1
|
Ichikawa K, Johnson HM, Curtis MA, Biswas N, Singh S, Khachatryan HN, Gater AE, Lin SX, Sperry J. Targeting glioma with heteroaromatic alkaloids: A review of potential therapeutics. Bioorg Med Chem 2025; 121:118051. [PMID: 39999647 DOI: 10.1016/j.bmc.2024.118051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/04/2024] [Accepted: 12/19/2024] [Indexed: 02/27/2025]
Abstract
Glioblastoma multiforme (GBM), classified as a grade IV astrocytoma, is the most aggressive and deadly form of glioma, characterized by rapid progression, extensive genetic heterogeneity, and resistance to conventional therapies. Despite advancements in surgical techniques, radiation therapy, and the frontline chemotherapeutic agent temozolomide, the prognosis for GBM patients remains poor, with a median survival of 15 months and a 5-year survival rate of approximately 7 %. The absence of effective long-term treatments underscores the urgent, unmet clinical need for novel therapeutic strategies to improve patient outcomes. Natural products, particularly alkaloids, have garnered attention as a rich source of bioactive compounds with diverse pharmacological properties. Alkaloids, a structurally diverse group of natural products, are renowned for their chemotherapeutic properties and ability to cross the blood-brain barrier (BBB), making them promising candidates for glioma therapy. This review systematically examines all reported heteroaromatic alkaloids with documented anti-glioma activities, highlighting their mechanisms of action where available. By providing a comprehensive resource, it aims to facilitate the identification and optimisation of alkaloid-based compounds for glioma-targeted drug discovery. Additionally, this review emphasizes the importance of incorporating natural products into the drug development pipeline to address the pressing challenges associated with glioma, particularly GBM treatment.
Collapse
Affiliation(s)
- Karen Ichikawa
- School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand; Centre for Brain Research, University of Auckland, Auckland, New Zealand; Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
| | - Hannah M Johnson
- School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand
| | - Maurice A Curtis
- Centre for Brain Research, University of Auckland, Auckland, New Zealand; Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
| | - Nandita Biswas
- School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand
| | - Snigdha Singh
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Hasmik N Khachatryan
- Scientific Technological Centre of Organic and Pharmaceutical Chemistry, National Academy of Science of Armenia, Yerevan 0014, Armenia
| | - Anastasia E Gater
- School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand
| | - Simon X Lin
- School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand
| | - Jonathan Sperry
- School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand.
| |
Collapse
|
2
|
Stevens M, Wang Y, Bouley SJ, Mandigo TR, Sharma A, Sengupta S, Housden A, Perrimon N, Walker JA, Housden BE. Inhibition of autophagy as a novel treatment for neurofibromatosis type 1 tumors. Mol Oncol 2025; 19:825-851. [PMID: 39129390 PMCID: PMC11887668 DOI: 10.1002/1878-0261.13704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/29/2024] [Accepted: 07/19/2024] [Indexed: 08/13/2024] Open
Abstract
Neurofibromatosis type 1 (NF1) is a genetic disorder caused by mutation of the NF1 gene that is associated with various symptoms, including the formation of benign tumors, called neurofibromas, within nerves. Drug treatments are currently limited. The mitogen-activated protein kinase kinase (MEK) inhibitor selumetinib is used for a subset of plexiform neurofibromas (PNs) but is not always effective and can cause side effects. Therefore, there is a clear need to discover new drugs to target NF1-deficient tumor cells. Using a Drosophila cell model of NF1, we performed synthetic lethal screens to identify novel drug targets. We identified 54 gene candidates, which were validated with variable dose analysis as a secondary screen. Pathways associated with five candidates could be targeted using existing drugs. Among these, chloroquine (CQ) and bafilomycin A1, known to target the autophagy pathway, showed the greatest potential for selectively killing NF1-deficient Drosophila cells. When further investigating autophagy-related genes, we found that 14 out of 30 genes tested had a synthetic lethal interaction with NF1. These 14 genes are involved in multiple aspects of the autophagy pathway and can be targeted with additional drugs that mediate the autophagy pathway, although CQ was the most effective. The lethal effect of autophagy inhibitors was conserved in a panel of human NF1-deficient Schwann cell lines, highlighting their translational potential. The effect of CQ was also conserved in a Drosophila NF1 in vivo model and in a xenografted NF1-deficient tumor cell line grown in mice, with CQ treatment resulting in a more significant reduction in tumor growth than selumetinib treatment. Furthermore, combined treatment with CQ and selumetinib resulted in a further reduction in NF1-deficient cell viability. In conclusion, NF1-deficient cells are vulnerable to disruption of the autophagy pathway. This pathway represents a promising target for the treatment of NF1-associated tumors, and we identified CQ as a candidate drug for the treatment of NF1 tumors.
Collapse
Affiliation(s)
- Megan Stevens
- Living Systems InstituteUniversity of ExeterUK
- Department of Clinical and Biomedical ScienceUniversity of ExeterUK
| | - Yuanli Wang
- Living Systems InstituteUniversity of ExeterUK
- The First People's Hospital of QinzhouChina
| | | | - Torrey R. Mandigo
- Center for Genomic MedicineMassachusetts General HospitalBostonMAUSA
| | - Aditi Sharma
- Center for Genomic MedicineMassachusetts General HospitalBostonMAUSA
| | - Sonali Sengupta
- Living Systems InstituteUniversity of ExeterUK
- Department of Clinical and Biomedical ScienceUniversity of ExeterUK
| | - Amy Housden
- Living Systems InstituteUniversity of ExeterUK
| | - Norbert Perrimon
- Department of Genetics, Blavatnik InstituteHarvard Medical SchoolBostonMAUSA
- Howard Hughes Medical InstituteNew YorkNYUSA
| | - James A. Walker
- Center for Genomic MedicineMassachusetts General HospitalBostonMAUSA
- Cancer ProgramBroad Institute of MIT and HarvardCambridgeMAUSA
- Department of Neurology, Massachusetts General HospitalHarvard Medical SchoolBostonMAUSA
| | - Benjamin E. Housden
- Living Systems InstituteUniversity of ExeterUK
- Department of Clinical and Biomedical ScienceUniversity of ExeterUK
| |
Collapse
|
3
|
Deng X, Yang Z, Han M, Ismail N, Esa NM, Razis AFA, Bakar MZA, Chan KW. Comprehensive Insights Into the Combinatorial Uses of Selected Phytochemicals in Colorectal Cancer Prevention and Treatment: Isothiocyanates, Quinones, Carotenoids, and Alkaloids. Phytother Res 2025; 39:413-452. [PMID: 39557422 DOI: 10.1002/ptr.8378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 10/01/2024] [Accepted: 10/24/2024] [Indexed: 11/20/2024]
Abstract
Despite the advancement in cancer diagnosis and treatment, colorectal cancer remains the leading cause of cancer-related death worldwide. Given the high recurrence rate of colorectal cancer even after surgical resection, chemotherapy has been clinically used to improve the treatment outcomes of colorectal cancer. However, chemotherapy is well-known for its toxic side effects. Thus, phytochemicals have been widely studied in recent years as preventive and therapeutic agents for colorectal cancer owing to their relatively low toxicity. Moreover, combinatorial uses of phytochemicals with other natural compounds or with drugs may amplify the positive outcomes of colorectal cancer prevention and treatment by intervening in multiple signaling pathways and targets. This review summarized the combinatorial use of several well-studied groups of phytochemicals, that is, isothiocyanates, quinones, carotenoids, and alkaloids, in the prevention and treatment of colorectal cancer, and suggested it as a potential approach to improve the anticancer efficacy of single compounds and minimize the toxic side effects associated with conventional drugs. Notably, we generalized the in vitro, in vivo, and clinical experiments-based molecular mechanisms whereby the selected phytochemicals in combination with other compounds exerted anti-colorectal cancer effects by inhibiting cancer cell proliferation, cell apoptosis, cell invasion, and tumor growth. Overall, this review provides a reference and new perspective to propel further advancements in research and development of preventative and therapeutic strategies for colorectal cancer.
Collapse
Affiliation(s)
- Xi Deng
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Zhongming Yang
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Mingzhao Han
- Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Norsharina Ismail
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Norhaizan Mohd Esa
- Department of Nutrition, Faculty of Medicine and Health Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Ahmad Faizal Abdull Razis
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Md Zuki Abu Bakar
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Veterinary Preclinical Science, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Kim Wei Chan
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
4
|
Yuan B, Kikuchi H. Harnessing Arsenic Derivatives and Natural Agents for Enhanced Glioblastoma Therapy. Cells 2024; 13:2138. [PMID: 39768226 PMCID: PMC11674460 DOI: 10.3390/cells13242138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/17/2024] [Accepted: 12/21/2024] [Indexed: 01/05/2025] Open
Abstract
Glioblastoma (GBM) is the most common and lethal intracranial tumor in adults. Despite advances in the understanding of the molecular events responsible for disease development and progression, survival rates and mortality statistics for GBM patients have been virtually unchanged for decades and chemotherapeutic drugs used to treat GBM are limited. Arsenic derivatives, known as highly effective anticancer agents for leukemia therapy, has been demonstrated to exhibit cytocidal effects toward GBM cells by inducing cell death, cell cycle arrest, inhibition of migration/invasion, and angiogenesis. Differentiation induction of glioma stem-like cells (GSCs) and inhibition of neurosphere formation have also been attributed to the cytotoxicity of arsenic derivatives. Intriguingly, similar cytotoxic effects against GBM cells and GSCs have also been observed in natural agents such as anthocyanidins, tetrandrine, and bufadienolides. In the current review, we highlight the available data on the molecular mechanisms underlying the multifaceted anticancer activity of arsenic compounds and natural agents against cancer cells, especially focusing on GBM cells and GCSs. We also outline possible strategies for developing anticancer therapy by combining natural agents and arsenic compounds, as well as temozolomide, an alkylating agent used to treat GBM, in terms of improvement of chemotherapy sensitivity and minimization of side effects.
Collapse
Affiliation(s)
- Bo Yuan
- Laboratory of Pharmacology, Graduate School of Pharmaceutical Sciences, Josai University, Keyakidai, Sakado 350-0295, Saitama, Japan
| | - Hidetomo Kikuchi
- Laboratory of Pharmacotherapy, Graduate School of Pharmaceutical Sciences, Josai University, Keyakidai, Sakado 350-0295, Saitama, Japan;
| |
Collapse
|
5
|
Hassan AMIA, Zhao Y, Chen X, He C. Blockage of Autophagy for Cancer Therapy: A Comprehensive Review. Int J Mol Sci 2024; 25:7459. [PMID: 39000565 PMCID: PMC11242824 DOI: 10.3390/ijms25137459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/25/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024] Open
Abstract
The incidence and mortality of cancer are increasing, making it a leading cause of death worldwide. Conventional treatments such as surgery, radiotherapy, and chemotherapy face significant limitations due to therapeutic resistance. Autophagy, a cellular self-degradation mechanism, plays a crucial role in cancer development, drug resistance, and treatment. This review investigates the potential of autophagy inhibition as a therapeutic strategy for cancer. A systematic search was conducted on Embase, PubMed, and Google Scholar databases from 1967 to 2024 to identify studies on autophagy inhibitors and their mechanisms in cancer therapy. The review includes original articles utilizing in vitro and in vivo experimental methods, literature reviews, and clinical trials. Key terms used were "Autophagy", "Inhibitors", "Molecular mechanism", "Cancer therapy", and "Clinical trials". Autophagy inhibitors such as chloroquine (CQ) and hydroxychloroquine (HCQ) have shown promise in preclinical studies by inhibiting lysosomal acidification and preventing autophagosome degradation. Other inhibitors like wortmannin and SAR405 target specific components of the autophagy pathway. Combining these inhibitors with chemotherapy has demonstrated enhanced efficacy, making cancer cells more susceptible to cytotoxic agents. Clinical trials involving CQ and HCQ have shown encouraging results, although further investigation is needed to optimize their use in cancer therapy. Autophagy exhibits a dual role in cancer, functioning as both a survival mechanism and a cell death pathway. Targeting autophagy presents a viable strategy for cancer therapy, particularly when integrated with existing treatments. However, the complexity of autophagy regulation and the potential side effects necessitate further research to develop precise and context-specific therapeutic approaches.
Collapse
Affiliation(s)
| | - Yuxin Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China (X.C.)
| | - Xiuping Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China (X.C.)
- Department of Pharmaceutical Science, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Chengwei He
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China (X.C.)
