1
|
Yang M, Lu S, Li J, Zhu L. Carboxyaminotriazole: A bone savior in collagen-induced arthritis-Halting osteoclastogenesis via interleukin-1β downregulation. Life Sci 2025; 364:123440. [PMID: 39920985 DOI: 10.1016/j.lfs.2025.123440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/19/2025] [Accepted: 01/31/2025] [Indexed: 02/10/2025]
Abstract
AIMS Rheumatoid arthritis (RA), a prevalent autoimmune disease, features inflammation and bone erosion, correlating with osteoclast hyperactivation and enhanced responsiveness to inflammatory factors. Reducing osteoclast formation and inflammatory mediator expression might avert bone erosion in RA. Carboxyaminotriazole (CAI) holds potential for treating autoinflammatory disorders and impeding cancer-related bone metastases. Yet, its bone-protective role and mechanism remain elusive. This study targets to explore the impacts and underlying mechanisms of CAI in preventing bone erosion in RA. MATERIALS AND METHODS A collagen-induced arthritis (CIA) rat model was utilized to evaluate the anti-RA potential of CAI. CCK-8, TRAP staining, TRAP activity assay, pit formation assay, RT-qPCR, Western blotting, immunofluorescence, and ELISA, were conducted to assess the effects and potential mechanisms of CAI in the management of RA. KEY FINDINGS CAI not only reduces inflammatory symptoms, but it also offers superior bone protection compared to methotrexate (MTX) and works synergistically with MTX, the preferred anchoring agent for the treatment of RA. In vitro studies show that CAI inhibits osteoclast differentiation and function, as well as the expression of specific genes, by inhibiting NF-κB/MAPK pathways and reducing IL-1β levels. The deletion of Il-1 and the application of IL-1β inhibitors suggest that CAI retards osteoclastogenesis through the downregulation of IL-1β. SIGNIFICANCE CAI may have therapeutic value in treating RA-related bone erosion, likely due to its inhibition of overactive osteoclasts by suppressing the NF-κB/MAPK pathways and the subsequent expression of IL-1β.
Collapse
Affiliation(s)
- Mei Yang
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Shan Lu
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Juan Li
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Lei Zhu
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China; Medical Epigenetics Research Center, Chinese Academy of Medical Sciences, Beijing 100005, China.
| |
Collapse
|
2
|
Green-Fulgham SM, Ball JB, Kwilasz AJ, Harland ME, Frank MG, Dragavon JM, Grace PM, Watkins LR. Interleukin-1beta and inflammasome expression in spinal cord following chronic constriction injury in male and female rats. Brain Behav Immun 2024; 115:157-168. [PMID: 37838078 PMCID: PMC10841465 DOI: 10.1016/j.bbi.2023.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 10/02/2023] [Accepted: 10/07/2023] [Indexed: 10/16/2023] Open
Abstract
Females represent a majority of chronic pain patients and show greater inflammatory immune responses in human chronic pain patient populations as well as in animal models of neuropathic pain. Recent discoveries in chronic pain research have revealed sex differences in inflammatory signaling, a key component of sensory pathology in chronic neuropathic pain, inviting more research into the nuances of these sex differences. Here we use the chronic constriction injury (CCI) model to explore similarities and differences in expression and production of Inflammatory cytokine IL-1beta in the lumbar spinal cord, as well as its role in chronic pain. We have discovered that intrathecal IL-1 receptor antagonist reverses established pain in both sexes, and increased gene expression of inflammasome NLRP3 is specific to microglia and astrocytes rather than neurons, while IL-1beta is specific to microglia in both sexes. We report several sex differences in the expression level of the genes coding for IL-1beta, as well as the four inflammasomes responsible for IL-1beta release: NLRP3, AIM2, NLRP1, and NLRC4 in the spinal cord. Total mRNA, but not protein expression of IL-1beta is greater in females than males after CCI. Also, while CCI increases all four inflammasomes in both sexes, there are sex differences in relative levels of inflammasome expression. NLRP3 and AIM2 are more highly expressed in females, whereas NLRP1 expression is greater in males.
Collapse
Affiliation(s)
- Suzanne M Green-Fulgham
- Department of Psychology and Neuroscience, and the Center for Neuroscience, University of Colorado, Boulder, CO, United States
| | - Jayson B Ball
- Department of Psychology and Neuroscience, and the Center for Neuroscience, University of Colorado, Boulder, CO, United States
| | - Andrew J Kwilasz
- Department of Psychology and Neuroscience, and the Center for Neuroscience, University of Colorado, Boulder, CO, United States
| | - Michael E Harland
- Department of Psychology and Neuroscience, and the Center for Neuroscience, University of Colorado, Boulder, CO, United States
| | - Matthew G Frank
- Department of Psychology and Neuroscience, and the Center for Neuroscience, University of Colorado, Boulder, CO, United States
| | - Joseph M Dragavon
- Advanced Light Microscopy Core, BioFrontiers Institute, University of Colorado, Boulder, CO, United States
| | - Peter M Grace
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Linda R Watkins
- Department of Psychology and Neuroscience, and the Center for Neuroscience, University of Colorado, Boulder, CO, United States.
| |
Collapse
|
3
|
Zhou Y, Yang X, Liu J, Yang M, Ye C, Zhu L. Carboxyamidotriazole alleviates pannus formation and cartilage erosion in rats with adjuvant arthritis. Heliyon 2023; 9:e20105. [PMID: 37809969 PMCID: PMC10559848 DOI: 10.1016/j.heliyon.2023.e20105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 08/22/2023] [Accepted: 09/12/2023] [Indexed: 10/10/2023] Open
Abstract
Carboxyamidotriazole (CAI) was initially considered a non-cytotoxic anticancer agent. However, recently, pronounced anti-inflammatory properties of CAI have been reported. Rheumatoid arthritis (RA) is an autoimmune inflammatory disease characterized by aberrant activation of signaling pathways. Therefore, this study explored the therapeutic effects and potential mechanism of action of CAI on RA in the adjuvant arthritis (AA) model. The results showed that CAI reduced the severity of arthritis in AA rats as demonstrated by inhibited hind paw swelling, reduced body weight, and decreased infiltration of joint pathological inflammatory cells. Importantly, pathological scoring of new blood vessels and immunohistochemical assays revealed that CAI inhibited pannus formation. CAI decreased the expression of pro-angiogenic growth factors, such as vascular epidermal growth factor, basic fibroblast growth factor, and metalloproteinases (MMPs), namely, MMP-1 and MMP-3 in the synovium of AA rats. Furthermore, CAI significantly reduced the increased levels of phosphorylated p38, c-Jun N-terminal kinase (JNK)1/2, and extracellular signal-regulated kinase (ERK)1/2 proteins in AA rats. In addition, the proliferation of fibroblast-like synoviocytes (FLS) was downregulated by CAI both in vivo and in vitro. In conclusion, this investigation illustrates the therapeutic effect of CAI on synovitis and erosion of articular cartilage in RA. Furthermore, the mechanism might involve inhibition of aberrantly activated mitogen-activated protein kinase signaling, as well as a decrease in pro-angiogenic factors, MMP expression, and FLS proliferation.
