1
|
Ibrahim Fouad G, Mabrouk M, El-Sayed SAM, Abdelhameed MF, Rizk MZ, Beherei HH. Berberine-loaded iron oxide nanoparticles alleviate cuprizone-induced astrocytic reactivity in a rat model of multiple sclerosis. Biometals 2025; 38:203-229. [PMID: 39543075 PMCID: PMC11754386 DOI: 10.1007/s10534-024-00648-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/20/2024] [Indexed: 11/17/2024]
Abstract
Berberine (BBN) is a naturally occurring alkaloid as a secondary metabolite in many plants and exhibits several benefits including neuroprotective activities. However, data on the neuromodulating potential of nanoformulated BBN are still lacking. In the present study, BBN loaded within iron oxide nanoparticles (BBN-IONP) were prepared and characterized by transmission electron microscopy FTIR, X-ray photoelectron spectroscopy particle-size distribution, zeta potential, and HPLC. The remyelinating neuroprotective potential of BBN-IONP relative to free BBN was evaluated against cuprizone (CPZ)-induced neurotoxicity (rats administered 0.2% CPZ powder (w/w) for five weeks). CPZ rats were treated with either free BBN or IONP-BBN (50 mg/kg/day, orally) for 14 days. Cognitive function was estimated using Y-maze. Biochemically, total antioxidant capacity lipid peroxides and reduced glutathione in the brain tissue, as well as, serum interferon-gamma levels were estimated. Moreover, the genetic expression contents of myelin basic protein Matrix metallopeptidase-9 Tumor necrosis factor-α (TNF-α), and S100β were measured. The histopathological patterns and immunohistochemical assessment of Glial Fibrillary Acidic Protein in both cerebral cortex and hippocampus CA1 regions were investigated. CPZ-rats treated with either free BBN or IONP-BBN demonstrated memory restoring, anti-oxidative, anti-inflammatory, anti-astrocytic, and remyelinating activities. Comparing free BBN with IONP-BBN revealed that the latter altered the neuromodulating activities of BBN, showing superior neuroprotective activities of IONP-BBN relative to BBN. In conclusion, both forms of BBN possess neuroprotective potential. However, the use of IONPs for brain delivery and the safety of these nano-based forms need further investigation.
Collapse
Affiliation(s)
- Ghadha Ibrahim Fouad
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El-Bohouth St., Dokki, Cairo, 12622, Egypt.
| | - Mostafa Mabrouk
- Refractories, Ceramics and Building Materials Department, Advanced Materials, Technology and Mineral Resources Research Institute, National Research Centre, 33 El Bohouth St., Dokki, PO Box 12622, Cairo, Egypt
| | - Sara A M El-Sayed
- Refractories, Ceramics and Building Materials Department, Advanced Materials, Technology and Mineral Resources Research Institute, National Research Centre, 33 El Bohouth St., Dokki, PO Box 12622, Cairo, Egypt
| | - Mohamed F Abdelhameed
- Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Centre, 33 El-Bohouth St., Dokki, Cairo, 12622, Egypt
| | - Maha Z Rizk
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El-Bohouth St., Dokki, Cairo, 12622, Egypt
| | - Hanan H Beherei
- Refractories, Ceramics and Building Materials Department, Advanced Materials, Technology and Mineral Resources Research Institute, National Research Centre, 33 El Bohouth St., Dokki, PO Box 12622, Cairo, Egypt
| |
Collapse
|
2
|
Li H, Ye Z, Zheng G, Su Z. Polysaccharides targeting autophagy to alleviate metabolic syndrome. Int J Biol Macromol 2024; 283:137393. [PMID: 39521230 DOI: 10.1016/j.ijbiomac.2024.137393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 10/25/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Metabolic syndrome is a prevalent non-communicable disease characterized by central obesity, insulin resistance, hypertension, hyperglycemia, and hyperlipidemia. Epidemiological statistics indicate that one-third of the world's population is affected by metabolic syndrome. Unfortunately, owing to complicated pathogenesis and limited pharmacological options, the growing prevalence of metabolic syndrome threatens human health worldwide. Autophagy is an intracellular degradation mechanism that involves the degradation of unfolded or aggregated proteins and damaged cellular organelles, thereby maintaining metabolic homeostasis. Increasing evidence indicates that dysfunctional autophagy is closely associated with the development of metabolic syndrome, making it an attractive therapeutic target. Furthermore, a growing number of plant-derived polysaccharides have been shown to regulate autophagy, thereby alleviating metabolic syndrome, such as Astragalus polysaccharides, Laminaria japonica polysaccharides, Ganoderma lucidum polysaccharides and Lycium barbarum polysaccharides. In this review, we summarize recent advances in the discovery of autophagy modulators of plant polysaccharides for the treatment of metabolic syndrome, with the aim of providing precursor compounds for the development of new therapeutic agents. Additionally, we look forward to seeing more diseases being treated with plant polysaccharides by regulating autophagy, as well as the discovery of more intricate mechanisms that govern autophagy.
Collapse
Affiliation(s)
- Hongxia Li
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zeting Ye
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guangjuan Zheng
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Zuqing Su
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
3
|
Li QR, Xu HY, Ma RT, Ma YY, Chen MJ. Targeting Autophagy: A Promising Therapeutic Strategy for Diabetes Mellitus and Diabetic Nephropathy. Diabetes Ther 2024; 15:2153-2182. [PMID: 39167303 PMCID: PMC11410753 DOI: 10.1007/s13300-024-01641-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/09/2024] [Indexed: 08/23/2024] Open
Abstract
Diabetes mellitus (DM) significantly impairs patients' quality of life, primarily because of its complications, which are the leading cause of mortality among individuals with the disease. Autophagy has emerged as a key process closely associated with DM, including its complications such as diabetic nephropathy (DN). DN is a major complication of DM, contributing significantly to chronic kidney disease and renal failure. The intricate connection between autophagy and DM, including DN, highlights the potential for new therapeutic targets. This review examines the interplay between autophagy and these conditions, aiming to uncover novel approaches to treatment and enhance our understanding of their underlying pathophysiology. It also explores the role of autophagy in maintaining renal homeostasis and its involvement in the development and progression of DM and DN. Furthermore, the review discusses natural compounds that may alleviate these conditions by modulating autophagy.
Collapse
Affiliation(s)
- Qi-Rui Li
- School of Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Rd, Nanjing, 210023, China
| | - Hui-Ying Xu
- School of Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Rd, Nanjing, 210023, China
| | - Rui-Ting Ma
- Inner Mongolia Autonomous Region Mental Health Center, Hohhot, 010010, China
| | - Yuan-Yuan Ma
- The Affiliated Hospital of Inner Mongolia Medical University, No. 1 Tongdao Street, Hohhot, 010050, China.
| | - Mei-Juan Chen
- School of Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Rd, Nanjing, 210023, China.
| |
Collapse
|
4
|
Rivero-Segura NA, Zepeda-Arzate EA, Castillo-Vazquez SK, Fleischmann-delaParra P, Hernández-Pineda J, Flores-Soto E, García-delaTorre P, Estrella-Parra EA, Gomez-Verjan JC. Exploring the Geroprotective Potential of Nutraceuticals. Nutrients 2024; 16:2835. [PMID: 39275153 PMCID: PMC11396943 DOI: 10.3390/nu16172835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/18/2024] [Accepted: 08/21/2024] [Indexed: 09/16/2024] Open
Abstract
Aging is the result of the accumulation of a wide variety of molecular and cellular damages over time, meaning that "the more damage we accumulate, the higher the possibility to develop age-related diseases". Therefore, to reduce the incidence of such diseases and improve human health, it becomes important to find ways to combat such damage. In this sense, geroprotectors have been suggested as molecules that could slow down or prevent age-related diseases. On the other hand, nutraceuticals are another set of compounds that align with the need to prevent diseases and promote health since they are biologically active molecules (occurring naturally in food) that, apart from having a nutritional role, have preventive properties, such as antioxidant, anti-inflammatory and antitumoral, just to mention a few. Therefore, in the present review using the specialized databases Scopus and PubMed we collected information from articles published from 2010 to 2023 in order to describe the role of nutraceuticals during the aging process and, given their role in targeting the hallmarks of aging, we suggest that they are potential geroprotectors that could be consumed as part of our regular diet or administered additionally as nutritional supplements.
Collapse
Affiliation(s)
| | | | - Selma Karime Castillo-Vazquez
- Dirección de Investigación, Instituto Nacional de Geriatría (INGER), Mexico City 10200, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | | | - Jessica Hernández-Pineda
- Departamento de Infectología e Inmunología, Instituto Nacional de Perinatología, SSA, Mexico City 11000, Mexico
| | - Edgar Flores-Soto
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad No. 3000, Alcaldía de Coyoacán, Mexico City 04510, Mexico
| | - Paola García-delaTorre
- Unidad de Investigación Epidemiológica y en Servicios de Salud, Área Envejecimiento, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
| | - Edgar Antonio Estrella-Parra
- Laboratorio de Fitoquímica, UBIPRO, FES-Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla de Baz 54090, Mexico
| | | |
Collapse
|
5
|
Del Gaudio MP, Kraus SI, Melzer TM, Bustos PS, Ortega MG. Oral treatment with Berberine reduces peripheral nociception: Possible interaction with different nociceptive pathways activated by different allogeneic substances. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117504. [PMID: 38061440 DOI: 10.1016/j.jep.2023.117504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/30/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Berberine was identified in extracts of Berberis ruscifolia Lam., a plant used in traditional medicine as an analgesic. Its presence may be involved in the reported pharmacological activity of this species. However, there is still a lack of scientific research concerning its analgesic activity in the peripheral nervous system. AIM OF THE STUDY To investigate Berb-induced antinociception in the formalin test and to evaluate several pathways related to its pharmacological antinociceptive effects in chemical models of nociception in mice. MATERIALS AND METHODS The antinociceptive activity of Berb was assessed by inducing the paw licking in mice with different allodynic agents. In the formalin test, the antiedematous and antithermal effect of Berb was evaluated simultaneously in the same experiment. Other nociceptive behavior produced by endogenous [prostaglandin E2 (PGE2), histamine (His), glutamate (Glu) or bradykinin (BK)] or exogenous [capsaicin (Caps) and cinnamaldehyde (Cin)] chemical stimuli, and activators as protein kinase A (PKA) and C (PKC), were also evaluated.The in vivo doses for p.o. were 3 and 30 mg/kg. RESULTS Berb, at 30 mg/kg p.o., showed a significant inhibition of the nociceptive action in formalin in both phases being stronger at the inflammatory phase (59 ± 9%) and more active than Asp (positive control) considering the doses evaluated. Moreover, Berb inhibited the edema (34 ± 10%), but not the temperature in the formalin test. Regarding the different nociceptive signaling pathways evaluated, the most relevant data were that the administration of p.o. of Berb, at 30 mg/kg, caused significant inhibition of nociception induced by endogenous [His (72 ± 11%), PGE2 (78 ± 4%), and BK (51 ± 7%)], exogenous [Cap (68 ± 4%) and Cinn (57 ± 5%)] compounds, and activators of the PKA [(FSK (86 ± 3%)] and PKC [(PMA(86 ± 6%)] signaling pathway. Berb did not inhibit the nociceptive effect produced by Glu. CONCLUSION The present study demonstrated, for the first time, the potential of Berb in several nociceptive tests, with the compound present in B. ruscifolia contributing to the analgesic effect reported for this species.
Collapse
Affiliation(s)
- Micaela Paula Del Gaudio
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Córdoba, 5000, Argentina; Instituto Multidisciplinario de Biología Vegetal (IMBIV), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Universidad Nacional de Córdoba, Av. Vélez Sarsfield 1611, Córdoba, 5000, Argentina
| | - Scheila Iria Kraus
- Laboratory of Neurobiology of Pain and Inflammation, Department of Physiological Sciences, Center for Biological Sciences, Federal University of Santa Catarina, University Campus, Trindade, Florianópolis, SC, 88040-900, Brazil
| | - Thayza Martins Melzer
- Laboratory of Neurobiology of Pain and Inflammation, Department of Physiological Sciences, Center for Biological Sciences, Federal University of Santa Catarina, University Campus, Trindade, Florianópolis, SC, 88040-900, Brazil
| | - Pamela Soledad Bustos
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Córdoba, 5000, Argentina; Instituto Multidisciplinario de Biología Vegetal (IMBIV), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Universidad Nacional de Córdoba, Av. Vélez Sarsfield 1611, Córdoba, 5000, Argentina
| | - María Gabriela Ortega
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Córdoba, 5000, Argentina; Instituto Multidisciplinario de Biología Vegetal (IMBIV), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Universidad Nacional de Córdoba, Av. Vélez Sarsfield 1611, Córdoba, 5000, Argentina.
| |
Collapse
|
6
|
Khezri MR, Mohammadipanah S, Ghasemnejad-Berenji M. The pharmacological effects of Berberine and its therapeutic potential in different diseases: Role of the phosphatidylinositol 3-kinase/AKT signaling pathway. Phytother Res 2024; 38:349-367. [PMID: 37922566 DOI: 10.1002/ptr.8040] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/15/2023] [Accepted: 09/30/2023] [Indexed: 11/07/2023]
Abstract
The phosphatidylinositol 3-kinase (PI3K)/AKT signaling pathway plays a central role in cell growth and survival and is disturbed in various pathologies. The PI3K is a kinase that generates phosphatidylinositol-3,4,5-trisphosphate (PI (3-5) P3), as a second messenger responsible for the translocation of AKT to the plasma membrane and its activation. However, due to the crucial role of the PI3K/AKT pathway in regulation of cell survival processes, it has been introduced as a main therapeutic target for natural compounds during the progression of different pathologies. Berberine, a plant-derived isoquinone alkaloid, is known because of its anti-inflammatory, antioxidant, antidiabetic, and antitumor properties. The effect of this natural compound on cell survival processes has been shown to be mediated by modulation of the intracellular pathways. However, the effects of this natural compound on the PI3K/AKT pathway in various pathologies have not been reviewed so far. Therefore, this paper aims to review the PI3K/AKT-mediated effects of Berberine in different types of cancer, diabetes, cardiovascular, and central nervous system diseases.
