the significant association between Clock gene polymorphisms and the response to caffeine therapy offers an opportunity to advance our understanding of potential mechanistic pathways. In this review, we delineate the functions and mechanisms of human circadian rhythms. An up-to-date advance of the formation and ontogeny of human circadian rhythms during the perinatal period are concisely discussed. Specially, we summarize and discuss the characteristics of circadian rhythms in preterm infants. Second, we discuss the role of caffeine consumption on the circadian rhythms in animal models and human, especially in neonates and preterm infants. Finally, we postulate how circadian-based therapeutic initiatives could open new possibilities to promote precision caffeine therapy for the AOP management in preterm infants.
Collapse
Affiliation(s)
- Hao-Ran Dai
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children’s Hospital of Nanjing Medical University, Nanjing, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Hong-Li Guo
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Ya-Hui Hu
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Jing Xu
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Xuan-Sheng Ding
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Rui Cheng
- Neonatal Intensive Care Unit, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Feng Chen
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children’s Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
17
|
Tomita T, Kawano Y, Kassai M, Onda H, Nakajima Y, Miyazaki K. Hydroxy-β-sanshool isolated from Zanthoxylum piperitum (Japanese pepper) shortens the period of the circadian clock. Food Funct 2022; 13:9407-9418. [PMID: 35960176 DOI: 10.1039/d2fo01036d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We showed that an ethanol extract from Zanthoxylum piperitum can shorten the circadian rhythm at the cellular level and that this activity was due to hydroxy-β-sanshool, a secondary metabolite in this plant. An ethanol extract of Z. piperitum was repeatedly fractionated using solid phase extraction and reverse-phase HPLC, then the circadian rhythms of cells to which the fractions were loaded were monitored using real-time reporter gene assays. We purified one HPLC peak and identified it as hydroxy-β-sanshool using liquid chromatography (LC)-precision-mass spectrometry (MS). This compound shortened the period of Bmal1 and Per2 at the cellular level. Incubation cells for 24 h with hydroxy-β-sanshool resulted in upregulated Per2 promoter activity. Hydroxy-β-sanshool also dose-dependently upregulated expression of the clock genes Bmal1, Per1, Per2 and Cry1 and the clock-controlled oxidative stress responsive genes Gpx1and Sod2.
Collapse
Affiliation(s)
- Tatsunosuke Tomita
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Higashi 1-1-1, Tsukuba 305-8566, Japan.
| | - Yasuhiro Kawano
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Higashi 1-1-1, Tsukuba 305-8566, Japan.
| | - Masahiro Kassai
- S&B Foods Inc., #605 MITSUI LINK-Lab Shinkiba1 Shinkiba 2-3-8, Koto-ku, Tokyo 136-0082, Japan
| | - Hiroyuki Onda
- S&B Foods Inc., #605 MITSUI LINK-Lab Shinkiba1 Shinkiba 2-3-8, Koto-ku, Tokyo 136-0082, Japan
| | - Yoshihiro Nakajima
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Hayashicho 2217-14, Takamatsu, 761-0395, Japan
| | - Koyomi Miyazaki
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Higashi 1-1-1, Tsukuba 305-8566, Japan.
| |
Collapse
|
18
|
Wang Y, Deboer T. Long-Term Effect of a Single Dose of Caffeine on Sleep, the Sleep EEG and Neuronal Activity in the Peduncular Part of the Lateral Hypothalamus under Constant Dark Conditions. Clocks Sleep 2022; 4:260-276. [PMID: 35735603 PMCID: PMC9222093 DOI: 10.3390/clockssleep4020023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/11/2022] [Accepted: 05/19/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Caffeine is a central nervous system stimulant that influences both the sleep–wake cycle and the circadian clock and is known to influence neuronal activity in the lateral hypothalamus, an important area involved in sleep–wake regulation. Light is a strong zeitgeber and it is known to interact with the effect of caffeine on the sleep–wake cycle. We therefore wanted to investigate the long-term effects of a single dose of caffeine under constant dark conditions. Methods: We performed long-term (2 days) electroencephalogram (EEG)/electromyogram recordings combined with multi-unit neuronal activity recordings in the peduncular part of the lateral hypothalamus (PLH) under constant darkness in Brown Norway rats, and investigated the effect of a single caffeine treatment (15 mg/kg) or saline control given 1 h after the onset of the endogenous rest phase. Results: After a reduction in sleep and an increase in waking and activity in the first hours after administration, also on the second recording day after caffeine administration, rapid eye movement (REM) sleep was still reduced. Analysis of the EEG showed that power density in the theta range during waking and REM sleep was increased for at least two days. Neuronal activity in PLH was also increased for two days after the treatment, particularly during non-rapid eye movement sleep. Conclusion: Surprisingly, the data reveal long-term effects of a single dose of caffeine on vigilance states, EEG, and neuronal activity in the PLH. The absence of a light–dark cycle may have enabled the expression of these long-term changes. It therefore may be that caffeine, or its metabolites, have a stronger and longer lasting influence, particularly on the expression of REM sleep, than acknowledged until now.
Collapse
|
19
|
Yang D, Oike H, Furuse M, Yasuo S. Spermidine resets circadian clock phase in NIH3T3 cells. Biomed Res 2021; 42:221-227. [PMID: 34544997 DOI: 10.2220/biomedres.42.221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Irregular light-dark cycles desynchronize the circadian clock via hormonal and neuronal pathways and increase the risk of various diseases. This study demonstrated that a single pulse of spermidine-a polyamine-strongly induced circadian phase advances in the presence or absence of dexamethasone (a synthetic glucocorticoid) in NIH3T3 cells transfected with the Bmal1 promotor-driven luciferase reporter gene. The spermidine-induced phase advances were 2-3 fold greater than were the dexamethasone-induced shifts. The phase resetting effect of spermidine occurred in a dose- and time-dependent manner and was not blocked by RU486, an antagonist of glucocorticoid receptors. Spermidine treatment modulated the expression of clock genes within 60 min, which was sooner than changes in the expression of autophagy-related genes. These findings suggested that spermidine is a potent modulator of the circadian phase, acting through glucocorticoid receptor-independent pathways, and may be useful for treating diseases related to circadian desynchrony.
Collapse
Affiliation(s)
- Dan Yang
- Laboratory of Regulation in Metabolism and Behavior, Faculty of Agriculture, Kyushu University
| | - Hideaki Oike
- Food Research Institute, National Agriculture and Food Research Organization
| | - Mitsuhiro Furuse
- Laboratory of Regulation in Metabolism and Behavior, Faculty of Agriculture, Kyushu University
| | - Shinobu Yasuo
- Laboratory of Regulation in Metabolism and Behavior, Faculty of Agriculture, Kyushu University
| |
Collapse
|
20
|
Huang JQ, Lu M, Ho CT. Health benefits of dietary chronobiotics: beyond resynchronizing internal clocks. Food Funct 2021; 12:6136-6156. [PMID: 34057166 DOI: 10.1039/d1fo00661d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The internal circadian clock in mammals drives whole-body biological activity rhythms. The clock reflects changes in external signals by controlling enzyme functions and the release of hormones involved in metabolic processes. Thus, misalignments between the circadian clock and an individual's daily schedule are recognized to be related to various metabolic diseases, such as obesity and diabetes. Although evidence has shown the existence of a complex relationship between circadian clock regulation and daily food intake, the regulatory effects of phytochemicals on the circadian clock remain unclarified. To better elucidate these relationships/effects, the circadian system components in mammals, circadian misalignment-related metabolic diseases, circadian rhythm-adjusting phytochemicals (including the heterocycles, acids, flavonoids and others) and the potential mechanisms (including the regulation of clock genes/proteins, metabolites of gut microbiota and secondary metabolites) are reviewed here. The bioactive components of functional foods discussed in this review could be considered potentially effective factors for the prevention and treatment of metabolic disorders related to circadian misalignment.