Collapse
Affiliation(s)
- Yongting Zhou
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, PR China
| | - Xiyue Yang
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, PR China
| | - Jingwen Liu
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, PR China
| | - Mei Yang
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, PR China
| | - Caiying Ye
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, PR China
| | - Lei Zhu
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, PR China
| |
Collapse
|
4
|
Naeem A, Jahan N, Khan MM, Abbas G, Siddiqui F, Khalid MU, Farooqui WA. Effect of Leflunomide-Metal Complexes on ROS, TNF, and Brain Indolamines in Comparison with Anti-Depressants as Adjunct Therapy in Rheumatoid Arthritic Model. Biomedicines 2023; 11:2214. [PMID: 37626711 PMCID: PMC10452628 DOI: 10.3390/biomedicines11082214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/03/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
Leflunomide is an isoxazole immunomodulating drug used to treat rheumatoid arthritis (RA). It is adopted as a metal-containing molecule to proceed with saturated salts of essential and detected metals; it amends the pharmacokinetic and pharmacodynamics activity of leflunomide to provide [M(Lef)4]X2-type complexes. Earlier it has been reported that after forming complexes with metals, leflunomide anti-arthritic activity was significantly altered in an acute arthritic model. In the present study, we evaluated the possible modification in anti-arthritic activities of leflunomide-metal complexes (Mg+2, Ca+2, Fe+2, Zn+2) with and without an anti-depressant drug, i.e., fluoxetine (10 mg/kg) in a chronic AIA model. Rats (n = 5) were administered with 0.1 mL of CFA into the right hind paw while treated groups received leflunomide and its metal complexes orally (3.2 mg/kg) for 24 days. On the final day of experiment, rats were sacrificed; a specific rat immunoassay ELISA kit was used to assess TNF-α in serum samples and read at 450 nm; a tissue sample of a paw was homogenized in a phosphate buffer using DCFH-DA dye for binding to assess ROS. A rat's brain sample was homogenized and evaluated for tryptophan, serotonin (5-HT), and HIAA by RP-HPLC with EC detector. The overall TNF production was altered in treated rats. In addition, a decreased ROS was observed in all categories, except lef+Mg+2 group. Moreover, depletion in the brain indolamine levels were found in treated groups; an upraised level of these indolamines was observed when fluoxetine was added. It is concluded that metals affect leflunomide activity on complexation and simultaneous administration of fluoxetine cope up with the depression in arthritic-induced rats.
Collapse
Affiliation(s)
- Almas Naeem
- Department of Pharmacology, Dow College of Pharmacy, Dow University of Health Sciences, Karachi 74200, Pakistan; (A.N.); (F.S.); (M.U.K.)
| | - Noor Jahan
- Department of Pharmacology, Dow College of Pharmacy, Dow University of Health Sciences, Karachi 74200, Pakistan; (A.N.); (F.S.); (M.U.K.)
| | - Moona Mehboob Khan
- Department of Pharmaceutical Chemistry, Dow College of Pharmacy, Dow University of Health Sciences, Karachi 74200, Pakistan;
| | - Ghulam Abbas
- Department of Pharmacology, Ziauddin University, Karachi 75000, Pakistan;
| | - Faheema Siddiqui
- Department of Pharmacology, Dow College of Pharmacy, Dow University of Health Sciences, Karachi 74200, Pakistan; (A.N.); (F.S.); (M.U.K.)
| | - Muhammad Usaid Khalid
- Department of Pharmacology, Dow College of Pharmacy, Dow University of Health Sciences, Karachi 74200, Pakistan; (A.N.); (F.S.); (M.U.K.)
| | - Waqas Ahmed Farooqui
- School of Public Health, Dow University of Health Sciences, Karachi 74200, Pakistan;
| |
Collapse
|
5
|
Kurniasari MD, Karwur FF, Rayanti RE, Shih YW, Yuliana S, Miao NF, Chou KR, Shen CJ, Tsai HT. Immersion in Water Between 20-30 oC Mediated Inflammations Marker to Reduced Pain Among Indonesian With Gout Arthritis: A Community-Based Randomized Controlled Trial. Biol Res Nurs 2023; 25:267-281. [PMID: 36207143 DOI: 10.1177/10998004221132843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Gout is triggered by high urate levels and causes inflammation, pain, and an impaired quality of life. Immersion in water at 20-30°C reduces inflammation and pain in arthritis. Yet, relationships of immersion in water at 20-30°C with urate levels and the nucleotide-binding domain (NOD)-like receptor protein 1 (NLRP1) inflammasome have never been clarified. OBJECTIVES We aimed to investigate the effects of immersion in water at 20-30°C on urate levels, the NLRP1 inflammasome, pain, and quality of life among acute gout patients. METHODS A community-based randomized control trial design was used with 2 parallel-intervention groups: immersion in water at 20-30°C (20 min/day for 4 weeks) group and a control group. In total, 76 eligible participants in Tomohon City, Indonesia, were assigned using block randomization. We analyze the results (coef. β) and 95% confidence intervals (CIs) using a generalized estimating equation model. We analyzed mediating effects using a path analysis. RESULTS Significant pain alleviation (β = -2.06 [95% CI = -2.67∼-1.45]; β = -2.42 [95% CI = -2.97∼-1.87]) and improved quality of life (β = 5.34 [95% CI = 3.12-7.57]; β = 9.93 [95% CI = 7.02-12.83]) were detected at 2 and 4 weeks of follow-up compared to the pre-test and control group. Urate levels (β = -0.34 [95% CI = -0.52∼-0.16]) were reduced at the 2-week follow-up, but there was no significant change in the NLRP1 inflammasome compared to the pre-test and control group after immersion in water at 20-30°C. Both the NLRP1 inflammasome (β = -0.48 [95% CI = -0.63∼-0.34]); water 0.01) and urate levels (β = -0.11 [95% CI = -0.24∼-0.03]; p < 0.01) had partial indirect (mediating) effects on the link between immersion in water at 20-30°C and pain at the 4-week follow-up. CONCLUSIONS Immersion in water at 20-30°C significantly decreased pain and increased the quality of life. Immersion in water at 20-30°C mediated NLRP1 and urate levels to decrease pain, although it had no significant effect on the NLRP1 inflammasome concentration after 4 weeks of follow-up and reduced urate levels only at 2 weeks after immersion in water at 20-30°C.
