1
|
Chen Y, Zhou Q, Yan S, Yan J, Yang D, Chen J, Wang MW. Molecular mechanism underlying non-discriminatory recognition of relaxin-3 by RXFP3 and RXFP4. Commun Biol 2025; 8:794. [PMID: 40410443 DOI: 10.1038/s42003-025-08220-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 05/13/2025] [Indexed: 05/25/2025] Open
Abstract
The human relaxin family peptide receptors RXFP3 and RXFP4 play important physiological roles through interactions with endogenous hormones, relaxin-3 and insulin-like peptide 5 (INSL5). They are implicated in certain neurological and metabolic disorders. While INSL5 only activates RXFP4, relaxin-3 is recognized by both receptors. Here, we report the cryo-electron microscopy structures of RXFP3-Gi complexes bound by relaxin-3 or a small-molecule dual agonist (compound 4), and relaxin-3 in complex with RXFP4-Gi, with global resolutions of 2.91 Å, 2.95 Å, and 3.10 Å, respectively. It is found that relaxin-3 adopts a conserved binding conformation within the transmembrane domain (TMD) bundle of RXFP3 and RXFP4, where the C-terminal tip residues of its B chain, R26 and W27, make extensive contacts with conserved receptor residues, thereby activating RXFP3 and RXFP4. Compound 4 mimics these key interactions by binding to both receptors. In contrast, the C-terminal residues composition and TMD-binding angle of INSL5 in RXFP4 differ significantly from that of relaxin-3, ensuring its selectivity for RXFP4. These findings deepen our understanding about the structural basis of ligand recognition and selectivity in this G protein-coupled receptor subfamily.
Collapse
Affiliation(s)
- Yan Chen
- Research Center for Medicinal Structural Biology, National Research Center for Translational Medicine at Shanghai, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingtong Zhou
- Research Center for Medicinal Structural Biology, National Research Center for Translational Medicine at Shanghai, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Shiyu Yan
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiahui Yan
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Pharmacy, Fudan University, Shanghai, China
| | - Dehua Yang
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- School of Pharmacy, Fudan University, Shanghai, China
| | - Jian Chen
- School of Pharmacy, Fudan University, Shanghai, China
| | - Ming-Wei Wang
- Research Center for Medicinal Structural Biology, National Research Center for Translational Medicine at Shanghai, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
- Research Center for Deepsea Bioresources, Sanya, China.
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, School of Pharmacy, Hainan Medical University, Haikou, China.
| |
Collapse
|
2
|
Boukherroub K, Kosonsiriluk S, Santativongchai P, Chelikandam J, Ehresmann L, Diehl K. Expression of relaxin-3 and its receptors in the hypothalamic-pituitary-ovary axis in layers and broiler breeders. Poult Sci 2025; 104:105048. [PMID: 40120249 PMCID: PMC11981738 DOI: 10.1016/j.psj.2025.105048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/19/2025] [Accepted: 03/15/2025] [Indexed: 03/25/2025] Open
Abstract
Layers can regulate their feed intake and maintain well-organized ovaries. Conversely, broiler breeders are prone to overeating, leading to disorganized ovaries. Relaxin-3 (RLN3) is a neuropeptide hormone involved in metabolism, energy balance, and reproduction in mammals. In chickens, RLN3 was identified in the ovary, pituitary gland, and hypothalamus. This study aimed to explore the potential role of RLN3 in feeding behavior and reproduction. Expression of RLN3 and relaxin family peptide receptors (RXFP1 and 3) were examined in ovarian follicles, the pituitary gland, and the hypothalamus between layers (L) and broiler breeders (BB). Gene expression analysis revealed RLN3 was highest in the granulosa cells (GC) of 9-12 mm follicles compared with other follicles, with BB had the highest overall expression. In the pituitary, RLN3 was higher in L compared with BB and minimally expressed in follicle theca tissue (TH), cortex, and hypothalamus. Expression of RXFP1 was highest in TH of all follicles without a significant difference between L and BB. The expression of RXFP3 was highest in the cortex without a significant difference between L and BB. The hypothalamus had the highest expression of RXFP3 across all tissues in both L and BB. Immunofluorescence staining for RLN3, RXFP1, and RXFP3 revealed their presence in the GC, TH interna and externa of 3-12 mm follicles in both L and BB. Interestingly, RLN3 was localized in small vesicles in the ooplasm of 3-12 mm follicles. Within the cortex, RXFP1 was localized in the GC and TH of cortical follicles while RXFP3 was exclusively localized in the stromal and muscle cells. Surprisingly, RXFP3 was also localized in the nucleus. Overall, RLN3 and its receptors were differentially expressed across the hypothalamic-pituitary-ovarian axis and between layers and broiler breeders. This suggests potential role in nutrition and ovarian dysregulation. Further, RLN3 action is likely mediated through autocrine and paracrine effects. Modulating RLN3 could lead to novel strategies of regulating feed intake in broiler breeders.