Collapse
Affiliation(s)
- Jun-Qing Huang
- Guangzhou Key Laboratory of Formula-pattern of Traditional Chinese Medicine, Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China.
| | | | | |
Collapse
|
21
|
Gisabella B, Babu J, Valeri J, Rexrode L, Pantazopoulos H. Sleep and Memory Consolidation Dysfunction in Psychiatric Disorders: Evidence for the Involvement of Extracellular Matrix Molecules. Front Neurosci 2021; 15:646678. [PMID: 34054408 PMCID: PMC8160443 DOI: 10.3389/fnins.2021.646678] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 04/22/2021] [Indexed: 12/13/2022] Open
Abstract
Sleep disturbances and memory dysfunction are key characteristics across psychiatric disorders. Recent advances have revealed insight into the role of sleep in memory consolidation, pointing to key overlap between memory consolidation processes and structural and molecular abnormalities in psychiatric disorders. Ongoing research regarding the molecular mechanisms involved in memory consolidation has the potential to identify therapeutic targets for memory dysfunction in psychiatric disorders and aging. Recent evidence from our group and others points to extracellular matrix molecules, including chondroitin sulfate proteoglycans and their endogenous proteases, as molecules that may underlie synaptic dysfunction in psychiatric disorders and memory consolidation during sleep. These molecules may provide a therapeutic targets for decreasing strength of reward memories in addiction and traumatic memories in PTSD, as well as restoring deficits in memory consolidation in schizophrenia and aging. We review the evidence for sleep and memory consolidation dysfunction in psychiatric disorders and aging in the context of current evidence pointing to the involvement of extracellular matrix molecules in these processes.
Collapse
Affiliation(s)
| | | | | | | | - Harry Pantazopoulos
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, United States
| |
Collapse
|
22
|
Cheng H, Liu Z, Wu G, Ho CT, Li D, Xie Z. Dietary compounds regulating the mammal peripheral circadian rhythms and modulating metabolic outcomes. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
23
|
The Combined Effects of Magnesium Oxide and Inulin on Intestinal Microbiota and Cecal Short-Chain Fatty Acids. Nutrients 2021; 13:nu13010152. [PMID: 33466274 PMCID: PMC7824761 DOI: 10.3390/nu13010152] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/31/2020] [Accepted: 01/03/2021] [Indexed: 12/12/2022] Open
Abstract
Constipation is a common condition that occurs in many people worldwide. While magnesium oxide (MgO) is often used as the first-line drug for chronic constipation in Japan, dietary fiber intake is also recommended. Dietary fiber is fermented by microbiota to produce short-chain fatty acids (SCFAs). SCFAs are involved in regulating systemic physiological functions and circadian rhythm. We examined the effect of combining MgO and the water-soluble dietary fiber, inulin, on cecal SCFA concentration and microbiota in mice. We also examined the MgO administration timing effect on cecal SCFAs. The cecal SCFA concentrations were measured by gas chromatography, and the microbiota was determined using next-generation sequencing. Inulin intake decreased cecal pH and increased cecal SCFA concentrations while combining MgO increased the cecal pH lowered by inulin and decreased the cecal SCFA concentrations elevated by inulin. When inulin and MgO were combined, significant changes in the microbiota composition were observed compared with inulin alone. The MgO effect on the cecal acetic acid concentration was less when administered at ZT12 than at ZT0. In conclusion, this study suggests that MgO affects cecal SCFA and microbiota during inulin feeding, and the effect on acetic acid concentration is time-dependent.
Collapse
|
24
|
Suzuki C, Fukumitsu S, Oike H. Modulation of cellular circadian clocks by triterpenoids. PHYTOCHEMISTRY 2021; 181:112539. [PMID: 33099224 DOI: 10.1016/j.phytochem.2020.112539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 06/11/2023]
Abstract
Many living organisms on earth have clock systems in their body. It has increasingly become clear that a disturbance in the internal clocks has negative effects on our body. Terpenes are organic compounds found in various plants that are reported to have several pharmacological actions. In this study, we focused on commercially available 27 triterpenoids and evaluated their influence on the circadian rhythm of human U2OS cells and mouse NIH3T3 cells. The expression level of Per2, one of the core clock genes, was measured using luminescent reporters over the time period of a few days. We found that 8 triterpenoids reset the phase of the circadian clocks. Representative compounds were corosolic acid, cucurbitacin B, and celastrol; similar effects were also confirmed with some structural analogues of cucurbitacin B and celastrol. These compounds shifted the phase bilaterally depending on the stimulus timing and also acted as synchronizers in desynchronized cells. The effective concentrations of cucurbitacin B and celastrol were less than 0.5 μM. In addition, cucurbitacin B and celastrol were also found to be effective in tissue explants in mice. Furthermore, celastrol dose-dependently shortened the period length of NIH3T3 cells. Some of these compounds are found in edible and medicinal plants and may help regulate our circadian clocks in everyday life.
Collapse
Affiliation(s)
- Chihiro Suzuki
- Food Research Institute, National Agriculture and Food Research Organization, 2-1-12 Kannondai, Tsukuba, Ibaraki, 305-8642, Japan
| | - Satoshi Fukumitsu
- Food Innovation Course, School of Integrative and Global Majors, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Hideaki Oike
- Food Research Institute, National Agriculture and Food Research Organization, 2-1-12 Kannondai, Tsukuba, Ibaraki, 305-8642, Japan; Research Center for Agricultural Information Technology, National Agriculture and Food Research Organization, 3-1-1 Kannondai, Tsukuba, Ibaraki, 305-8517, Japan.
| |
Collapse
|
25
|
Martins GL, Guilherme JPLF, Ferreira LHB, de Souza-Junior TP, Lancha AH. Caffeine and Exercise Performance: Possible Directions for Definitive Findings. Front Sports Act Living 2020; 2:574854. [PMID: 33345139 PMCID: PMC7739593 DOI: 10.3389/fspor.2020.574854] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 11/17/2020] [Indexed: 01/01/2023] Open
Abstract
Caffeine is one of the most studied supplements in the world. Studies correlate its use to increased exercise performance in endurance activities, as well as its possible ergogenic effects for both intermittent and strength activities. Recent findings show that caffeine may increase or decrease exercise performance. These antagonist responses may occur even when using the same dosage and for individuals with the same characteristics, making it challenging to explain caffeine's impact and applicability. This review article provides an analytic look at studies involving the use of caffeine for human physical performance, and addresses factors that could influence the ergogenic effects of caffeine on different proposed activities. These factors subdivide into caffeine effects, daily habits, physiological factors, and genetic factors. Each variable has been focused on by discussions to research related to caffeine. A better understanding and control of these variables should be considered in future research into personalized nutritional strategies.