Collapse
Affiliation(s)
- Maria Dyah Kurniasari
- Faculty of Medicine and Health Science, 106208Universitas Kristen Satya Wacana, Salatiga, Indonesia
- School of Nursing, College of Nursing, 38032Taipei Medical University, Taipei, Taiwan
| | - Ferry Fredy Karwur
- Faculty of Medicine and Health Science, 106208Universitas Kristen Satya Wacana, Salatiga, Indonesia
| | - Rosiana Eva Rayanti
- Faculty of Medicine and Health Science, 106208Universitas Kristen Satya Wacana, Salatiga, Indonesia
| | - Ya Wen Shih
- School of Nursing, 38028National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
| | - Sri Yuliana
- Department of Nursing, Yahya Health Science Institute of Bima, West Nusa Tenggara, Indonesia
| | - Nae Fang Miao
- Post-Baccalaureate Program in Nursing, College of Nursing, 38032Taipei Medical University, Taipei, Taiwan
| | - Kuei Ru Chou
- School of Nursing, College of Nursing, 38032Taipei Medical University, Taipei, Taiwan
| | - Chia Jung Shen
- School of Nursing, College of Nursing, 38032Taipei Medical University, Taipei, Taiwan
| | - Hsiu Ting Tsai
- School of Nursing, College of Nursing, 38032Taipei Medical University, Taipei, Taiwan
- Post-Baccalaureate Program in Nursing, College of Nursing, 38032Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
6
|
Hannan A, Akhtar B, Sharif A, Anjum F, Pasha I, Khan A, Akhtar MF, Saleem A. Quercetin-loaded chitosan nanoparticles ameliorate adjuvant-induced arthritis in rats by regulating anti-oxidant enzymes and downregulating pro- and inflammatory cytokines. Inflammopharmacology 2023; 31:287-300. [PMID: 36542211 DOI: 10.1007/s10787-022-01118-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 12/10/2022] [Indexed: 12/24/2022]
Abstract
Rheumatoid arthritis (RA) is an inflammatory condition and associated with the symmetrical synovitis of the joints and cause joint pain. The use of anti-rheumatic drugs is associated with many adverse effects. Quercetin, an important polyphenolic flavonoid, possess anti-inflammatory and anti-rheumatic effects. Quercetin use is limited due to poor absorption and bioavailability. Nanomedicines are used for the targeted drug delivery, hence it reduces the adverse effects of the drug. Based upon these factors, quercetin-loaded chitosan nanoparticles (Q-NPs) were prepared by solvent evaporation method, characterized and their better anti-rheumatic effect with mechanistic insights was validated in Freund's complete adjuvant (FCA)-induced arthritic rats along with safety studies. The animals were divided into five groups, each containing 5 animals. Group I was normal control, group II was arthritic control, while groups III, IV and V were administered with quercetin (15 mg/Kg) and Q-NPs (10 and 20 mg/Kg), respectively. The reduction in ankle diameter, serum oxidative stress markers as well as pro- and inflammatory cytokines, e.g., tumor necrosis factor (TNFα), interleukin (IL-6) were determined. The prepared Q-NPs showed hydrodynamic size of 83.9 nm, polydispersity index of 0.687, entrapment efficiency 90.5% as well as no interaction between quercetin and chitosan in Fourier transform infrared spectroscopy (FTIR). A significant reduction (p < 0.001) in ankle diameter was observed after administration of high-dose Q-NPs (4.32 ± 0.14 cm to 5.13 ± 0.62 cm). There was also reduction (p < 0.001) in levels of TNFα and IL-6 following high-dose Q-NPs (72.56 ± 2.30 and 308.19 ± 11.5 pg). The effect on biochemical tests, hematological parameters and oxidative stress parameters was also found to be significant. Histopathological changes of kidney, liver and ankle also confirmed the anti-rheumatic effect of high-dose Q-NPs. The study concludes that administration of Q-NPs (20 mg/Kg) may be used for the treatment of FCA-induced RA in rats.
Collapse
Affiliation(s)
- Abdul Hannan
- Institute of Physiology and Pharmacology, University of Agriculture, Faisalabad, Pakistan
| | - Bushra Akhtar
- Department of Pharmacy, University of Agriculture, Faisalabad, Pakistan.
| | - Ali Sharif
- Institute of Pharmacy, Faculty of Pharmaceutical and Allied Health Sciences, Lahore College for Women University, Lahore, Pakistan
| | - Fozia Anjum
- Department of Chemistry, Government College University, Faisalabad, Pakistan
| | - Imran Pasha
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Ahrar Khan
- Shandong Vocational Animal Science and Veterinary College, Weifang, China
| | - Muhammad Furqan Akhtar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University Lahore Campus, Lahore, Pakistan
| | - Ammara Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| |
Collapse
|
7
|
AIM2 and NLRC4-driven inflammasome activation in adult-onset Still’s disease and the preliminary therapeutic effect exploration of carboxyamidotriazole. Clin Rheumatol 2022; 42:1635-1643. [DOI: 10.1007/s10067-022-06443-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 10/13/2022] [Accepted: 11/02/2022] [Indexed: 11/25/2022]
|
8
|
Jiang Q, Wang X, Huang E, Wang Q, Wen C, Yang G, Lu L, Cui D. Inflammasome and Its Therapeutic Targeting in Rheumatoid Arthritis. Front Immunol 2022; 12:816839. [PMID: 35095918 PMCID: PMC8794704 DOI: 10.3389/fimmu.2021.816839] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/21/2021] [Indexed: 12/30/2022] Open
Abstract
Inflammasome is a cytoplasmic multiprotein complex that facilitates the clearance of exogenous microorganisms or the recognition of endogenous danger signals, which is critically involved in innate inflammatory response. Excessive or abnormal activation of inflammasomes has been shown to contribute to the development of various diseases including autoimmune diseases, neurodegenerative changes, and cancers. Rheumatoid arthritis (RA) is a chronic and complex autoimmune disease, in which inflammasome activation plays a pivotal role in immune dysregulation and joint inflammation. This review summarizes recent findings on inflammasome activation and its effector mechanisms in the pathogenesis of RA and potential development of therapeutic targeting of inflammasome for the immunotherapy of RA.