Collapse
Affiliation(s)
- Kahina Boukherroub
- Department of Animal Science, University of Minnesota, Saint Paul, MN 55108, USA.
| | | | | | - Jasna Chelikandam
- Department of Animal Science, University of Minnesota, Saint Paul, MN 55108, USA
| | - Lillian Ehresmann
- Department of Animal Science, University of Minnesota, Saint Paul, MN 55108, USA
| | - Kristen Diehl
- Animal Biosciences and Biotechnology Laboratory, BARC, ARS, USDA, Beltsville, MD 20705, USA
| |
Collapse
|
3
|
Fothergill LJ, Ringuet MT, Voglsanger LM, Plange WJN, Walker LC, Rivera LR, Lawrence AJ, Gundlach AL, Diwakarla S, Furness JB, Smith CM. Localisation of the relaxin-family peptide 3 receptor to enteroendocrine cells of the intestine in RXFP3-Cre/tdTomato mice. Biochem Pharmacol 2025; 232:116714. [PMID: 39675586 DOI: 10.1016/j.bcp.2024.116714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 12/17/2024]
Abstract
The relaxin-family peptide 3 receptor (RXFP3) and its native ligand, relaxin-3, are expressed in specific populations of brain neurons, and research on this system has focused on its role in the central nervous system. However, some studies have indicated that relaxin-3 and RXFP3 are also expressed in peripheral organs, including the gut. In this study, we characterised the identity of RXFP3-expressing cells in the gastrointestinal tract, using RXFP3-Cre/tdTomato reporter mice. We identified RXFP3-tdTomato expression in neurons throughout the small and large intestine, in cells in the lamina propria of the colon, and in enteroendocrine cells in the small intestine. We characterised the frequency and phenotype of the RXFP3-tdTomato + enteroendocrine cells in both the duodenum and distal ileum and discovered that the reporter was expressed in populations of cells that co-express 5-hydroxytryptamine (5-HT), cholecystokinin (CCK), secretin, peptide YY (PYY), oxyntomodulin, neurotensin, ghrelin, or glucose-dependent insulinotropic polypeptide (GIP). Faithful co-expression of Cre and RXFP3 mRNA was confirmed in RXFP3-Cre mice using multiplex, fluorescence in situ hybridisation (via RNAscope™). Our results indicate that RXFP3 is expressed by the LIN, X, K, Onecut3, and EC enteroendocrine cell types. In light of the key physiological roles of these cells, this study highlights the potential for relaxin-3 signalling via RXFP3 in enteroendocrine cells to modulate digestion, metabolism, food intake, and inflammatory processes.
Collapse
Affiliation(s)
- Linda J Fothergill
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria 3010, Australia; Department of Anatomy and Physiology, The University of Melbourne, Victoria 3010, Australia; Immunology Division, The Walter and Eliza Hall Institute, Victoria 3052, Australia.