Collapse
Affiliation(s)
- Gabriel Loureiro Martins
- Laboratory of Applied Nutrition and Metabolism, School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | | | - Luis Henrique Boiko Ferreira
- Research Group on Metabolism, Nutrition and Strength Training, Department of Physical Education, Federal University of Parana, Curitiba, Brazil
| | - Tácito Pessoa de Souza-Junior
- Research Group on Metabolism, Nutrition and Strength Training, Department of Physical Education, Federal University of Parana, Curitiba, Brazil
| | - Antonio Herbert Lancha
- Laboratory of Applied Nutrition and Metabolism, School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
26
|
Hironao KY, Mitsuhashi Y, Huang S, Oike H, Ashida H, Yamashita Y. Cacao polyphenols regulate the circadian clock gene expression and through glucagon-like peptide-1 secretion. J Clin Biochem Nutr 2020; 67:53-60. [PMID: 32801469 PMCID: PMC7417799 DOI: 10.3164/jcbn.20-38] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 03/24/2020] [Indexed: 12/26/2022] Open
Abstract
Energy metabolism and circadian rhythms are closely related together, i.e., the timing of nutrient intake affects metabolism under the regulation of circadian rhythms. Previously, we have reported that cacao liquor procyanidin (CLPr) promotes energy metabolism, resulting in preventing obesity and hyperglycemia. However, it is not unclear whether CLPr regulates clock gene expression. In this study, we investigated whether the administration timing of CLPr affected clock gene expression and found that CLPr regulated the circadian clock gene expression through the glucagon-like peptide-1 (GLP-1) signaling pathway. CLPr administration at Zeitgeber time 3 increased the expression level of Per family and Dbp in the liver. At the same administration timing, CLPr increased GLP-1 and insulin concentration in the plasma and phosphorylation of AMPK in the liver. It was noteworthy that an antagonist for GLP-1 receptor Exendin (9-39) canceled CLPr-increased expression of Per family and Dbp and phosphorylation of AMPK in the liver, in addition to insulin secretion. These results strongly suggest that CLPr-induced GLP-1 regulates the changes in clock gene expression in the liver through increased insulin. Thus, CLPr is a possible functional food material for prevention and/or amelioration of metabolic disorders through preventing circadian disruption through GLP-1 and AMPK pathways.
Collapse
Affiliation(s)
- Ken-Yu Hironao
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Yuji Mitsuhashi
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Shujiao Huang
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Hideaki Oike
- Food Research Institute, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki 305-8642, Japan
| | - Hitoshi Ashida
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Yoko Yamashita
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| |
Collapse
|
27
|
Trautmann C, Burek D, Hübner CA, Girault JA, Engmann O. A regulatory pathway linking caffeine action, mood and the diurnal clock. Neuropharmacology 2020; 172:108133. [PMID: 32413367 DOI: 10.1016/j.neuropharm.2020.108133] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/28/2020] [Accepted: 05/08/2020] [Indexed: 11/29/2022]
Abstract
Depression is a leading cause of disability worldwide. Circadian abnormalities and mood changes are symptoms of depression. The psychostimulant caffeine alters wakefulness and alleviates other depression-related symptoms during chronic intake, but the underlying mechanisms are unclear. It is not known, whether and how acute caffeine administration affects mood. Molecular approaches, transgenic mouse models, pharmacological intervention and behavioral analysis were combined to uncover a regulatory pathway, which connects caffeine action with diurnal signaling via the key dopaminergic protein DARPP-32 and alters mood-related phenotypes in mice, which are often assessed in the context of antidepressant action. We observed that Thr75-DARPP-32 binds to the circadian regulator CLOCK and disrupts CLOCK:BMAL1 chromatin binding, thereby affecting gene expression. T75A-DARPP-32 mutant mice show reduced caffeine effects on CLOCK:BMAL1 and lack caffeine-induced effects on mood. This study provides a link between caffeine, diurnal signaling and mood-related behaviors, which may open new perspectives for our understanding of antidepressant mechanisms in the mouse brain.
Collapse
Affiliation(s)
- Charlotte Trautmann
- Institute of Human Genetics, Jena University Hospital, Am Klinikum 1, Thüringen, 07747, Germany
| | - Dominika Burek
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Christian A Hübner
- Institute of Human Genetics, Jena University Hospital, Am Klinikum 1, Thüringen, 07747, Germany
| | - Jean-Antoine Girault
- Inserm, Institut du Fer à Moulin UMR-S 1270, Paris, 75005, France; Sorbonne Université, Paris, 75005, France
| | - Olivia Engmann
- Institute of Human Genetics, Jena University Hospital, Am Klinikum 1, Thüringen, 07747, Germany; Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Inserm, Institut du Fer à Moulin UMR-S 1270, Paris, 75005, France; Sorbonne Université, Paris, 75005, France; Laboratory of Neuroepigenetics, University of Zürich and ETH Zürich, Center for Neuroscience Zürich, Brain Research Institute, CH-8057 Zürich, Switzerland.
| |
Collapse
|
28
|
Yoshida I, Kumagai M, Ide M, Horigome S, Takahashi Y, Mishima T, Fujita K, Igarashi T. Polymethoxyflavones in black ginger (Kaempferia parviflora) regulate the expression of circadian clock genes. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103900] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
29
|
Weibel J, Lin YS, Landolt HP, Garbazza C, Kolodyazhniy V, Kistler J, Rehm S, Rentsch K, Borgwardt S, Cajochen C, Reichert CF. Caffeine-dependent changes of sleep-wake regulation: Evidence for adaptation after repeated intake. Prog Neuropsychopharmacol Biol Psychiatry 2020; 99:109851. [PMID: 31866308 DOI: 10.1016/j.pnpbp.2019.109851] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 12/10/2019] [Accepted: 12/12/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND Circadian and sleep-homeostatic mechanisms regulate timing and quality of wakefulness. To enhance wakefulness, daily consumption of caffeine in the morning and afternoon is highly common. However, the effects of such a regular intake pattern on circadian sleep-wake regulation are unknown. Thus, we investigated if daily daytime caffeine intake and caffeine withdrawal affect circadian rhythms and wake-promotion in habitual consumers. METHODS Twenty male young volunteers participated in a randomised, double-blind, within-subject study with three conditions: i) caffeine (150 mg 3 x daily for 10 days), ii) placebo (3 x daily for 10 days) and iii) withdrawal (150 mg caffeine 3 x daily for eight days, followed by a switch to placebo for two days). Starting on day nine of treatment, salivary melatonin and cortisol, evening nap sleep as well as sleepiness and vigilance performance throughout day and night were quantified during 43 h in an in-laboratory, light and posture-controlled protocol. RESULTS Neither the time course of melatonin (i.e. onset, amplitude or area under the curve) nor the time course of cortisol was significantly affected by caffeine or withdrawal. During withdrawal, however, volunteers reported increased sleepiness, showed more attentional lapses as well as polysomnography-derived markers of elevated sleep propensity in the late evening compared to both the placebo and caffeine condition. CONCLUSIONS The typical pattern of caffeine intake with consumption in both the morning and afternoon hours may not necessarily result in a circadian phase shift in the evening nor lead to clear-cut benefits in alertness. The time-of-day independent effects of caffeine withdrawal on evening nap sleep, sleepiness and performance suggest an adaptation to the substance, presumably in the homeostatic aspect of sleep-wake regulation.