Collapse
Affiliation(s)
- Qi Jiang
- Department of Blood Transfusion, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Xin Wang
- Department of Rheumatology and Immunology, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Enyu Huang
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, Hong Kong SAR, China.,Chongqing International Institute for Immunology, Chongqing, China
| | - Qiao Wang
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chengping Wen
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Guocan Yang
- Department of Blood Transfusion, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Liwei Lu
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, Hong Kong SAR, China.,Chongqing International Institute for Immunology, Chongqing, China
| | - Dawei Cui
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
9
|
Jiang H, Fan C, Lu Y, Cui X, Liu J. Astragaloside regulates lncRNA LOC100912373 and the miR‑17‑5p/PDK1 axis to inhibit the proliferation of fibroblast‑like synoviocytes in rats with rheumatoid arthritis. Int J Mol Med 2021; 48:130. [PMID: 34013364 PMCID: PMC8136124 DOI: 10.3892/ijmm.2021.4963] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/26/2021] [Indexed: 12/17/2022] Open
Abstract
Previous studies have confirmed that astragaloside (AST) exerts a positive effect on alleviating synovial and joint injury in rheumatoid arthritis (RA). However, the precise mechanisms through which AST acts in the treatment of RA remain unclear. Long non-coding RNA (lncRNA) LOC100912373 was identified as a key gene related to RA and has been proven to interact with miR-17-5p, in order to regulate the pyruvate dehydrogenase kinase 1 and protein kinase B axis (PDK1/AKT axis). The present study aimed to determine whether AST may treat RA through the interaction between lncRNA LOC100912373 and the miR-17-5p/PDK1 axis. MTT assays and flow cytometry were used to detect the proliferation and cell cycle progression of AST-treated fibroblast-like synoviocytes (FLSs). The expression of lncRNA LOC100912373 and miR-17-5p, as well as relative the mRNA expression of the PDK1 and AKT genes following AST intervention was detected by reverse transcription-quantitative PCR (RT-qPCR), immunofluorescence and western blot analysis. The results revealed that AST inhibited FLS proliferation, reduced lncRNA LOC100912373 expression levels, increased miR-17-5p expression levels, and decreased the PDK1 and p-AKT expression levels. Additionally, consecutive rescue experiments revealed that AST counteracted the effects of lncRNA LOC100912373 overexpression on FLS proliferation and cell cycle progression. On the whole, the present study demonstrates that AST inhibits FLS proliferation by regulating the expression of lncRNA LOC100912373 and the miR-17-5p/PDK1 axis.
Collapse
Affiliation(s)
- Hui Jiang
- Experimental Center of Clinical Research, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230031, P.R. China
| | - Chang Fan
- Experimental Center of Clinical Research, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230031, P.R. China
| | - Yunqi Lu
- Department of Biochemistry, Drew University, Madison, NJ 07940, USA
| | - Xiaoya Cui
- Experimental Center of Clinical Research, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230031, P.R. China
| | - Jian Liu
- Experimental Center of Clinical Research, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230031, P.R. China
| |
Collapse
|
10
|
Shawer H, Norman K, Cheng CW, Foster R, Beech DJ, Bailey MA. ORAI1 Ca 2+ Channel as a Therapeutic Target in Pathological Vascular Remodelling. Front Cell Dev Biol 2021; 9:653812. [PMID: 33937254 PMCID: PMC8083964 DOI: 10.3389/fcell.2021.653812] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/08/2021] [Indexed: 12/21/2022] Open
Abstract
In the adult, vascular smooth muscle cells (VSMC) are normally physiologically quiescent, arranged circumferentially in one or more layers within blood vessel walls. Remodelling of native VSMC to a proliferative state for vascular development, adaptation or repair is driven by platelet-derived growth factor (PDGF). A key effector downstream of PDGF receptors is store-operated calcium entry (SOCE) mediated through the plasma membrane calcium ion channel, ORAI1, which is activated by the endoplasmic reticulum (ER) calcium store sensor, stromal interaction molecule-1 (STIM1). This SOCE was shown to play fundamental roles in the pathological remodelling of VSMC. Exciting transgenic lineage-tracing studies have revealed that the contribution of the phenotypically-modulated VSMC in atherosclerotic plaque formation is more significant than previously appreciated, and growing evidence supports the relevance of ORAI1 signalling in this pathologic remodelling. ORAI1 has also emerged as an attractive potential therapeutic target as it is accessible to extracellular compound inhibition. This is further supported by the progression of several ORAI1 inhibitors into clinical trials. Here we discuss the current knowledge of ORAI1-mediated signalling in pathologic vascular remodelling, particularly in the settings of atherosclerotic cardiovascular diseases (CVDs) and neointimal hyperplasia, and the recent developments in our understanding of the mechanisms by which ORAI1 coordinates VSMC phenotypic remodelling, through the activation of key transcription factor, nuclear factor of activated T-cell (NFAT). In addition, we discuss advances in therapeutic strategies aimed at the ORAI1 target.
Collapse
Affiliation(s)
- Heba Shawer
- School of Medicine, The Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Katherine Norman
- School of Medicine, The Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom.,School of Chemistry, University of Leeds, Leeds, United Kingdom
| | - Chew W Cheng
- School of Medicine, The Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Richard Foster
- School of Medicine, The Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom.,School of Chemistry, University of Leeds, Leeds, United Kingdom
| | - David J Beech
- School of Medicine, The Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Marc A Bailey
- School of Medicine, The Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
11
|
Biological functions of NLRP3 inflammasome: A therapeutic target in inflammatory bowel disease. Cytokine Growth Factor Rev 2021; 60:61-75. [PMID: 33773897 DOI: 10.1016/j.cytogfr.2021.03.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 03/10/2021] [Indexed: 12/15/2022]
Abstract
Cases of inflammatory bowel disease (IBD), a debilitating intestinal disorder with complex pathological mechanisms, have been increasing in recent years, straining the capacity of healthcare systems. Thus, novel therapeutic targets and innovative agents must be developed. Notably, the NLRP3 inflammasome is upregulated in patients with IBD and/or in animal experimental models. As an innate immune supramolecular assembly, the NLRP3 inflammasome is persistently activated during the pathogenesis of IBD by multiple stimuli. Moreover, this protein complex regulates pro-inflammatory cytokines. Thus, targeting this multiprotein oligomer may offer a feasible way to relieve IBD symptoms and improve clinical outcomes. The mechanisms by which the NLRP3 inflammasome is activated, its role in IBD pathogenesis, and the drugs administered to target this protein complex are reviewed herein. This review establishes that the use of inflammasome-targeting drugs are effective for IBD treatment. Moreover, this review suggests that the value and potential of naturally sourced or derived medicines for IBD treatment must be recognized and appreciated.