Collapse
Affiliation(s)
- Mohammad Rafi Khezri
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
- School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | | | - Morteza Ghasemnejad-Berenji
- Department of Pharmacology and Toxicology, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
- Research Center for Experimental and Applied Pharmaceutical Sciences, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
7
|
Askari VR, Khosravi K, Baradaran Rahimi V, Garzoli S. A Mechanistic Review on How Berberine Use Combats Diabetes and Related Complications: Molecular, Cellular, and Metabolic Effects. Pharmaceuticals (Basel) 2023; 17:7. [PMID: 38275993 PMCID: PMC10819502 DOI: 10.3390/ph17010007] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 01/27/2024] Open
Abstract
Berberine (BBR) is an isoquinoline alkaloid that can be extracted from herbs such as Coptis, Phellodendron, and Berberis. BBR has been widely used as a folk medicine to treat various disorders. It is a multi-target drug with multiple mechanisms. Studies have shown that it has antioxidant and anti-inflammatory properties and can also adjust intestinal microbial flora. This review focused on the promising antidiabetic effects of BBR in several cellular, animal, and clinical studies. Based on previous research, BBR significantly reduced levels of fasting blood glucose, hemoglobin A1C, inflammatory cytokines, and oxidative stress markers. Furthermore, BBR stimulated insulin secretion and improved insulin resistance through different pathways, including up-regulation of protein expression of proliferator-activated receptor (PPAR)-γ, glucose transporter (GLUT) 4, PI3K/AKT, and AMP-activated protein kinase (AMPK) activation. Interestingly, it was demonstrated that BBR has protective effects against diabetes complications, such as diabetic-induced hepatic damage, cardiovascular disorders, nephropathy, and neuropathy. Furthermore, multiple clinical trial studies have emphasized the ameliorative effects of BBR in type 2 diabetic patients.
Collapse
Affiliation(s)
- Vahid Reza Askari
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran;
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
| | - Kimia Khosravi
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 1696700, Iran;
| | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 1696700, Iran;
| | - Stefania Garzoli
- Department of Chemistry and Technologies of Drug, Sapienza University, P. le Aldo Moro, 5, 00185 Rome, Italy
| |
Collapse
|
8
|
Li J, Xue C, Yang H, Zhang J, Li G, Li J, Kuang F, Chen J, Zhang S, Gao F, Kou Z, Zhang X, Dong L. Simulated weightlessness induces hippocampal insulin resistance and cognitive impairment. Life Sci 2023; 333:122112. [PMID: 37758017 DOI: 10.1016/j.lfs.2023.122112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 09/05/2023] [Accepted: 09/18/2023] [Indexed: 10/03/2023]
Abstract
Growing evidence highlights the potential consequences of long-term spaceflight, including gray matter volume reduction and cognitive dysfunction with subclinical manifestations of diabetes mellitus among astronauts, but the underlying mechanisms remain unknown. In this study, we found that long-term simulated weightlessness induced hippocampal insulin resistance and subsequent neuronal damage and cognitive impairment in rats. Rats subjected to 4-week tail suspension exhibited peripheral insulin resistance, evidenced by increased fasting blood glucose and abnormal glucose tolerance and insulin tolerance, alongside reduced spontaneous activity and impaired recognition memory. In addition, 4 weeks of simulated weightlessness induced neuronal apoptosis and degeneration in the hippocampus, as evidenced by increased TUNEL and Fluoro-Jade B staining-positive neurons. Mechanistically, insulin-stimulated hippocampal Akt phosphorylation was decreased, while PTEN, the negative regulator of insulin signaling, was increased in the hippocampus in tail-suspended rats. Interestingly, treatment with berberine, an insulin sensitizer, partly reversed the above-mentioned effects induced by simulated weightlessness. These data suggest that long-term simulated weightlessness induces cognitive impairment as well as neuronal apoptosis and neural degeneration, partially through hippocampal insulin resistance via PTEN up-regulation. Berberine treatment attenuates hippocampal insulin resistance and improves cognitive function.
Collapse
Affiliation(s)
- Jiahui Li
- Key Laboratory of Aerospace Medicine of the Ministry of Education, School of Aerospace Medicine, Air Force Medical University, Xi'an, China; Department of Psychology, Air Force Hospital, Western Theater Command, Chengdu, China
| | - Caiyan Xue
- Key Laboratory of Aerospace Medicine of the Ministry of Education, School of Aerospace Medicine, Air Force Medical University, Xi'an, China
| | - Hongyan Yang
- Key Laboratory of Aerospace Medicine of the Ministry of Education, School of Aerospace Medicine, Air Force Medical University, Xi'an, China
| | - Jiaxin Zhang
- Key Laboratory of Aerospace Medicine of the Ministry of Education, School of Aerospace Medicine, Air Force Medical University, Xi'an, China
| | - Guohua Li
- Key Laboratory of Aerospace Medicine of the Ministry of Education, School of Aerospace Medicine, Air Force Medical University, Xi'an, China
| | - Jijun Li
- Key Laboratory of Aerospace Medicine of the Ministry of Education, School of Aerospace Medicine, Air Force Medical University, Xi'an, China
| | - Fang Kuang
- Department of Neurobiology, Air Force Medical University, Xi'an, China
| | - Jing Chen
- Department of Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, Air Force Medical University, Xi'an, China
| | - Shu Zhang
- Key Laboratory of Aerospace Medicine of the Ministry of Education, School of Aerospace Medicine, Air Force Medical University, Xi'an, China
| | - Feng Gao
- Key Laboratory of Aerospace Medicine of the Ministry of Education, School of Aerospace Medicine, Air Force Medical University, Xi'an, China
| | - Zhenzhen Kou
- Department of Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, Air Force Medical University, Xi'an, China.
| | - Xing Zhang
- Key Laboratory of Aerospace Medicine of the Ministry of Education, School of Aerospace Medicine, Air Force Medical University, Xi'an, China.
| | - Ling Dong
- Key Laboratory of Aerospace Medicine of the Ministry of Education, School of Aerospace Medicine, Air Force Medical University, Xi'an, China.
| |
Collapse
|
9
|
Shrivastava S, Sharma A, Saxena N, Bhamra R, Kumar S. Addressing the preventive and therapeutic perspective of berberine against diabetes. Heliyon 2023; 9:e21233. [PMID: 38027723 PMCID: PMC10663750 DOI: 10.1016/j.heliyon.2023.e21233] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/20/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Diabetes has emerged as one the leading detrimental factors for human life expectancy worldwide. The disease is mainly considered as outcome of dysregulation in glucose metabolism, resulting in consistent high glucose concentration in blood. At initial stages, the diabetes particularly type 2 diabetes, is manageable by lifestyle interventions such as regular physical activity and diet with less carbohydrates. However, in advance stage, regular intake of external insulin dose and medicines like metformin are recommended. The long-term consumption of metformin is associated with several side effects such as nausea, vomiting, diarrhoea, lectic acidosis etc., In this scenario, several plant-based medicines have shown promising potential for the prevention and treatment of diabetes. Berberine is the bioactive compound present in the different plant parts of berberis family. Biochemical studies have shown that berberine improve insulin sensitivity and insulin secretion. Additionally, berberine induces glucose metabolism by activating AMPK signaling and inhibition of inflammation. A series of studies have demonstrated the antidiabetic potential of berberine at in vitro, pre-clinical and clinical trials. This review provides comprehensive details of preventive and therapeutic potential of berberine against diabetes.
Collapse
Affiliation(s)
- Suyesh Shrivastava
- ICMR-National Institute of Research in Tribal Health, Nagpur Road, Jabalpur-482003, India
| | - Anamika Sharma
- National Institute of Pharmaceutical and Education and Research 500037, Hyderabad, India
| | - Nishant Saxena
- ICMR-National Institute of Research in Tribal Health, Nagpur Road, Jabalpur-482003, India
| | - Rashmi Bhamra
- Global Research Institute of Pharmacy, Radour-135133, Haryana, India
| | - Sandeep Kumar
- ICMR-National Institute of Research in Tribal Health, Nagpur Road, Jabalpur-482003, India
| |
Collapse
|
10
|
Feng JH, Chen K, Shen SY, Luo YF, Liu XH, Chen X, Gao W, Tong YR. The composition, pharmacological effects, related mechanisms and drug delivery of alkaloids from Corydalis yanhusuo. Biomed Pharmacother 2023; 167:115511. [PMID: 37729733 DOI: 10.1016/j.biopha.2023.115511] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/06/2023] [Accepted: 09/12/2023] [Indexed: 09/22/2023] Open
Abstract
Corydalis yanhusuo W. T. Wang, also known as yanhusuo, yuanhu, yanhu and xuanhu, is one of the herb components of many Chinese Traditional Medicine prescriptions such as Jin Ling Zi San and Yuanhu-Zhitong priscription. C. yanhusuo was traditionally used to relieve pain and motivate blood and Qi circulation. Now there has been growing interest in pharmacological effects of alkaloids, the main bioactive components of C. yanhusuo. Eighty-four alkaloids isolated from C. yanhusuo are its important bioactive components and can be characterized into protoberberine alkaloids, aporphine alkaloids, opiate alkaloids and others and proper extraction or co-administration methods modulate their contents and efficacy. Alkaloids from C. yanhusuo have various pharmacological effects on the nervous system, cardiovascular system, cancer and others through multiple molecular mechanisms such as modulating neurotransmitters, ion channels, gut microbiota, HPA axis and signaling pathways and are potential treatments for many diseases. Plenty of novel drug delivery methods such as autologous red blood cells, self-microemulsifying drug delivery systems, nanoparticles and others have also been investigated to better exert the effects of alkaloids from C. yanhusuo. This review summarized the alkaloid components of C. yanhusuo, their pharmacological effects and mechanisms, and methods of drug delivery to lay a foundation for future investigations.
Collapse
Affiliation(s)
- Jia-Hua Feng
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Kang Chen
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Si-Yu Shen
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Yun-Feng Luo
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Xi-Hong Liu
- School of Medicine, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Xin Chen
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Wei Gao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Yu-Ru Tong
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
11
|
Zhang Q, Zhou X, Li X, Yao S, Jiang S, Zhang R, Zou Z, Liao L, Dong J. Effect of down-regulation of let-7c/g on triggering a double-negative feedback loop and promoting restenosis. Chin Med J (Engl) 2023; 136:2484-2495. [PMID: 37433785 PMCID: PMC10586861 DOI: 10.1097/cm9.0000000000002763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Indexed: 07/13/2023] Open
Abstract
BACKGROUND Excessive proliferation and migration of vascular smooth muscle cells (VSMCs) are the main causes of restenosis (RS) in diabetic lower extremity arterial disease (LEAD). However, the relevant pathogenic mechanisms are poorly understood. METHODS In this study, we introduced a "two-step injury protocol" rat RS model, which started with the induction of atherosclerosis (AS) and was followed by percutaneous transluminal angioplasty (PTA). Hematoxylin-eosin (HE) staining and immunohistochemistry staining were used to verify the form of RS. Two-step transfection was performed, with the first transfection of Lin28a followed by a second transfection of let-7c and let-7g, to explore the possible mechanism by which Lin28a exerted effects. 5-ethynyl-2΄-deoxyuridine (EdU) and Transwell assay were performed to evaluate the ability of proliferation and migration of VSMCs. Western blotting and quantitative real-time polymerase chain reaction (qRT-PCR) were performed to detect the expression of Lin28a protein and let-7 family members. RESULTS Using a combination of in vitro and in vivo experiments, we discovered that let-7c, let-7g, and microRNA98 (miR98) were downstream targets of Lin28a. More importantly, decreased expression of let-7c/let-7g increased Lin28a, leading to further inhibition of let-7c/let-7g. We also found an increased level of let-7d in the RS pathological condition, suggesting that it may function as a protective regulator of the Lin28a/let-7 loop by inhibiting the proliferation and migration of VSMCs. CONCLUSION These findings indicated the presence of a double-negative feedback loop consisting of Lin28a and let-7c/let-7g, which may be responsible for the vicious behavior of VSMCs in RS.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Xiaojun Zhou
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Institute of Nephrology, Jinan, Shandong 250012, China
- Department of Endocrinology and Metabology, Shandong Provincial Qianfoshan Hospital, Shandong University, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Institute of Nephrology, Jinan, Shandong 250012, China
| | - Xianzhi Li
- Department of Endocrinology and Metabology, Shandong Provincial Qianfoshan Hospital, Shandong University, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Institute of Nephrology, Jinan, Shandong 250012, China
| | - Shuai Yao
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Shan Jiang
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Rui Zhang
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Zhiwei Zou
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Lin Liao
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Institute of Nephrology, Jinan, Shandong 250012, China
- Department of Endocrinology and Metabology, Shandong Provincial Qianfoshan Hospital, Shandong University, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Institute of Nephrology, Jinan, Shandong 250012, China
| | - Jianjun Dong
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| |
Collapse
|
12
|
Ai X, Yu P, Peng L, Luo L, Liu J, Li S, Lai X, Luan F, Meng X. Berberine: A Review of its Pharmacokinetics Properties and Therapeutic Potentials in Diverse Vascular Diseases. Front Pharmacol 2022; 12:762654. [PMID: 35370628 PMCID: PMC8964367 DOI: 10.3389/fphar.2021.762654] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/20/2021] [Indexed: 12/11/2022] Open
Abstract
Traditional Chinese medicine plays a significant role in the treatment of various diseases and has attracted increasing attention for clinical applications. Vascular diseases affecting vasculature in the heart, cerebrovascular disease, atherosclerosis, and diabetic complications have compromised quality of life for affected individuals and increase the burden on health care services. Berberine, a naturally occurring isoquinoline alkaloid form Rhizoma coptidis, is widely used in China as a folk medicine for its antibacterial and anti-inflammatory properties. Promisingly, an increasing number of studies have identified several cellular and molecular targets for berberine, indicating its potential as an alternative therapeutic strategy for vascular diseases, as well as providing novel evidence that supports the therapeutic potential of berberine to combat vascular diseases. The purpose of this review is to comprehensively and systematically describe the evidence for berberine as a therapeutic agent in vascular diseases, including its pharmacological effects, molecular mechanisms, and pharmacokinetics. According to data published so far, berberine shows remarkable anti-inflammatory, antioxidant, antiapoptotic, and antiautophagic activity via the regulation of multiple signaling pathways, including AMP-activated protein kinase (AMPK), nuclear factor κB (NF-κB), mitogen-activated protein kinase silent information regulator 1 (SIRT-1), hypoxia-inducible factor 1α (HIF-1α), vascular endothelial growth factor phosphoinositide 3-kinase (PI3K), protein kinase B (Akt), janus kinase 2 (JAK-2), Ca2+ channels, and endoplasmic reticulum stress. Moreover, we discuss the existing limitations of berberine in the treatment of vascular diseases, and give corresponding measures. In addition, we propose some research perspectives and challenges, and provide a solid evidence base from which further studies can excavate novel effective drugs from Chinese medicine monomers.