| | - Mitchell T Ringuet
- Department of Microbiology and Immunology, The University of Melbourne, Victoria 3010, Australia
| | - Lara M Voglsanger
- Faculty of Health, School of Medicine, Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - Wesley J N Plange
- Faculty of Health, School of Medicine, Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - Leigh C Walker
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria 3010, Australia
| | - Leni R Rivera
- Faculty of Health, School of Medicine, Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - Andrew J Lawrence
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria 3010, Australia
| | - Andrew L Gundlach
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria 3010, Australia; Department of Anatomy and Physiology, The University of Melbourne, Victoria 3010, Australia
| | - Shanti Diwakarla
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria 3010, Australia; Department of Anatomy and Physiology, The University of Melbourne, Victoria 3010, Australia
| | - John B Furness
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria 3010, Australia; Department of Anatomy and Physiology, The University of Melbourne, Victoria 3010, Australia
| | - Craig M Smith
- Faculty of Health, School of Medicine, Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Waurn Ponds, Victoria 3216, Australia
| |
Collapse
|
4
|
Kose H, Sivrikaya A, Menevse E. Maternal Fed Zinc-Deficient Diet: Effects on Relaxin Family Peptides and Oxidant System in the Testis and Liver Tissue of Male Offspring. Biol Trace Elem Res 2024; 202:5612-5623. [PMID: 38407794 PMCID: PMC11502584 DOI: 10.1007/s12011-024-04113-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/15/2024] [Indexed: 02/27/2024]
Abstract
Today, the studies are limited on roles of insulin-like peptide 3 (INSL3), insulin-like peptide 7 (INSL7), and relaxin family peptide receptor 1 (RXFP1) which are synthesized by the testis. It is aimed to investigate the levels of the sex hormone as testosterone and the family of insulin-like proteins (relaxin family peptides), which are important in the puberty transition, in the testicular and liver tissues of male offspring born to female rats fed a zinc-deficient diet during the pregnancy, and in the changes in lipid peroxidation markers. The study was performed on 40 male offspring. In Group I: Control group, both male offspring and mothers were fed with standard rat chow. In Group II: Zinc deficient diet, both male offspring and mothers were fed a zinc-deficient diet (2.8 mg/kg zinc). In Group III: Normal diet, male offspring fed standard rat chow for 45 days (66th day) after being separated from their mothers with a maternal zinc-deficient diet. In Group IV: Zinc-supplemented diet, offspring fed with zinc supplemented (5 mg/kg/day intraperitoneal zinc sulfate, i.p.) in addition to standard rat chow after being separated from their mothers with maternal zinc deficiency until the termination of the study (66th day). Our study suggests that zinc-supplemented diets play an important role in the changes in INSL3, INSL7, RXFP1, and testosterone levels during spermatogenesis. INSL7, INSL3, and RXFP1 levels were higher in zinc-supplemented group than the zinc-deficient diet group. Liver levels of INSL3, INSL7, and MDA were significantly different in zinc-deficiency diet group than zinc-supplemented group.
Collapse
Affiliation(s)
- Hamiyet Kose
- Department of Medical Biochemistry, Faculty of Medicine, Selcuk University, Konya, Turkey
| | - Abdullah Sivrikaya
- Department of Medical Biochemistry, Faculty of Medicine, Selcuk University, Konya, Turkey
| | - Esma Menevse
- Department of Medical Biochemistry, Faculty of Medicine, Selcuk University, Konya, Turkey.
| |
Collapse
|
5
|
Zhang C, Sun Y, Kang L, Jiang Y. Characterization of chicken Relaxin3 gene: mRNA expression and response to reproductive hormone treatment in ovarian granulosa cells, and single nucleotide polymorphisms associated with egg laying traits in hens. Anim Biotechnol 2024; 35:2370810. [PMID: 38940516 DOI: 10.1080/10495398.2024.2370810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
As a protein structurally similar to insulin, relaxin3 (RLN3) plays a role in promoting arousal, suppressing depressive or anxious behaviors. Two studies revealed the increase of RLN3 expression during chicken follicle selection. In this study, by real-time quantitative PCR and luciferase assay, mRNA expression and single nucleotide polymorphisms (SNPs) of chicken RLN3 were investigated. The mRNA expression of chicken RLN3 was higher in the granulosa cell of hierarchal follicles (Post-GCs) than that of pre-hierarchal follicles (Pre-GCs). In Pre-GCs, the mRNA expression of chicken RLN3 was stimulated by FSH and progesterone; in Post-GCs, it was stimulated by higher concentration of estrogen and FSH, however, was inhibited by progesterone. Four SNPs including g.-655G > C, g-592G > A, g.-372T > A and g.-282G > C were identified in the critical promoter region from -1291 bp to -207 bp of chicken RLN3, among which g.-655G > C, and g-592G > A were associated with age at first laying and clutch size, respectively, in Zaozhuang Sunzhi chickens. At g.-655G > C and g-592G > A, allele C and allele A had higher transcriptional activity, respectively. These data suggest that RLN3 plays an important role in chicken follicle development and SNPs in its promoter region are potential DNA markers for improving egg production traits.