Collapse
|
12
|
Jiang H, Liu J, Fan C, Wang J, Li W. lncRNAS56464.1 as a ceRNA promotes the proliferation of fibroblast‑like synoviocytes in experimental arthritis via the Wnt signaling pathway and sponges miR‑152‑3p. Int J Mol Med 2021; 47:17. [PMID: 33448322 PMCID: PMC7834957 DOI: 10.3892/ijmm.2021.4850] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 12/04/2020] [Indexed: 12/23/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease that occurs in approximately 1.0% of the general population. In RA patients, physical disability and joint damage are the major prognostic factors, which are associated with a reduction in the quality of life and early mortality. At present, the exact molecular mechanism of RA remains elusive. Long noncoding RNAs (lncRNAs) have been revealed to play a regulatory role in the pathogenesis of RA. To reveal the function of lncRNAs in rheumatoid arthritis, lncRNAS56464.1 was screened to verify its targeting of the microRNA (miR)-152-3p/Wnt pathway and its effect on the proliferation of fibroblast-like synoviocytes (FLS). In the present study, based on the competing endogenous RNA (ceRNA) theory, siRNA was designed for transfection into FLS to calculate the lncRNAS56464.1 interference efficiency and then the effect of lncRNAS56464.1 interference on FLS proliferation was detected by MTT assay. Then, lncRNAS56464.1 targeting of the miR-152-3p/Wnt pathway was detected by a dual-luciferase reporter assay. In addition, RT-qPCR, immunofluorescence and western blotting techniques were employed to detect the expression of lncRNAS56464.1, miR-152-3p and some key genes of the Wnt signaling pathway in FLS after lncRNAS56464.1 interference. The results revealed that lncRNAS56464.1 could combine with miR-152-3p and promoted the proliferation of FLS. In addition, lncRNAS56464.1 interference could not only decrease the proliferation of FLS and the expression of Wnt1, β-catenin, c-Myc, cyclin D1, and p-GSK-3β/GSK-3β, but it also increased the expression of SFRP4. The present data indicated that lncRNAS56464.1 could target the miR-152-3p/Wnt pathway to induce synovial cell proliferation and then participate in the pathogenesis of RA.
Collapse
Affiliation(s)
- Hui Jiang
- Experimental Center of Clinical Research, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230031, P.R. China
| | - Jian Liu
- Experimental Center of Clinical Research, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230031, P.R. China
| | - Chang Fan
- Experimental Center of Clinical Research, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230031, P.R. China
| | - Jing Wang
- Experimental Center of Clinical Research, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230031, P.R. China
| | - Weiping Li
- School of Basic Medical Science, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| |
Collapse
|
13
|
Lu S, Duan M, Guo Z, Zhou Y, Wu D, Zhang X, Wang Y, Ye C, Ju R, Li J, Zhang D, Zhu L. Carboxyamidotriazole exerts anti-inflammatory activity in lipopolysaccharide-induced RAW264.7 macrophages by inhibiting NF-κB and MAPKs pathways. Exp Ther Med 2020; 20:1455-1466. [PMID: 32742379 PMCID: PMC7388320 DOI: 10.3892/etm.2020.8889] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 05/20/2020] [Indexed: 12/23/2022] Open
Abstract
Carboxyamidotriazole (CAI), originally developed as a non-cytotoxic anti-cancer drug, was shown to have anti-inflammatory activity according to recent studies in a number of animal models of inflammation. However, its mechanism of action has not been characterized. Therefore, the present study was performed to identify the anti-inflammatory action of CAI in lipopolysaccharide (LPS)-induced RAW 264.7 macrophages and to identify the signal transduction pathways involved. The in vitro results revealed that CAI had no direct effect on the activity of cyclooxygenase (COX), suggesting a different anti-inflammatory mechanism compared with that of COX-inhibiting non-steroidal anti-inflammatory drugs. Further investigation in RAW264.7 macrophages revealed that CAI decreased the production of nitric oxide via decreasing the LPS-stimulated expression of inducible nitric oxide synthase, and downregulated both mRNA and protein expression levels of the cytokines tumor necrosis factor-α, interleukin (IL)-1β, and IL-6. CAI also significantly reduced the increased DNA-binding activity of nuclear factor (NF)-κB induced by LPS stimulation. With respect to the mechanisms involved on NF-κB activity, CAI exhibited suppression of the phosphorylation and degradation of the inhibitor of nuclear factor-κBα (IκB), and decreased the phosphorylation levels of the p65 subunit and its subsequent nuclear translocation. In addition, CAI significantly decreased the phosphorylated forms of p38, JNK and ERK, which were increased following LPS stimulation, while the total expression levels of p38, JNK and ERK remained unaltered. The results in the present study indicate that CAI alleviates the inflammatory responses of RAW 264.7 macrophages in response to LPS stimulation via attenuating the activation of NF-κB and MAPK signaling pathways and decreasing the levels of pro-inflammatory mediators. This offers a novel perspective for understanding the anti-inflammatory mechanism of CAI and suggests its potential use as a therapeutic treatment in inflammatory diseases with excessive macrophage activation.
Collapse
Affiliation(s)
- Shan Lu
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, P.R. China
| | - Mengyuan Duan
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, P.R. China
| | - Zehao Guo
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, P.R. China
| | - Yongting Zhou
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, P.R. China
| | - Danwei Wu
- Department of Pharmacy, Beijing Jishuitan Hospital, Beijing 100035, P.R. China
| | - Xiaojuan Zhang
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, P.R. China
| | - Yicheng Wang
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, P.R. China
| | - Caiying Ye
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, P.R. China
| | - Rui Ju
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, P.R. China
| | - Juan Li
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, P.R. China
| | - Dechang Zhang
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, P.R. China
| | - Lei Zhu
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, P.R. China
| |
Collapse
|
14
|
Spel L, Martinon F. Inflammasomes contributing to inflammation in arthritis. Immunol Rev 2020; 294:48-62. [DOI: 10.1111/imr.12839] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/18/2019] [Accepted: 12/20/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Lotte Spel
- Departement of Biochemistry University of Lausanne Epalinges Switzerland
| | - Fabio Martinon
- Departement of Biochemistry University of Lausanne Epalinges Switzerland
| |
Collapse
|
15
|
Shin JI, Lee KH, Joo YH, Lee JM, Jeon J, Jung HJ, Shin M, Cho S, Kim TH, Park S, Jeon BY, Jeong H, Lee K, Kang K, Oh M, Lee H, Lee S, Kwon Y, Oh GH, Kronbichler A. Inflammasomes and autoimmune and rheumatic diseases: A comprehensive review. J Autoimmun 2019; 103:102299. [PMID: 31326231 DOI: 10.1016/j.jaut.2019.06.010] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/27/2019] [Accepted: 06/29/2019] [Indexed: 02/07/2023]
Abstract
Inflammasomes are a multi-protein platform forming a part of the innate immune system. Inflammasomes are at standby status and can be activated when needed. Inflammasome activation is an important mechanism for the production of active interleukin (IL)-1β and IL-18, which have important roles to instruct adaptive immunity. Active forms of inflammasomes trigger a series of inflammatory cascades and lead to the differentiation and polarization of naïve T cells and secretion of various cytokines, which can induce various kinds of autoimmune and rheumatic diseases such as systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), gout, Sjögren's syndrome, Behçet's disease, anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis and IgA vasculitis (former Henoch-Schönlein purpura ). In this review, we summarize studies published on inflammasomes and review their roles in various autoimmune diseases. Understanding of the role of inflammasomes may facilitate the diagnosis of autoimmune diseases and the development of tailored therapies in the future.