Collapse
Affiliation(s)
- Janine Weibel
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland; Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland
| | - Yu-Shiuan Lin
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland; Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland; Neuropsychiatry and Brain Imaging, Psychiatric Hospital of the University of Basel, Basel, Switzerland
| | - Hans-Peter Landolt
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland; Sleep & Health Zürich, University Center of Competence, University of Zürich, Zürich, Switzerland
| | - Corrado Garbazza
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland; Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland
| | | | - Joshua Kistler
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland; Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland
| | - Sophia Rehm
- Laboratory Medicine, University Hospital Basel, Basel, Switzerland
| | | | - Stefan Borgwardt
- Neuropsychiatry and Brain Imaging, Psychiatric Hospital of the University of Basel, Basel, Switzerland
| | - Christian Cajochen
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland; Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland.
| | - Carolin Franziska Reichert
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland; Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland
| |
Collapse
|
30
|
Effects of Timing of Acute and Consecutive Catechin Ingestion on Postprandial Glucose Metabolism in Mice and Humans. Nutrients 2020; 12:nu12020565. [PMID: 32098219 PMCID: PMC7071372 DOI: 10.3390/nu12020565] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/14/2020] [Accepted: 02/18/2020] [Indexed: 12/14/2022] Open
Abstract
We examined the effects of the timing of acute and consecutive epigallocatechin gallate (EGCG) and catechin-rich green tea ingestion on postprandial glucose in mice and human adults. In mouse experiments, we compared the effects of EGCG administration early (morning) and late (evening) in the active period on postprandial glucose. In human experiments, participants were randomly assigned to the morning-placebo (MP, n = 10), morning-green tea (MGT, n = 10), evening-placebo (EP, n = 9), and evening-green tea (EGT, n = 9) groups, and consumed either catechin-rich green tea or a placebo beverage for 1 week. At baseline and after 1 week, participants consumed their designated beverages with breakfast (MP and MGT) or supper (EP and EGT). Venous blood samples were collected in the fasted state and 30, 60, 120, and 180 min after each meal. Consecutive administration of EGCG in the evening, but not in the morning, reduced postprandial glucose at 30 (p = 0.006) and 60 (p = 0.037) min in the evening trials in mice. In humans, ingestion of catechin-rich green tea in the evening decreased postprandial glucose (three-factor analysis of variance, p < 0.05). Thus, catechin intake in the evening more effectively suppressed elevation of postprandial glucose.
Collapse
|
31
|
The Timing Effects of Soy Protein Intake on Mice Gut Microbiota. Nutrients 2019; 12:nu12010087. [PMID: 31892229 PMCID: PMC7019473 DOI: 10.3390/nu12010087] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/20/2019] [Accepted: 12/25/2019] [Indexed: 02/07/2023] Open
Abstract
Soy protein intake is known to cause microbiota changes. While there are some reports about the effect of soy protein intake on gut microbiota and lipid metabolism, effective timing of soy protein intake has not been investigated. In this study, we examined the effect of soy protein intake timing on microbiota. Mice were fed twice a day, in the morning and evening, to compare the effect of soy protein intake in the morning with that in the evening. Mice were divided into three groups: mice fed only casein protein, mice fed soy protein in the morning, and mice fed soy protein in the evening under high-fat diet conditions. They were kept under the experimental condition for two weeks and were sacrificed afterward. We measured cecal pH and collected cecal contents and feces. Short-chain fatty acids (SCFAs) from cecal contents were measured by gas chromatography. The microbiota was analyzed by sequencing 16S rRNA genes from feces. Soy protein intake whether in the morning or evening led to a greater microbiota diversity and a decrease in cecal pH resulting from SCFA production compared to casein intake. In addition, these effects were relatively stronger by morning soy protein intake. Therefore, soy protein intake in the morning may have relatively stronger effects on microbiota than that in the evening.
Collapse
|
32
|
Tateishi N, Morita S, Yamazaki I, Okumura H, Kominami M, Akazawa S, Funaki A, Tomimori N, Rogi T, Shibata H, Shibata S. Administration timing and duration-dependent effects of sesamin isomers on lipid metabolism in rats. Chronobiol Int 2019; 37:493-509. [DOI: 10.1080/07420528.2019.1700998] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Norifumi Tateishi
- Institute for Health Care Science, Suntory Wellness Ltd., Kyoto, Japan
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Satoshi Morita
- Institute for Health Care Science, Suntory Wellness Ltd., Kyoto, Japan
| | - Izumi Yamazaki
- Institute for Health Care Science, Suntory Wellness Ltd., Kyoto, Japan
| | - Hitoshi Okumura
- Institute for Health Care Science, Suntory Wellness Ltd., Kyoto, Japan
| | - Masaru Kominami
- Institute for Health Care Science, Suntory Wellness Ltd., Kyoto, Japan
| | - Sota Akazawa
- Institute for Health Care Science, Suntory Wellness Ltd., Kyoto, Japan
| | - Ayuta Funaki
- Institute for Health Care Science, Suntory Wellness Ltd., Kyoto, Japan
| | - Namino Tomimori
- Institute for Health Care Science, Suntory Wellness Ltd., Kyoto, Japan
| | - Tomohiro Rogi
- Institute for Health Care Science, Suntory Wellness Ltd., Kyoto, Japan
| | - Hiroshi Shibata
- Institute for Health Care Science, Suntory Wellness Ltd., Kyoto, Japan
| | - Shigenobu Shibata
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| |
Collapse
|
33
|
Park J, Han JW, Lee JR, Byun S, Suh SW, Kim T, Yoon IY, Kim KW. Lifetime coffee consumption, pineal gland volume, and sleep quality in late life. Sleep 2019; 41:5053876. [PMID: 30011049 DOI: 10.1093/sleep/zsy127] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Indexed: 12/22/2022] Open
Abstract
Study Objectives Previous studies have shown that coffee consumption may suppress the production of melatonin in pinealocytes through competitive inhibition of adenosine A2 receptors by caffeine. We investigated the impact of lifetime coffee consumption on pineal gland volume and the resulting effects on sleep quality. Methods We enrolled 162 cognitively normal elderly individuals among the participants in the Korean Longitudinal Study on Cognitive Aging and Dementia. We evaluated the patterns and amounts of coffee consumption using a study-specific standardized interview and assessed sleep quality using the Pittsburgh Sleep Quality Index. We measured the volume of pineal parenchyma (VPP) by manually segmenting the pineal gland on high-resolution three-dimensional T1-weighted magnetic resonance images. We examined the impact of lifetime coffee consumption on the VPP and the resulting effects on sleep quality using analysis of covariance, multiple linear regression, and mediation analyses. Results We found that smaller VPP was associated with higher cumulative lifetime coffee consumption. Participants who consumed more than 60 cup-years of coffee had VPPs that were smaller by about 20% than individuals who consumed less than 60 cup-years of coffee. The VPP mediated the association between lifetime coffee consumption and sleep efficiency and quality. Conclusions Our findings suggest that high lifetime coffee consumption may reduce VPP, and that this reduction in VPP may impair the quality of sleep in late life.