- Department of Pharmaceutical Science, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR 999078, China
| |
Collapse
|
6
|
Lima EN, Lamichhane S, KC P, Ferreira ES, Koul S, Koul HK. Tetrandrine for Targeting Therapy Resistance in Cancer. Curr Top Med Chem 2024; 24:1035-1049. [PMID: 38445699 PMCID: PMC11259026 DOI: 10.2174/0115680266282360240222062032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/25/2024] [Accepted: 02/01/2024] [Indexed: 03/07/2024]
Abstract
During the last five decades, there has been tremendous development in our understanding of cancer biology and the development of new and novel therapeutics to target cancer. However, despite these advances, cancer remains the second leading cause of death across the globe. Most cancer deaths are attributed to the development of resistance to current therapies. There is an urgent and unmet need to address cancer therapy resistance. Tetrandrine, a bis-benzyl iso-quinoline, has shown a promising role as an anti-cancer agent. Recent work from our laboratory and others suggests that tetrandrine and its derivatives could be an excellent adjuvant to the current arsenal of anti-cancer drugs. Herein, we provide an overview of resistance mechanisms to current therapeutics and review the existing literature on the anti-cancer effects of tetrandrine and its potential use for overcoming therapy resistance in cancer.
Collapse
Affiliation(s)
- Ellen Nogueira Lima
- Department of Interdisciplinary Oncology, LSUHSC-New Orleans
- Southeast Louisiana Veterans Health Care System, New Orleans – LA
- LSU-LCMC Cancer Center, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Santosh Lamichhane
- Department of Interdisciplinary Oncology, LSUHSC-New Orleans
- Southeast Louisiana Veterans Health Care System, New Orleans – LA
- LSU-LCMC Cancer Center, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Pramod KC
- Department of Interdisciplinary Oncology, LSUHSC-New Orleans
- LSU-LCMC Cancer Center, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Elisa Silva Ferreira
- Brazilian Nanotechnology National Laboratory (LNNano) Brazilian Center for Research in Energy and Materials (CNPEM) Campinas, SP, Brazil
| | - Sweaty Koul
- Department of Interdisciplinary Oncology, LSUHSC-New Orleans
- Department of Urology, LSUHSC-New Orleans
- LSU-LCMC Cancer Center, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Hari K Koul
- Department of Interdisciplinary Oncology, LSUHSC-New Orleans
- Department of Biochemistry & Molecular Biology, LSUHSC-New Orleans
- Department of Urology, LSUHSC-New Orleans
- Southeast Louisiana Veterans Health Care System, New Orleans – LA
- LSU-LCMC Cancer Center, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| |
Collapse
|
7
|
Jiang H, Tang C, Wen Y, Zhao Q, Xu M, Fan J, Wang Z, Wang L, Xu H, Chen G. Enhanced Antitumor Efficacy of Novel Biomimetic Platelet Membrane-Coated Tetrandrine Nanoparticles in Nonsmall Cell Lung Cancer. Mol Pharm 2023; 20:5463-5475. [PMID: 37823637 DOI: 10.1021/acs.molpharmaceut.3c00310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Nonsmall cell lung cancer (NSCLC) remains one of the leading causes of cancer-related death worldwide, posing a serious threat to global health. Tetrandrine (Tet) is a small molecule in traditional Chinese medicine with proven primary efficacy against multiple cancers. Although previous studies have demonstrated the potential anticancer effects of Tet on NSCLC, its poor water solubility has limited its further clinical application. Herein, a novel nanoparticle-based drug delivery system, platelet membrane (PLTM)-coated Tet-loaded polycaprolactone-b-poly(ethylene glycol)-b-polycaprolactone nanoparticles (PTeNPs), is proposed to increase the potency of Tet against NSCLC. First, tetrandrine nanoparticles (TeNPs) are created using an emulsion solvent evaporation method, and biomimetic nanoparticles (PTeNPs) are prepared by coating the nanoparticles with PLTMs. When coated with PLTMs, PTeNPs are considerably less phagocytized by macrophages than Tet and TeNPs. In addition, compared with Tet and TeNPs, PTeNPs can significantly inhibit the growth and invasion of NSCLC both in vitro and in vivo. With reliable biosafety, this drug delivery system provides a new method of sustained release and efficient anticancer effects against NSCLC, facilitating the incorporation of Tet in modern nanotechnology.
Collapse
Affiliation(s)
- Hui Jiang
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing 210009, China
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Chunming Tang
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Yuanyuan Wen
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing 210009, China
| | - Qianqian Zhao
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Mingyuan Xu
- The Comprehensive Cancer Center of Nanjing Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University Medical School, Nanjing 210093, China
| | - Jinting Fan
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Zhiji Wang
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Lifeng Wang
- The Comprehensive Cancer Center of Nanjing Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University Medical School, Nanjing 210093, China
| | - Huae Xu
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing 210009, China
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Gang Chen
- General Surgery Department, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing 210000, China
| |
Collapse
|
8
|
Yao J, Ma C, Feng K, Tan G, Wen Q. Focusing on the Role of Natural Products in Overcoming Cancer Drug Resistance: An Autophagy-Based Perspective. Biomolecules 2022; 12:1565. [PMID: 36358919 PMCID: PMC9687214 DOI: 10.3390/biom12111565] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 10/15/2023] Open
Abstract
Autophagy is a critical cellular adaptive response in tumor formation. Nutritional deficiency and hypoxia exacerbate autophagic flux in established malignancies, promoting tumor cell proliferation, migration, metastasis, and resistance to therapeutic interventions. Pro-survival autophagy inhibition may be a promising treatment option for advanced cancer. Furthermore, excessive or persistent autophagy is cytotoxic, resulting in tumor cell death. Targeted autophagy activation has also shown significant promise in the fight against tumor drug resistance. Several research groups have examined the ability of natural products (NPs) such as alkaloids, terpenoids, polyphenols, and anthraquinones to serve as autophagy inhibitors or activators. The data support the capacity of NPs that promote lethal autophagy or inhibit pro-survival autophagy from being employed against tumor drug resistance. This paper discusses the potential applications of NPs that regulate autophagy in the fight against tumor drug resistance, some limitations of the current studies, and future research needs and priorities.
Collapse
Affiliation(s)
- Jiaqi Yao
- Department of Anesthesiology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Chi Ma
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Kaixuan Feng
- Department of Anesthesiology, The Affiliated Xinhua Hospital of Dalian University, Dalian 116021, China
| | - Guang Tan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Qingping Wen
- Department of Anesthesiology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| |
Collapse
|
9
|
Duarte D, Guerreiro I, Vale N. Novel Strategies for Cancer Combat: Drug Combination Using Repurposed Drugs Induces Synergistic Growth Inhibition of MCF-7 Breast and HT-29 Colon Cancer Cells. Curr Issues Mol Biol 2022; 44:4930-4949. [PMID: 36286050 PMCID: PMC9601176 DOI: 10.3390/cimb44100335] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 12/04/2022] Open
Abstract
Our group developed a new model of drug combination consisting of the use of antineoplastic drugs and different repurposed drugs, having demonstrated that antimalarial and central nervous system (CNS) drugs have a promising anticancer profile as standalone agents, as well as in combined regimens. Here, we evaluated the anticancer profiles of two different CNS drugs (edaravone and quetiapine), both alone and in combination with antineoplastic agents for breast and colon cancer, to explore whether these repurposed drugs could synergistically enhance the anticancer potential of chemotherapeutic drugs. We also developed a new model of combination using two repurposed drugs, to explore whether this model of combination could also be suitable for application in breast and colon cancer therapy. MCF-7 and HT-29 cancer cells were incubated for 48 h with each individual drug (0.01–100 µM) to determine their IC50. Cells were then treated with the IC50 value for doxorubicin or paclitaxel (MCF-7) or 5-fluorouracil (HT-29) and combined with increasing concentrations of edaravone or quetiapine for 48 h. Both cell lines were also treated with a combination of two antimalarial drugs (mefloquine and pyronaridine) or two CNS drugs (fluphenazine and sertraline) for 48 h. We found that the use of quetiapine in combined therapies seems to synergistically enhance the anticancer activity of doxorubicin for the management of breast cancer. Both CNS drugs significantly improved the cytotoxic potential of 5-fluorouracil in HT-29 cells, with quetiapine synergistically interacting with the antineoplastic drug in this drug combination. Regarding the combination of repurposed drugs, only found one synergic combination regimen (sertraline IC50 plus variable concentrations of fluphenazine) with anticancer potential against HT-29 colon cancer cells was found. Taken together, these results suggest that quetiapine and edaravone can be used as adjuvant agents in chemotherapy for colon cancer. It was also found that the combination of repurposed drugs, specifically the CNS drugs sertraline and fluphenazine, may have an interesting profile for application in colon cancer novel therapies.
Collapse
Affiliation(s)
- Diana Duarte
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Inês Guerreiro
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| | - Nuno Vale
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- Correspondence: ; Tel.: +351-220426537
| |
Collapse
|
10
|
Duarte D, Nunes M, Ricardo S, Vale N. Combination of Antimalarial and CNS Drugs with Antineoplastic Agents in MCF-7 Breast and HT-29 Colon Cancer Cells: Biosafety Evaluation and Mechanism of Action. Biomolecules 2022; 12:biom12101490. [PMID: 36291699 PMCID: PMC9599492 DOI: 10.3390/biom12101490] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 02/05/2023] Open
Abstract
Drug combination and drug repurposing are two strategies that allow to find novel oncological therapies, in a faster and more economical process. In our previous studies, we developed a novel model of drug combination using antineoplastic and different repurposed drugs. We demonstrated the combinations of doxorubicin (DOX) + artesunate, DOX + chloroquine, paclitaxel (PTX) + fluoxetine, PTX + fluphenazine, and PTX + benztropine induce significant cytotoxicity in Michigan Cancer Foundation-7 (MCF-7) breast cancer cells. Furthermore, it was found that 5-FU + thioridazine and 5-fluorouracil (5-FU) + sertraline can synergistically induce a reduction in the viability of human colorectal adenocarcinoma cell line (HT-29). In this study, we aim to (1) evaluate the biosafety profile of these drug combinations for non-tumoral cells and (2) determine their mechanism of action in cancer cells. To do so, human fetal lung fibroblast cells (MRC-5) fibroblast cells were incubated for 48 h with all drugs, alone and in combination in concentrations of 0.25, 0.5, 1, 2, and 4 times their half-maximal inhibitory concentration (IC50). Cell morphology and viability were evaluated. Next, we designed and constructed a cell microarray to perform immunohistochemistry studies for the evaluation of palmitoyl-protein thioesterase 1 (PPT1), Ki67, cleaved-poly (ADP-ribose) polymerase (cleaved-PARP), multidrug resistance-associated protein 2 (MRP2), P-glycoprotein (P-gp), and nuclear factor-kappa-B (NF-kB) p65 expression. We demonstrate that these combinations are cytotoxic for cancer cells and safe for non-tumoral cells at lower concentrations. Furthermore, it is also demonstrated that PPT1 may have an important role in the mechanism of action of these combinations, as demonstrated by their ability to decrease PPT1 expression. These results support the use of antimalarial and central nervous system (CNS) drugs in combination regimens with chemotherapeutic agents; nevertheless, additional studies are recommended to further explore their complete mechanisms of action.
Collapse
Affiliation(s)
- Diana Duarte
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Mariana Nunes
- Differentiation and Cancer Group, Institute for Research and Innovation in Health (i3S), University of Porto/Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Sara Ricardo
- Differentiation and Cancer Group, Institute for Research and Innovation in Health (i3S), University of Porto/Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
- Toxicology Research Unit (TOXRUN), University Institute of Health Sciences, Polytechnic and University Cooperative (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal
| | - Nuno Vale
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- Correspondence: ; Tel.: +351-220426537
| |
Collapse
|
11
|
Pitavastatin and Ivermectin Enhance the Efficacy of Paclitaxel in Chemoresistant High-Grade Serous Carcinoma. Cancers (Basel) 2022; 14:cancers14184357. [PMID: 36139522 PMCID: PMC9496819 DOI: 10.3390/cancers14184357] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/01/2022] [Accepted: 09/03/2022] [Indexed: 11/29/2022] Open
Abstract
Simple Summary The main challenge in high-grade serous carcinoma management is to unveil therapeutic approaches to overcome chemoresistance. Drug combinations and repurposing of non-oncological agents are attractive strategies that allow for higher efficacy, decreased toxicity, and the overcoming of chemoresistance. Several non-oncological drugs display an effective anti-cancer activity and have been studied to be repurposed in multi-drug resistant neoplasms. The purpose of our study was to explore whether combining Paclitaxel with repurposed drugs (Pitavastatin, Metformin, Ivermectin, Itraconazole and Alendronate) led to a therapeutic benefit. Our results showed that the combination of Paclitaxel with Pitavastatin or Ivermectin demonstrates the highest cytotoxic effect and the strongest synergism among all combinations for two chemoresistant cell lines. Thus, the combination of these repurposed drugs with Paclitaxel could be a particularly valuable strategy to treat ovarian cancer patients with intrinsic or acquired chemoresistance. Abstract Chemotherapy is a hallmark in high-grade serous carcinoma management; however, chemoresistance and side effects lead to therapeutic interruption. Combining repurposed drugs with chemotherapy has the potential to improve antineoplastic efficacy, since drugs can have independent mechanisms of action and suppress different pathways simultaneously. This study aimed to explore whether the combination of Paclitaxel with repurposed drugs led to a therapeutic benefit. Thus, we evaluated the cytotoxic effects of Paclitaxel alone and in combination with several repurposed drugs (Pitavastatin, Metformin, Ivermectin, Itraconazole and Alendronate) in two tumor chemoresistant (OVCAR8 and OVCAR8 PTX R P) and a non-tumoral (HOSE6.3) cell lines. Cellular viability was assessed using Presto Blue assay, and the synergistic interactions were evaluated using Chou–Talalay, Bliss Independence and Highest Single Agent reference models. The combination of Paclitaxel with Pitavastatin or Ivermectin showed the highest cytotoxic effect and the strongest synergism among all combinations for both chemoresistant cell lines, resulting in a chemotherapeutic effect superior to both drugs alone. Almost all the repurposed drugs in combination with Paclitaxel presented a safe pharmacological profile in non-tumoral cells. Overall, we suggest that Pitavastatin and Ivermectin could act synergistically in combination with Paclitaxel, being promising two-drug combinations for high-grade serous carcinoma management.