Collapse
Affiliation(s)
- Xiaopeng Ai
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Peiling Yu
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Lixia Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Liuling Luo
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jia Liu
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shengqian Li
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xianrong Lai
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fei Luan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xianli Meng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
13
|
Zhang M, Yang H, Yang E, Li J, Dong L. Berberine Decreases Intestinal GLUT2 Translocation and Reduces Intestinal Glucose Absorption in Mice. Int J Mol Sci 2021; 23:327. [PMID: 35008753 PMCID: PMC8745600 DOI: 10.3390/ijms23010327] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/09/2021] [Accepted: 12/24/2021] [Indexed: 12/12/2022] Open
Abstract
Postprandial hyperglycemia is an important causative factor of type 2 diabetes mellitus, and permanent localization of intestinal GLUT2 in the brush border membrane is an important reason of postprandial hyperglycemia. Berberine, a small molecule derived from Coptidis rhizome, has been found to be potent at lowering blood glucose, but how berberine lowers postprandial blood glucose is still elusive. Here, we investigated the effect of berberine on intestinal glucose transporter 2 (GLUT2) translocation and intestinal glucose absorption in type 2 diabetes mouse model. Type 2 diabetes was induced by feeding of a high-fat diet and injection of streptozotocin and diabetic mice were treated with berberine for 6 weeks. The effects of berberine on intestinal glucose transport and GLUT2 translocation were accessed in isolated intestines and intestinal epithelial cells (IEC-6), respectively. We found that berberine treatment improved glucose tolerance and systemic insulin sensitivity in diabetic mice. Furthermore, berberine decreased intestinal glucose transport and inhibited GLUT2 translocation from cytoplasm to brush border membrane in intestinal epithelial cells. Mechanistically, berberine inhibited intestinal insulin-like growth factor 1 (IGF-1R) phosphorylation and thus reduced localization of PLC-β2 in the membrane, leading to decreased GLUT2 translocation. These results suggest that berberine reduces intestinal glucose absorption through inhibiting IGF-1R-PLC-β2-GLUT2 signal pathway.
Collapse
Affiliation(s)
| | | | | | | | - Ling Dong
- Key Laboratory of Aerospace Medicine of the Ministry of Education, School of Aerospace Medicine, Air Force Military Medical University, Xi’an 710032, China; (M.Z.); (H.Y.); (E.Y.); (J.L.)
| |
Collapse
|
14
|
Pharmacokinetics and Pharmacological Activities of Berberine in Diabetes Mellitus Treatment. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:9987097. [PMID: 34471420 PMCID: PMC8405293 DOI: 10.1155/2021/9987097] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 08/09/2021] [Accepted: 08/16/2021] [Indexed: 02/07/2023]
Abstract
Traditional Chinese medicine (TCM) has good clinical application prospects in diabetes treatment. In addition, TCM is less toxic and/or has fewer side effects and provides various therapeutic effects. Berberine (BBR) is isolated as the main component in many TCM kinds (e.g., Rhizoma Coptidis and Berberidis Cortex). Furthermore, BBR can reduce blood sugar and blood fat, alleviate inflammation, and improve the state of patients. Based on the recent study results of BBR in diabetes treatment, the BBR pharmacokinetics and mechanism on diabetes are mainly studied, and the specific molecular mechanism of related experimental BBR is systematically summarized and analyzed. Clinical studies have proved that BBR has a good therapeutic effect on diabetes, suggesting that BBR may be a promising drug candidate for diabetes. More detailed BBR mechanisms and pathways of BBR need to be studied further in depth, which will help understand the BBR pharmacology in diabetes treatment.
Collapse
|
15
|
Guo H, Guo Q, Lan T, Luo Y, Pan X, Yao Y, Li Y, Feng Y, Liu Y, Tao L, Shen X. Amphiphilic block versus random copolymer nanoparticles with reactive oxygen species responsiveness as berberine vehicles. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2021; 32:1657-1677. [PMID: 34024257 DOI: 10.1080/09205063.2021.1932356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/16/2021] [Accepted: 05/18/2021] [Indexed: 10/21/2022]
Abstract
A series of amphiphilic block and random copolymers based on phenylboronic acid pinacol ester were synthesized via reversible addition-fragmentation chain transfer polymerization. The obtained copolymers can self-assemble in aqueous solution into stable block copolymer nanoparticles and random nanoparticles with sizes of 116.1-158.6 and 126.3-187.0 nm, respectively. All nanoparticles showed hydrogen peroxide (H2O2) sensitivity, and the random copolymer nanoparticles presented faster responsiveness to H2O2 than did those derived from block copolymers. Berberine (BBR) can be effectively encapsulated into block and random copolymer nanoparticles with loading capacity of 7.6%-9.1% and 7.3%-8.9%, respectively. The BBR release can be controlled in an H2O2 medium. For the random copolymer nanoparticles, the release rate of BBR was faster and the cumulative release amounts in response to H2O2 were higher over 48 h. The BBR cumulative release amount in the H2O2 medium for the block and random copolymer nanoparticles was 62.2%-70.2% and 68.6%-80.4%, respectively. Moreover, good biocompatibility was observed for the BBR-loaded block and random copolymer nanoparticles. BBR and BBR-loaded nanoparticles can improve Glut4 translocation to the cell membrane and promote glucose transport into cells. BBR-loaded nanoparticles can decrease the blood glucose levels in diabetic rats over 15 days. These results imply that the different chain formulation of block and random copolymers affects the H2O2 responsiveness and that the two kinds of nanoparticles exhibit potential application as novel vehicles for BBR delivery to regulate blood glucose levels.
Collapse
Affiliation(s)
- Honglei Guo
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University (Jiangsu Province Hospital), Nanjing, Jiangsu, China
| | - Qianqian Guo
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
| | - Tianyu Lan
- School of Chemical Engineering, Guizhou Minzu University, Guiyang, Guizhou, China
| | - Yongjun Luo
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
| | - Xiuhao Pan
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yifang Yao
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yafei Li
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
| | - Ya Feng
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yujia Liu
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
| | - Ling Tao
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
| | - Xiangchun Shen
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
| |
Collapse
|
16
|
Zhang R, Zhou X, Sheng Q, Zhang Q, Xie T, Xu C, Zou Z, Dong J, Liao L. Gliquidone ameliorates hepatic insulin resistance in streptozotocin-induced diabetic Sur1 -/- rats. Eur J Pharmacol 2021; 906:174221. [PMID: 34081903 DOI: 10.1016/j.ejphar.2021.174221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 05/25/2021] [Accepted: 05/28/2021] [Indexed: 11/17/2022]
Abstract
Gliquidone was suggested to exert hypoglycemic effect through enhancing hepatic insulin sensitivity. However, inadequate in vivo evidences make this statement controversial. The aim of the present study was to clarify the insulin-sensitizer role of gliquidone in liver and muscle, so as to confirm its extra-pancreatic effects in vivo. TALEN technique was used to create Sur1 knockout (Sur1-/-) rats. Diabetic Sur1-/- rat models were established by high-fat diet combined with streptozotocin, and which were randomly divided into three groups: gliquidone, metformin and saline, treated for 8 weeks. Fasting blood glucose (FBG) and body mass were tested each week. IPGTT, IPITT and hyperinsulinemic-euglycemic clamp tests were used to evaluate glucose tolerance and insulin sensitivity, respectively. Key mediators of glucose metabolism in liver and skeletal muscle and the activity of AKT and AMPK in these tissues were further analyzed. We found that gliquidone decreased FBG and increased insulin sensitivity without increasing insulin secretion in diabetic Sur1-/- rats. Further exploration implied that gliquidone mainly increased hepatic glycogen storage and decreased gluconeogenesis, which were accompanied with activation of AKT, but not enhanced muscle GLUT4 expression. However, both these effects were still weaker than that of metformin. These results suggested that gliquidone could exerts an extra-pancreatic hypoglycemic effect by improving insulin sensitivity, which might be largely attributes to its additional insulin sensitizer role in hepatic glucose metabolism.
Collapse
Affiliation(s)
- Rui Zhang
- Division of Endocrinology, Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Xiaojun Zhou
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Institute of Nephrology, Laboratory of Endocrinology, Jinan, 250014, China; Division of Endocrinology, Department of Internal Medicine, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250014, China
| | - Qiqi Sheng
- Division of Endocrinology, Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Qian Zhang
- Department of Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, China
| | - Tianyue Xie
- Division of Endocrinology, Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Chunmei Xu
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Institute of Nephrology, Laboratory of Endocrinology, Jinan, 250014, China; Division of Endocrinology, Department of Internal Medicine, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250014, China
| | - Zhiwei Zou
- Division of Endocrinology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264117, China
| | - Jianjun Dong
- Division of Endocrinology, Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| | - Lin Liao
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Institute of Nephrology, Laboratory of Endocrinology, Jinan, 250014, China; Division of Endocrinology, Department of Internal Medicine, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250014, China.
| |
Collapse
|
17
|
Natural products and analogs as preventive agents for metabolic syndrome via peroxisome proliferator-activated receptors: An overview. Eur J Med Chem 2021; 221:113535. [PMID: 33992930 DOI: 10.1016/j.ejmech.2021.113535] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/19/2021] [Accepted: 05/01/2021] [Indexed: 12/20/2022]
Abstract
Natural products and synthetic analogs have drawn much attention as potential therapeutical drugs to treat metabolic syndrome. We reviewed the underlying mechanisms of 32 natural products and analogs with potential pharmacological effects in vitro, and especially in rodent models and/or patients, that usually act on the PPAR pathway, along with other molecular targets. Recent outstanding total syntheses or semisyntheses of these lead compounds are stated. In general, they can activate the transcriptional activity of PPARα, PPARγ, PPARα/γ, PPARβ/δ, PPARα/δ, PPARγ/δ and panPPAR as weak, partial agonists or selective PPARγ modulators (SPPARγM), which may be useful for managing obesity, type 2 diabetes (T2D), dyslipidemia and non-fatty liver disease (NAFLD). Terpenoids is the largest group of compounds that act as potential modulators on PPARs and are comprised from small lipophilic cannabinoids to lipophilic pentacyclic triterpenes and polar saponins. Shikimates-phenylpropanoids include polar heterocyclic flavonoids and phenolic compounds containing at least one C3-C6 unit and usually a double bond on the propyl chain. Quercetin (19), resveratrol (24) and curcumin (27), stand out from this group for exhibiting beneficial effects on patients. Alkaloids, the minor group of potential modulators on PPARs, include berberine (30), which has been widely explored in preclinical and clinical studies for its potential beneficial effects on T2D and dyslipidemia. However, large-scale clinical trials may be warranted for the promising compounds.
Collapse
|
18
|
Raj SD, Fann DY, Wong E, Kennedy BK. Natural products as geroprotectors: An autophagy perspective. Med Res Rev 2021; 41:3118-3155. [PMID: 33973253 DOI: 10.1002/med.21815] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/09/2021] [Accepted: 04/19/2021] [Indexed: 12/19/2022]
Abstract
Over the past decade, significant attention has been given to repurposing Food and Drug Administration approved drugs to treat age-related diseases. In contrast, less consideration has been given to natural bioactive compounds. Consequently, there have been limited attempts to translate these compounds. Autophagy is a fundamental biological pathway linked to aging, and numerous strategies to enhance autophagy have been shown to extend lifespan. Interestingly, there are a number of natural products that are reported to modulate autophagy, and here we describe a number of them that activate autophagy through diverse molecular and cellular mechanisms. Among these, Urolithin A, Spermidine, Resveratrol, Fatty Acids and Phospholipids, Trehalose and Lithium are featured in detail. Finally, we outline possible strategies to optimise and increase the translatability of natural products, with the overall aim of delaying the ageing process and improving human healthspan.
Collapse
Affiliation(s)
- Stephen D Raj
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Centre For Healthy Longevity, National University Health System, National University of Singapore, Singapore
| | - David Y Fann
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Centre For Healthy Longevity, National University Health System, National University of Singapore, Singapore
| | - Esther Wong
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Centre For Healthy Longevity, National University Health System, National University of Singapore, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Brian K Kennedy
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Centre For Healthy Longevity, National University Health System, National University of Singapore, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Agency for Science, Technology and Research (A*STAR), Singapore Institute for Clinical Sciences, Singapore
| |
Collapse
|
19
|
Dong ZH, Lin HY, Chen FL, Che XQ, Bi WK, Shi SL, Wang J, Gao L, He Z, Zhao JJ. Berberine improves intralipid-induced insulin resistance in murine. Acta Pharmacol Sin 2021; 42:735-743. [PMID: 32770172 PMCID: PMC8115075 DOI: 10.1038/s41401-020-0493-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 07/26/2020] [Indexed: 12/13/2022]
Abstract
Insulin resistance (IR) is a major metabolic risk factor even before the onset of hyperglycemia. Recently, berberine (BBR) is found to improve hyperglycemia and IR. In this study, we investigated whether BBR could improve IR independent of hyperglycemia. Acute insulin-resistant state was induced in rats by systemic infusion of intralipid (6.6%). BBR was administered via different delivery routes before or after the beginning of a 2-h euglycemic-hyperinsulinemic clamp. At the end of experiment, rats were sacrificed, gastrocnemius muscle was collected for detecting mitochondrial swelling, phosphorylation of Akt and AMPK, as well as the mitochondrial permeability regulator cyclophilin D (CypD) protein expression. We showed that BBR administration markedly ameliorated intralipid-induced IR without affecting blood glucose, which was accompanied by alleviated mitochondrial swelling in skeletal muscle. We used human skeletal muscle cells (HSMCs), AML12 hepatocytes, human umbilical vein endothelial cells, and CypD knockout mice to investigate metabolic and molecular alternations. In either HSMCs or AML12 hepatocytes, BBR (5 μM) abolished palmitate acid (PA)-induced increase of CypD protein levels. In CypD-deficient mice, intralipid-induced IR was greatly attenuated and the beneficial effect of BBR was diminished. Furthermore, we demonstrated that the inhibitory effect of BBR on intralipid-induced IR was mainly mediated by skeletal muscle, but not by intestine, liver, or microvasculature; BBR administration suppressed intralipid-induced upregulation of CypD expression in skeletal muscle. These results suggest that BBR alleviates intralipid-induced IR, which is related to the inhibition of CypD protein expression in skeletal muscle.
Collapse
Affiliation(s)
- Zhen-Hua Dong
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Ji-nan, 250021, China
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Academy of Clinical Medicine, Ji-nan, 250021, China
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Ji-nan, 250021, China
- Cheeloo College of Medicine, Shandong University, Ji-nan, 250000, China
- Department of Endocrinology, Ji-nan Central Hospital, Cheeloo College of Medicine, Shandong University, Ji-nan, 250000, China
| | - Hai-Yan Lin
- Department of Health Management Center, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Ji-nan, 250000, China
| | - Fu-Lian Chen
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Ji-nan, 250021, China
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Academy of Clinical Medicine, Ji-nan, 250021, China
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Ji-nan, 250021, China
| | - Xiao-Qi Che
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Ji-nan, 250021, China
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Academy of Clinical Medicine, Ji-nan, 250021, China
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Ji-nan, 250021, China
- Cheeloo College of Medicine, Shandong University, Ji-nan, 250000, China
| | - Wen-Kai Bi
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Ji-nan, 250021, China
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Academy of Clinical Medicine, Ji-nan, 250021, China
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Ji-nan, 250021, China
- Cheeloo College of Medicine, Shandong University, Ji-nan, 250000, China
| | - Shu-Long Shi
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Ji-nan, 250021, China
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Academy of Clinical Medicine, Ji-nan, 250021, China
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Ji-nan, 250021, China
| | - Jing Wang
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Ji-nan, 250021, China
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Academy of Clinical Medicine, Ji-nan, 250021, China
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Ji-nan, 250021, China
- Cheeloo College of Medicine, Shandong University, Ji-nan, 250000, China
| | - Ling Gao
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University and Shandong Academy of Medical Sciences, Ji-nan, 250000, China.
| | - Zhao He
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Ji-nan, 250021, China.