Collapse
Affiliation(s)
- Chunfeng Zhang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| | - Yi Sun
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| | - Li Kang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| | - Yunliang Jiang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
6
|
Bramhecha A, Guru A. Harnessing relaxin peptide for enhanced oral health treatments. Nat Prod Res 2024:1-2. [PMID: 39377367 DOI: 10.1080/14786419.2024.2411715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 09/26/2024] [Indexed: 10/09/2024]
Affiliation(s)
- Astha Bramhecha
- Department of Cariology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| |
Collapse
|
7
|
Leng D, Zeng B, Wang T, Chen BL, Li DY, Li ZJ. Single nucleus/cell RNA-seq of the chicken hypothalamic-pituitary-ovarian axis offers new insights into the molecular regulatory mechanisms of ovarian development. Zool Res 2024; 45:1088-1107. [PMID: 39245652 PMCID: PMC11491784 DOI: 10.24272/j.issn.2095-8137.2024.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 06/17/2024] [Indexed: 09/10/2024] Open
Abstract
The hypothalamic-pituitary-ovarian (HPO) axis represents a central neuroendocrine network essential for reproductive function. Despite its critical role, the intrinsic heterogeneity within the HPO axis across vertebrates and the complex intercellular interactions remain poorly defined. This study provides the first comprehensive, unbiased, cell type-specific molecular profiling of all three components of the HPO axis in adult Lohmann layers and Liangshan Yanying chickens. Within the hypothalamus, pituitary, and ovary, seven, 12, and 13 distinct cell types were identified, respectively. Results indicated that the pituitary adenylate cyclase activating polypeptide (PACAP), follicle-stimulating hormone (FSH), and prolactin (PRL) signaling pathways may modulate the synthesis and secretion of gonadotropin-releasing hormone (GnRH), FSH, and luteinizing hormone (LH) within the hypothalamus and pituitary. In the ovary, interactions between granulosa cells and oocytes involved the KIT, CD99, LIFR, FN1, and ANGPTL signaling pathways, which collectively regulate follicular maturation. The SEMA4 signaling pathway emerged as a critical mediator across all three tissues of the HPO axis. Additionally, gene expression analysis revealed that relaxin 3 (RLN3), gastrin-releasing peptide (GRP), and cocaine- and amphetamine regulated transcripts (CART, also known as CARTPT) may function as novel endocrine hormones, influencing the HPO axis through autocrine, paracrine, and endocrine pathways. Comparative analyses between Lohmann layers and Liangshan Yanying chickens demonstrated higher expression levels of GRP, RLN3, CARTPT, LHCGR, FSHR, and GRPR in the ovaries of Lohmann layers, potentially contributing to their superior reproductive performance. In conclusion, this study provides a detailed molecular characterization of the HPO axis, offering novel insights into the regulatory mechanisms underlying reproductive biology.