Collapse
|
12
|
Wang M, Zhang XM, Fu X, Zhang P, Hu WJ, Yang BY, Kuang HX. Alkaloids in genus stephania (Menispermaceae): A comprehensive review of its ethnopharmacology, phytochemistry, pharmacology and toxicology. JOURNAL OF ETHNOPHARMACOLOGY 2022; 293:115248. [PMID: 35430287 DOI: 10.1016/j.jep.2022.115248] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/17/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Approximately 60 species of the genus Stephania (Menispermaceae) are distributed worldwide. Among these, 39 species are located in South and Southwest China; in particular, these plants are rich in alkaloids and were used in traditional Chinese medicine (TCM) against numerous ailments. AIM OF THIS REVIEW The purpose of this study was to provide organized information on the ethnopharmacological uses as well as the phytochemical, pharmacological, and toxicological evaluation of the alkaloids derived from plant species included in the genus Stephania. In addition, we aimed to provide comprehensive basic knowledge on the medicinal properties of these plants and establish meaningful guidelines for further research. MATERIALS AND METHODS Information related to the Stephania genus was collected from scientific databases, such as Web of Science, PubMed, Baidu Scholar, and China Academic Journals (CNKI), within the last 20 years on phytochemistry, pharmacology, and toxicology of the plants in genus Stephania. Furthermore, information was obtained from the Pharmacopoeia of the People's Republic of China. Chinese Pharmacopoeia and Flora of China. RESULTS Plant species belonging to the genus Stephania have been mentioned as traditional remedies and various alkaloidal compounds have been identified and isolated, including aporphine, proaporphine, morphinane, hasubanane, protoberberine, benzylisoquinoline, and bisbenzylisoquinoline and among others. The isolated alkaloidal compounds reportedly exhibited promising pharmacological properties, such as antimicrobial, antiviral, antitumor, antioxidant, antihyperglycemic, anti-inflammatory, antinociceptive, anti-multidrug resistance, neuroprotective, and cardioprotective activities. CONCLUSIONS The genus Stephania is widely used in TCM. The ethnopharmacological uses, phytochemistry, and pharmacology of the Stephania sp. Described in this review demonstrated that these plants contain numerous alkaloids and active constituents and display myriad pharmacological activities. Typically, research on the plants' pharmacological activity focuses on parts of the plants and the associated compounds. However, many Stephania species have rarely been studied, and the ethnomedicinal potential of those discovered has not been scientifically evaluated and needs to be further elucidated. Furthermore, quality control and toxicology studies are warranted in the future.
Collapse
Affiliation(s)
- Meng Wang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150040, China.
| | - Xian-Mei Zhang
- Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, 276006, China.
| | - Xin Fu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150040, China.
| | - Peng Zhang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150040, China.
| | - Wen-Jing Hu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150040, China.
| | - Bing-You Yang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150040, China.
| | - Hai-Xue Kuang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150040, China.
| |
Collapse
|
13
|
Alhamad DW, Elgendy SM, Hersi F, El-Seedi HR, Omar HA. The inhibition of autophagy by spautin boosts the anticancer activity of fingolimod in multidrug-resistant hepatocellular carcinoma. Life Sci 2022; 304:120699. [PMID: 35690108 DOI: 10.1016/j.lfs.2022.120699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/25/2022] [Accepted: 06/05/2022] [Indexed: 01/18/2023]
Abstract
The contribution of autophagy to drug resistance has been studied in several cancers. However, there is no clear evidence about the role of autophagy in the resistance to chemotherapy in cancers, such as hepatocellular carcinoma (HCC). HCC is characterized by a poor prognosis and limited therapeutic options. Moreover, the emergence of multidrug-resistance (MDR) hinders successful treatment. Therefore, understanding how autophagy is regulated in resistant HCC is essential for sensitizing this malignancy to chemotherapy. This work demonstrated that basal and induced autophagy differ between parental and resistant Hep3B cells. In optimum growth conditions, the basal level of autophagy was low in resistant Hep3B (Hep3B-R) cells compared to the wild-type Hep3B (Hep3B-P) cells. However, in metabolic or therapeutic stress conditions, the rate of autophagy flux was much faster in the resistant cells. The work also confirmed the pro-survival function of autophagy in HCC. Besides, it demonstrated that the autophagy inhibitor, spautin, acted synergistically with fingolimod (FTY720) to promote cell death. The combination treatment resulted in superior reactive oxygen species (ROS) production and significant induction of apoptosis. In addition, spautin potentiated the effect of FTY720 against cell survival pathways like the Akt and ERK. Interestingly, the results indicated that Hep3B-R cells were more sensitive to autophagy inhibition than their parental counterparts. Collectively, this work revealed that combining spautin with chemotherapeutic agents that induce cytoprotective autophagy such as FTY720 is a promising approach to overcome MDR in HCC.
Collapse
Affiliation(s)
- Dima W Alhamad
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Sara M Elgendy
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Fatema Hersi
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Hesham R El-Seedi
- Pharmacognosy Group, Department of Pharmaceutical Biosciences, BMC, Uppsala University, Box 591, SE 751 24 Uppsala, Sweden; Department of Chemistry, Faculty of Science, Menoufia University, 32512 Shebin El-Kom, Egypt
| | - Hany A Omar
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt.
| |
Collapse
|
14
|
Bhagya N, Chandrashekar KR. Autophagy and cancer: Can tetrandrine be a potent anticancer drug in the near future? Biomed Pharmacother 2022; 148:112727. [PMID: 35219119 DOI: 10.1016/j.biopha.2022.112727] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 11/02/2022] Open
Abstract
Autophagy is an essential catabolic process in mammalian cells to maintain cellular integrity and viability by degrading the old and damaged cell organelles and other contents with the help of lysosomes. Deregulation in autophagy can be one of the major contributors leading to the continuous cell proliferation and development of tumors. Tetrandrine, a bisbenzylisoquinoline alkaloid known to have potent bioactivities such as anticancer, antimicrobial, anti-inflammatory, antidiabetic, antioxidant, immunosuppressive, cardiovascular, and calcium channel blocking effects. The present review evaluated the effectiveness of tetrandrine in targeting key proteins in the autophagy pathway to induce anticancer effect based on the available literature. An attempt is also made to understand the influence of tetrandrine in regulating autophagy by mTOR dependant and mTOR-independent pathways. In addition, the review also highlights the limitations involved and future perspectives in developing tetrandrine as a chemotherapeutic drug to treat cancer.
Collapse
Affiliation(s)
- N Bhagya
- Yenepoya Research Center, Yenepoya (Deemed to be University), Deralakatte, Mangalore, Karnataka 575018, India
| | - K R Chandrashekar
- Yenepoya (Deemed to be University), Deralakatte, Mangalore, Karnataka 575018, India.
| |
Collapse
|
15
|
Skelding KA, Barry DL, Theron DZ, Lincz LF. Targeting the two-pore channel 2 in cancer progression and metastasis. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2022; 3:62-89. [PMID: 36046356 PMCID: PMC9400767 DOI: 10.37349/etat.2022.00072] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/02/2022] [Indexed: 11/19/2022] Open
Abstract
The importance of Ca2+ signaling, and particularly Ca2+ channels, in key events of cancer cell function such as proliferation, metastasis, autophagy and angiogenesis, has recently begun to be appreciated. Of particular note are two-pore channels (TPCs), a group of recently identified Ca2+-channels, located within the endolysosomal system. TPC2 has recently emerged as an intracellular ion channel of significant pathophysiological relevance, specifically in cancer, and interest in its role as an anti-cancer drug target has begun to be explored. Herein, an overview of the cancer-related functions of TPC2 and a discussion of its potential as a target for therapeutic intervention, including a summary of clinical trials examining the TPC2 inhibitors, naringenin, tetrandrine, and verapamil for the treatment of various cancers is provided.
Collapse
Affiliation(s)
- Kathryn A. Skelding
- Cancer Cell Biology Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, New South Wales 2308, Australia;Hunter Medical Research Institute, New Lambton Heights, New South Wales 2305, Australia
| | - Daniel L. Barry
- Cancer Cell Biology Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, New South Wales 2308, Australia;Hunter Medical Research Institute, New Lambton Heights, New South Wales 2305, Australia
| | - Danielle Z. Theron
- Cancer Cell Biology Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, New South Wales 2308, Australia;Hunter Medical Research Institute, New Lambton Heights, New South Wales 2305, Australia
| | - Lisa F. Lincz
- Cancer Cell Biology Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, New South Wales 2308, Australia;Hunter Medical Research Institute, New Lambton Heights, New South Wales 2305, Australia;Hunter Hematology Research Group, Calvary Mater Newcastle Hospital, Waratah, New South Wales 2298, Australia
| |
Collapse
|
16
|
Luo X, Ren C, Liu X, Zhang G, Huang S, Yu L, Li Y. [Screening of drugs that selectively inhibit uveal melanoma cells with SF3B1 mutations]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2021; 41:1835-1842. [PMID: 35012916 DOI: 10.12122/j.issn.1673-4254.2021.12.12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE To screen compounds that can selectively inhibit uveal melanoma cells with splicing factor 3B subunit 1 (SF3B1) mutations in comparison with isogenic SF3B1 wild-type counterparts in a cell model of SF3B1 mutant allele knockout. METHODS Principal component analysis was used to analyze transcriptome alternative splicing in TCGA cohorts of uveal melanoma with wild-type SF3B1 and SF3B1 mutations, and abnormal alternative splicing events derived from SF3B1 mutations were identified. The SF3B1 mutant allele in Mel202 cells was knocked out using CRISPR-Cas9 technology, and Sanger sequencing was used to verify the edited sequence. MTT and colony formation assays were used to assess the proliferation of Mel202 and Mut-KO cells. RT-PCR agarose electrophoresis combined with Sanger sequencing was used to determine alternative splicing events in Mel202 and Mut-KO cells. MTT assay was performed to screen the compounds that showed selective inhibitory effect against Mel202 cells with SF3B1 mutation. RESULTS Specific knockout of SF3B1 mutant allele in Mel202 cells obviously promoted the cell proliferation and caused changes in alternative splicing of ZDHHC16 and DYNLL1 transcripts. The screening data showed that 13 compounds had selective inhibitory activity against Mel202 cells with SF3B1 mutation (Fold change≥2), and among them, tetrandrine and lapatinib showed good dose-effect curves. CONCLUSION This study provides a cell screening model for identification of potential individualized treatment drugs for patients with uveal melanoma with SF3B1 mutation.
Collapse
Affiliation(s)
- X Luo
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - C Ren
- College of Medical Information Engineering, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - X Liu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - G Zhang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - S Huang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - L Yu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Y Li
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
17
|
Duarte D, Vale N. New Trends for Antimalarial Drugs: Synergism between Antineoplastics and Antimalarials on Breast Cancer Cells. Biomolecules 2020; 10:E1623. [PMID: 33271968 PMCID: PMC7761440 DOI: 10.3390/biom10121623] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 11/28/2020] [Accepted: 11/29/2020] [Indexed: 12/13/2022] Open
Abstract
Chemotherapy plays a key role in breast cancer therapy, but drug resistance and unwanted side effects make the treatment less effective. We propose a new combination model that combines antineoplastic drugs and antimalarials for breast cancer therapy. Cytotoxic effects of two antineoplastic agents alone and in combination with several antimalarials on MCF-7 tumor cell line was evaluated. Different concentrations in a fixed ratio were added to the cultured cells and incubated for 48 h. Cell viability was evaluated using MTT and SRB assays. Synergism was evaluated using the Chou-Talalay method. The results indicate doxorubicin (DOX) and paclitaxel (PTX) alone at concentrations of their IC50 and higher are cell growth inhibitors. Mefloquine, artesunate, and chloroquine at concentrations of their IC50 demonstrate anti-cancer activity. In combination, almost all antimalarials demonstrate higher ability than DOX and PTX alone to decrease cell viability at concentrations of IC50 and lower than their IC50. The combination of chloroquine, artesunate and mefloquine with DOX and PTX was synergic (CI < 1). The combination of DOX and mefloquine after 48 h incubation demonstrated the highest cytotoxicity against MCF-7 cells, and the combination of DOX and artesunate was the most synergic. These results suggest antimalarials could act synergistically with DOX/PTX for breast cancer therapy.