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Academy of Clinical Medicine, Ji-nan, 250021, China.
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Ji-nan, 250021, China.
- Cheeloo College of Medicine, Shandong University, Ji-nan, 250000, China.
| | - Jia-Jun Zhao
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Ji-nan, 250021, China.
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Academy of Clinical Medicine, Ji-nan, 250021, China.
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Ji-nan, 250021, China.
| |
Collapse
|
20
|
Adefegha SA, Oboh G, Dada FA, Oyeleye SI, Okeke BM. Berberine modulates crucial erectogenic biomolecules and alters histological architecture in penile tissues of diabetic rats. Andrologia 2021; 53:e14074. [PMID: 33930193 DOI: 10.1111/and.14074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 03/12/2021] [Accepted: 04/01/2021] [Indexed: 11/29/2022] Open
Abstract
Berberine is an isoquinoline alkaloid, found in several plants. Diabetes induces erectile dysfunction (ED) via reduction in some hormones and enzymes implicated in sexual function. This study aimed to investigate the role of berberine on crucial biomolecules linked to penile function in diabetic rats. Sixty-three (63) adult male rats were used and distributed into nine groups (each = 7). Group I-IV normal rats administered with citrate buffer (pH 4.5), sildenafil citrate (SD, 5.0 mg/kg), 50 and 100 mg/kg of berberine, respectively, via oral gavage. Rats in groups V-IX were diabetic rat with ED treated with buffer, SD, 50 and 100 mg/kg of berberine, and acarbose (25 mg/kg ACA) respectively. The result revealed that histological architecture in penile tissues were altered in diabetic groups treated with berberine, sildenafil citrate and acarbose when compared to the diabetic control group. Treatment with berberine, increased testosterone, luteinizing hormone and follicle-stimulating hormone in diabetic rat with ED. Also, reduced prolactin level and acetylcholinesterase, angiotensin-1 converting enzyme, adenosine deaminase and arginase activities were observed in berberine treated diabetic rat with ED. Molecular docking analysis revealed that berberine had strong binding affinities for these enzymes. Thus, berberine could represent a potential therapeutic agent for diabetes-induced ED.
Collapse
Affiliation(s)
- Stephen Adeniyi Adefegha
- Functional Foods, Nutraceuticals and Phytomedicine Laboratory, Department of Biochemistry, Federal University of Technology, Akure, Nigeria
| | - Ganiyu Oboh
- Functional Foods, Nutraceuticals and Phytomedicine Laboratory, Department of Biochemistry, Federal University of Technology, Akure, Nigeria
| | - Felix Abayomi Dada
- Functional Foods, Nutraceuticals and Phytomedicine Laboratory, Department of Biochemistry, Federal University of Technology, Akure, Nigeria.,Science Laboratory Technology Department (Biochemistry Unit), Federal Polytechnic Ede, Ede, Nigeria
| | - Sunday Idowu Oyeleye
- Functional Foods, Nutraceuticals and Phytomedicine Laboratory, Department of Biochemistry, Federal University of Technology, Akure, Nigeria.,Department of Biomedical Technology, Federal University of Technology, Akure, Nigeria
| | - Bathlomew Maduka Okeke
- Functional Foods, Nutraceuticals and Phytomedicine Laboratory, Department of Biochemistry, Federal University of Technology, Akure, Nigeria
| |
Collapse
|
21
|
Xiao Y, Liu Y, Lai Z, Huang J, Li C, Zhang Y, Gong X, Deng J, Ye X, Li X. An integrated network pharmacology and transcriptomic method to explore the mechanism of the total Rhizoma Coptidis alkaloids in improving diabetic nephropathy. JOURNAL OF ETHNOPHARMACOLOGY 2021; 270:113806. [PMID: 33444721 DOI: 10.1016/j.jep.2021.113806] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 01/04/2021] [Accepted: 01/06/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Rhizoma Coptidis (RC) is a traditional Chinese medicine (TCM) used for treating diabetes (Xiao Ke Zheng), which is firstly recorded in Shennong Bencao Jing. Modern pharmacological studies have confirmed that RC has beneficial effects on diabetes and its complications. Alkaloids are the main active pharmacological component of RC. However, the effect and molecular mechanism of total Rhizoma Coptidis alkaloids (TRCA) in improving diabetic nephropathy (DN) are still unclear. AIM OF THE STUDY To verify the effect of TRCA in the treatment of DN and clarify the molecular mechanism by combining network pharmacology and transcriptomic. MATERIALS AND METHODS Eight-week-old db/db mice were orally administered with normal saline, 100 mg/kg TRCA, and 100 mg/kg berberine (BBR) for 8 weeks. Serum, urine, and kidney samples were collected to measure biological indicators and observe renal pathological changes. Then, the molecular mechanism of TRCA improving DN was predicted by the network pharmacology. Briefly, the main active alkaloids components of TRCA and their targets were collected from the database, as well as the potential targets of DN. Using the Cytoscape software to visualize the interactive network diagram of "ingredient-target". The GO and KEGG pathways enrichment analysis of the core targets were executed by Metascape. Furthermore, RNA-seq was used to get whole transcriptomes from the kidneys of db/m mice, db/db mice, and db/db mice treated with TRCA. The key differentially expressed genes (DEGs) were gathered to conduct the GO and KEGG pathways enrichment analysis. Finally, the potential pathways were validated by western blotting. RESULTS The administration of BBR or TRCA for 8 weeks significantly reduced the fasting blood glucose (FBG) and body weight of db/db mice, and improved their renal function and lipid disorders. According to H&E, PAS, and Masson staining, both the BBR and TRCA could alleviate renal damage and fibrosis. The Venn diagram had shown that seven alkaloids ingredients collected from TRCA regulated 85 common targets merged in the TRCA and DN. The results of RNA-seq indicated that there are 121 potential targets for TRCA treatment on DN. Intriguingly, both the AGE-RAGE signaling pathway and the PI3k-Akt signaling pathway were included in the KEGG pathways enrichment results of network pharmacology and RNA-seq. Moreover, we verified that TRCA down-regulated the expression of related proteins in the AGEs-RAGE-TGFβ/Smad2 and PI3K-Akt pathways in the kidney tissues. CONCLUSIONS In summary, the renal protection of TRCA on DN may be related to activation of the AGEs-RAGE-TGFβ/Smad2 and PI3K-Akt signaling pathways.
Collapse
Affiliation(s)
- Yaping Xiao
- College of Pharmaceutical Sciences, Translational Pharmacy Center of Medical Research Institute, Southwest University, Chongqing, 400716, China
| | - Yan Liu
- College of Pharmaceutical Sciences, Translational Pharmacy Center of Medical Research Institute, Southwest University, Chongqing, 400716, China
| | - Zhihui Lai
- College of Pharmaceutical Sciences, Translational Pharmacy Center of Medical Research Institute, Southwest University, Chongqing, 400716, China
| | - Jieyao Huang
- College of Pharmaceutical Sciences, Translational Pharmacy Center of Medical Research Institute, Southwest University, Chongqing, 400716, China
| | - Chunming Li
- College of Pharmaceutical Sciences, Translational Pharmacy Center of Medical Research Institute, Southwest University, Chongqing, 400716, China
| | - Yaru Zhang
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Xiaobao Gong
- College of Pharmaceutical Sciences, Translational Pharmacy Center of Medical Research Institute, Southwest University, Chongqing, 400716, China
| | - Jianling Deng
- College of Pharmaceutical Sciences, Translational Pharmacy Center of Medical Research Institute, Southwest University, Chongqing, 400716, China
| | - Xiaoli Ye
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China.
| | - Xuegang Li
- College of Pharmaceutical Sciences, Translational Pharmacy Center of Medical Research Institute, Southwest University, Chongqing, 400716, China.
| |
Collapse
|
22
|
Rosenzweig T, Sampson SR. Activation of Insulin Signaling by Botanical Products. Int J Mol Sci 2021; 22:ijms22084193. [PMID: 33919569 PMCID: PMC8073144 DOI: 10.3390/ijms22084193] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 12/19/2022] Open
Abstract
Type 2 diabetes (T2D) is a worldwide health problem, ranked as one of the leading causes for severe morbidity and premature mortality in modern society. Management of blood glucose is of major importance in order to limit the severe outcomes of the disease. However, despite the impressive success in the development of new antidiabetic drugs, almost no progress has been achieved with regard to the development of novel insulin-sensitizing agents. As insulin resistance is the most eminent factor in the patho-etiology of T2D, it is not surprising that an alarming number of patients still fail to meet glycemic goals. Owing to its wealth of chemical structures, the plant kingdom is considered as an inventory of compounds exerting various bioactivities, which might be used as a basis for the development of novel medications for various pathologies. Antidiabetic activity is found in over 400 plant species, and is attributable to varying mechanisms of action. Nevertheless, relatively limited evidence exists regarding phytochemicals directly activating insulin signaling, which is the focus of this review. Here, we will list plants and phytochemicals that have been found to improve insulin sensitivity by activation of the insulin signaling cascade, and will describe the active constituents and their mechanism of action.
Collapse
Affiliation(s)
- Tovit Rosenzweig
- Departments of Molecular Biology and Nutritional Studies, Ariel University, Ariel 4077625, Israel
- Correspondence:
| | - Sanford R. Sampson
- Department of Molecular Cell Biology, Rehovot and Faculty of Life Sciences, Weizmann Institute of Science, Bar-Ilan University, Ramat-Gan 5290002, Israel;
| |
Collapse
|
23
|
Ajebli M, Khan H, Eddouks M. Natural Alkaloids and Diabetes Mellitus: A Review. Endocr Metab Immune Disord Drug Targets 2021; 21:111-130. [PMID: 32955004 DOI: 10.2174/1871530320666200821124817] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 02/11/2020] [Accepted: 06/22/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The use of herbal therapies for treatment and management of diabetes mellitus and complications associated with this chronic condition is increasing. Plants contain a bounty of phytochemicals that have been proven to be protective by reducing the risk of various ailments and diseases, including alkaloids. Moreover, alkaloids are known to be among the oldest natural products used by humans for highlighting drugs that play crucial roles as therapeutic agents. The reason for this expanding interest and uses of alkaloids as a part of plant natural compounds-based treatments is that a significant proportion of diabetic patients do not respond very well to conventional therapeutic medication. Furthermore, other explanations to this fact are the cost of medication, side-effects, accessibility, and availability of health facilities and drugs and the inefficiency of these medicines in certain cases. OBJECTIVE In this study we aimed to review the literature on the valuable effects of herbs and plants and their isolated alkaloids compounds as medication for management of diabetes, a prevalent risk factor for several other disorders and illnesses. METHODS In the current review, PubMed, ScienceDirect, Springer and google scholar databases were used and the criterion for inclusion was based on the following keywords and phrases: diabetes, hyperglycemia, complications of diabetes, alkaloids, antidiabetic alkaloids, hypoglycemic alkaloids, alkaloids and complications of diabetes mellitus, mechanisms of action and alkaloids. RESULTS In the current review, we demonstrate that alkaloids in the form of extracts and isolated molecules obtained from a large variety of species demonstrated their efficiency for improving raises in blood glucose either in animal models via experimental studies or in human subjects via clinical trials. Medicinal species as chillies (Capsicum annuum), turmeric (Curcuma longa), barberry (Berberis vulgaris) and cress (Lepidium sativum) are among the most common and therapeutic plants used for controlling diabetes that were the subject of several experimental and clinical investigations. Whereas, isolated alkaloids such as berberine, capsaicin and trigonelline have received more interest in this field. Interestingly, the therapeutic impact of alkaloids against blood glucose pathogenesis is mediated through a variety of signaling cascades and pathways, via inhibiting or stimulating diversity of systems such as inhibition of α-glucosidase enzyme, blockade of PTP- 1B, deactivation of DPP-IV, increasing insulin sensitivity and modulating the oxidative stress. CONCLUSION Based on the findings of the present review, alkaloids could be used as preventive and curative agents in the case of endocrine disorders, particularly diabetes and could play a promoting function for the discovery of new antidiabetic agents.
Collapse
Affiliation(s)
- Mohammed Ajebli
- Team of Ethnopharmacology and Pharmacognosy, Faculty of Sciences and Techniques Errachidia, Moulay Ismail University of Meknes, BP 509, Boutalamine, 52000, Errachidia, Morocco
| | - Haroun Khan
- Abdul Wali Khan University, Mardan, Pakistan
| | - Mohamed Eddouks
- Team of Ethnopharmacology and Pharmacognosy, Faculty of Sciences and Techniques Errachidia, Moulay Ismail University of Meknes, BP 509, Boutalamine, 52000, Errachidia, Morocco
| |
Collapse
|
24
|
Sadighi A, abdi A, Azarbayjani MA, barari A. Response of Some Apoptotic Indices to Six Weeks of Aerobic Training in Streptozotocin-Induced Diabetic Rats. MEDICAL LABORATORY JOURNAL 2021. [DOI: 10.29252/mlj.15.1.33] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
25
|
Sui M, Jiang X, Sun H, Liu C, Fan Y. Berberine Ameliorates Hepatic Insulin Resistance by Regulating microRNA-146b/SIRT1 Pathway. Diabetes Metab Syndr Obes 2021; 14:2525-2537. [PMID: 34113144 PMCID: PMC8187038 DOI: 10.2147/dmso.s313068] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 05/22/2021] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE Hepatic insulin resistance is a major initiating factor for type 2 diabetes mellitus. In previous study, Gegen Qinlian Decoction containing berberine could enhance hepatic insulin sensitivity by SIRT1-dependent deacetylation of FOXO1. However, it is not clear whether berberine also can improve hepatic insulin sensitivity by SIRT1/FOXO1 pathway. This study aimed to evaluate the efficacy of berberine for improving hepatic insulin resistance and the possible molecular mechanisms involved. METHODS In vitro, HepG2 cells were induced with palmitic acid, and glycogen synthesis was examined. In vivo, a high-fat diet (HFD)-fed mouse model was established, and metabolic parameters were assessed. The expressions of miR-146b and sirtuin 1 (SIRT1) in liver were also examined. The relationship between miR-146b and SIRT1 was examined by the dual-luciferase reporter gene assay. RESULTS Serum biochemical parameters, such as glucose and HOMA-IR index, were increased in HFD mice; miR-146b and SIRT1 were abnormally expressed in HFD mice and palmitic acid-treated HepG2 cells. Interestingly, berberine reduced body weight and caused a significant improvement in glucose tolerance and HOMA-IR index without altering food intake in mice. Overexpression of miR-146b abolished the protective effect of berberine on palmitic acid-induced impaired glycogen synthesis in HepG2 cells. Luciferase assay showed that miR-146b directly targeted SIRT1. CONCLUSION The present findings suggest that berberine could attenuate hepatic insulin resistance through the miR-146b/SIRT1 pathway, which may represent a potential therapeutic target for the prevention and treatment of metabolic diseases, particularly diabetes.