Collapse
Affiliation(s)
- Jeongbin Park
- Department of Brain and Cognitive Science, Seoul National University College of Natural Sciences, Seoul, South Korea
| | - Ji Won Han
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Ju Ri Lee
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Seonjeong Byun
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Seung Wan Suh
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Tae Kim
- Department of Biomedical Science and Engineering and School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - In Young Yoon
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, South Korea.,Department of Psychiatry, Seoul National University College of Medicine, Seoul, South Korea
| | - Ki Woong Kim
- Department of Brain and Cognitive Science, Seoul National University College of Natural Sciences, Seoul, South Korea.,Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, South Korea.,Department of Psychiatry, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
34
|
Yasuda S, Iwami S, Tamura K, Ikeda Y, Kamagata M, Sasaki H, Haraguchi A, Miyamatsu M, Hanashi S, Takato Y, Shibata S. Phase resetting of circadian peripheral clocks using human and rodent diets in mouse models of type 2 diabetes and chronic kidney disease. Chronobiol Int 2019; 36:851-869. [PMID: 30990101 DOI: 10.1080/07420528.2019.1594245] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The expression rhythms of clock genes, such as Per1, Per2, Bmal1, and Rev-erb α, in mouse peripheral clocks, are entrained by a scheduled feeding paradigm. In terms of food composition, a carbohydrate-containing diet is reported to cause strong entrainment through insulin secretion. However, it is unknown whether human diets entrain peripheral circadian clocks. In this study, we used freeze-dried diets for type 2 diabetes (DB) and chronic kidney disease (CKD), as well as low-carbohydrate diets. After 24 h of fasting, PER2::LUC knock-in mice were given access to food for 2 days during inactive periods, and bioluminescence rhythm was then measured using an in vivo imaging system. AIN-93M, the control mouse diet with a protein:fat:carbohydrate (PFC) ratio of 14.7:9.5:75.8, caused a significant phase advance (7.3 h) in the liver clock compared with that in 24 h fasted mice, whereas human diets caused significant but smaller phase advances (4.7-6.2 h). Compared with healthy and high fat/sucrose-induced DB mice, adenine-induced CKD mice showed attenuation of a phase-advance with a normal diet. There were no significant differences in phase-advance values between human diets (normal, DB, and CKD). In addition, a normal-carbohydrate diet (PFC ratio of 20.3:23.3:56.4) and a low-carbohydrate diet (PFC ratio of 36.4:42.9:20.7) caused similar phase advances in peripheral clocks. The present results strongly suggest that scheduled feeding with human diets can cause phase advances in the peripheral clocks of not only healthy, but also DB and CKD mice. This discovery provides support to the food-induced entrainment of peripheral clocks in human clinical trials.
Collapse
Affiliation(s)
- Shinnosuke Yasuda
- a Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering , Waseda University , Tokyo , Japan
| | - Shiho Iwami
- a Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering , Waseda University , Tokyo , Japan
| | - Konomi Tamura
- a Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering , Waseda University , Tokyo , Japan
| | - Yuko Ikeda
- a Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering , Waseda University , Tokyo , Japan
| | - Mayo Kamagata
- a Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering , Waseda University , Tokyo , Japan
| | - Hiroyuki Sasaki
- a Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering , Waseda University , Tokyo , Japan.,b National Institute of Advanced Industrial Science and Technology , AIST-Waseda University Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL) , Tokyo , Japan
| | - Atsushi Haraguchi
- a Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering , Waseda University , Tokyo , Japan
| | - Masako Miyamatsu
- c SHIDAX Research Institute , SHIDAX Corporation , Tokyo , Japan
| | - Shizuka Hanashi
- c SHIDAX Research Institute , SHIDAX Corporation , Tokyo , Japan
| | - Yoshiyuki Takato
- c SHIDAX Research Institute , SHIDAX Corporation , Tokyo , Japan
| | - Shigenobu Shibata
- a Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering , Waseda University , Tokyo , Japan
| |
Collapse
|
35
|
Gnocchi D, Custodero C, Sabbà C, Mazzocca A. Circadian rhythms: a possible new player in non-alcoholic fatty liver disease pathophysiology. J Mol Med (Berl) 2019; 97:741-759. [PMID: 30953079 DOI: 10.1007/s00109-019-01780-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/10/2019] [Accepted: 03/13/2019] [Indexed: 12/16/2022]
Abstract
Over the last decades, a better knowledge of the molecular machinery supervising the regulation of circadian clocks has been achieved, and numerous findings have helped in unravelling the outstanding significance of the molecular clock for the proper regulation of our physiologic and metabolic homeostasis. Non-alcoholic fatty liver disease (NAFLD) is currently considered as one of the emerging liver pathologies in the Western countries due to the modification of eating habits and lifestyle. Although NAFLD is considered a pretty benign condition, it can progress towards non-alcoholic steatohepatitis (NASH) and eventually hepatocellular carcinoma (HCC). The pathogenic mechanisms involved in NAFLD development are complex, since this disease is a multifactorial condition. Major metabolic deregulations along with a genetic background are believed to take part in this process. In this light, the aim of this review is to give a comprehensive description of how our circadian machinery is regulated and to describe to what extent our internal clock is involved in the regulation of hormonal and metabolic homeostasis, and by extension in the development and progression of NAFLD/NASH and eventually in the onset of HCC.
Collapse
Affiliation(s)
- Davide Gnocchi
- Interdisciplinary Department of Medicine, University of Bari School of Medicine, Piazza G. Cesare, 11, 70124, Bari, Italy
| | - Carlo Custodero
- Interdisciplinary Department of Medicine, University of Bari School of Medicine, Piazza G. Cesare, 11, 70124, Bari, Italy
| | - Carlo Sabbà
- Interdisciplinary Department of Medicine, University of Bari School of Medicine, Piazza G. Cesare, 11, 70124, Bari, Italy
| | - Antonio Mazzocca
- Interdisciplinary Department of Medicine, University of Bari School of Medicine, Piazza G. Cesare, 11, 70124, Bari, Italy.
| |
Collapse
|
36
|
Hernández-García J, Navas-Carrillo D, Orenes-Piñero E. Alterations of circadian rhythms and their impact on obesity, metabolic syndrome and cardiovascular diseases. Crit Rev Food Sci Nutr 2019; 60:1038-1047. [PMID: 30633544 DOI: 10.1080/10408398.2018.1556579] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Circadian system is comprised by central circadian pacemaker and several peripheral clocks that receive information from the external environment, synchronizing the circadian clocks. It is widely known that physiology is rhythmic and that the rupture of this rhythmicity can generate serious consequences. Circadian clocks, led by suprachiasmatic nucleus (SCN) in the central nervous system, are the responsible for generating this biological rhythmicity. These clocks are affected by external signals such as light (changes between day and night) and feeding rhythms. In this review, the basic principles of the circadian system and current knowledge of biological clocks are addressed, analyzing the relationship between circadian system, food intake, nutrition, and associated metabolic processes. In addition, the consequences occurring when these systems are not well coordinated with each other, such as the development of cardiovascular and metabolic pathologies, will be thoroughly discussed.