Collapse
Affiliation(s)
- Jae Il Shin
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, South Korea; Division of Pediatric Nephrology, Severance Children's Hospital, Seoul, South Korea.
| | - Keum Hwa Lee
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, South Korea; Division of Pediatric Nephrology, Severance Children's Hospital, Seoul, South Korea
| | - Yo Han Joo
- Yonsei University College of Medicine, Seoul, South Korea
| | - Jiwon M Lee
- Department of Pediatrics, Chungnam National University Hospital, Daejeon, South Korea
| | - Jaewook Jeon
- Yonsei University College of Medicine, Seoul, South Korea
| | - Hee Jae Jung
- Yonsei University College of Medicine, Seoul, South Korea
| | - Minkyue Shin
- Yonsei University College of Medicine, Seoul, South Korea
| | - Seobum Cho
- Yonsei University College of Medicine, Seoul, South Korea
| | - Tae Hwan Kim
- Yonsei University College of Medicine, Seoul, South Korea
| | - Seonghyuk Park
- Yonsei University College of Medicine, Seoul, South Korea
| | - Bong Yeol Jeon
- Yonsei University College of Medicine, Seoul, South Korea
| | - Hyunwoo Jeong
- Yonsei University College of Medicine, Seoul, South Korea
| | - Kangto Lee
- Yonsei University College of Medicine, Seoul, South Korea
| | - Kyutae Kang
- Yonsei University College of Medicine, Seoul, South Korea
| | - Myungsuk Oh
- Yonsei University College of Medicine, Seoul, South Korea
| | - Hansang Lee
- Yonsei University College of Medicine, Seoul, South Korea
| | - Seungchul Lee
- Yonsei University College of Medicine, Seoul, South Korea
| | - Yeji Kwon
- Yonsei University College of Medicine, Seoul, South Korea
| | - Geun Ho Oh
- Yonsei University College of Medicine, Seoul, South Korea
| | - Andreas Kronbichler
- Department of Internal Medicine IV, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
16
|
Chen S, Zuo Y, Huang L, Sherchan P, Zhang J, Yu Z, Peng J, Zhang J, Zhao L, Doycheva D, Liu F, Zhang JH, Xia Y, Tang J. The MC 4 receptor agonist RO27-3225 inhibits NLRP1-dependent neuronal pyroptosis via the ASK1/JNK/p38 MAPK pathway in a mouse model of intracerebral haemorrhage. Br J Pharmacol 2019; 176:1341-1356. [PMID: 30811584 DOI: 10.1111/bph.14639] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 01/07/2019] [Accepted: 02/05/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND PURPOSE Inflammasome-mediated pyroptosis is an important neuronal cell death mechanism. Previous studies reported that activation of melanocortin MC4 receptor exerted neuroprotection in several neurological diseases. Here, we have investigated the role of MC4 receptor activation with RO27-3225 in suppressing neuronal pyroptosis after experimental intracerebral haemorrhage (ICH) and the underlying mechanism. EXPERIMENTAL APPROACH One hundred and sixty-nine male CD1 mice were used. ICH was induced by injection of bacterial collagenase into the right-side basal ganglia. RO27-3225, a selective agonist of MC4 receptor, was injected intraperitoneally at 1 hr after ICH. To elucidate the underlying mechanism, we used the specific MC4 receptor antagonist HS024 and NQDI-1, a specific inhibitor of the apoptosis signalling-regulating kinase 1 (ASK1). Neurological tests, Western blot, Fluoro-Jade C, TUNEL, and immunofluorescence staining were conducted. KEY RESULTS Expression of MC4 receptor and the NOD-like receptor family, pyrin domain containing 1 (NLRP1) inflammasome in brain were increased after ICH. RO27-3225 treatment decreased neuronal pyroptosis and neurobehavioural deficits at 24 and 72 hr after ICH. RO27-3225 reduced the expression of p-ASK1, p-JNK, p-p38 MAPK, NLRP1 inflammasome, cleaved caspase-1, and IL-1β after ICH. HS024 pretreatment prevented the effects of RO27-3225. Similar to RO27-3225, NQDI-1 alone improved neurological functions and down-regulated ASK1/JNK/p38MAPK expression after ICH. CONCLUSIONS AND IMPLICATIONS RO27-3225 suppressed NLRP1-dependent neuronal pyroptosis and improved neurological function, possibly mediated by activation of MC4 receptor and inhibition of ASK1/JNK/p38 MAPK signalling pathways, after experimental ICH in mice. The MC4 receptor may be a promising therapeutic target for the management of ICH.