Collapse
Affiliation(s)
- Miao Sui
- Department of Endocrinology, Xuzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Xuzhou, People’s Republic of China
| | - Xiaofei Jiang
- Department of Endocrinology, Xuzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Xuzhou, People’s Republic of China
| | - Hongping Sun
- Endocrine and Diabetes Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Chao Liu
- Endocrine and Diabetes Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Yaofu Fan
- Endocrine and Diabetes Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
- Correspondence: Yaofu Fan; Chao Liu Endocrine and Diabetes Center, Jiangsu Province Hospital on Integration of Chinese and Western Medicine, Nanjing University of Traditional Chinese Medicine, No. 100 Shizi Street, Hongshan Road, Nanjing, Jiangsu, 210008, People’s Republic of ChinaTel +86-25-8560 8733 Email ;
| |
Collapse
|
26
|
Chen X, Yan XR, Liu J, Zhang LP. Chaiqi decoction ameliorates vascular endothelial injury in metabolic syndrome by upregulating autophagy. Am J Transl Res 2020; 12:4902-4922. [PMID: 33042397 PMCID: PMC7540156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
OBJECTIVE The present study aimed to investigate the protective effect of the Chaiqi decoction on vascular endothelial injury in metabolic syndrome and to determine whether the underlying mechanism was associated with autophagy. METHODS Chaiqi formula granules were administered to a rat model of metabolic syndrome established by feeding with a high-salt-sugar-fat diet (HSSFD). The drug-containing serum was used in a hyperglycemia cell model established using HUVECs cultured with palmitic acid PA. The influence of the Chaiqi decoction on metabolic syndrome-related vascular endothelial injury and autophagy was investigated. Autophagy flux was assessed in vitro by transfecting cells with GFP-mRFP-LC3 adenoviruses or incubating with DALGreen and DAPRed. RESULTS The metabolic syndrome model rats displayed adiposity, hyperglycemia, dyslipidemia, hypertension, thickened intima, deposition of various forms of collagen and lipid droplets, downregulated levels of phosphorylated endothelial nitric oxide synthase and nitric oxide, upregulated expression of endothelin 1, and dysfunctional autophagy. All these abnormalities were ameliorated by administration of the Chaiqi decoction to the metabolic syndrome rats. Furthermore, the Chaiqi-containing serum could upregulate autophagy similarly to rapamycin, in a time-dependent manner. CONCLUSION The Chaiqi decoction could ameliorate vascular endothelial injury by improving autophagy in metabolic syndrome.
Collapse
Affiliation(s)
- Xun Chen
- Xiyuan Hospital, China Academy of Chinese Medical SciencesBeijing, China
- Beijing University of Chinese Medicine, China Academy of Chinese Medical SciencesBeijing, China
| | - Xiao-Ru Yan
- Guang’anmen Hospital, China Academy of Chinese Medical SciencesBeijing, China
| | - Jing Liu
- Beijing University of Chinese Medicine, China Academy of Chinese Medical SciencesBeijing, China
- Dongfang Hospital of Beijing University of Chinese MedicineBeijing, China
| | - Li-Ping Zhang
- Beijing University of Chinese Medicine, China Academy of Chinese Medical SciencesBeijing, China
- Dongfang Hospital of Beijing University of Chinese MedicineBeijing, China
| |
Collapse
|
27
|
Wang L, Deng L, Lin N, Shi Y, Chen J, Zhou Y, Chen D, Liu S, Li C. Berberine inhibits proliferation and apoptosis of vascular smooth muscle cells induced by mechanical stretch via the PDI/ERS and MAPK pathways. Life Sci 2020; 259:118253. [PMID: 32795536 DOI: 10.1016/j.lfs.2020.118253] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 08/03/2020] [Accepted: 08/08/2020] [Indexed: 12/13/2022]
Abstract
AIMS We recently demonstrated that mechanical stretch increases the proliferation and apoptosis of vascular smooth muscle cells (VSMCs) by activating the protein disulfide isomerase (PDI) redox system, thus accelerating atherosclerotic lesion formation in the transplanted vein. At present, there are no efficient intervention measures to prevent this phenomenon. Berberine inhibits pathological vascular remodeling caused by hypertension, but the underlying mechanism is controversial. Herein, we investigate the role of berberine and the underlying mechanism of its effects on mechanical stretch-induced VSMC proliferation and apoptosis. MAIN METHODS Mouse VSMCs cultivated on flexible membranes were pretreated for 1 h with one of the following substances: berberine, PDI inhibitor bacitracin, MAPK inhibitors, or ERS inhibitor 4-PBA. VSMCs were then subjected to mechanical stretch. Immunofluorescence and western blot were used to detect proliferation and apoptosis, as well as to analyze signaling pathways in VSMCs. KEY FINDINGS Our results showed that berberine inhibits the PDI-endoplasmic reticulum stress system, thereby attenuating the simultaneous increase of VSMC proliferation and apoptosis in response to mechanical stretch. Interestingly, MAPK inhibitors PD98059, SP600125, and SB202190 significantly reduced the activation of ERS signaling cascades, and their combination with berberine had additive effects. The ERS inhibitor 4-PBA reduced PDI activation and ERS signaling, but not MAPK phosphorylation. Moreover, caspase-3 and caspase-12 were downregulated by berberine. SIGNIFICANCE These results illustrate a novel mechanism of action of berberine that has practical implications. Our data provide important insights for the prevention and treatment of vascular remodeling and diseases caused by mechanical stretching during hypertension.
Collapse
Affiliation(s)
- Linli Wang
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, China
| | - Lie Deng
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, China
| | - Ning Lin
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, China
| | - Yi Shi
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-sen University, China
| | - Jingbo Chen
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, China
| | - Yan Zhou
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, China
| | - Dadi Chen
- Experimental Center for Basic Medical Teaching, Zhongshan School of Medicine, Sun Yat-sen University, China
| | - Shuying Liu
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, China.
| | - Chaohong Li
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, China.
| |
Collapse
|
28
|
Kara E, Kahraman E, Dayar E, Yetik Anacak G, Demir O, Gidener S, Atabey N, Durmus N. The role of resistin on metabolic syndrome-induced erectile dysfunction and the possible therapeutic effect of Boldine. Andrology 2020; 8:1728-1735. [PMID: 32609430 DOI: 10.1111/andr.12853] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 06/02/2020] [Accepted: 06/24/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Resistin is known as a potential mediator of obesity-associated insulin resistance. The high resistin level disrupts nitric oxide (NO)-mediated relaxation which is also important in erectile function. An antioxidant alkaloid, Boldine, is known as anti-diabetic and protects endothelial functions. OBJECTIVES We aimed to investigate resistin expression in penile tissue in the presence of insulin resistance (IR) and the effect of Boldine treatment on erectile functions in the metabolic syndrome (MetS) rat model. MATERIALS AND METHODS Wistar rats were randomly divided into three groups: Control, MetS, and boldine treated MetS group. MetS parameters were assessed by serum triglycerides (TG), uric acid (UA), glucose, insulin levels, HOMA index, and waist circumference (WC)/tibia length (TL) ratio. To evaluate erectile functions, intracavernous pressure (ICP)/mean arterial pressure (MAP) ratio was performed during cavernous nerve stimulation. Protein expressions of resistin, endothelial nitric oxide synthase (eNOS), p(S1177) eNOS, and insulin receptor-β were evaluated by Western blotting. RESULTS TG, glucose, insulin levels, weight, WC/TL ratio, HOMA index and resistin expression in penile tissue were significantly increased and ICP/MAP values, and p (S1177) eNOS expression in penile tissue were decreased in MetS group. Boldine treatment enhanced ICP/MAP values, insulin receptor-β and p(S1177) eNOS expressions compared with the MetS group. DISCUSSION AND CONCLUSION MetS caused a deterioration in erectile function accompanied by an increase in resistin expression and a reduction in eNOS enzyme activation in the rat penile tissues. Boldine treatment resulted in an improvement in erectile function, independent of resistin expression.
Collapse
Affiliation(s)
- Erkan Kara
- Department of Pharmacology, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | | | - Ezgi Dayar
- Department of Pharmacology, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Gunay Yetik Anacak
- Department of Pharmacology, Faculty of Parmacy, Ege University, Izmir, Turkey
| | - Omer Demir
- Department of Urology, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Sedef Gidener
- Department of Pharmacology, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Nese Atabey
- Izmir Biomedicine and Genome Center, Izmir, Turkey
| | - Nergiz Durmus
- Department of Pharmacology, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| |
Collapse
|
29
|
Song D, Hao J, Fan D. Biological properties and clinical applications of berberine. Front Med 2020; 14:564-582. [DOI: 10.1007/s11684-019-0724-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 10/12/2019] [Indexed: 02/06/2023]
|
30
|
Belwal T, Bisht A, Devkota HP, Ullah H, Khan H, Pandey A, Bhatt ID, Echeverría J. Phytopharmacology and Clinical Updates of Berberis Species Against Diabetes and Other Metabolic Diseases. Front Pharmacol 2020; 11:41. [PMID: 32132921 PMCID: PMC7040237 DOI: 10.3389/fphar.2020.00041] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 01/14/2020] [Indexed: 02/05/2023] Open
Abstract
The incidences of diabetic mellitus and other metabolic diseases such as hypertension and hyperlipidemia are increasing worldwide; however, the current treatment is not able to control the rapidly increasing trend in diabetes mortality and morbidity. Studies related to the effectiveness of extracts and pure compounds obtained from plants have shown promising responses in preclinical and clinical studies related to these metabolic diseases. Plants belonging to the genus Berberis (Family: Berberidaceae) are widely distributed with nearly 550 species worldwide. Extracts and compounds obtained from Berberis species, especially Berberine alkaloid, showed effectiveness in the management of diabetes and other metabolic diseases. Various pharmacological experiments have been performed to evaluate the effects of Berberis extracts, berberine, and its natural and chemically synthesized derivatives against various cell and animal disease models with promising results. Various clinical trials conducted so far also showed preventive effects of Berberis extracts and berberine against metabolic diseases. The present review focuses on i) research updates on traditional uses, ii) phytopharmacology and clinical studies on Berberis species, and iii) active metabolites in the prevention and treatment of diabetes and other metabolic diseases with a detailed mechanism of action. Furthermore, the review critically analyzes current research gaps in the therapeutic use of Berberis species and berberine and provides future recommendations.
Collapse
Affiliation(s)
- Tarun Belwal
- Centre for Biodiversity Conservation and Management, G. B. Pant National Institute of Himalayan Environment and Sustainable Development (GBPNIHESD), Kosi-Katarmal, Almora, India
| | - Aarti Bisht
- Centre for Biodiversity Conservation and Management, G. B. Pant National Institute of Himalayan Environment and Sustainable Development (GBPNIHESD), Kosi-Katarmal, Almora, India
| | - Hari Prasad Devkota
- Department of Instrumental Analysis, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
- Program for Leading Graduate Schools, Health Life Science: Interdisciplinary and Glocal Oriented (HIGO) Program, Kumamoto University, Kumamoto, Japan
| | - Hammad Ullah
- Department of Pharmacy, Abdul Wali Khan University, Mardan, Pakistan
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, Pakistan
| | - Aseesh Pandey
- Centre for Biodiversity Conservation and Management, G.B. Pant National Institute of Himalayan Environment and Sustainable Development, Sikkim Regional Centre, Pangthang, Gangtok, India
| | - Indra Dutt Bhatt
- Centre for Biodiversity Conservation and Management, G. B. Pant National Institute of Himalayan Environment and Sustainable Development (GBPNIHESD), Kosi-Katarmal, Almora, India
| | - Javier Echeverría
- Department of Environmental Sciences, Faculty of Chemistry and Biology, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
31
|
Shinjyo N, Parkinson J, Bell J, Katsuno T, Bligh A. Berberine for prevention of dementia associated with diabetes and its comorbidities: A systematic review. JOURNAL OF INTEGRATIVE MEDICINE-JIM 2020; 18:125-151. [PMID: 32005442 DOI: 10.1016/j.joim.2020.01.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 12/04/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND A growing number of epidemiological studies indicate that metabolic syndrome (MetS) and its associated features play a key role in the development of certain degenerative brain disorders, including Alzheimer's disease and vascular dementia. Produced by several different medicinal plants, berberine is a bioactive alkaloid with a wide range of pharmacological effects, including antidiabetic effects. However, it is not clear whether berberine could prevent the development of dementia in association with diabetes. OBJECTIVE To give an overview of the therapeutic potential of berberine as a treatment for dementia associated with diabetes. SEARCH STRATEGY Database searches A and B were conducted using PubMed and ScienceDirect. In search A, studies on berberine's antidementia activities were identified using "berberine" and "dementia" as search terms. In search B, recent studies on berberine's effects on diabetes were surveyed using "berberine" and "diabetes" as search terms. INCLUSION CRITERIA Clinical and preclinical studies that investigated berberine's effects associated with MetS and cognitive dysfunction were included. DATA EXTRACTION AND ANALYSIS Data from studies were extracted by one author, and checked by a second; quality assessments were performed independently by two authors. RESULTS In search A, 61 articles were identified, and 22 original research articles were selected. In search B, 458 articles were identified, of which 101 were deemed relevant and selected. Three duplicates were removed, and a total of 120 articles were reviewed for this study. The results demonstrate that berberine exerts beneficial effects directly in the brain: enhancing cholinergic neurotransmission, improving cerebral blood flow, protecting neurons from inflammation, limiting hyperphosphorylation of tau and facilitating β-amyloid peptide clearance. In addition, evidence is growing that berberine is effective against diabetes and associated disorders, such as atherosclerosis, cardiomyopathy, hypertension, hepatic steatosis, diabetic nephropathy, gut dysbiosis, retinopathy and neuropathy, suggesting indirect benefits for the prevention of dementia. CONCLUSION Berberine could impede the development of dementia via multiple mechanisms: preventing brain damages and enhancing cognition directly in the brain, and indirectly through alleviating risk factors such as metabolic dysfunction, and cardiovascular, kidney and liver diseases. This study provided evidence to support the value of berberine in the prevention of dementia associated with MetS.