Collapse
Affiliation(s)
- Diana Duarte
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Plácido da Costa, 4200-450 Porto, Portugal;
- Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Nuno Vale
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Plácido da Costa, 4200-450 Porto, Portugal;
- Faculty of Medicine, University of Porto, Al. Hernâni Monteiro, 4200-319 Porto, Portugal
| |
Collapse
|
18
|
Zhang Y, Qi D, Gao Y, Liang C, Zhang Y, Ma Z, Liu Y, Peng H, Zhang Y, Qin H, Song X, Sun X, Li Y, Liu Z. History of uses, phytochemistry, pharmacological activities, quality control and toxicity of the root of Stephania tetrandra S. Moore: A review. JOURNAL OF ETHNOPHARMACOLOGY 2020; 260:112995. [PMID: 32497674 DOI: 10.1016/j.jep.2020.112995] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 05/17/2020] [Accepted: 05/17/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE the root of Stephania tetrandra S. Moore, known as Fangji in China (Chinese: ), is a traditional Chinese medicine (TCM) with a long history of use. Fangji is a type of medicine used to treat various diseases, including rheumatism, arthralgia, edema and beriberi, unfavorable urination, and eczema. AIM OF THIS REVIEW There are many newly published reports on the history of uses, phytochemistry, pharmacological activity, quality control and toxicity of Fangji; however, no comprehensive systematic review exists. Therefore, the purpose of this review is to compile the latest and most comprehensive information on Fangji and provide a scientific basis for future research. MATERIALS AND METHODS A systematic literature search was conducted using multiple electronic databases, including SciFinder, Web of Science, PubMed, Science Direct, ACS Publications, J-stage, SpringerLink, Thieme, Wiley, and CNKI. Information was also collected from journals and Chinese Pharmacopoeia. RESULT Thus far, there were uses of Fangji against 20 different diseases/disorders, such as relieving edema and rheumatism pain, treating cough and asthma, treating enuresis, astringent urine and beriberi edema, purging blood and damp heat, and dispelling wind evil and dampness, etc. 48 compounds have been isolated from Fangji, belonging to alkaloids, flavonoids, and steroids, other compounds. The crude extracts and isolated compound of Fangji have shown a wide range of pharmacological activities, such as anti-tumor, anti-inflammatory, and neuroprotective activities, as well as role in reoxygenation, and antimicrobial effect, etc. Moreover, qualitative and quantitative analyses of quality control are reviewed, including qualitative analyses for the identification of compounds, as well as fingerprint and quantitative analyses by high performance liquid chromatography (HPLC) and capillary electrochromatography (CE). In the toxicity study, the hepatotoxicity, hepatorenal toxicity, nephrotoxicity, subacute and acute toxicities of the alcohol extract and water extract of Fangji, and tetrandrine were studied in-vitro and in-vivo experiments. CONCLUSION In the history of uses, Fangji can be used to treat a variety of diseases, most of which are manifested in removing wind and dampness. In recent years, the phytochemistry of Fangji has rarely been reported. The pharmacological activities of Fangji mainly focus on the compounds, tetrandrine and fangchinoline, and there are a few reports on the pharmacological studies of other compounds in Fangji. Moreover, the quality control of Fangji lacks a standard fingerprint to distinguish Fangji from other easily-confused medicinal materials. In the toxicity study, there is no report on the mechanism of toxicity research. Therefore, further studies on such mechanisms are needed.
Collapse
Affiliation(s)
- Yuelin Zhang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Dongli Qi
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yanquan Gao
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Chunxia Liang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yukun Zhang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Zhe Ma
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yiting Liu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Hui Peng
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Ying Zhang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Huan Qin
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xunan Song
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xinru Sun
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yingpeng Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Zhidong Liu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
19
|
Li H, Xu X, Zhang Y, Tang X, Li W. Tetrandrine enhances antitumor effects of the histone deacetylase inhibitor MS-275 in human cancer in a Bax- and p53-dependent manner. Eur J Pharmacol 2020; 888:173575. [PMID: 32950498 DOI: 10.1016/j.ejphar.2020.173575] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 09/10/2020] [Accepted: 09/14/2020] [Indexed: 10/23/2022]
Abstract
MS-275 (Entinostat), is an oral histone deacetylase (HDAC) inhibitor with a high specificity for class 1 HDACs. As single agent, MS-275 exerts only modest antitumor activity against most solid malignancies. The use of MS-275 in combination with other anticancer agents is currently being evaluated to determine whether this approach can achieve superior therapeutic efficacy. Tetrandrine, a bisbenzylisoquinoline alkaloid isolated from the root of a Chinese medicinal herb, is safe and exhibits low toxicity, showing great potential to enhance chemotherapeutic efficacy. In the present study, we investigated the synergistic antitumor effects of MS-275 in combination with tetrandrine. Based on the results of in vitro experiments, the application of MS-275 in combination with tetrandrine induced selective apoptotic death in various cancer cells but spared normal cells. Mechanistically, the combination treatment induced a dramatic accumulation of reactive oxygen species (ROS), and a pretreatment with the ROS scavenger N-acetyl-L-cysteine (NAC) significantly prevented the cellular apoptosis induced by MS-275/tetrandrine. Moreover, molecular assays indicated that Bax and p53 were the key regulators of MS-275/tetrandrine induced apoptosis. The results of the in vivo studies were consistent with the results of the in vitro studies. Based on our findings, tetrandrine enhanced the antitumor effects of MS-275 in a Bax- and p53-dependent manner. The combination of MS-275 and tetrandrine may represent a novel and promising therapeutic strategy for cancer.
Collapse
Affiliation(s)
- Han Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, PR China
| | - Xiaoqing Xu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, PR China
| | - Yudi Zhang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, PR China
| | - Xianying Tang
- College of Life Sciences, South-Central University for Nationalities, Wuhan, 430074, PR China
| | - Wenhua Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, PR China.
| |
Collapse
|
20
|
Zhao C, Qiu S, He J, Peng Y, Xu H, Feng Z, Huang H, Du Y, Zhou Y, Nie Y. Prodigiosin impairs autophagosome-lysosome fusion that sensitizes colorectal cancer cells to 5-fluorouracil-induced cell death. Cancer Lett 2020; 481:15-23. [PMID: 32184145 DOI: 10.1016/j.canlet.2020.03.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 03/08/2020] [Accepted: 03/10/2020] [Indexed: 12/12/2022]
Abstract
Chemotherapy failure is a major cause of recurrence and poor prognosis in colorectal cancer (CRC) patients. Inhibition of autophagy is a promising strategy to augment the cytotoxicity of chemotherapeutic agents. We identified prodigiosin, a secondary metabolite produced by various bacteria, as a novel autophagy inhibitor that interfered with the autophagic flux in CRC cells by blocking autophagosome-lysosome fusion and lysosomal cathepsin maturation, resulting in the accumulation of LC3B-II and SQSTM. Suppression of autophagy by prodigiosin sensitized the CRC cells to 5-fluorouracil (5-Fu) in vitro, and the combination treatment markedly reduced cancer cell viability partly via caspase-dependent apoptosis. Furthermore, prodigiosin and 5-Fu synergistically inhibited CRC xenograft growth in vivo without any adverse effects. In conclusion, prodigiosin inhibits late stage autophagy and sensitizes tumor cells to 5-Fu, indicating its therapeutic potential in CRC.
Collapse
Affiliation(s)
- Chong Zhao
- Department of Gastroenterology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, China; Department of Gastroenterology, Guangzhou First People's Hospital, School of Medical, South China University of Technology, Guangzhou, 510180, China
| | - ShaoZhuang Qiu
- Department of Gastroenterology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, China; Department of Gastroenterology, Guangzhou First People's Hospital, School of Medical, South China University of Technology, Guangzhou, 510180, China
| | - Jie He
- Department of Gastroenterology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, China; Department of Gastroenterology, Guangzhou First People's Hospital, School of Medical, South China University of Technology, Guangzhou, 510180, China
| | - Yao Peng
- Department of Gastroenterology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, China; Department of Gastroenterology, Guangzhou First People's Hospital, School of Medical, South China University of Technology, Guangzhou, 510180, China
| | - Haoming Xu
- Department of Gastroenterology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, China; Department of Gastroenterology, Guangzhou First People's Hospital, School of Medical, South China University of Technology, Guangzhou, 510180, China
| | - Zhiqiang Feng
- Department of Gastroenterology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, China; Department of Gastroenterology, Guangzhou First People's Hospital, School of Medical, South China University of Technology, Guangzhou, 510180, China
| | - Hongli Huang
- Department of Gastroenterology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, China; Department of Gastroenterology, Guangzhou First People's Hospital, School of Medical, South China University of Technology, Guangzhou, 510180, China
| | - Yanlei Du
- Department of Gastroenterology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, China; Department of Gastroenterology, Guangzhou First People's Hospital, School of Medical, South China University of Technology, Guangzhou, 510180, China
| | - Yongjian Zhou
- Department of Gastroenterology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, China; Department of Gastroenterology, Guangzhou First People's Hospital, School of Medical, South China University of Technology, Guangzhou, 510180, China
| | - Yuqiang Nie
- Department of Gastroenterology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, China; Department of Gastroenterology, Guangzhou First People's Hospital, School of Medical, South China University of Technology, Guangzhou, 510180, China.
| |
Collapse
|
21
|
Liu T, Zhang J, Li K, Deng L, Wang H. Combination of an Autophagy Inducer and an Autophagy Inhibitor: A Smarter Strategy Emerging in Cancer Therapy. Front Pharmacol 2020; 11:408. [PMID: 32322202 PMCID: PMC7156970 DOI: 10.3389/fphar.2020.00408] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 03/18/2020] [Indexed: 01/08/2023] Open
Abstract
Autophagy is considered a cytoprotective function in cancer therapy under certain conditions and is a drug resistance mechanism that represents a clinical obstacle to successful cancer treatment and leads to poor prognosis in cancer patients. Because certain clinical drugs and agents in development have cytoprotective autophagy effects, targeting autophagic pathways has emerged as a potential smarter strategy for cancer therapy. Multiple preclinical and clinical studies have demonstrated that autophagy inhibition augments the efficacy of anticancer agents in various cancers. Autophagy inhibitors, such as chloroquine and hydroxychloroquine, have already been clinically approved, promoting drug combination treatment by targeting autophagic pathways as a means of discovering and developing more novel and more effective cancer therapeutic approaches. We summarize current studies that focus on the antitumor efficiency of agents that induce cytoprotective autophagy combined with autophagy inhibitors. Furthermore, we discuss the challenge and development of targeting cytoprotective autophagy as a cancer therapeutic approach in clinical application. Thus, we need to facilitate the exploitation of appropriate autophagy inhibitors and coadministration delivery system to cooperate with anticancer drugs. This review aims to note optimal combination strategies by modulating autophagy for therapeutic advantage to overcome drug resistance and enhance the effect of antitumor therapies on cancer patients.
Collapse
Affiliation(s)
- Ting Liu
- The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Zhang
- The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kangdi Li
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Lingnan Deng
- Department of Digestion, The Second Affiliated Hospital of Jiangxi University TCM, Nanchang, China
| | - Hongxiang Wang
- The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
22
|
Li Y, Wang S, Song FX, Zhang L, Yang W, Wang HX, Chen QL. A pH-sensitive drug delivery system based on folic acid-targeted HBP-modified mesoporous silica nanoparticles for cancer therapy. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124470] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
23
|
Varisli L, Cen O, Vlahopoulos S. Dissecting pharmacological effects of chloroquine in cancer treatment: interference with inflammatory signaling pathways. Immunology 2020; 159:257-278. [PMID: 31782148 PMCID: PMC7011648 DOI: 10.1111/imm.13160] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 12/11/2022] Open
Abstract
Chloroquines are 4-aminoquinoline-based drugs mainly used to treat malaria. At pharmacological concentrations, they have significant effects on tissue homeostasis, targeting diverse signaling pathways in mammalian cells. A key target pathway is autophagy, which regulates macromolecule turnover in the cell. In addition to affecting cellular metabolism and bioenergetic flow equilibrium, autophagy plays a pivotal role at the interface between inflammation and cancer progression. Chloroquines consequently have critical effects in tissue metabolic activity and importantly, in key functions of the immune system. In this article, we will review the work addressing the role of chloroquines in the homeostasis of mammalian tissue, and the potential strengths and weaknesses concerning their use in cancer therapy.