Collapse
Affiliation(s)
| | - Diana Navas-Carrillo
- Department of Surgery, Hospital de la Vega Lorenzo Guirao, University of Murcia, Murcia, Spain
| | - Esteban Orenes-Piñero
- Department of Biochemistry and Molecular Biology-A, University of Murcia, Murcia, Spain
| |
Collapse
|
37
|
Panagiotou M, Meijer M, Meijer JH, Deboer T. Effects of chronic caffeine consumption on sleep and the sleep electroencephalogram in mice. J Psychopharmacol 2019; 33:122-131. [PMID: 30354930 PMCID: PMC6343423 DOI: 10.1177/0269881118806300] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND Caffeine is one of the most widely consumed psychostimulants, and it impacts sleep and circadian physiology. AIM Caffeine is generally used chronically on a daily basis. Therefore, in the current study, we investigated the chronic effect of caffeine on sleep in mice. METHODS We recorded the electroencephalogram and electromyogram on a control day, on the first day of caffeine consumption (acute), and following two weeks of continuous caffeine consumption (chronic). In the latter condition, a period of six-hour sleep deprivation was conducted during the light period. Control mice, which received normal drinking water, were also recorded and sleep deprived. RESULTS We found that caffeine induced differential effects following acute and chronic consumption. Over 24 h, waking increased following acute caffeine whereas no changes were found in the chronic condition. The daily amplitude of sleep-wake states increased in both acute and chronic conditions, with the highest amplitude in the chronic condition, showing an increase in sleep during the light and an increase in waking during the dark. Furthermore, electroencephalogram slow-wave-activity in non-rapid eye-movement sleep was increased, compared with both control conditions, during the first half of the light period in the chronic condition. It was particularly challenging to keep the animals awake during the sleep deprivation period under chronic caffeine. CONCLUSIONS Together the data suggest an increased sleep pressure under chronic caffeine. In contrast to the traditional conception on the impact on sleep, chronic caffeine intake seems to increase the daily sleep-wake cycle amplitude and increase sleep pressure in mice.
Collapse
Affiliation(s)
- Maria Panagiotou
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Mandy Meijer
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Johanna H Meijer
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Tom Deboer
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
38
|
Xu T, Lu B. The effects of phytochemicals on circadian rhythm and related diseases. Crit Rev Food Sci Nutr 2018; 59:882-892. [DOI: 10.1080/10408398.2018.1493678] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Tao Xu
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture and Rural affairs, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Baiyi Lu
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture and Rural affairs, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
39
|
Tahara Y, Shibata S. Entrainment of the mouse circadian clock: Effects of stress, exercise, and nutrition. Free Radic Biol Med 2018; 119:129-138. [PMID: 29277444 DOI: 10.1016/j.freeradbiomed.2017.12.026] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 12/18/2017] [Accepted: 12/20/2017] [Indexed: 11/29/2022]
Abstract
The circadian clock system in mammals plays a fundamental role in maintaining homeostasis. Entrainment is an important characteristic of the internal clock, by which appropriate timing is maintained according to external daily stimuli, such as light, stress, exercise, and/or food. Disorganized entrainment or a misaligned clock time, such as jet lag, increases health disturbances. The central clock in the suprachiasmatic nuclei, located in the hypothalamus, receives information about arousal stimuli, such as physical stress or exercise, and changes the clock time by modifying neural activity or the expression of circadian clock genes. Although feeding stimuli cannot entrain the central clock in a normal light-dark cycle, the central clock can partially detect the metabolic status. Local clocks in the peripheral tissues, including liver and kidney, have a strong direct response to the external stimuli of stress, exercise, and/or food that is independent of the central clock. The mechanism underlying entrainment by stress/exercise is mediated by glucocorticoids, sympathetic nerves, oxidative stress, hypoxia, pH, cytokines, and temperature. Food/nutrition-induced entrainment is mediated by fasting-induced hormonal or metabolic changes and re-feeding-induced insulin or oxyntomodulin secretion. Chrono-nutrition is a clinical application based on chronobiology research. Future studies are required to elucidate the effects of eating and nutrient composition on the human circadian clock. Here, we focus on the central and peripheral clocks mostly in rodents' studies and review the findings of recent investigations of the effects of stress, exercise, and food on the entrainment system.
Collapse
Affiliation(s)
- Yu Tahara
- Department of Psychiatry & Biobehavioral Sciences, University of California Los Angeles, 760 Westwood Plaza, Los Angeles, CA 90024, USA
| | - Shigenobu Shibata
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Wakamatsu-cho 2-2, Shinjuku-ku, Tokyo 162-8480, Japan.
| |
Collapse
|
40
|
Gut Microbiota-Derived Short Chain Fatty Acids Induce Circadian Clock Entrainment in Mouse Peripheral Tissue. Sci Rep 2018; 8:1395. [PMID: 29362450 PMCID: PMC5780501 DOI: 10.1038/s41598-018-19836-7] [Citation(s) in RCA: 187] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 01/04/2018] [Indexed: 12/17/2022] Open
Abstract
Microbiota-derived short-chain fatty acids (SCFAs) and organic acids produced by the fermentation of non-digestible fibre can communicate from the microbiome to host tissues and modulate homeostasis in mammals. The microbiome has circadian rhythmicity and helps the host circadian clock function. We investigated the effect of SCFA or fibre-containing diets on circadian clock phase adjustment in mouse peripheral tissues (liver, kidney, and submandibular gland). Initially, caecal SCFA concentrations, particularly acetate and butyrate, induced significant day-night differences at high concentrations during the active period, which were correlated with lower caecal pH. By monitoring luciferase activity correlated with the clock gene Period2 in vivo, we found that oral administration of mixed SCFA (acetate, butyrate, and propionate) and an organic acid (lactate), or single administration of each SCFA or lactate for three days, caused phase changes in the peripheral clocks with stimulation timing dependency. However, this effect was not detected in cultured fibroblasts or cultured liver slices with SCFA applied to the culture medium, suggesting SCFA-induced indirect modulation of circadian clocks in vivo. Finally, cellobiose-containing diets facilitated SCFA production and refeeding-induced peripheral clock entrainment. SCFA oral gavage and prebiotic supplementation can facilitate peripheral clock adjustment, suggesting prebiotics as novel therapeutic candidates for misalignment.