Collapse
Affiliation(s)
- Noriko Shinjyo
- Department of Infection and Host Defense, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba 260-8670, Japan.
| | - James Parkinson
- Department of Life Sciences, Faculty of Science and Technology at the University of Westminster, London W1W 6UW, United Kingdom
| | - Jimmy Bell
- Department of Life Sciences, Faculty of Science and Technology at the University of Westminster, London W1W 6UW, United Kingdom.
| | - Tatsuro Katsuno
- Kashiwanoha Clinic of East Asian Medicine, Chiba University Hospital, Kashiwa, Chiba 277-0882, Japan
| | - Annie Bligh
- School of Health Sciences, Caritas Institute of Higher Education, Tseung Kwan O, NT 999077, Hong Kong, China.
| |
Collapse
|
32
|
Berberine Attenuates Hyperglycemia by Inhibiting the Hepatic Glucagon Pathway in Diabetic Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6210526. [PMID: 31976031 PMCID: PMC6961611 DOI: 10.1155/2020/6210526] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 09/05/2019] [Accepted: 10/08/2019] [Indexed: 12/14/2022]
Abstract
Dysregulated glucagon drives hyperfunction in hepatic glucose output, which is the main cause of persistent hyperglycemia in type 2 diabetes. Berberine (Zhang et al., 2010) has been used as a hypoglycemic agent, yet the mechanism by which BBR inhibits hepatic gluconeogenesis remains incompletely understood. In this study, we treated diabetic mice with BBR, tested blood glucose levels, and then performed insulin, glucose lactate, and glucagon tolerance tests. Intracellular cAMP levels in hepatocytes were determined by ELISA, hepatic gluconeogenetic genes were assayed by RT-qPCR, and the phosphorylation of CREB, which is the transcriptional factor controlling the expression of gluconeogenetic genes, was detected by western blot. BBR reduced blood glucose levels, improved insulin and glucose tolerance, and suppressed lactate- and glucagon-induced hepatic gluconeogenesis in ob/ob and STZ-induced diabetic mice. Importantly, BBR blunted glucagon-induced glucose production and gluconeogenic gene expression in hepatocytes, presumably through reducing cAMP, which resulted in the phosphorylation of CREB. By utilizing a cAMP analogue, adenylate cyclase (AC), to activate cAMP synthetase, and an inhibitor of the cAMP degradative enzyme, phosphodiesterase (PDE), we revealed that BBR accelerates intracellular cAMP degradation. BBR reduces the intracellular cAMP level by activating PDE, thus blocking activation of downstream CREB and eventually downregulating gluconeogenic genes to restrain hepatic glucose production.
Collapse
|
33
|
Christodoulou MI, Tchoumtchoua J, Skaltsounis AL, Scorilas A, Halabalaki M. Natural Alkaloids Intervening the Insulin Pathway: New Hopes for Anti-Diabetic Agents? Curr Med Chem 2019; 26:5982-6015. [PMID: 29714135 DOI: 10.2174/0929867325666180430152618] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/16/2018] [Accepted: 04/18/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Accumulating experimental data supports the capacity of natural compounds to intervene in complicated molecular pathways underlying the pathogenesis of certain human morbidities. Among them, diabetes is now a world's epidemic associated with increased risk of death; thus, the detection of novel anti-diabetic agents and/or adjuvants is of vital importance. Alkaloids represent a diverse group of natural products with a range of therapeutic properties; during the last 20 years, published research on their anti-diabetic capacity has been tremendously increased. PURPOSE To discuss current concepts on the anti-diabetic impact of certain alkaloids, with special reference to their molecular targets throughout the insulin-signaling pathway. METHODOLOGY Upon in-depth search in the SCOPUS and PUBMED databases, the literature on alkaloids with insulin secretion/sensitization properties was critically reviewed. RESULTS In-vitro and in-vivo evidence supports the effect of berberine, trigonelline, piperine, oxymatrine, vindoneline, evodiamine and neferine on insulin-signaling and related cascades in beta-cells, myocytes, adipocytes, hepatocytes and other cells. Associated receptors, kinases, hormones and cytokines, are affected in terms of gene transcription, protein expression, activity and/or phosphorylation. Pathophysiological processes associated with insulin resistance, beta-cell failure, oxidative stress and inflammation, as well as clinical phenotype are also influenced. DISCUSSION Growing evidence suggests the ability of specific alkaloids to intervene in the insulin-signal transduction pathway, reverse molecular defects resulting in insulin resistance and glucose intolerance and improve disease complications, in-vitro and in-vivo. Future indepth molecular studies are expected to elucidate their exact mechanism of action, while large clinical trials are urgently needed to assess their potential as anti-diabetic agents.
Collapse
Affiliation(s)
- Maria-Ioanna Christodoulou
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Panepistimioupoli Zografou 15771, Athens, Greece
| | - Job Tchoumtchoua
- Department of Pharmacognosy and Natural Product Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupoli Zografou 15771, Athens, Greece
| | - Alexios-Leandros Skaltsounis
- Department of Pharmacognosy and Natural Product Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupoli Zografou 15771, Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Panepistimioupoli Zografou 15771, Athens, Greece
| | - Maria Halabalaki
- Department of Pharmacognosy and Natural Product Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupoli Zografou 15771, Athens, Greece
| |
Collapse
|
34
|
Zhang X, Liu XD, Xian YF, Zhang F, Huang PY, Tang Y, Yuan QJ, Lin ZX. Berberine enhances survival and axonal regeneration of motoneurons following spinal root avulsion and re-implantation in rats. Free Radic Biol Med 2019; 143:454-470. [PMID: 31472247 DOI: 10.1016/j.freeradbiomed.2019.08.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/17/2019] [Accepted: 08/27/2019] [Indexed: 01/10/2023]
Abstract
Brachial plexus avulsion (BPA) occurs when the spinal nerve roots are pulled away from the surface of the spinal cord and disconnects neuronal cell body from its distal downstream axon, which induces massive motoneuron death, motor axon degeneration and de-innervation of targeted muscles, thereby resulting in permanent paralysis of motor functions in the upper limb. Avulsion injury triggers oxidative stress and intense local neuroinflammation at the lesioned site, leading to the death of most motoneurons. Berberine (BBR), a natural isoquinoline alkaloid derived from medicinal herbs of Berberis and Coptis species, has been reported to possess neuro-protective, anti-inflammatory and anti-oxidative effects in various animal models of central nervous system (CNS)-related disorders. In this study, we aimed to investigate the effect of BBR on motoneuron survival and axonal regeneration following spinal root avulsion plus re-implantation in rats. Our results indicated BBR significantly accelerated motor function recovery in the forelimb as revealed by the increased Terzis grooming test score, facilitated motor axon regeneration as evidenced by the elevated number of Fluoro-Gold-labeled and P75-positive regenerative motoneurons. The survival of motoneurons was notably promoted by BBR administration presented with boosted ChAT-immunopositive and neutral red-stained neurons. BBR treatment efficiently alleviated muscle atrophy, attenuated functional motor endplates loss in biceps and prevented the reduction of motor axons in the musculocutaneous nerve. Additionally, BBR treatment markedly mitigated the avulsion-induced neuroinflammation via inhibiting microglial and astroglial reactivity, up-regulated the expression of antioxidative indicator Cu/Zn SOD, and down-regulated the levels of nNOS, 3-NT, lipid peroxidation and NF-κB, as well as promoted SIRT1, PI3K and Akt activation. Collectively, BBR might be a promising therapy to assist re-implantation surgery for the treatment of BPA.
Collapse
Affiliation(s)
- Xie Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China; Brain Research Centre, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China.
| | - Xiao-Dong Liu
- Department of Anaesthesia and Intensive Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China.
| | - Yan-Fang Xian
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China; Brain Research Centre, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China.
| | - Feng Zhang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, 999077, China.
| | - Peng-Yun Huang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China; Brain Research Centre, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China.
| | - Ying Tang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China; Brain Research Centre, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China.
| | - Qiu-Ju Yuan
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China; Brain Research Centre, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China.
| | - Zhi-Xiu Lin
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China; Brain Research Centre, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China.
| |
Collapse
|
35
|
Vanadium compounds induced damage of human umbilical vein endothelial cells and the protective effect of berberine. Biometals 2019; 32:785-794. [DOI: 10.1007/s10534-019-00211-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 08/29/2019] [Indexed: 10/26/2022]
|
36
|
Mohammadinejad R, Ahmadi Z, Tavakol S, Ashrafizadeh M. Berberine as a potential autophagy modulator. J Cell Physiol 2019; 234:14914-14926. [PMID: 30770555 DOI: 10.1002/jcp.28325] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/21/2019] [Accepted: 01/24/2019] [Indexed: 01/24/2023]
Abstract
Today, pharmacognosy is considered a valuable science in the prevention and treatment of diseases. Among herbals, Berberine is an isoquinoline alkaloid found in the Berberis species. Surprisingly, it shows antimicrobial, antiviral, antidiarrheal, antipyretic, and anti-inflammatory potential. Furthermore, it diminishes drug resistance in cancer therapy and enhances tumor suppression in part through autophagy and cell cycle arrest mechanisms. In the present review, we discuss the effect of berberine on diverse cellular pathways and describe how berberine acts as an autophagy modulator to adjust physiologic and pathologic conditions and diminishes drug resistance in cancer therapy.
Collapse
Affiliation(s)
- Reza Mohammadinejad
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Zahra Ahmadi
- Department of Basic Science, Faculty of Veterinary Medicine, Islamic Azad Branch, Shushtar, Khuzestan, Iran
| | - Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| |
Collapse
|
37
|
Ran Q, Wang J, Wang L, Zeng HR, Yang XB, Huang QW. Rhizoma coptidis as a Potential Treatment Agent for Type 2 Diabetes Mellitus and the Underlying Mechanisms: A Review. Front Pharmacol 2019; 10:805. [PMID: 31396083 PMCID: PMC6661542 DOI: 10.3389/fphar.2019.00805] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 06/21/2019] [Indexed: 02/06/2023] Open
Abstract
Diabetes mellitus, especially type 2 diabetes mellitus (T2DM), has become a significant public health burden. Rhizoma coptidis (RC), known as Huang Lian, is widely used for treating diabetes in China. The bioactive compounds of RC, especially alkaloids, have the potential to suppress T2DM-induced lesions, including diabetic vascular dysfunction, diabetic heart disease, diabetic hyperlipidemia, diabetic nephropathy, diabetic encephalopathy, diabetic osteopathy, diabetic enteropathy, and diabetic retinopathy. This review summarizes the effects of RC and its bioactive compounds on T2DM and T2DM complications. Less research has been conducted on non-alkaloid fractions of RC, which may exert synergistic action with alkaloids. Moreover, we summarized the pharmacokinetic properties and structure-activity relationships of RC on T2DM with reference to extant literature and showed clearly that RC has potential therapeutic effect on T2DM.
Collapse
Affiliation(s)
- Qian Ran
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jin Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lin Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hai-rong Zeng
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiang-bo Yang
- Ya’an Xun Kang Pharmaceutical Co., Ltd, Ya’an, China
| | - Qin-wan Huang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
38
|
Wang Z, Yang Y, Liu M, Wei Y, Liu J, Pei H, Li H. Rhizoma Coptidis for Alzheimer's Disease and Vascular Dementia: A Literature Review. Curr Vasc Pharmacol 2019; 18:358-368. [PMID: 31291876 DOI: 10.2174/1570161117666190710151545] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/16/2019] [Accepted: 05/16/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) and vascular dementia (VaD) are major types of dementia, both of which cause heavy economic burdens for families and society. However, no currently available medicines can control dementia progression. Rhizoma coptidis, a Chinese herbal medicine, has been used for >2000 years and is now gaining attention as a potential treatment for AD and VaD. METHODS We reviewed the mechanisms of the active ingredients of Rhizoma coptidis and Rhizoma coptidis-containing Chinese herbal compounds in the treatment of AD and VaD. We focused on studies on ameliorating the risk factors and the pathological changes of these diseases. RESULTS The Rhizoma coptidis active ingredients include berberine, palmatine, coptisine, epiberberine, jatrorrhizine and protopine. The most widely studied ingredient is berberine, which has extensive therapeutic effects on the risk factors and pathogenesis of dementia. It can control blood glucose and lipid levels, regulate blood pressure, ameliorate atherosclerosis, inhibit cholinesterase activity, Aβ generation, and tau hyperphosphorylation, decrease neuroinflammation and oxidative stress and alleviate cognitive impairment. Other ingredients (such as jatrorrhizine, coptisine, epiberberine and palmatine) also regulate blood lipids and blood pressure; however, there are relatively few studies on them. Rhizoma coptidis-containing Chinese herbal compounds like Huanglian-Jie-Du-Tang, Huanglian Wendan Decoction, Banxia Xiexin Decoction and Huannao Yicong Formula have anti-inflammatory and antioxidant stress activities, regulate insulin signaling, inhibit γ-secretase activity, neuronal apoptosis, tau hyperphosphorylation, and Aβ deposition, and promote neural stem cell differentiation, thereby improving cognitive function. CONCLUSION The "One-Molecule, One-Target" paradigm has suffered heavy setbacks, but a "multitarget- directed ligands" strategy may be viable. Rhizoma coptidis active ingredients and Rhizoma coptidiscontaining Chinese herbal compounds have multi-aspect therapeutic effects on AD and VaD.
Collapse
Affiliation(s)
- Zhiyong Wang
- Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Yang Yang
- Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Meixia Liu
- Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Yun Wei
- Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Jiangang Liu
- Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Hui Pei
- Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Hao Li
- Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| |
Collapse
|
39
|
Decreased Insulin Secretion but Unchanged Glucose Homeostasis in Cadmium-Exposed Male C57BL/6 Mice. J Toxicol 2019; 2019:8121834. [PMID: 31320898 PMCID: PMC6610724 DOI: 10.1155/2019/8121834] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/30/2019] [Accepted: 05/26/2019] [Indexed: 12/16/2022] Open
Abstract
Cadmium (Cd) is a well-known toxic metal element that is largely distributed in the environment. Cd causes toxicity to most organs. Accumulating evidence suggests that Cd exposure is associated with islet dysfunction and development of diabetes, but the association remains controversial. The aim of this study is to evaluate the possible effects of chronic Cd exposure on glucose metabolism in male C57BL/6 mice. Mice were intraperitoneally injected with CdCl2 solution (1 mg.kg−1) twice a week for 24 weeks. Fasting blood glucose (FBG) levels and body weights were measured weekly. After 24 weeks, the intraperitoneal glucose tolerance test (IPGTT), intraperitoneal insulin tolerance test (IPITT), and fasting serum insulin (FSI) level test were performed. The insulin resistance index (HOMA-IR) and pancreatic β cell function index (HOMA-β) were calculated and analyzed. The expression of insulin receptor (IR) in mouse liver was detected by real-time PCR. Pancreatic tissue was collected for histological examination. The results demonstrated that FBG, IPGTT, HOMA-IR, and HOMA-β were identical between Cd exposure and control mice. In contract, mean fasting serum insulin level, area under the curve (AUC) of IPITT, and IR expression in livers of Cd-exposed mice decreased significantly compared with control mice. Cd administration induced islet atrophy and decreased islet area. The results suggested that Cd exposure decreased insulin secretion and maintained glucose homeostasis in male C57BL/6 mice and that pancreatic functions should be monitored in populations chronically exposed to Cd.