Collapse
Affiliation(s)
- Lokman Varisli
- Union of Education and Science Workers (EGITIM SEN), Diyarbakir Branch, Diyarbakir, Turkey
- Department of Molecular Biology and Genetics, Science Faculty, Dicle University, Diyarbakir, Turkey
| | - Osman Cen
- Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Natural Sciences, Joliet Jr College, Joliet, IL, USA
| | - Spiros Vlahopoulos
- First Department of Pediatrics, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
24
|
Zhang J, Wang Y, Zhang S, Li J, Fang H. Effects of tetrandrine combined with acetylcysteine on exercise tolerance, pulmonary function and serum TNF-β1 and MMP-7 in silicosis patients. Exp Ther Med 2020; 19:2195-2201. [PMID: 32104284 PMCID: PMC7027229 DOI: 10.3892/etm.2020.8431] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 10/30/2019] [Indexed: 12/14/2022] Open
Abstract
The aim of the study was to investigate the effects of tetrandrine combined with acetylcysteine on exercise tolerance, pulmonary function, transforming growth factor-β1 (TGF-β1) and matrix metalloproteinase 7 (MMP-7) in silicosis patients. A retrospective analysis was performed on 149 silicosis patients admitted to the Maternal and Child Health Care Hospital of Zhangqiu District between August, 2015 and September, 2017. Of the 149 patients, 70 patients treated with acetylcysteine comprised the control group, and 79 treated with tetrandrine combined with acetylcysteine constituted the study group. The concentrations of serum TGF-β1 and MMP-7 before and after treatment were detected by enzyme-linked immunosorbent assay (ELISA), and the exercise tolerance and pulmonary function were compared. Chest distress, chest pain, cough, expectoration and dyspnea in the two groups were relieved after treatment, and the improvement rates of chest distress, chest pain and dyspnea in the study group were significantly higher than those in the control group (P<0.05). Before treatment, there was no significant difference in the results of the 6-minute walk test (6MWT) between the two groups (P>0.05). After treatment, the 6MWT in the two groups was significantly increased (P<0.05), and the improvement effect in the study group was more marked than that in the control group (P<0.05). There was no significant difference in the pulmonary function indexes between the two groups before treatment (P>0.05). Before treatment, there was no significant difference in serum TGF-β1 and MMP-7 expression levels between the two groups (P>0.05). By contrast, after treatment, the levels in the two groups were significantly decreased, with the levels in the study group being significantly lower than that the control group (P<0.05). In conclusion, tetrandrine combined with acetylcysteine can improve pulmonary function and exercise tolerance of patients with silicosis by inhibiting the expressions of TGF-β1 and MMP-7, thus improving clinical efficacy.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Pharmacy, Maternal and Child Health Care Hospital of Zhangqiu District, Jinan 250200, P.R. China
| | - Yingchun Wang
- Department of Pharmacy, Yantaishan Hospital, Yantai 264000, P.R. China
| | - Shujuan Zhang
- Occupational Disease Department, Branch of Tai'an City Central Hospital, Tai'an 271000, P.R. China
| | - Jing Li
- Department of Surgery, The People's Hospital of Zhangqiu Area, Jinan 250200, P.R. China
| | - Hong Fang
- Department of Hepatobiliary Surgery, Weifang Traditional Chinese Hospital, Weifang 261041, P.R. China
- Correspondence to: Dr Hong Fang, Department of Hepatobiliary Surgery, Weifang Traditional Chinese Hospital, 1055 Weizhou Road, Kuiwen, Weifang 261041, P.R. China, E-mail:
| |
Collapse
|
25
|
Zhong Z, Qian Z, Zhang X, Chen F, Ni S, Kang Z, Zhang F, Li D, Yu B. Tetrandrine Prevents Bone Loss in Ovariectomized Mice by Inhibiting RANKL-Induced Osteoclastogenesis. Front Pharmacol 2020; 10:1530. [PMID: 31998129 PMCID: PMC6967024 DOI: 10.3389/fphar.2019.01530] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 11/26/2019] [Indexed: 12/21/2022] Open
Abstract
Postmenopausal osteoporosis (PMOP) is a metabolic bone disease characterized by decreased bone density and strength due to the imbalance between osteogenesis and osteoclastogenesis. Postmenopausal estrogen withdrawal increases proinflammatory cytokines and increases the serum level of Receptor activator of NF-kB ligand (RANKL)/Osteoprotegerin (OPG), which then leads to the overactivation of osteoclastogenesis. Tetrandrine, a bis-benzylisoquinoline alkaloid, has been widely used in the treatment of rheumatoid arthritis clinically in China. Here, we demonstrate that tetrandrine significantly prevented ovariectomy-induced bone loss and inhibited RANKL-induced osteoclastogenesis. In vivo, we found that intraperitoneal injection of tetrandrine (30 mg/kg) every other day markedly reduced bone loss in ovariectomized mice and the serum levels of TRAcp5b, TNF-a, IL-6, CTX-I, and RANKL/OPG were significantly decreased. In vitro, we found that tetrandrine significantly inhibited osteoclast differentiation in bone marrow monocytes (BMMs) and RAW264.7 cells according to the results of osteoclastogenesis-related gene expression, tartrate-resistant acid phosphatase (TRAP) staining and actin-ring formation as well as bone resorption assay. Mechanistically, tetrandrine inhibited RANKL-induced osteoclastogenesis by suppressing NF-kB, Ca2+, PI3K/AKT, and MAPKs signaling pathways. Taken together, our findings suggest that tetrandrine suppresses osteoclastogenesis through modulation of multiple pathways and has potential value as a therapeutic agent for PMOP, especially for those suffering from RA and PMOP at the same time.
Collapse
Affiliation(s)
- Zeyuan Zhong
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Zhi Qian
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Xu Zhang
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Fancheng Chen
- Shanghai Medical College, Fudan University, Shanghai, China
| | - Shuo Ni
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Zhanrong Kang
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Fangxue Zhang
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Dejian Li
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Baoqing Yu
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| |
Collapse
|
26
|
Wang K, Hu H, Zhang Q, Zhang Y, Shi C. Synthesis, purification, and anticancer effect of magnetic Fe 3O 4-loaded poly (lactic-co-glycolic) nanoparticles of the natural drug tetrandrine. J Microencapsul 2019; 36:356-370. [PMID: 31190597 DOI: 10.1080/02652048.2019.1631403] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Here, we have successfully synthesised and purified multifunctional PLGA-based nanoparticles by the co-encapsulation of an anticancer drug (tetrandrine) and a magnetic material (Fe3O4). The obtained Tet-Fe3O4-PLGA NPs had a uniform spherical shape with a particle size of approximately 199 nm and a negative surface charge of -18.0 mV, displaying a high encapsulation efficiency. Furthermore, TEM studies provided representative images of the purification process of the magnetic nanoparticles with MACS® technology. The MFM and VSM results indicated that both the Fe3O4 NPs and Tet-Fe3O4-PLGA NPs were superparamagnetic. The DSC spectrum demonstrated that Tet was successfully encapsulated within the PLGA-based nanoparticles. Significantly, the release studies revealed NPs had a relatively slower release rate than free Tet after 8 h's initial burst release, which had decreased from 98% to 65% after 24 h. In vitro cellular studies revealed that NPs could effectively penetrate into A549 cells and A549 multicellular spheroids to exert cytotoxicity, displaying a significantly high anti-proliferation effect. Moreover, western blot demonstrated that the co-loaded NPs had a higher anticancer activity by injuring lysosomes to activate the mitochondria pathway and induce A549 cell apoptosis. The magnetic characteristics and high anticancer activity support the use of Tet/Fe3O4 co-loaded PLGA-based nanoparticles as a promising strategy in the treatment of lung cancer.
Collapse
Affiliation(s)
- Kaiping Wang
- a Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation , Tongji Medical College of Huazhong University of Science and Technology , Wuhan , China
| | - Huiping Hu
- a Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation , Tongji Medical College of Huazhong University of Science and Technology , Wuhan , China
| | - Qian Zhang
- b Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering , Institute of Nano Biomedicine and Engineering, Shanghai Jiao Tong University , Shanghai , China
| | - Yu Zhang
- c Department of Pharmacy , Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Chen Shi
- c Department of Pharmacy , Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| |
Collapse
|
27
|
Niu N, Jin T, Li X, Xu J, Qu T, Bodwell GJ, Zhao Z. Design and Synthesis of Tetrandrine Derivatives as Potential Anti-tumor Agents Against A549 Cell Lines. ChemistrySelect 2019. [DOI: 10.1002/slct.201803592] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Nana Niu
- School of Pharmaceutical Science; Shanxi Medical University; Taiyuan 030001 People's Republic of China
| | - Tao Jin
- School of Pharmaceutical Science; Shanxi Medical University; Taiyuan 030001 People's Republic of China
| | - Xia Li
- Department of Pathophysiology of Shanxi Medical College for Continuing Education; Taiyuan People's Republic of China
| | - Jinfang Xu
- School of Pharmaceutical Science; Shanxi Medical University; Taiyuan 030001 People's Republic of China
| | - Tingli Qu
- School of Pharmaceutical Science; Shanxi Medical University; Taiyuan 030001 People's Republic of China
| | - Graham J. Bodwell
- Department of Chemistry; Memorial University of Newfoundland; St. John's, NL Canada A1B 3X7
| | - Zhengbao Zhao
- School of Pharmaceutical Science; Shanxi Medical University; Taiyuan 030001 People's Republic of China
| |
Collapse
|
28
|
Weber C, Opatz T. Bisbenzylisoquinoline Alkaloids. THE ALKALOIDS: CHEMISTRY AND BIOLOGY 2019; 81:1-114. [DOI: 10.1016/bs.alkal.2018.07.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
29
|
Wang SQ, Hou HL, Bie LY, Nie CY, Wang LN, Gao S, Hu TT, Chen XB. Mechanistic studies of the apoptosis induced by the macrocyclic natural product tetrandrine in MGC 803 cells. Med Chem Res 2018. [DOI: 10.1007/s00044-018-2268-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
30
|
Yuan B, Yao M, Wang X, Sato A, Okazaki A, Komuro H, Hayashi H, Toyoda H, Pei X, Hu X, Hirano T, Takagi N. Antitumor activity of arsenite in combination with tetrandrine against human breast cancer cell line MDA-MB-231 in vitro and in vivo. Cancer Cell Int 2018; 18:113. [PMID: 30123091 PMCID: PMC6090820 DOI: 10.1186/s12935-018-0613-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 08/09/2018] [Indexed: 12/23/2022] Open
Abstract
Background Triple-negative breast cancer (TNBC) is one of the most difficult subtypes of breast cancer to treat due to its aggressive, metastatic behavior, and a lack of a targeted therapy. Trivalent arsenic derivatives (arsenite, AsIII) with remarkable clinical efficacy in acute promyelocytic leukemia has been demonstrated to exhibit inhibitory effect against breast cancer cells. To provide novel insight into the development of new therapeutic strategies, antitumor activity of AsIII and tetrandrine (Tetra), a Chinese plant-derived alkaloid, against the TNBC cell line MDA-MB-231 in vitro and in vivo was investigated. Methods Cytotoxicity was evaluated using cell viability, lactate dehydrogenase leakage and cell cycle assay. Alterations of genes related to cell proliferation and death were analyzed using western blotting. In vivo antitumor activity of AsIII alone or in combination with Tetra was studied using MDA-MB-231 xenografts in nude mice. Results Synergistic cytotoxic effects of two drugs were observed in the cells. In vivo study also showed that co-administration of AsIII and Tetra significantly reduced tumor volume and weight, directly supporting its in vitro antitumor activity. No deaths and reduction of body-weight were observed after a long-term co-administration, indicating its good tolerability. S-phase arrest associated with the upregulation of FOXO3a, p27 along with decreased Cyclin D1 expression was observed in the cells treated with the combined regimen. A substantial upregulated p21 expression and downregulated phospho-FOXO3a and Cyclin D1 expression was observed in the tumor tissues of mice co-administered with AsIII and Tetra. Autophagy induction was observed in the combination treatment in vitro and in vivo. The addition of wortmannin, a potent autophagy inhibitor, significantly rescued MDA-MB-231 cells from their cytotoxicity of AsIII and Tetra. Conclusions S-phase arrest, autophagic and necrotic cell death contribute to the cytocidal effects of the combined regimen of AsIII and Tetra. Considering our previous study showing synergistic cytotoxic effects of the combined regimen in estrogen receptor-positive breast cancer cell line MCF-7, these results suggest that development of the combination regimen of AsIII plus Tetra may offer many benefits to patients with different types of breast cancer.