Collapse
Affiliation(s)
- Shengpan Chen
- Department of Neurosurgery, Affiliated Haikou Hospital, Xiangya School of Medicine, Central South University, Haikou, China.,Department of Physiology, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Yuchun Zuo
- Department of Physiology, School of Medicine, Loma Linda University, Loma Linda, CA, USA.,Department of Neurosurgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Lei Huang
- Department of Physiology, School of Medicine, Loma Linda University, Loma Linda, CA, USA.,Department of Anesthesiology, Loma Linda University Medical Center, Loma Linda, CA, USA
| | - Prativa Sherchan
- Department of Physiology, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Jian Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Zhengtao Yu
- Department of Neurosurgery, Affiliated Haikou Hospital, Xiangya School of Medicine, Central South University, Haikou, China
| | - Jianhua Peng
- Department of Physiology, School of Medicine, Loma Linda University, Loma Linda, CA, USA.,Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Junyi Zhang
- Department of Physiology, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Lianhua Zhao
- Department of Physiology, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Desislava Doycheva
- Department of Physiology, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Fei Liu
- Department of Neurosurgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - John H Zhang
- Department of Physiology, School of Medicine, Loma Linda University, Loma Linda, CA, USA.,Department of Anesthesiology, Loma Linda University Medical Center, Loma Linda, CA, USA
| | - Ying Xia
- Department of Neurosurgery, Affiliated Haikou Hospital, Xiangya School of Medicine, Central South University, Haikou, China
| | - Jiping Tang
- Department of Physiology, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| |
Collapse
|
17
|
Zhang H, Li F, Li WW, Stary C, Clark JD, Xu S, Xiong X. The inflammasome as a target for pain therapy. Br J Anaesth 2018; 117:693-707. [PMID: 27956668 DOI: 10.1093/bja/aew376] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The interleukin-1 family of cytokines are potent inducers of inflammation and pain. Proteolytic activation of this family of cytokines is under the control of several innate immune receptors that coordinate to form large multiprotein signalling platforms, termed inflammasomes. Recent evidence suggests that a wide range of inflammatory diseases, cancers, and metabolic and autoimmune disorders, in which pain is a common complaint, may be coordinated by inflammasomes. Activation of inflammasomes results in cleavage of caspase-1, which subsequently induces downstream initiation of several potent pro-inflammatory cascades. Therefore, it has been proposed that targeting inflammasome activity may be a novel and effective therapeutic strategy for these pain-related diseases. The purpose of this narrative review article is to provide the reader with an overview of the activation and regulation of inflammasomes and to investigate the potential therapeutic role of inflammasome inhibition in the treatment of diseases characterized by pain, including the following: complex regional pain syndrome, gout, rheumatoid arthritis, inflammatory pain, neuropathic pain, chronic prostatitis, chronic pelvic pain syndrome, and fibromyalgia. We conclude that the role of the inflammasome in pain-associated diseases is likely to be inflammasome subtype and disease specific. The currently available evidence suggests that disease-specific targeting of the assembly and activity of the inflammasome complex may be a novel therapeutic opportunity for the treatment of refractory pain in many settings.
Collapse
Affiliation(s)
- H Zhang
- Department of Anesthesiology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, PR China
| | - F Li
- Department of Anesthesiology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, PR China
| | - W-W Li
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - C Stary
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - J D Clark
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - S Xu
- Department of Anesthesiology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, PR China
| | - X Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
| |
Collapse
|
18
|
Pan T, Cheng TF, Jia YR, Li P, Li F. Anti-rheumatoid arthritis effects of traditional Chinese herb couple in adjuvant-induced arthritis in rats. JOURNAL OF ETHNOPHARMACOLOGY 2017; 205:1-7. [PMID: 28457902 DOI: 10.1016/j.jep.2017.04.020] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 04/12/2017] [Accepted: 04/16/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Clematis chinensis Osbeck / Notopterygium incisum Ting ex H, T-Chang (CN) is a traditional Chinese herb couple with prominent efficacy. The herb couple has been commonly used for clinical treatment of arthralgia syndrome ("Bi Zheng" in Chinese) for centuries in China, including rheumatic arthritis, osteoarthritis and gout in modern medicine. AIM OF THE STUDY To evaluate the anti-arthritic effect of CN herb couple in a rat model of rheumatoid arthritis (RA). MATERIALS AND METHODS Rats were divided randomly into six groups with eight each. Adjuvant-induced arthritis (AIA) model was established by intradermal injection of complete Freund's adjuvant (CFA). Rats were treated orally with different dosages of CN (0.7g/kg, 2.1g/kg, 6.3g/kg) from day 16 till day 40. Ibuprofen (50.4mg/kg) served as a positive control. Spontaneous activity, body weight, paw swelling, and arthritis index (AI) were monitored throughout drug treatment. Then serum levels of tumor necrosis factor α (TNF-α), interleukin-6 (IL-6), and vascular endothelial growth factor (VEGF) were determined by enzyme linked immunosorbent assay (ELISA) kits. In addition, histopathological examination and immunohistochemistry were used to assess the severity of arthritis. RESULTS Three dosage of CN significantly ameliorated symptoms of RA via increasing body weight as well as reducing paw swelling (at dose of 6.3g/kg, p<0.01) in AIA rats. An extremely significant reduction of AI (p<0.001) was also observed with treatment of CN (6.3g/kg) compared with model group. In parallel, treatment of CN significantly down-regulated levels of TNF-α, IL-6, and VEGF both in serum (p<0.01) and in joint synovial compared with model rats. And histopathology revealed noticeable reduction in synovial hyperplasia, cartilage damage, and inflammatory infiltration by CN treatment, especially at dose of 6.3g/kg. CONCLUSIONS To conclude, all results suggest that CN possesses evident anti-arthritic effects in AIA rats.
Collapse
Affiliation(s)
- Ting Pan
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China
| | - Tao-Fang Cheng
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China; School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Yu-Ran Jia
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China
| | - Ping Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Fei Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|
19
|
Du X, Chen W, Wang Y, Chen C, Guo L, Ju R, Li J, Zhang D, Zhu L, Ye C. Therapeutic efficacy of carboxyamidotriazole on 2,4,6-trinitrobenzene sulfonic acid-induced colitis model is associated with the inhibition of NLRP3 inflammasome and NF-κB activation. Int Immunopharmacol 2017; 45:16-25. [PMID: 28152446 DOI: 10.1016/j.intimp.2017.01.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 12/07/2016] [Accepted: 01/10/2017] [Indexed: 01/08/2023]
Abstract
Excess proinflammatory cytokines owing to the activation of NF-κB and NLRP3 inflammasome play the key role in inflammatory bowel disease (IBD). Previously, we reported the anti-inflammatory activity of carboxyamidotriazole (CAI) resulting from decreasing cytokines. Therefore, we investigated the therapeutic effects of CAI in 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced rat colitis and the involvement of CAI action with NLRP3 inflammasome and NF-κB pathway. CAI was orally administered to TNBS-induced colitis rat. The severity of colitis was assessed, and NLRP3 inflammasome, NF-κB pathway and cytokines were determined. Our results showed that CAI significantly reduced weight loss and disease activity index (DAI) scores in colitis rats and alleviated the colonic macroscopic signs and pathological damage. In addition, the intestinal inflammatory markers and permeability index were markedly ameliorated by CAI treatment. The decreased levels of tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6, IL-18 were also detected in the colon tissues of CAI-treated colitis rats. Moreover, the activation of NLRP3 inflammasome in inflamed colon was significantly suppressed by showing an obvious reduction in the NLRP3 and activated caspase-1 levels. Furthermore, CAI reduced NF-κB p65 expression and IκBα phosphorylation and degradation in colitis rats. Therefore, CAI attenuates TNBS-induced colitis, which may be attributed to its inhibition of NLRP3 inflammasome and NF-κB activation, and down-regulation of proinflammatory cytokines. These results provide further understanding of the intestinal anti-inflammatory effect of CAI and highlight it as a potential drug for the treatment of IBD.