Collapse
|
40
|
Zhang CH, Sheng JQ, Sarsaiya S, Shu FX, Liu TT, Tu XY, Ma GQ, Xu GL, Zheng HX, Zhou LF. The anti-diabetic activities, gut microbiota composition, the anti-inflammatory effects of Scutellaria-coptis herb couple against insulin resistance-model of diabetes involving the toll-like receptor 4 signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2019; 237:202-214. [PMID: 30807814 DOI: 10.1016/j.jep.2019.02.040] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 02/15/2019] [Accepted: 02/22/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Scutellaria-coptis herb couple (SC) is one of the well-known herb couples in many traditional Chinese compound formulas used for the treatment of diabetes mellitus (DM), which has been used to treat DM for thousands of years in China. AIM OF THE STUDY Few studies have confirmed in detail the anti-diabetic activities of SC in vivo and in vitro. The present investigations aimed to evaluate the anti-diabetic activity of SC in type 2 diabetic KK-Ay mice and in RAW264.7 macrophages to understand its possible mechanism. MATERIALS AND METHODS High-performance liquid chromatography with ultraviolet detection (HPLC-UV) and LC-LTQ-Orbitrap Pro mass spectrometry were used to analyze the active ingredients of SC extracts and control the quality. A type 2 diabetic KK-Ay mice model was established by high-fat diet. Body weight, fasting blood glucose levels, fasting blood insulin levels, glycosylated hemoglobin and glycosylated serum protein were measured. The effects of SC on total cholesterol (TC), high-density lipoprotein (HDL) and triglyceride (TG) levels were examined. The lipopolysaccharide (LPS), interleukin-6 (IL-6) and tumour necrosis factor alpha (TNF-α) levels were measured. Gut microbial communities were assayed by polymerase chain reaction (PCR) and PCR-denaturing gradient gel electrophoresis (PCR-DGGE) methods. The expressions of Toll-like receptor 4 (TLR4) and MyD88 protein in the colons were measured by western blot. In RAW264.7 macrophages, IL-6, TNF-α, TLR4 and MyD88 protein levels were measured by enzyme-linked immunosorbent assay (ELISA) kits or western blot, and the mRNA expression of IL-6, TNF-α and TLR4 was examined by the real time PCR. RESULTS The present results showed that the SC significantly increased blood HDL and significantly reduced fasting blood glucose, fasting blood insulin, glycosylated hemoglobin, glycosylated serum protein, TC, TG, LPS, IL-6 and TNF-α levels (P < 0.05 or P < 0.01) in type-2 diabetic KK-Ay mice. Furthermore, SC could regulate the structure of intestinal flora. Additionally, the expressions of TLR4 and MyD88 protein in the colons were significantly decreased in the model group (P < 0.05 or P < 0.01). However, SC had no significant effect on weight gain. In RAW264.7 macrophages, SC containing serum (SC-CS) (5%, 10% and 20%) significantly decreased IL-6, TNF-α, TLR4 and MyD88 protein levels and the mRNA expression of IL-6, TNF-α and TLR4 (P < 0.05 or P < 0.01). CONCLUSIONS The anti-diabetic effects of SC were attributed to its regulation of intestinal flora and anti-inflammation involving the TLR4 signaling pathway. These findings provide a new insight into the anti-diabetic application for SC in clinical settings and display the potential of SC in the treatment of DM.
Collapse
Affiliation(s)
- Chang-Hua Zhang
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330004, PR China; Key Laboratory of Pharmacology of Traditional Chinese Medicine in Jiangxi, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330004, PR China
| | - Jun-Qing Sheng
- College of Life Science, Nanchang University, Nanchang 330031, PR China.
| | - Surendra Sarsaiya
- Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563003, PR China; Department of Microbiology, Sri Satya Sai University of Technology and Medical Sciences, Sehore, Madhya Pradesh, India
| | - Fu-Xing Shu
- Bioresource Institute Of Healthy Utilization, Zunyi Medical University, Zunyi, Guizhou 563000, PR China
| | - Tong-Tong Liu
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330004, PR China
| | - Xiu-Ying Tu
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330004, PR China
| | - Guang-Qiang Ma
- College of Life Science, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330004, PR China
| | - Guo-Liang Xu
- Research Center for Differentiation and Development of Basic Theory of TCM, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330004, PR China
| | - Hong-Xiang Zheng
- College of Humanities of TCM, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330004, PR China
| | - Li-Fen Zhou
- Large precise instruments shared services center of TCM, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330004, PR China
| |
Collapse
|
41
|
Luo R, Liao Z, Song Y, Yin H, Zhan S, Li G, Ma L, Lu S, Wang K, Li S, Zhang Y, Yang C. Berberine ameliorates oxidative stress-induced apoptosis by modulating ER stress and autophagy in human nucleus pulposus cells. Life Sci 2019; 228:85-97. [PMID: 31047897 DOI: 10.1016/j.lfs.2019.04.064] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 04/15/2019] [Accepted: 04/29/2019] [Indexed: 02/06/2023]
Abstract
AIM Nucleus pulposus (NP) cell apoptosis induced by oxidative stress is known to be closely involved in the pathogenesis of intervertebral disc (IVD) degeneration. Berberine, a small molecule derived from Rhizoma coptidis, has been found to exert antioxidative activity and preserve cell viability. The present study aims to investigate whether berberine can prevent NP cell apoptosis under oxidative damage and the potential underlying mechanisms. METHODS AND MATERIALS The effects of berberine on IVD degeneration were investigated both in vitro and in vivo. KEY FINDINGS Our results showed that berberine significantly mitigated oxidative stress-decreased cell viability as well as apoptosis in human NP cells. Berberine treatment could attenuate oxidative stress-induced ER stress and autophagy in a concentration-dependent manner. With 4-PBA (ER stress specific inhibitor) and 3-MA (autophagy specific inhibitor) administration, we demonstrated that berberine inhibited oxidative stress-induced apoptosis by modulating the ER stress and autophagy pathway. We also found that the IRE1/JNK pathway was involved in the induction of ER stress-dependent autophagy. With Ca2+ chelator BAPTA-AM utilization, we revealed that oxidative stress-mediated ER stress and autophagy repressed by berberine could be restored by inducing intracellular Ca2+ dysregulation. Furthermore, in vivo study provided evidence that berberine treatment could retard the process of puncture-induced IVD degeneration in a rat model. SIGNIFICANCE Our results indicate that berberine could prevent oxidative stress-induced apoptosis by modulating ER stress and autophagy, thus offering a novel potential pharmacological treatment strategy for IVD degeneration.
Collapse
Affiliation(s)
- Rongjin Luo
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhiwei Liao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yu Song
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Huipeng Yin
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shengfeng Zhan
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Gaocai Li
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Liang Ma
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Saideng Lu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Kun Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shuai Li
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yukun Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Cao Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
42
|
Jia D, Li ZW, Zhou X, Gao Y, Feng Y, Ma M, Wu Z, Li W. A novel berberine-metformin hybrid compound exerts therapeutic effects on obese type 2 diabetic rats. Clin Exp Pharmacol Physiol 2019; 46:533-544. [PMID: 30883863 DOI: 10.1111/1440-1681.13085] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/19/2019] [Accepted: 03/12/2019] [Indexed: 12/11/2022]
Abstract
In this study, we investigated the biological activities of a novel berberine-metformin hybrid compound (BMH473) as an anti-diabetic agent. BMH473 exhibited significant anti-hyperglycaemic and anti-hyperlipidaemic effects on T2DM rats. In white adipose tissue, BMH473 reduced the perirenal and epididymal adipose tissue mass and modulated the lesions in perirenal adipose tissue, by inhibiting the protein expressions of PPAR-Ɣ, C/EBP-α and SREBP-1c as well as the mRNA expressions of lipogenic genes. Moreover, BMH473 downregulated the levels of pro-inflammatory cytokines in perirenal adipose tissue through the suppression of p-NF-κB. In liver, BMH473 reduced liver ectopic fat accumulation, by regulating the protein expression levels of SREBP-1c and PPAR-α as well as the mRNA expression levels of lipogenic genes. In addition, BMH473 inhibited hepatic gluconeogenesis by promoting the phosphorylation levels of AMPK α and ACC, and down-regulating the mRNA expression levels of FBPase, G6Pase and PEPCK. Furthermore, BMH473 exhibited significant inhibitory effects on lipogenesis and lipid accumulation in 3T3-L1 adipocytes by modulating the protein expression levels of PPAR-Ɣ, C/EBP-α and SREBP-1 c as well as the mRNA expression levels of lipogenic genes. In conclusion, our results suggest that the newly synthesized BMH473 is beneficial for maintaining glucose and lipid homeostasis in type 2 diabetic rats, and exhibits better anti-hyperlipidaemic effects compared to metformin and berberine.
Collapse
Affiliation(s)
- Dan Jia
- Integrated Chinese and Western Medicine Post-doctoral Research Station, Jinan University, Guangzhou, China.,The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China.,Shenzhen Institute of Geriatrics, Shenzhen, China
| | - Zi Wen Li
- Shenzhen Institute of Geriatrics, Shenzhen, China
| | - Xinxin Zhou
- Academy of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ying Gao
- Academy of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yifan Feng
- Central Laboratory of Guangdong Pharmaceutical University, GuangZhou, China
| | - Min Ma
- Integrated Chinese and Western Medicine Post-doctoral Research Station, Jinan University, Guangzhou, China
| | - Zhengzhi Wu
- The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China.,Shenzhen Institute of Geriatrics, Shenzhen, China
| | - Weimin Li
- Academy of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
43
|
Feng X, Sureda A, Jafari S, Memariani Z, Tewari D, Annunziata G, Barrea L, Hassan ST, Šmejkal K, Malaník M, Sychrová A, Barreca D, Ziberna L, Mahomoodally MF, Zengin G, Xu S, Nabavi SM, Shen AZ. Berberine in Cardiovascular and Metabolic Diseases: From Mechanisms to Therapeutics. Theranostics 2019; 9:1923-1951. [PMID: 31037148 PMCID: PMC6485276 DOI: 10.7150/thno.30787] [Citation(s) in RCA: 255] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 02/05/2019] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular and metabolic diseases (CVMD) are the leading causes of death worldwide, underscoring the urgent necessity to develop new pharmacotherapies. Berberine (BBR) is an eminent component of traditional Chinese and Ayurvedic medicine for more than 2000 years. Recently, BBR has attracted much interest for its pharmacological actions in treating and/or managing CVMD. Recent discoveries of basic, translational and clinical studies have identified many novel molecular targets of BBR (such as AMPK, SIRT1, LDLR, PCSK9, and PTP1B) and provided novel evidences supporting the promising therapeutic potential of BBR to combat CVMD. Thus, this review provides a timely overview of the pharmacological properties and therapeutic application of BBR in CVMD, and underlines recent pharmacological advances which validate BBR as a promising lead drug against CVMD.
Collapse
|
44
|
Cao C, Su M. Effects of berberine on glucose-lipid metabolism, inflammatory factors and insulin resistance in patients with metabolic syndrome. Exp Ther Med 2019; 17:3009-3014. [PMID: 30936971 PMCID: PMC6434235 DOI: 10.3892/etm.2019.7295] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 01/31/2019] [Indexed: 12/13/2022] Open
Abstract
Effects of berberine on glucose-lipid metabolism, inflammatory factors and insulin resistance in patients with metabolic syndrome were investigated. Eighty patients with metabolic syndrome treated in Linyi Central Hospital from January 2017 to December 2017 were selected and divided into control group (n=40) and observation group (n=40). Patients in control group were treated with regular therapy using the Western medicine and drugs, while those in observation group, based on the treatment in control group, were treated with berberine. Changes in relevant indexes to blood glucose and lipid metabolisms and inflammatory factors were compared between the two groups. The correlation of inflammatory factor with fasting blood glucose, insulin resistance, triglyceride and total cholesterol was analyzed. At 1 month after treatment, levels of fasting blood glucose, 2 h postprandial blood glucose, insulin resistance index and blood lipid indexes in both groups were lower than those at 1 week after treatment (P<0.05). At 1 month after treatment, levels of fasting blood glucose, 2 h postprandial blood glucose, insulin resistance index and blood lipid indexes in observation group were significantly lower than those in control group during the same period (P<0.05). Moreover, levels of high-sensitivity C-reactive protein (hs-CRP), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) in both groups at 1 month after treatment were lower than those at 1 week after treatment (P<0.05), and they were lower in observation group at 1 month after treatment than those in control group during the same period (P<0.05). Finally, hs-CRP was positively correlated with fasting blood glucose, insulin resistance, total cholesterol and triglyceride. The combined application of berberine in patients with metabolic syndrome can effectively regulate blood glucose and blood lipid of patients, alleviate insulin resistance and reduce the level of inflammatory response in the body.