Collapse
Affiliation(s)
- Bo Yuan
- 1Department of Applied Biochemistry, School of Pharmacy, Tokyo University of Pharmacy & Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392 Japan.,2Department of Clinical Molecular Genetics, School of Pharmacy, Tokyo University of Pharmacy & Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392 Japan
| | - Mingjiang Yao
- 1Department of Applied Biochemistry, School of Pharmacy, Tokyo University of Pharmacy & Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392 Japan.,3XiYuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091 People's Republic of China
| | - Xiao Wang
- 1Department of Applied Biochemistry, School of Pharmacy, Tokyo University of Pharmacy & Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392 Japan
| | - Ai Sato
- 2Department of Clinical Molecular Genetics, School of Pharmacy, Tokyo University of Pharmacy & Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392 Japan
| | - Ayane Okazaki
- 1Department of Applied Biochemistry, School of Pharmacy, Tokyo University of Pharmacy & Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392 Japan
| | - Hana Komuro
- 1Department of Applied Biochemistry, School of Pharmacy, Tokyo University of Pharmacy & Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392 Japan
| | - Hideki Hayashi
- 1Department of Applied Biochemistry, School of Pharmacy, Tokyo University of Pharmacy & Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392 Japan
| | - Hiroo Toyoda
- 2Department of Clinical Molecular Genetics, School of Pharmacy, Tokyo University of Pharmacy & Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392 Japan
| | - Xiaohua Pei
- 4The Third Affiliated Hospital of Beijing University of Traditional Chinese Medicine, Beijing, 100029 People's Republic of China
| | - Xiaomei Hu
- 3XiYuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091 People's Republic of China
| | - Toshihiko Hirano
- 5Department of Clinical Pharmacology, School of Pharmacy, Tokyo University of Pharmacy & Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392 Japan
| | - Norio Takagi
- 1Department of Applied Biochemistry, School of Pharmacy, Tokyo University of Pharmacy & Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392 Japan
| |
Collapse
|
31
|
Zhang Z, Liu T, Yu M, Li K, Li W. The plant alkaloid tetrandrine inhibits metastasis via autophagy-dependent Wnt/β-catenin and metastatic tumor antigen 1 signaling in human liver cancer cells. J Exp Clin Cancer Res 2018; 37:7. [PMID: 29334999 PMCID: PMC5769468 DOI: 10.1186/s13046-018-0678-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 01/08/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Tetrandrine is a bisbenzylisoquinoline alkaloid isolated from the Chinese medicinal herb Stephania tetrandra S. Moore. We previously demonstrated that tetrandrine exhibits potent antitumor effects in many types of cancer cells. In this study, we investigated the effects of tetrandrine on human hepatocellular carcinoma (HCC) metastasis. METHODS The invasion and migration effects were evaluated via wound healing and transwell assays. Immunofluorescence and western blotting analyses were used to investigate the levels of epithelial-mesenchymal transition (EMT)-related protein. A metastasis model was established to investigate the inhibitory effect of tetrandrine on hepatocellular carcinoma metastasis in vivo. RESULTS Tetrandrine inhibits HCC invasion and migration by preventing cell EMT. The underlying mechanism was closely associated with tetrandrine-induced human liver cell autophagy, which inhibits Wnt/β-catenin pathway activity and decreases metastatic tumor antigen 1 (MTA1) expression to modulate cancer cell metastasis. CONCLUSION Our findings demonstrate, for the first time, that tetrandrine plays a significant role in the inhibition of human hepatocellular carcinoma metastasis and provide novel insights into the application of tetrandrine in clinical HCC treatment.
Collapse
Affiliation(s)
- Zhenxing Zhang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072 People’s Republic of China
| | - Ting Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072 People’s Republic of China
| | - Man Yu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072 People’s Republic of China
| | - Kangdi Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072 People’s Republic of China
| | - Wenhua Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072 People’s Republic of China
| |
Collapse
|
32
|
Liu T, Liu X, Li W. Tetrandrine, a Chinese plant-derived alkaloid, is a potential candidate for cancer chemotherapy. Oncotarget 2018; 7:40800-40815. [PMID: 27027348 PMCID: PMC5130046 DOI: 10.18632/oncotarget.8315] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 03/10/2016] [Indexed: 12/19/2022] Open
Abstract
Cancer is a disease caused by the abnormal proliferation and differentiation of cells governed by tumorigenic factors. Chemotherapy is one of the major cancer treatment strategies, and it functions by targeting the physiological capabilities of cancer cells, including sustained proliferation and angiogenesis, the evasion of programmed cell death, tissue invasion and metastasis. Remarkably, natural products have garnered increased attention in the chemotherapy drug discovery field because they are biologically friendly and have high therapeutic effects. Tetrandrine, isolated from the root of Stephania tetrandra S Moore, is a traditional Chinese clinical agent for silicosis, autoimmune disorders, inflammatory pulmonary diseases, cardiovascular diseases and hypertension. Recently, the novel anti-tumor effects of tetrandrine have been widely investigated. More impressive is that tetrandrine affects multiple biological activities of cancer cells, including the inhibition of proliferation, angiogenesis, migration, and invasion; the induction of apoptosis and autophagy; the reversal of multidrug resistance (MDR); and the enhancement of radiation sensitization. This review focuses on introducing the latest information about the anti-tumor effects of tetrandrine on various cancers and its underlying mechanism. Moreover, we discuss the nanoparticle delivery system being developed for tetrandrine and the anti-tumor effects of other bisbenzylisoquinoline alkaloid derivatives on cancer cells. All current evidence demonstrates that tetrandrine is a promising candidate as a cancer chemotherapeutic.
Collapse
Affiliation(s)
- Ting Liu
- College of Life Sciences, Wuhan University, Wuhan, P. R. China
| | - Xin Liu
- Ministry of Education Laboratory of Combinatorial Biosynthesis and Drug Discovery, College of Pharmacy, Wuhan University, Wuhan, P. R. China
| | - Wenhua Li
- College of Life Sciences, Wuhan University, Wuhan, P. R. China
| |
Collapse
|
33
|
Liu S, Cai X, Xia L, Jiang C, Chen P, Wang X, Zhang B, Zhao HY. Chloroquine exerts antitumor effects on NB4 acute promyelocytic leukemia cells and functions synergistically with arsenic trioxide. Oncol Lett 2017; 15:2024-2030. [PMID: 29434902 DOI: 10.3892/ol.2017.7488] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 10/26/2017] [Indexed: 01/17/2023] Open
Abstract
Chloroquine (CQ) has been confirmed to exhibit antitumor effects on different types of cancer cell, but whether it exerts the same effect on acute promyelocytic leukemia (APL) cells remains to be confirmed. In the present study, the effects of various concentrations of CQ on the growth, apoptosis and cell cycle distribution of NB4 cells, as well as the potential mechanisms underlying these effects, were examined. The combined effect of CQ and arsenic trioxide (ATO) on the growth of NB4 cells was also determined. The results of the present study demonstrated that CQ treatment inhibited cell proliferation, and induced mitochondrial pathway apoptosis and S phase arrest in a dose-dependent manner by regulating apoptosis- and cell cycle-related proteins. CQ and ATO had a synergistic effect on the growth inhibition of NB4 cells, which may have been induced through the inhibition of autophagy. In conclusion, the results of the present study indicated that CQ exhibits a cytotoxic effect on NB4 cells and has a synergistic effect when combined with ATO, which thereby improves the curative effect of ATO on APL.
Collapse
Affiliation(s)
- Shousheng Liu
- Department of General Medicine, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, P.R. China
| | - Xiuyu Cai
- Department of General Medicine, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, P.R. China
| | - Liangping Xia
- Department of General Medicine, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, P.R. China
| | - Chang Jiang
- Department of General Medicine, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, P.R. China
| | - Ping Chen
- Department of General Medicine, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, P.R. China
| | - Xiaopai Wang
- Department of Pathology, Guangzhou First People's Hospital, Guangzhou, Guangdong 510080, P.R. China
| | - Bei Zhang
- Department of General Medicine, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, P.R. China
| | - Hong Yun Zhao
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, P.R. China
| |
Collapse
|
34
|
Cai Y, Cai J, Ma Q, Xu Y, Zou J, Xu L, Wang D, Guo X. Chloroquine affects autophagy to achieve an anticancer effect in EC109 esophageal carcinoma cells in vitro. Oncol Lett 2017; 15:1143-1148. [PMID: 29422973 DOI: 10.3892/ol.2017.7415] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 10/13/2017] [Indexed: 12/31/2022] Open
Abstract
Esophageal carcinoma is a malignancy that severely threatens human health, with a high incidence rate and a low 5-year survival rate. Resistance to chemotherapy frequently emerges during its treatment, partly due to the induction of autophagy. Therefore, targeting autophagy may be a promising therapeutic approach for the treatment of esophageal carcinoma. In the present study, it was investigated how chloroquine (CQ) can influence the growth ability and biological behaviors of EC109 esophageal squamous carcinoma cells in vitro, as well as the potential molecular mechanisms behind its activity. It was demonstrated that CQ could suppress the growth and proliferation of EC109 cells in a time- and dose-dependent manner; migration and colony formation abilities were also inhibited by CQ. Furthermore, subsequent to the exposure to CQ, the number of autophagosomes was clearly increased in EC109 cells overexpressing green fluorescent protein tagged-light chain (LC)3 when observed by fluorescence microscopy. Protein expression of the endogenous autophagy markers LC3-II and p62 was elevated subsequent to CQ treatment, whereas the expression of proteins from the protein kinase B/mechanistic target of rapamycin target of rapamycin pathway was inhibited. This suggested that CQ could induce the formation of autophagosomes in the initiation of autophagy, but inhibit the degradation of autophagosomes in a later stage of autophagy. The overall effect was that autophagic cell death was activated by CQ, as confirmed by flow cytometry. Overall, the anticancer effect of chloroquine on EC109 was revealed to be mediated through modulating autophagy, and this may produce promising therapeutic benefits for esophageal carcinoma.
Collapse
Affiliation(s)
- Yan Cai
- Department of Laboratory Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China.,Translational Medicine Research Center, North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Jiajing Cai
- Department of Laboratory Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China.,Department of Laboratory Medicine, North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Qiang Ma
- Department of Laboratory Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China.,Department of Laboratory Medicine, North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Yuan Xu
- Department of Laboratory Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Jiang Zou
- Department of Laboratory Medicine, North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Lei Xu
- Translational Medicine Research Center, North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Dongsheng Wang
- Department of Laboratory Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China.,Translational Medicine Research Center, North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Xiaolan Guo
- Department of Laboratory Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China.,Translational Medicine Research Center, North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China.,Department of Laboratory Medicine, North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| |
Collapse
|
35
|
N B, K R C. Tetrandrine and cancer - An overview on the molecular approach. Biomed Pharmacother 2017; 97:624-632. [PMID: 29101806 DOI: 10.1016/j.biopha.2017.10.116] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 10/18/2017] [Accepted: 10/21/2017] [Indexed: 12/12/2022] Open
Abstract
Tetrandrine has been known in the treatment of tuberculosis, hyperglycemia, negative ionotropic and chronotropic effects on myocardium, malaria, cancer and fever since years together. It has been known that, tetrandrine could modulate multiple signaling molecules such as kinases of cell cycle and rat sarcoma (RAS) pathway along with proteins of tumor suppressor genes, autophagy related, β-catenins, caspases, and death receptors. Moreover, tetrandrine exhibited reversal of drug resistance by modulating P-glyco protein (P-gp) expression levels in different cancers which is an added advantage of this compound compared to other chemotherapy drugs. Though, bioavailability of tetrandrine is a limiting factor, the anticancer activity was observed in animal models without changing any pharmacokinetic parameters. In the present review, role of tetrandrine as kinase inhibitor, inducer of autophagy and caspase pathways and suppressor of RAS mediated cell proliferation were discussed along with inhibition of angiogenesis. It has also been discussed that how tetrandrine potentiate anticancer effect in different types of cancers by modulating multidrug resistance under in vitro and in vivo trials including the available literature on the clinical trials.
Collapse
Affiliation(s)
- Bhagya N
- Department of Applied Botany, Mangalore University, Mangalagangotri, Mangalore 574 199, Karnataka, India
| | - Chandrashekar K R
- Department of Applied Botany, Mangalore University, Mangalagangotri, Mangalore 574 199, Karnataka, India.
| |
Collapse
|
36
|
Liu T, Zhang Z, Yu C, Zeng C, Xu X, Wu G, Huang Z, Li W. Tetrandrine antagonizes acute megakaryoblastic leukaemia growth by forcing autophagy-mediated differentiation. Br J Pharmacol 2017; 174:4308-4328. [PMID: 28901537 DOI: 10.1111/bph.14031] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 08/27/2017] [Accepted: 08/31/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND PURPOSE The poor prognosis of acute megakaryoblastic leukaemia (AMKL) means there is a need to develop novel therapeutic methods to treat this condition. It was recently shown that inducing megakaryoblasts to undergo terminal differentiation is effective as a treatment for AMKL. This encouraged us to identify a compound that induces megakaryocyte differentiation, which could then act as a potent anti-leukaemia agent. EXPERIMENTAL APPROACH The effects of tetrandrine on the expression of CD41 and cell morphology were investigated in AMKL cells. We used CRISPR/Cas9 knockout system to knock out ATG7 and verify the role of autophagy in tetrandrine-induced megakaryocyte differentiation. shNotch1 and CA-Akt were transfected into K562 cells to examine the downstream pathways of ROS signalling and the mechanistic basis of the tetrandrine-induced megakaryocyte differentiation. The anti-leukaemia effects of tetrandrine were analysed both in vitro and in vivo. KEY RESULTS A low dose of tetrandrine induced cell cycle arrest and megakaryocyte differentiation in AMKL cells via activation of autophagy. Molecularly, we demonstrated that this effect is mediated by activation of Notch1 and Akt and subsequent accumulation of ROS. In contrast, in normal mouse fetal liver cells, although tetrandrine induced autophagy, it did not affect cell proliferation or promote megakaryocyte differentiation, suggesting a specific effect of tetrandrine in malignant megakaryoblasts. Finally, tetrandrine also showed in vivo efficacy in an AMKL xenograft mouse model. CONCLUSIONS AND IMPLICATIONS Modulating autophagy-mediated differentiation may be a novel strategy for treating AMKL, and tetrandrine has the potential to be developed as a differentiation-inducing agent for AMKL chemotherapy.