Collapse
Affiliation(s)
- Xiaowan Du
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Wei Chen
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Yufeng Wang
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Chen Chen
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Lei Guo
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Rui Ju
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Juan Li
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Dechang Zhang
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Lei Zhu
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China.
| | - Caiying Ye
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China.
| |
Collapse
|
20
|
Chen C, Ju R, Zhu L, Li J, Chen W, Zhang DC, Ye CY, Guo L. Carboxyamidotriazole alleviates muscle atrophy in tumor-bearing mice by inhibiting NF-κB and activating SIRT1. Naunyn Schmiedebergs Arch Pharmacol 2017; 390:423-433. [PMID: 28124088 DOI: 10.1007/s00210-017-1345-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 01/16/2017] [Indexed: 12/22/2022]
Abstract
Cancer cachexia is a complex disorder characterized by inflammatory responses, and it is associated with poor performance status and high mortality rate of cancer patients. Carboxyamidotriazole (CAI), a noncytotoxic chemotherapy agent, shows anti-inflammatory features in the treatment of many diseases. Here, we investigated the preventive and therapeutic effects of CAI on muscle loss that occurred in mice with advanced Lewis lung carcinoma (LLC). The carcass weights of CAI-treated mice were significantly higher than that of mice in the vehicle group from Day 19 to the end of the study. The gastrocnemius and epididymal adipose tissue weights were also increased by CAI treatment. The protective mechanisms might be attributed to the following points: CAI treatment inhibited the proteolysis in muscles by decreasing expressions of muscle-specific FoxO3 transcription factor and ubiquitin E3 ligases (MuRF1 and atrogin1). Moreover, CAI restricted the NF-κB signaling, downregulated the level of TNF-α in muscle and both TNF-α and IL-6 levels in serum, directly stimulated SIRT1 activity in vitro, and increased SIRT1 content in muscle. These results indicate that CAI can alleviate muscle wasting and is a promising drug against lung cancer cachexia.
Collapse
Affiliation(s)
- Chen Chen
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Rui Ju
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Lei Zhu
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Juan Li
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Wei Chen
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - De-Chang Zhang
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Cai-Ying Ye
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Lei Guo
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China.
| |
Collapse
|
21
|
IL-18BP is decreased in osteoporotic women: Prevents Inflammasome mediated IL-18 activation and reduces Th17 differentiation. Sci Rep 2016; 6:33680. [PMID: 27649785 PMCID: PMC5030484 DOI: 10.1038/srep33680] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 08/31/2016] [Indexed: 12/17/2022] Open
Abstract
IL-18BP is a natural antagonist of pro-inflammatory IL-18 cytokine linked to autoimmune disorders like rheumatoid arthritis. However, its role in post menopausal osteoporosis is still unknown. In this study, we investigated the role of IL-18BP on murine osteoblasts, its effect on osteoblasts-CD4+ T cells and osteoblasts-CD11b+ macrophage co-culture. mIL-18BPd enhances osteoblast differentiation and inhibits the activation of NLRP3 inflammasome and caspase-1 which process IL-18 to its active form. Using estrogen deficient mice, we also determined the effect of mIL-18BP on various immune and skeletal parameters. Ovariectomized mice treated with mIL-18BPd exhibited decrease in Th17/Treg ratio and pro-inflammatory cytokines. mIL-18BPd treatment restored trabecular microarchitecture, preserved cortical bone parameters likely attributed to an increased number of bone lining cells and reduced osteoclastogenesis. Importantly, these results were corroborated in female osteoporotic subjects where decreased serum IL-18BP levels and enhanced serum IL-18 levels were observed. Our study forms a strong basis for using humanized IL-18BP towards the treatment of postmenopausal osteoporosis.
Collapse
|
22
|
Han J, Xie Y, Sui F, Liu C, Du X, Liu C, Feng X, Jiang D. Zisheng Shenqi decoction ameliorates monosodium urate crystal-induced gouty arthritis in rats through anti-inflammatory and anti-oxidative effects. Mol Med Rep 2016; 14:2589-97. [PMID: 27432278 PMCID: PMC4991735 DOI: 10.3892/mmr.2016.5526] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 06/27/2016] [Indexed: 12/11/2022] Open
Abstract
Based on traditional Chinese medicinal theories on gouty arthritis, Zisheng Shenqi decoction (ZSD), a novel Chinese medicinal formula, was developed due to its multiple functions, including reinforcing renal function, promoting blood circulation and relieving pain. In the present study, the effect of ZSD on monosodium urate (MSU) crystal-induced gouty arthritis in rats was investigated and the underlying mechanisms were examined. The data from these investigations showed that the injection of MSU crystals into the ankle joint cavity caused significant elevations in ankle swelling and inflammatory cell infiltration into the synovium, whereas these abnormal changes were markedly suppressed by oral administration of ZSD (40 mg/kg) for 7 days. Mechanically, ZSD treatment prevented MSU crystal-induced inflammatory responses, as evidenced by downregulation in the expression levels of NACHT domain, leucine-rich repeat and pyrin domain containing protein (NALP) 1 and NALP6 inflammasomes, decreased serum levels of tumor necrosis factor-α and interleukin-1β, and inhibited activation of nuclear factor-κB. In addition, ZSD administration markedly enhanced the anti-oxidant status in MSU crystal-induced rats by the increase in the activities of superoxide dismutase and glutathione peroxidase, and the levels of reduced glutathione. These results indicated that ZSD effectively prevented MSU crystal-induced gouty arthritis via modulating multiple anti-oxidative and anti-inflammatory pathways, suggesting a promising herbal formula for the prevention and treatment of gouty arthritis.
Collapse
Affiliation(s)
- Jieru Han
- Department of Seasonal Febrile Diseases, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| | - Ying Xie
- Department of Synopsis of The Golden Chamber, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| | - Fangyu Sui
- Department of Chinese Materia Medica, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| | - Chunhong Liu
- Department of Seasonal Febrile Diseases, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| | - Xiaowei Du
- Department of Pharmacognosy, School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| | - Chenggang Liu
- Department of Febrile Diseases, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| | - Xiaoling Feng
- Department of Gynaecology, The First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| | - Deyou Jiang
- Department of Synopsis of The Golden Chamber, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| |
Collapse
|