Collapse
Affiliation(s)
- Changfu Cao
- Department of Pharmacy, Linyi Central Hospital, Linyi, Shandong 276400, P.R. China
| | - Meiqing Su
- Department of Pharmacy, Linyi Central Hospital, Linyi, Shandong 276400, P.R. China
| |
Collapse
|
45
|
Kumaş M, Eşrefoğlu M, Karataş E, Duymaç N, Kanbay S, Ergün IS, Üyüklü M, Koçyiğit A. Investigation of dose-dependent effects of berberine against renal ischemia/reperfusion injury in experimental diabetic rats. Nefrologia 2019; 39:411-423. [PMID: 30712966 DOI: 10.1016/j.nefro.2018.10.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 10/23/2018] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Ischemia-reperfusion injury causes various severe morphological and functional changes in diabetic patients. To date, numerous antidiabetic and antioxidant agents have been used for treatment of the disease-related changes. OBJECTIVES We aimed to examine effective therapeutic doses or doses of berberine against renal ischemia/reperfusion injury (IRI) in a streptozotocin (STZ)-induced diabetic rat model by histopathological and biochemical analysis. METHODS Thirty male Sprague Dawley rats were treated with STZ injection for the development of diabetes, and divided into the following groups: STZ-induced diabetic group (STZ); IRI-induced diabetic group (STZ+IRI); 50mg/kg berberine (BRB) treated diabetic group after inducing IRI (STZ+IRI+BRB1); 100mg/kg BRB treated diabetic group after IRI (STZ+IRI+BRB2); 150mg/kg BRB treated diabetic group after IRI (STZ+IRI+BRB3). Bilateral renal ischemia model was applied for 45min, then reperfusion was allowed for 14 days in STZ-induced diabetic rats. Renal injury was detected histopathologically. Blood urea nitrogen (BUN), creatinine and lactate dehydrogenase (LDH) levels were measured in serum using the ELISA method. Total antioxidant status (TAS) and total oxidant status (TOS) of renal tissue was studied by spectrophotometric assay. Oxidative stress index (OSI) was calculated as TOS-to-TAS ratio. Tumor necrosis factor alpha (TNF-α), C-reactive protein (CRP), Na+/K+-ATPase (sodium pump), and Ca2+-ATPase (calcium ATPase) enzyme levels were measured in tissues using the ELISA method. Anti-apoptotic Bax and pro-apoptotic Bcl-2 protein levels were detected by Western blot analysis. All data were evaluated statistically. RESULTS The highest histopathological score was detected in the STZ+IRI group compared to the other group. BRB administration at the doses of 100mg/kg and 150mg/kg markedly improved renal injury. BUN and creatinine levels significantly increased in the STZ+IRI group compared to the STZ group (p<0.001). 100mg/kg and 150mg/kg BRB administration significantly decreased those levels (p<0.01). The highest TOS and the lowest TAS levels were detected in the STZ+IRI group (p<0.001). IRI markedly aggravated inflammation via increasing levels of TNF-α and CRP (<0.001), and caused apoptosis via inducing Bcl-2 protein, and suppressing Bax protein (p<0.001). BRB administration at the doses of 100mg/kg and 150mg/kg showed anti-oxidant, anti-inflammatory and anti-apoptotic effects (p<0.01). The LDH enzyme, was used as a necrosis marker, was higher in the STZ+IRI group than other groups. BRB administration at all of the doses, resulted in the decline of LDH enzyme level (p<0.001). Ca2+-ATPase and Na+/K+-ATPase enzyme activities decreased in the STZ+IRI group compared to the STZ group (p<0.001), while BRB administration at the doses of 100mg/kg and 150mg/kg significantly increased those of enzyme activities, respectively (p<0.05). CONCLUSION Ischemia with diabetes caused severe histopathological and biochemical damage in renal tissue. The high doses of berberine markedly improved histopathological findings, regulated kidney function via decreasing BUN and creatinine levels, and rearranged intercellular ion concentration via increasing Na+/K+-ATPase and Ca2+- ATPase levels. Berberine showed anti-oxidant, anti-apoptotic, and anti-inflammatory effects. According to these data, we suggest that berberine at the doses of 100 and 150mg may be used as a potential therapeutic agent to prevent renal ischemic injury.
Collapse
Affiliation(s)
- Meltem Kumaş
- Department of Histology and Embryology, Faculty of Medicine, Bezmialem Vakif University, 34093 Istanbul, Turkey.
| | - Mukaddes Eşrefoğlu
- Department of Histology and Embryology, Faculty of Medicine, Bezmialem Vakif University, 34093 Istanbul, Turkey
| | - Ersin Karataş
- Department of Molecular Biology and Genetics, Gebze Technical University, Kocaeli, Turkey
| | - Nurcihan Duymaç
- Department of Pathology Laboratory Techniques, Vocational School of Health Services, Bezmialem Vakif University, 34093 Istanbul, Turkey
| | - Songül Kanbay
- Department of Pathology Laboratory Techniques, Vocational School of Health Services, Bezmialem Vakif University, 34093 Istanbul, Turkey
| | - Ilyas Samet Ergün
- Department of Pathology Laboratory Techniques, Vocational School of Health Services, Bezmialem Vakif University, 34093 Istanbul, Turkey
| | - Mehmet Üyüklü
- Department of Physiology, Faculty of Medicine, Bezmialem Vakif University, 34093 Istanbul, Turkey
| | - Abdurrahim Koçyiğit
- Department of Medical Biochemistry, Faculty of Medicine, Bezmialem Vakif University, 34093 Istanbul, Turkey
| |
Collapse
|
46
|
Yue SJ, Liu J, Wang AT, Meng XT, Yang ZR, Peng C, Guan HS, Wang CY, Yan D. Berberine alleviates insulin resistance by reducing peripheral branched-chain amino acids. Am J Physiol Endocrinol Metab 2019; 316:E73-E85. [PMID: 30422704 DOI: 10.1152/ajpendo.00256.2018] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Increased circulating branched-chain amino acids (BCAAs) have been involved in the pathogenesis of obesity and insulin resistance (IR). However, evidence relating berberine (BBR), gut microbiota, BCAAs, and IR is limited. Here, we showed that BBR could effectively rectify steatohepatitis and glucose intolerance in high-fat diet (HFD)-fed mice. BBR reorganized gut microbiota populations under both the normal chow diet (NCD) and HFD. Particularly, BBR noticeably decreased the relative abundance of BCAA-producing bacteria, including order Clostridiales; families Streptococcaceae, Clostridiaceae, and Prevotellaceae; and genera Streptococcus and Prevotella. Compared with the HFD group, predictive metagenomics indicated a reduction in the proportion of gut microbiota genes involved in BCAA biosynthesis but the enrichment genes for BCAA degradation and transport by BBR treatment. Accordingly, the elevated serum BCAAs of HFD group were significantly decreased by BBR. Furthermore, the Western blotting results implied that BBR could promote the BCAA catabolism in the liver and epididymal white adipose tissues of HFD-fed mice by activation of the multienzyme branched-chain α-ketoacid dehydrogenase complex (BCKDC), whereas by inhibition of the phosphorylation state of BCKDHA (E1α subunit) and branched-chain α-ketoacid dehydrogenase kinase (BCKDK). The ex vivo assay further confirmed that BBR could increase BCAA catabolism in both AML12 hepatocytes and 3T3-L1 adipocytes. Finally, data from healthy subjects and diabetics confirmed that BBR could improve glycemic control and modulate circulating BCAAs. Together, our findings clarified BBR improving IR associated not only with gut microbiota alteration in BCAA biosynthesis but also with BCAA catabolism in liver and adipose tissues.
Collapse
Affiliation(s)
- Shi-Jun Yue
- Beijing Key Laboratory of Bio-Characteristic Profiling for Evaluation of Rational Drug Use, Beijing Shijitan Hospital, Capital Medical University , Beijing , China
- Key Laboratory of Marine Drugs (Ministry of Education of China), School of Medicine and Pharmacy, Ocean University of China , Qingdao , China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology , Qingdao , China
| | - Juan Liu
- Beijing Key Laboratory of Bio-Characteristic Profiling for Evaluation of Rational Drug Use, Beijing Shijitan Hospital, Capital Medical University , Beijing , China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine , Chengdu , China
| | - Ai-Ting Wang
- Beijing Key Laboratory of Bio-Characteristic Profiling for Evaluation of Rational Drug Use, Beijing Shijitan Hospital, Capital Medical University , Beijing , China
| | - Xin-Tong Meng
- Beijing Key Laboratory of Bio-Characteristic Profiling for Evaluation of Rational Drug Use, Beijing Shijitan Hospital, Capital Medical University , Beijing , China
| | - Zhi-Rui Yang
- Beijing Key Laboratory of Bio-Characteristic Profiling for Evaluation of Rational Drug Use, Beijing Shijitan Hospital, Capital Medical University , Beijing , China
| | - Cheng Peng
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine , Chengdu , China
| | - Hua-Shi Guan
- Key Laboratory of Marine Drugs (Ministry of Education of China), School of Medicine and Pharmacy, Ocean University of China , Qingdao , China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology , Qingdao , China
| | - Chang-Yun Wang
- Key Laboratory of Marine Drugs (Ministry of Education of China), School of Medicine and Pharmacy, Ocean University of China , Qingdao , China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology , Qingdao , China
| | - Dan Yan
- Beijing Key Laboratory of Bio-Characteristic Profiling for Evaluation of Rational Drug Use, Beijing Shijitan Hospital, Capital Medical University , Beijing , China
| |
Collapse
|
47
|
Zhou X, Zhang R, Zou Z, Shen X, Xie T, Xu C, Dong J, Liao L. Hypoglycaemic effects of glimepiride in sulfonylurea receptor 1 deficient rat. Br J Pharmacol 2018; 176:478-490. [PMID: 30471094 DOI: 10.1111/bph.14553] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 10/30/2018] [Accepted: 11/02/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND PURPOSE Sulfonylureas (SUs) have been suggested to have an insulin-independent blood glucose-decreasing activity due to an extrapancreatic effect. However, a lack of adequate in vivo evidence makes this statement controversial. Here, we aimed to evaluate whether glimepiride has extrapancreatic blood glucose-lowering activity in vivo. EXPERIMENTAL APPROACH Sulfonylurea receptor 1 deficient (SUR1-/- ) rats were created by means of transcription activator-like effector nucleases (TALEN)-mediated gene targeting technology. Type 2 diabetic models were established by feeding a high-fat diet and administering a low-dose of streptozotocin. These rats were then randomly divided into four groups: glimepiride, gliclazide, metformin and saline. All rats were treated for 2 weeks. KEY RESULTS Glimepiride decreased blood glucose levels and increased insulin sensitivity without elevating insulin levels. Gliclazide showed similar effects as glimepiride. Both agents were weaker than metformin. Further mechanistic investigations revealed that glimepiride increased hepatic glycogen synthesis and decreased gluconeogenesis, which were accompanied by the activation of Akt in the liver. Moreover, glimepiride increased both total and membrane glucose transporter 4 (GLUT4) levels in muscle and fat, which might be attributed to insulin receptor-independent IRS1/Akt activation. CONCLUSION AND IMPLICATIONS Glimepiride possesses an extrapancreatic blood glucose-lowering effect in vivo, which might be attributed to its direct effect on insulin-sensitive tissues. Therefore, the combination of glimepiride with multiple insulin injections should not be excluded per se.
Collapse
Affiliation(s)
- Xiaojun Zhou
- Department of Endocrinology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Rui Zhang
- Department of Endocrinology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Zhiwei Zou
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, China
| | - Xue Shen
- Department of Endocrinology, Shandong Provincial Qianfoshan Hospital, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tianyue Xie
- Department of Endocrinology, Shandong Provincial Qianfoshan Hospital, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chunmei Xu
- Department of Endocrinology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Jianjun Dong
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, China
| | - Lin Liao
- Department of Endocrinology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| |
Collapse
|
48
|
Hang W, He B, Chen J, Xia L, Wen B, Liang T, Wang X, Zhang Q, Wu Y, Chen Q, Chen J. Berberine Ameliorates High Glucose-Induced Cardiomyocyte Injury via AMPK Signaling Activation to Stimulate Mitochondrial Biogenesis and Restore Autophagic Flux. Front Pharmacol 2018; 9:1121. [PMID: 30337876 PMCID: PMC6178920 DOI: 10.3389/fphar.2018.01121] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/13/2018] [Indexed: 12/29/2022] Open
Abstract
Background: Type II diabetes (T2D)-induced cardiomyocyte hypertrophy is closely linked to the impairment of mitochondrial function. Berberine has been shown to be a promising effect for hypoglycemia in T2D models. High glucose-induced cardiomyocyte hypertrophy in vitro has been reported. The present study investigated the protective effect and the underlying mechanism of berberine on high glucose-induced H9C2 cell line. Methods: High glucose-induced H9C2 cell line was used to mimic the hyperglycemia resulting in cardiomyocyte hypertrophy. Berberine was used to rescue in this model and explore the mechanism in it. Confocal microscopy, immunofluorescence, RT-PCR, and western blot analysis were performed to evaluate the protective effects of berberine in high glucose-induced H9C2 cell line. Results: Berberine dramatically alleviated hypertrophy of H9C2 cell line and significantly ameliorated mitochondrial function by rectifying the imbalance of fusion and fission in mitochondrial dynamics. Furthermore, berberine further promoted mitogenesis and cleared the damaged mitochondria via mitophagy. In addition, berberine also restored autophagic flux in high glucose-induced cardiomyocyte injury via AMPK signaling pathway activation. Conclusion: Berberine ameliorates high glucose-induced cardiomyocyte injury via AMPK signaling pathway activation to stimulate mitochondrial biogenesis and restore autophagicflux in H9C2 cell line.
Collapse
Affiliation(s)
- Weijian Hang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan, China
| | - Benhong He
- Department of Cardiovascular Medicine, Lichuan People's Hospital, Lichuan, China
| | - Jiehui Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liangtao Xia
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bing Wen
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Liang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xu Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qianying Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qingjie Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,New Products of TCM Senile Diseases Co-Innovation Center of Hubei, School of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Juan Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Neurological Disease of National Education Ministry, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
49
|
Hispidulin alleviates high-glucose-induced podocyte injury by regulating protective autophagy. Biomed Pharmacother 2018; 104:307-314. [PMID: 29775899 DOI: 10.1016/j.biopha.2018.05.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 04/24/2018] [Accepted: 05/07/2018] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVES Diabetic nephropathy (DN) is one of the most common complications in patients with diabetes, and the discovery of novel targeted therapeutic approaches for DN treatment still faces severe challenges. In the current study, we aimed to discover a novel natural product for potential DN treatment and determine its molecular mechanisms. MATERIALS AND METHODS Methylthiazoltetrazolium (MTT) assay was employed to evaluate cell viability. Transmission electron microscopy, GFP-LC3 fluorescence fusion plasmid, and Annexin V/PI apoptosis assay were carried out to determine cellular autophagy and apoptosis. Moreover, quantitative proteomics and bioinformatics analysis, Western blotting, and RNA interference were performed to investigate potential molecular mechanisms. RESULTS Hispidulin displayed protective capacity on the high-glucose-induced podocyte injury models by activating autophagy and inhibiting apoptosis. The mechanism for hispidulin-induced autophagy was associated to Pim1 inhibition and the regulation of Pim1-p21-mTOR signaling axis. Moreover, quantitative proteomics and bioinformatics analysis revealed that the hispidulin-regulated Pim1 inhibition was associated to RAB18, NRas, PARK7, and FIS1. CONCLUSIONS These results indicate that hispidulin induces autophagy and inhibits apoptosis induced by high glucose in murine podocytes. This study will illuminate future developments in DN-targeted therapy.
Collapse
|
50
|
Yang CZ, Liang CY, Zhang D, Hu YJ. Deciphering the interaction of methotrexate with DNA: Spectroscopic and molecular docking study. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.10.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|