Collapse
Affiliation(s)
- Ting Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zhenxing Zhang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Chunjie Yu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Chang Zeng
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiaoqing Xu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Guixian Wu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zan Huang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Wenhua Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
37
|
Wu MY, Wang SF, Cai CZ, Tan JQ, Li M, Lu JJ, Chen XP, Wang YT, Zheng W, Lu JH. Natural autophagy blockers, dauricine (DAC) and daurisoline (DAS), sensitize cancer cells to camptothecin-induced toxicity. Oncotarget 2017; 8:77673-77684. [PMID: 29100416 PMCID: PMC5652807 DOI: 10.18632/oncotarget.20767] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 08/02/2017] [Indexed: 12/21/2022] Open
Abstract
Autophagy is a cellular bulk degradation pathway implicated in various diseases. Inhibition of autophagy has been regarded as a new therapeutic strategy for cancer treatment, especially in combination with chemotherapy. In our study, we identified two natural compounds, dauricine (DAC) and daurisoline (DAS), as two potent autophagy blockers through a high-content screening. DAC and DAS are alkaloids isolated from traditional Chinese medicine Rhizoma Menispermi. We systematically examined the effects of DAC and DAS on autophagy function in HeLa cells and found that DAC and DAS induced massive formation of autophagic vacuoles and lipidation of LC3. The accumulation of autophagic vacuoles and LC3 lipidation are due to blockage of autophagosome maturation as evidenced by interrupted colocalization of autophagsosome and lysosome, increased GFP-LC3/RFP-LC3 ratio and accumulation of autophagic substrate p62. Moreover, DAC and DAS impaired lysosomal function, as indicated by reduced lysosomal protease activity and increased lysosomal pH values. Importantly, we showed that DAC and DAS strongly inhibited the lysosome V-type ATPase activity. For the therapeutic potential, we found that DAC and DAS blocked the campothecin (CPT)-induced protective autophagy in HeLa cells, and dramatically sensitized the multiple cancer cells to CPT-induced cell death. In conclusion, our result shows that DAC and DAS are autophagy inhibitors which inhibit the lysosomal degradation of auophagic vacuoles, and sensitize the CPT-induced cancer cell death. The study implies the therapeutic potential of DAC and DAS in the treatment of cancers in combination of chemotherapy by inhibiting autophagy.
Collapse
Affiliation(s)
- Ming-Yue Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Sheng-Fang Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Cui-Zan Cai
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Jie-Qiong Tan
- State Key Laboratory of Medical Genetics, Xiangya Medical School, Central South University, Changsha, Hunan, China
| | - Min Li
- Mr. and Mrs. Ko Chi Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Jin-Jian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Xiu-Ping Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Yi-Tao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Wei Zheng
- Department of Thyroid and Breast Surgery, The Third People's Hospital of Shenzhen, Shenzhen, Guangdong, China
| | - Jia-Hong Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| |
Collapse
|
38
|
Krstulović L, Stolić I, Jukić M, Opačak-Bernardi T, Starčević K, Bajić M, Glavaš-Obrovac L. New quinoline-arylamidine hybrids: Synthesis, DNA/RNA binding and antitumor activity. Eur J Med Chem 2017; 137:196-210. [DOI: 10.1016/j.ejmech.2017.05.054] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 05/23/2017] [Accepted: 05/24/2017] [Indexed: 12/21/2022]
|
39
|
Liou JT, Lin CS, Liao YC, Ho LJ, Yang SP, Lai JH. JNK/AP-1 activation contributes to tetrandrine resistance in T-cell acute lymphoblastic leukaemia. Acta Pharmacol Sin 2017; 38:1171-1183. [PMID: 28603286 DOI: 10.1038/aps.2017.26] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 02/12/2017] [Indexed: 01/10/2023]
Abstract
T-cell acute lymphoblastic leukaemia (T-ALL) is a challenging malignancy with a high relapse rate attributed to drug resistance. Tetrandrine (TET), a bisbenzylisoquinoline alkaloid extracted from a Chinese herb, is a potential anti-cancer and anti-leukaemic drug. In this study we investigated the mechanisms of TET resistance in T-ALL cells in vitro. Among the four T-ALL cell lines tested, Jurkat and CEM cells exhibited the lowest and highest resistance to TET with IC50 values at 24 h of 4.31±0.12 and 16.53±3.32 μmol/L, respectively. When treated with TET, the activity of transcription factor activator protein 1 (AP-1) was significantly decreased in Jurkat cells but nearly constant in CEM cells. To avoid cell-specific variation in drug resistance and transcription factor activities, we established a TET-R Jurkat subclone with the estimated IC50 value of 10.90±.92 μmol/L by exposing the cells to increasing concentrations of TET. Interestingly, when treated with TET, TET-R Jurkat cells exhibited enhanced AP-1 and NF-κB activity, along with upregulation of c-Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK) signaling pathways, whereas the expression of P-gp was not altered. Selective inhibition of JNK but not ERK suppressed AP-1 activity and TET resistance in TET-R Jurkat cells and in CEM cells. These results demonstrate that Jurkat cells acquire TET resistance through activation of the JNK/AP-1 pathway but not through P-gp expression. The JNK/AP-1 pathway may be a potential therapeutic target in relapsed T-ALL.
Collapse
|
40
|
Qian HR, Shi ZQ, Zhu HP, Gu LH, Wang XF, Yang Y. Interplay between apoptosis and autophagy in colorectal cancer. Oncotarget 2017; 8:62759-62768. [PMID: 28977986 PMCID: PMC5617546 DOI: 10.18632/oncotarget.18663] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 05/15/2017] [Indexed: 12/15/2022] Open
Abstract
Autophagy and apoptosis are two pivotal mechanisms in mediating cell survival and death. Cross-talk of autophagy and apoptosis has been documented in the tumorigenesis and progression of cancer, while the interplay between the two pathways in colorectal cancer (CRC) has not yet been comprehensively summarized. In this study, we outlined the basis of apoptosis and autophagy machinery firstly, and then reviewed the recent evidence in cellular settings or animal studies regarding the interplay between them in CRC. In addition, several key factors that modulate the cross-talk between autophagy and apoptosis as well as its significance in clinical practice were discussed. Understanding of the interplay between the cell death mechanisms may benefit the translation of CRC treatment from basic research to clinical use.
Collapse
Affiliation(s)
- Hao-Ran Qian
- Department of General Surgery, Institute of Minimally Invasive, Surgery of Zhejiang University, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang, PR China
| | - Zhao-Qi Shi
- Department of General Surgery, Institute of Minimally Invasive, Surgery of Zhejiang University, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang, PR China
| | - He-Pan Zhu
- Department of General Surgery, Institute of Minimally Invasive, Surgery of Zhejiang University, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang, PR China
| | - Li-Hu Gu
- Department of General Surgery, Institute of Minimally Invasive, Surgery of Zhejiang University, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang, PR China
| | - Xian-Fa Wang
- Department of General Surgery, Institute of Minimally Invasive, Surgery of Zhejiang University, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang, PR China
| | - Yi Yang
- Department of Pharmacology, Hangzhou Key Laboratory of Medical Neurobiology, School of Medicine, Hangzhou Normal University, Hangzhou 310036, Zhejiang, PR China
| |
Collapse
|
41
|
Yao M, Yuan B, Wang X, Sato A, Sakuma K, Kaneko K, Komuro H, Okazaki A, Hayashi H, Toyoda H, Pei X, Hu X, Hirano T, Takagi N. Synergistic cytotoxic effects of arsenite and tetrandrine in human breast cancer cell line MCF-7. Int J Oncol 2017; 51:587-598. [PMID: 28656245 DOI: 10.3892/ijo.2017.4052] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 05/29/2017] [Indexed: 11/06/2022] Open
Abstract
To provide novel insight into the development of new therapeutic strategies to combat breast cancer using trivalent arsenic (AsIII)-based combination therapy, the cytotoxicity of a combination of AsIII and tetrandrine (Tetra), a Chinese plant-derived alkaloid, was investigated in the human breast cancer cell line MCF-7. Cytotoxicity was evaluated using cell viability, colony formation, wound healing, lactate dehydrogenase leakage and cell cycle assay. Alterations of genes associated with cell proliferation and death were analyzed using real-time PCR and western blotting. Intracellular arsenic accumulation (As[i]) was also determined. Tetra significantly enhanced the cytotoxicity of AsIII in MCF-7 cells in a synergistic manner. The combined treatment upregulated the expression level of FOXO3a, and subsequently resulted in a concomitant increase in the expression levels of p21, p27, and decrease of cycline D1, which occurred in parallel with G0/G1 phase arrest. Autophagy induction was also observed in the combination treatment. Importantly, combining AsIII with Tetra exhibited a synergistic inhibitory effect on the expression level of survivin. Furthermore, enhanced As[i] along with synergistic cytotoxicity was observed in MCF-7 cells treated with AsIII combined with Tetra or Ko134, an inhibitor of breast cancer resistance protein (BCRP), suggesting that Tetra or the BCRP inhibitor probably intervened in the occurrence of resistance to arsenic therapy by enhancing the As[i] via modulation of multidrug efflux transporters. These results may provide a rational molecular basis for the combination regimen of AsIII plus Tetra, facilitating the development of AsIII-based anticancer strategies and combination therapies for patients with solid tumors, especially breast cancer.
Collapse
Affiliation(s)
- Mingjiang Yao
- Department of Applied Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Bo Yuan
- Department of Applied Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Xiao Wang
- Department of Applied Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Ai Sato
- Department of Clinical Molecular Genetics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Kana Sakuma
- Department of Applied Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Kurumi Kaneko
- Department of Applied Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Hana Komuro
- Department of Applied Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Ayane Okazaki
- Department of Applied Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Hideki Hayashi
- Department of Applied Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Hiroo Toyoda
- Department of Clinical Molecular Genetics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Xiaohua Pei
- The Third Affiliated Hospital of Beijing University of Traditional Chinese Medicine, Beijing 100029, P.R. China
| | - Xiaomei Hu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, P.R. China
| | - Toshihiko Hirano
- Department of Clinical Pharmacology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Norio Takagi
- Department of Applied Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| |
Collapse
|
42
|
Qiu W, Zhang AL, Tian Y. Tetrandrine triggers an alternative autophagy in DU145 cells. Oncol Lett 2017; 13:3734-3738. [PMID: 28529589 DOI: 10.3892/ol.2017.5897] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 01/19/2017] [Indexed: 01/05/2023] Open
Abstract
Tetrandrine (Tet), a potent lysosomal inhibitor, blocks autophagic flux and induces cancer cell death. Previously, the present authors identified the prostate cancer cell line DU145 to exhibit high sensitivity towards Tet in 11 cancer cell lines. In the present study, autophagy in Tet-treated DU145 cells was investigated. Similar to other cell lines, such as PC-3 and 786-O cells, Tet neutralized the acidity of lysosome and blocked autophagy in DU145 cells. However, Tet failed to induce microtubule-associated protein 1 light chain 3 (LC3) conversion in DU145 cells. By contrast, it was observed by transmission electron microscopy that Tet induced an accumulation of autophagosomes in the cytoplasm. These contrasting results indicated that Tet triggered an LC3-independent autophagy in DU145 cells. Alkalizing lysosome with chloroquine enhanced Tet-induced cell death. The results of the present study indicated that detection of autophagy in tumor cells may assist in selecting lysosome inhibitors for chemotherapy treatment in prostate cancer.
Collapse
Affiliation(s)
- Wei Qiu
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Xicheng, Beijing 100050, P.R. China
| | - Ai-Li Zhang
- Department of Urology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Ye Tian
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Xicheng, Beijing 100050, P.R. China
| |
Collapse
|
43
|
Tetrandrine protects against oxygen-glucose-serum deprivation/reoxygenation-induced injury via PI3K/AKT/NF-κB signaling pathway in rat spinal cord astrocytes. Biomed Pharmacother 2016; 84:925-930. [DOI: 10.1016/j.biopha.2016.10.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 09/20/2016] [Accepted: 10/01/2016] [Indexed: 12/25/2022] Open
|
44
|
Zhang Y, Cao Y, Sun X, Feng Y, Du Y, Liu F, Yu C, Jin F. Chloroquine (CQ) exerts anti-breast cancer through modulating microenvironment and inducing apoptosis. Int Immunopharmacol 2016; 42:100-107. [PMID: 27912145 DOI: 10.1016/j.intimp.2016.11.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 11/08/2016] [Accepted: 11/22/2016] [Indexed: 11/25/2022]
Abstract
CQ is an anti-malaria drug, which has been used for years. However, there are published articles about its activity in anti-cancers. The aim of this approach was to look at possibility and related mechanisms of anti-breast cancer (mouse breast cancer cell line 4T1) by CQ alone. The studies of anti 4T1 in vitro and in vivo by CQ were performed. The growth of 4T1 in vitro and in vivo, survival of mice post treatment with CQ, changes of immune parameters and microenvironment in mice were evaluated. Our results demonstrate that CQ could markedly inhibit growth of 4T1 in vitro through inducing apoptosis of cells, inhibiting secretion of TGF-β and prolong the mice survival in vivo through boosting immune system by upregulating CD8+ T cell, and through down-regulating tumor associated macrophages (TAM), myeloid derived suppressing cells (MDSC) and Tregs, in microenvironment of mice bearing tumor. This provides a new mode of action for CQ and it is therefore concluded that CQ could be with potential in breast cancer therapy.