Collapse
|
41
|
Circadian clock-dependent increase in salivary IgA secretion modulated by sympathetic receptor activation in mice. Sci Rep 2017; 7:8802. [PMID: 28821839 PMCID: PMC5562870 DOI: 10.1038/s41598-017-09438-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 07/27/2017] [Indexed: 01/23/2023] Open
Abstract
The salivary gland is rhythmically controlled by sympathetic nerve activation from the suprachiasmatic nucleus (SCN), which functions as the main oscillator of circadian rhythms. In humans, salivary IgA concentrations reflect circadian rhythmicity, which peak during sleep. However, the mechanisms controlling this rhythmicity are not well understood. Therefore, we examined whether the timing of parasympathetic (pilocarpine) or sympathetic (norepinephrine; NE) activation affects IgA secretion in the saliva. The concentrations of saliva IgA modulated by pilocarpine activation or by a combination of pilocarpine and NE activation were the highest in the middle of the light period, independent of saliva flow rate. The circadian rhythm of IgA secretion was weakened by an SCN lesion and Clock gene mutation, suggesting the importance of the SCN and Clock gene on this rhythm. Adrenoceptor antagonists blocked both NE- and pilocarpine-induced basal secretion of IgA. Dimeric IgA binds to the polymeric immunoglobulin receptor (pIgR) on the basolateral surface of epithelial cells and forms the IgA-pIgR complex. The circadian rhythm of Pigr abundance peaked during the light period, suggesting pIgR expression upon rhythmic secretion of IgA. We speculate that activation of sympathetic nerves during sleep may protect from bacterial access to the epithelial surface through enhanced secretion of IgA.
Collapse
|
42
|
A simple method using ex vivo culture of hair follicle tissue to investigate intrinsic circadian characteristics in humans. Sci Rep 2017; 7:6824. [PMID: 28755004 PMCID: PMC5533706 DOI: 10.1038/s41598-017-07268-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 06/23/2017] [Indexed: 12/03/2022] Open
Abstract
Almost all organisms maintain a circadian clock from birth to death to synchronize their own physiology and behavior with the earth’s rotation. Because the in vivo evaluation of human circadian characteristics is labor-intensive, in vitro or ex vivo approaches could provide advantages. In this study, to enable the simple and non-invasive evaluation of autonomous circadian oscillation, we established a method for monitoring clock gene expression by performing ex vivo culture of whole hair root tissue. This method is extremely simple and imposes little burden on subjects. Results obtained using Cryptochrome-deficient mice support that circadian period length in hair tissue correlates with intrinsic period length observed in physiology and behavior. We then applied this method to old-old subjects with severe dementia, who showed abnormal circadian behavior, and found that their peripheral clocks autonomously oscillated in a manner similar to those of healthy or younger subjects, indicating that the effect of cellular senescence on the autonomous clock oscillator is limited at least in some cell types. Although further validation may be required, the hair tissue-based culture assay would be a tool to investigate intrinsic circadian characteristics in humans.
Collapse
|
43
|
Motohashi H, Sukigara H, Tahara Y, Saito K, Yamazaki M, Shiraishi T, Kikuchi Y, Haraguchi A, Shibata S. Polyporus and Bupleuri radix effectively alter peripheral circadian clock phase acutely in male mice. Nutr Res 2017; 43:16-24. [DOI: 10.1016/j.nutres.2017.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 03/09/2017] [Accepted: 05/05/2017] [Indexed: 01/11/2023]
|
44
|
Shinozaki A, Misawa K, Ikeda Y, Haraguchi A, Kamagata M, Tahara Y, Shibata S. Potent Effects of Flavonoid Nobiletin on Amplitude, Period, and Phase of the Circadian Clock Rhythm in PER2::LUCIFERASE Mouse Embryonic Fibroblasts. PLoS One 2017; 12:e0170904. [PMID: 28152057 PMCID: PMC5289493 DOI: 10.1371/journal.pone.0170904] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 01/12/2017] [Indexed: 12/14/2022] Open
Abstract
Flavonoids are natural polyphenols that are widely found in plants. The effects of flavonoids on obesity and numerous diseases such as cancer, diabetes, and Alzheimer’s have been well studied. However, little is known about the relationships between flavonoids and the circadian clock. In this study, we show that continuous or transient application of flavonoids to the culture medium of embryonic fibroblasts from PER2::LUCIFERASE (PER2::LUC) mice induced various modifications in the circadian clock amplitude, period, and phase. Transient application of some of the tested flavonoids to cultured cells induced a phase delay of the PER2::LUC rhythm at the down slope phase. In addition, continuous application of the polymethoxy flavonoids nobiletin and tangeretin increased the amplitude and lengthened the period of the PER2::LUC rhythm. The nobiletin-induced phase delay was blocked by co-treatment with U0126, an ERK inhibitor. In summary, among the tested flavonoids, polymethoxy flavones increased the amplitude, lengthened the period, and delayed the phase of the PER2::LUC circadian rhythm. Therefore, foods that contain polymethoxy flavones may have beneficial effects on circadian rhythm disorders and jet lag.
Collapse
Affiliation(s)
- Ayako Shinozaki
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Kenichiro Misawa
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Yuko Ikeda
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Atsushi Haraguchi
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Mayo Kamagata
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Yu Tahara
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Shigenobu Shibata
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
45
|
Oishi K, Yamamoto S, Oike H, Ohkura N, Taniguchi M. Cinnamic acid shortens the period of the circadian clock in mice. Biochem Biophys Rep 2017; 9:232-237. [PMID: 28956010 PMCID: PMC5614588 DOI: 10.1016/j.bbrep.2016.12.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 12/09/2016] [Accepted: 12/27/2016] [Indexed: 12/26/2022] Open
Abstract
Cinnamic acid (CA) derivatives have recently received focus due to their anticancer, antioxidant, and antidiabetic properties. The present study aimed to determine the effects of cinnamic acid on the circadian clock, which is a cell-autonomous endogenous system that generates circadian rhythms that govern the behavior and physiology of most organisms. Cinnamic acid significantly shortened the circadian period of PER2::LUC expression in neuronal cells that differentiated from neuronal progenitor cells derived from PER2::LUC mouse embryos. Cinnamic acid did not induce the transient mRNA expression of clock genes such as Per1 and Per2 in neuronal cells, but significantly shortened the half-life of PER2::LUC protein in neuronal cells incubated with actinomycin D, suggested that CA post-transcriptionally affects the molecular clock by decreasing Per2 mRNA stability. A continuous infusion of CA into mice via an Alzet osmotic pump under constant darkness significantly shortened the free-running period of wheel-running rhythms. These findings suggest that CA shortens the circadian period of the molecular clock in mammals. Cinnamic acid shortened the period of neuronal circadian expression of PER2::LUC. Cinnamic acid decreased Per2 mRNA stability in neuronal cells. Cinnamic acid shortened the free-running period of wheel-running rhythms in mice.