Collapse
Affiliation(s)
- Yanjun Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Yu Cao
- Department of Surgical Oncology and Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Xiaodan Sun
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110122, China
| | - Yonghui Feng
- Department of Medical Examination Center, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Yunting Du
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110122, China
| | - Fei Liu
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110122, China
| | - Chunyun Yu
- Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Feng Jin
- Department of Surgical Oncology and Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China.
| |
Collapse
|
45
|
Sui Y, Li S, Shi P, Wu Y, Li Y, Chen W, Huang L, Yao H, Lin X. Ethyl acetate extract from Selaginella doederleinii Hieron inhibits the growth of human lung cancer cells A549 via caspase-dependent apoptosis pathway. JOURNAL OF ETHNOPHARMACOLOGY 2016; 190:261-71. [PMID: 27292193 DOI: 10.1016/j.jep.2016.06.029] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 06/08/2016] [Accepted: 06/08/2016] [Indexed: 05/22/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Selaginella doederleinii Hieron has been used as a folk medicine for the treatment of different cancers, especially for nasopharyngeal carcinoma, lung cancer and trophoblastic tumor in China. Previously, the ethyl acetate extract from S. doederleinii (SDEA extract) showed favorable anti-cancer potentials. However, the main chemical composition and anticancer mechanism of the SDEA extract were still not very clear. Until now, there are no reports available about the oral toxicity of the extract. AIM OF STUDY The present study was to further elucidate the chemical composition and anti-lung cancer mechanism of the SDEA extract, and evaluate the acute oral toxicity of the extract. MATERIALS AND METHODS The SDEA extract was separated and analysed by HPLC to disclose its main chemicals. The effects of the extract were then investigated in vitro on cell viability, apoptosis and cell cycle using fluorescence microscopy and flow cytometry, and the molecular mechanism against human lung cancer cells A549 was further studied by western blot assays. The in vivo anti-cancer effect of the extract was evaluated in A549 xenograft mice model by histochemical assay, and tumor growth, microvascular density (MVD) and Ki67 expression were also measured. In addition, acute oral toxicity test of the extract was executed in mice. RESULTS SDEA extract mainly contained eight biflavonoids. The extract caused the loss of mitochondrial membrane potential and induced cell apoptosis by upregulating Bax, downregulating Bcl-2, activating caspase-9 and caspase-3 and blocked the cell cycle in S phase. The extract reduced expression of antigen Ki67, decreased MVD, and significantly inhibited the tumor growth. The extract did not show apparent oral acute toxicity in healthy mice. CONCLUSION The SDEA extract exerted anti-tumor effect through activating mitochondrial pathways and reducing Ki67 expression and MVD. Low oral acute toxicity suggested it a promising chemotherapy agent.
Collapse
MESH Headings
- A549 Cells
- Acetates/chemistry
- Administration, Oral
- Animals
- Antineoplastic Agents, Phytogenic/administration & dosage
- Antineoplastic Agents, Phytogenic/isolation & purification
- Antineoplastic Agents, Phytogenic/pharmacology
- Antineoplastic Agents, Phytogenic/toxicity
- Apoptosis/drug effects
- Blotting, Western
- Caspases/metabolism
- Cell Proliferation/drug effects
- Cell Survival/drug effects
- Chromatography, High Pressure Liquid
- Dose-Response Relationship, Drug
- Flow Cytometry
- Humans
- Ki-67 Antigen/metabolism
- Lung Neoplasms/blood supply
- Lung Neoplasms/drug therapy
- Lung Neoplasms/enzymology
- Lung Neoplasms/pathology
- Male
- Mice, Inbred BALB C
- Mice, Nude
- Microscopy, Fluorescence
- Microvessels/drug effects
- Microvessels/pathology
- Mitochondria/drug effects
- Mitochondria/metabolism
- Neovascularization, Pathologic
- Phytotherapy
- Plant Extracts/administration & dosage
- Plant Extracts/isolation & purification
- Plant Extracts/pharmacology
- Plant Extracts/toxicity
- Plants, Medicinal
- S Phase Cell Cycle Checkpoints/drug effects
- Selaginellaceae/chemistry
- Signal Transduction/drug effects
- Solvents/chemistry
- Time Factors
- Tumor Burden/drug effects
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Yuxia Sui
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, Fujian Medical University, Fuzhou 350108, China; Provincial Clinical College of Fujian Medical University, Department of Pharmacy, Fuzhou 350001, China
| | - Shaoguang Li
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, Fujian Medical University, Fuzhou 350108, China
| | - Peiying Shi
- Department of TCM resource and Apitherapy, Bee Science College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Youjia Wu
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, Fujian Medical University, Fuzhou 350108, China
| | - Yuxiang Li
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, Fujian Medical University, Fuzhou 350108, China; Fujian Center For Disease Control & Prevention, Fuzhou 350001, China
| | - Weiying Chen
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, Fujian Medical University, Fuzhou 350108, China
| | - Liying Huang
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, Fujian Medical University, Fuzhou 350108, China
| | - Hong Yao
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, Fujian Medical University, Fuzhou 350108, China.
| | - XinHua Lin
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, Fujian Medical University, Fuzhou 350108, China.
| |
Collapse
|
46
|
Wang J, Evano G. Total Synthesis of (−)-Melanthioidine by Copper-Mediated Cyclodimerization. Org Lett 2016; 18:3542-5. [DOI: 10.1021/acs.orglett.6b01496] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jianjun Wang
- Laboratoire de Chimie Organique,
Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50, CP160/06, 1050 Brussels, Belgium
| | - Gwilherm Evano
- Laboratoire de Chimie Organique,
Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50, CP160/06, 1050 Brussels, Belgium
| |
Collapse
|
47
|
Lv YL, Wu ZZ, Chen LX, Wu BX, Chen LL, Qin GC, Gui B, Zhou JY. Neuroprotective effects of tetrandrine against vascular dementia. Neural Regen Res 2016; 11:454-9. [PMID: 27127485 PMCID: PMC4829011 DOI: 10.4103/1673-5374.179058] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Tetrandrine is one of the major active ingredients in Menispermaceae Stephania tetrandra S. Moore, and has specific therapeutic effects in ischemic cerebrovascular disease. Its use in vascular dementia has not been studied fully. Here, we investigated whether tetrandrine would improve behavioral and cellular impairments in a two-vessel occlusion rat model of chronic vascular dementia. Eight weeks after model establishment, rats were injected intraperitoneally with 10 or 30 mg/kg tetrandrine every other day for 4 weeks. Behavioral assessment in the Morris water maze showed that model rats had longer escape latencies in training trials, and spent less time swimming in the target quadrant in probe trials, than sham-operated rats. However, rats that had received tetrandrine showed shorter escape latencies and longer target quadrant swimming time than untreated model rats. Hematoxylin-eosin and Nissl staining revealed less neuronal necrosis and pathological damage, and more living cells, in the hippocampus of rats treated with tetrandrine than in untreated model rats. Western blot assay showed that interleukin-1β expression, and phosphorylation of the N-methyl-D-aspartate 2B receptor at tyrosine 1472, were lower in model rats that received tetrandrine than in those that did not. The present findings suggest that tetrandrine may be neuroprotective in chronic vascular dementia by reducing interleukin-1β expression, N-methyl-D-aspartate receptor 2B phosphorylation at tyrosine 1472, and neuronal necrosis.
Collapse
Affiliation(s)
- Yan-Ling Lv
- Laboratory Research Center, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ze-Zhi Wu
- Key Laboratory of Biorheological Science and Technology of the State Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Li-Xue Chen
- Laboratory Research Center, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bai-Xue Wu
- Laboratory Research Center, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lian-Lian Chen
- Laboratory Research Center, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guang-Cheng Qin
- Laboratory Research Center, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bei Gui
- Laboratory Research Center, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ji-Ying Zhou
- Laboratory Research Center, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
48
|
Shi YM, Yang L, Geng YD, Zhang C, Kong LY. Polyphyllin I induced-apoptosis is enhanced by inhibition of autophagy in human hepatocellular carcinoma cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2015; 22:1139-1149. [PMID: 26598912 DOI: 10.1016/j.phymed.2015.08.014] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 08/20/2015] [Accepted: 08/21/2015] [Indexed: 06/05/2023]
Abstract
BACKGROUND Polyphyllin I (PPI), a bioactive phytochemical isolated from the rhizoma of Paris polyphyllin, exerts preclinical anticancer efficacy in various cancer models. However, the effects of PPI on regulatory human hepatocellular carcinoma (HCC) cell proliferation and its underlying mechanisms remain unknown. PURPOSE This study investigated the antiproliferation effect of PPI on HCC cells and its underlying mechanisms. METHODS Cell viability was measured by MTT assay. Cell death, apoptosis and acidic vesicular organelles (AVOs) formation were determined by flow cytometry. Protein levels were analyzed by Western blot analysis. RESULTS PPI induced apoptosis through the caspase-dependent pathway and activated autophagy through the PI3K/AKT/mTOR pathway. Blockade of autophagy by pharmacological inhibitors or RNA interference enhanced the cytotoxicity and antiproliferation effects of PPI. Moreover, chloroquine (CQ) enhanced the antiproliferation effect of PPI on HCC cells via the caspase-dependent apoptosis pathway by inhibiting protective autophagy. Therefore, the combination therapy of CQ and PPI exhibited synergistic effects on HCC cells compared with CQ or PPI alone. CONCLUSION The current findings strongly indicate that PPI can induce protective autophagy in HCC cells, thereby providing a novel target in potentiating the anticancer effects of PPI and other chemotherapeutic drugs in liver cancer treatment. Moreover, the combination therapy of CQ and PPI is an effective and promising candidate to be further developed as therapeutic agents in the treatment of liver cancer.
Collapse
Affiliation(s)
- Ya-Min Shi
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Lei Yang
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Ya-Di Geng
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Chao Zhang
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Ling-Yi Kong
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China.
| |
Collapse
|
49
|
HORNG CHITING, YANG JAISING, CHIANG JOHUA, LU CHICHENG, LEE CHIUFANG, CHIANG NINA, CHEN FUAN. Inhibitory effects of tetrandrine on epidermal growth factor-induced invasion and migration in HT29 human colorectal adenocarcinoma cells. Mol Med Rep 2015; 13:1003-9. [DOI: 10.3892/mmr.2015.4635] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 10/19/2015] [Indexed: 11/05/2022] Open
|
50
|
Xu A, Sun S. Genomic profiling screens small molecules of metastatic prostate carcinoma. Oncol Lett 2015; 10:1402-1408. [PMID: 26622681 DOI: 10.3892/ol.2015.3472] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 05/20/2015] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to investigate the pathogenesis of metastatic prostate carcinoma, to find the metabolic pathways changed in the disease and to screen out the potential therapeutic drugs. GSE38241 was downloaded from Gene Expression Omnibus; the Geoquery package was applied to preprocessed expression profiling, and the differentially-expressed genes (DEGs) were selected with limma (linear regression model packages). Next, WikiPathways cluster analysis was performed for DEGs on a Gene Set Analysis Toolkit V2 platform, and DEGs with hypergeometric algorithms were calculated through gene set enrichment analysis. A total of 1,126 DEGs were identified between the normal prostate and metastatic prostate carcinoma. In addition, KPNA4, SYT1, PLCB1, SPRED1, MBNL2, RNF165, MEF2C, MBNL1, ZFP36L1 and CELF2, were found to be likely to play significant roles in the process of metastatic prostate carcinoma. The small molecules STOCK1N-35874 and 5182598 could simulate the state of normal cells well, while the small molecules MS-275 and quinostatin could simulate the state of metastatic prostate carcinoma cells. In conclusions, the small molecules STOCK1N-35874 and 5182598 were identified to be good potential therapeutic drugs for the treatment of metastatic prostate carcinoma, while the two small molecules MS-275 and quinostatin could cause metastatic prostate carcinoma.
Collapse
Affiliation(s)
- Axiang Xu
- Department of Urology, People's Liberation Army General Hospital, Beijing 100853, P.R. China
| | - Shengkun Sun
- Department of Urology, People's Liberation Army General Hospital, Beijing 100853, P.R. China
| |
Collapse
|