Collapse
Affiliation(s)
- Katsutaka Oishi
- Biological Clock Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
- Department of Applied Biological Science, Graduate School of Science and Technology, Tokyo University of Science, Noda, Chiba, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
- Correspondence to: Katsutaka OISHI, Ph.D. Biological Clock Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan.
| | - Saori Yamamoto
- Biological Clock Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Hideaki Oike
- Biological Clock Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
- Division of Food Function Research, Food Research Institute (NFRI), National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Naoki Ohkura
- Molecular Physiology and Pathology, School of Pharma-Sciences, Teikyo University, Itabashi, Tokyo, Japan
| | - Masahiko Taniguchi
- Division of Pharmacognosy, Osaka University of Pharmaceutical Sciences, Takatsuki, Osaka, Japan
| |
Collapse
|
46
|
Tahara Y, Aoyama S, Shibata S. The mammalian circadian clock and its entrainment by stress and exercise. J Physiol Sci 2017; 67:1-10. [PMID: 27084533 PMCID: PMC5138246 DOI: 10.1007/s12576-016-0450-7] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 04/07/2016] [Indexed: 01/01/2023]
Abstract
The mammalian circadian clock regulates day-night fluctuations in various physiological processes. The circadian clock consists of the central clock in the suprachiasmatic nucleus of the hypothalamus and peripheral clocks in peripheral tissues. External environmental cues, including light/dark cycles, food intake, stress, and exercise, provide important information for adjusting clock phases. This review focuses on stress and exercise as potent entrainment signals for both central and peripheral clocks, especially in regard to the timing of stimuli, types of stressors/exercises, and differences in the responses of rodents and humans. We suggest that the common signaling pathways of clock entrainment by stress and exercise involve sympathetic nervous activation and glucocorticoid release. Furthermore, we demonstrate that physiological responses to stress and exercise depend on time of day. Therefore, using exercise to maintain the circadian clock at an appropriate phase and amplitude might be effective for preventing obesity, diabetes, and cardiovascular disease.
Collapse
Affiliation(s)
- Yu Tahara
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Wakamatsu 2-2, Shinjuku, Tokyo, 162-8480, Japan
- Waseda Institute for Advanced Study, Waseda University, Tokyo, Japan
| | - Shinya Aoyama
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Wakamatsu 2-2, Shinjuku, Tokyo, 162-8480, Japan
| | - Shigenobu Shibata
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Wakamatsu 2-2, Shinjuku, Tokyo, 162-8480, Japan.
| |
Collapse
|
47
|
l-Ornithine affects peripheral clock gene expression in mice. Sci Rep 2016; 6:34665. [PMID: 27703199 PMCID: PMC5050418 DOI: 10.1038/srep34665] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 09/15/2016] [Indexed: 01/12/2023] Open
Abstract
The peripheral circadian clock is entrained by factors in the external environment such as scheduled feeding, exercise, and mental and physical stresses. In addition, recent studies in mice demonstrated that some food components have the potential to control the peripheral circadian clock during scheduled feeding, although information about these components remains limited. l-Ornithine is a type of non-protein amino acid that is present in foods and has been reported to have various physiological functions. In human trials, for example, l-ornithine intake improved a subjective index of sleep quality. Here we demonstrate, using an in vivo monitoring system, that repeated oral administration of l-ornithine at an early inactive period in mice induced a phase advance in the rhythm of PER2 expression. By contrast, l-ornithine administration to mouse embryonic fibroblasts did not affect the expression of PER2, indicating that l-ornithine indirectly alters the phase of PER2. l-Ornithine also increased plasma levels of insulin, glucose and glucagon-like peptide-1 alongside mPer2 expression, suggesting that it exerts its effects probably via insulin secretion. Collectively, these findings demonstrate that l-ornithine affects peripheral clock gene expression and may expand the possibilities of L-ornithine as a health food.
Collapse
|
48
|
Touitou Y, Mauvieux B, Reinberg A, Dispersyn G. Disruption of the circadian period of body temperature by the anesthetic propofol. Chronobiol Int 2016; 33:1247-1254. [DOI: 10.1080/07420528.2016.1208664] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Yvan Touitou
- Unité de Chronobiologie, Fondation A. de Rothschild, Paris, France
| | - Benoit Mauvieux
- Unité de Chronobiologie, Fondation A. de Rothschild, Paris, France
- INSERM UMR U1075, Université de Caen, Caen, France
| | - Alain Reinberg
- Unité de Chronobiologie, Fondation A. de Rothschild, Paris, France
| | - Garance Dispersyn
- Institut de Recherche Biomédicale des Armées (IRBA), Brétigny sur Orge, France
| |
Collapse
|
49
|
Abstract
Mammalian circadian rhythms are governed by an endogenous circadian clock system, including the molecular clock works in each cell and tissue. Adaptation of the circadian clock to different environmental stimuli such as light, food, and stress is essential for homeostasis maintenance. However, the influence of oxidative stress on the circadian clock phase is not fully understood in vitro and in vivo. Here, we examined the effects of hydrogen peroxide (H2O2)-induced oxidative stress on the PERIOD2::LUCIFERASE bioluminescence rhythm in mouse embryonic fibroblasts in vitro and in mouse peripheral tissues in vivo. The circadian clock phase changed with the dose of H2O2 and time of day in vitro; similar phase changes were observed in vivo in the circadian clocks of the peripheral tissues. In addition, mice treated with hemin-induced oxidative stress also showed phase changes of peripheral clocks, similarly as H2O2 treatment. Thus, oxidative stress can entrain circadian clock systems.
Collapse
|
50
|
Tahara Y, Shibata S. Circadian rhythms of liver physiology and disease: experimental and clinical evidence. Nat Rev Gastroenterol Hepatol 2016; 13:217-26. [PMID: 26907879 DOI: 10.1038/nrgastro.2016.8] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The circadian clock system consists of a central clock located in the suprachiasmatic nucleus in the hypothalamus and peripheral clocks in peripheral tissues. Peripheral clocks in the liver have fundamental roles in maintaining liver homeostasis, including the regulation of energy metabolism and the expression of enzymes controlling the absorption and metabolism of xenobiotics. Over the past two decades, research has investigated the molecular mechanisms linking circadian clock genes with the regulation of hepatic physiological functions, using global clock-gene-knockout mice, or mice with liver-specific knockout of clock genes or clock-controlled genes. Clock dysfunction accelerates the development of liver diseases such as fatty liver diseases, cirrhosis, hepatitis and liver cancer, and these disorders also disrupt clock function. Food is an important regulator of circadian clocks in peripheral tissues. Thus, controlling the timing of food consumption and food composition, a concept known as chrononutrition, is one area of active research to aid recovery from many physiological dysfunctions. In this Review, we focus on the molecular mechanisms of hepatic circadian gene regulation and the relationships between hepatic circadian clock systems and liver physiology and disease. We concentrate on experimental data obtained from cell or mice and rat models and discuss how these findings translate into clinical research, and we highlight the latest developments in chrononutritional studies.
Collapse
Affiliation(s)
- Yu Tahara
- Waseda Institute for Advanced Study, Waseda University, Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Shigenobu Shibata
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Wakamatsu-cho 2-2, Shinjuku-ku, Tokyo, 162-8480, Japan
| |
Collapse
|