Collapse
Affiliation(s)
- Dong Leng
- School of Pharmacy, Chengdu University, Chengdu, Sichuan 610106, China
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Bo Zeng
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Tao Wang
- School of Pharmacy, Chengdu University, Chengdu, Sichuan 610106, China
| | - Bin-Long Chen
- College of Animal Science, Xichang University, Xichang, Sichuan 615000, China. E-mail:
| | - Di-Yan Li
- School of Pharmacy, Chengdu University, Chengdu, Sichuan 610106, China. E-mail:
| | - Zhuan-Jian Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan 450046, China. E-mail:
| |
Collapse
|
8
|
Rao SS, Kundapura SV, Dey D, Palaniappan C, Sekar K, Kulal A, Ramagopal UA. Cumulative phylogenetic, sequence and structural analysis of Insulin superfamily proteins provide unique structure-function insights. Mol Inform 2024; 43:e202300160. [PMID: 38973776 DOI: 10.1002/minf.202300160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 01/17/2024] [Accepted: 03/14/2024] [Indexed: 07/09/2024]
Abstract
The insulin superfamily proteins (ISPs), in particular, insulin, IGFs and relaxin proteins are key modulators of animal physiology. They are known to have evolved from the same ancestral gene and have diverged into proteins with varied sequences and distinct functions, but maintain a similar structural architecture stabilized by highly conserved disulphide bridges. The recent surge of sequence data and the structures of these proteins prompted a need for a comprehensive analysis, which connects the evolution of these sequences (427 sequences) in the light of available functional and structural information including representative complex structures of ISPs with their cognate receptors. This study reveals (a) unusually high sequence conservation of IGFs (>90 % conservation in 184 sequences) and provides a possible structure-based rationale for such high sequence conservation; (b) provides an updated definition of the receptor-binding signature motif of the functionally diverse relaxin family members (c) provides a probable non-canonical C-peptide cleavage site in a few insulin sequences. The high conservation of IGFs appears to represent a classic case of resistance to sequence diversity exerted by physiologically important interactions with multiple partners. We also propose a probable mechanism for C-peptide cleavage in a few distinct insulin sequences and redefine the receptor-binding signature motif of the relaxin family. Lastly, we provide a basis for minimally modified insulin mutants with potential therapeutic application, inspired by concomitant changes observed in other insulin superfamily protein members supported by molecular dynamics simulation.
Collapse
Affiliation(s)
- Shrilakshmi Sheshagiri Rao
- Division of Biological Sciences, Poornaprajna Institute of Scientific Research, Poornaprajnapura, 562110, Bidalur (Post), Bengaluru, India
- Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Shankar V Kundapura
- Division of Biological Sciences, Poornaprajna Institute of Scientific Research, Poornaprajnapura, 562110, Bidalur (Post), Bengaluru, India
- Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Debayan Dey
- Division of Biological Sciences, Poornaprajna Institute of Scientific Research, Poornaprajnapura, 562110, Bidalur (Post), Bengaluru, India
- Present address: Department of Biochemistry, Emory University School of Medicine, GA 30322, Atlanta, USA
| | - Chandrasekaran Palaniappan
- Department of Computational and Data Sciences, Indian Institute of Science, 560012, Bangalore, India
- Molecular Biophysics Unit, Indian Institute of Science, 560012, Bangalore, India
| | - Kanagaraj Sekar
- Department of Computational and Data Sciences, Indian Institute of Science, 560012, Bangalore, India
| | - Ananda Kulal
- Division of Biological Sciences, Poornaprajna Institute of Scientific Research, Poornaprajnapura, 562110, Bidalur (Post), Bengaluru, India
| | - Udupi A Ramagopal
- Division of Biological Sciences, Poornaprajna Institute of Scientific Research, Poornaprajnapura, 562110, Bidalur (Post), Bengaluru, India
- Department of Microbiology and FST, School of Science, GITAM University, 530045, Visakhapatnam, India
| |
Collapse
|
9
|
Satoh Y, Ono Y, Takahashi R, Katayama H, Iwaoka M, Yoshino O, Arai K. Seleno-relaxin analogues: effect of internal and external diselenide bonds on the foldability and a fibrosis-related factor of endometriotic stromal cells. RSC Chem Biol 2024; 5:729-737. [PMID: 39092438 PMCID: PMC11289879 DOI: 10.1039/d4cb00095a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 05/30/2024] [Indexed: 08/04/2024] Open
Abstract
Human relaxin-2 (H2 relaxin) is a peptide hormone of about 6 kDa, first identified as a reproductive hormone involved in vasoregulation during pregnancy. It has recently attracted strong interest because of its diverse functions, including anti-inflammatory, anti-fibrotic, and vasodilatory, and has been suggested as a potential peptide-based drug candidate for a variety of diseases. Mature H2 relaxin is constituted by the A- and B-chains stabilized by two interchain disulfide (SS) bridges and one intrachain SS linkage. In this study, seleno-relaxins, SeRlx-α and SeRlx-β, which are [C11UA,C11UB] and [C10UA,C15UA] variants of H2 relaxin, respectively, were synthesized via a one-pot oxidative chain assembly (folding) from the component A- and B-chains. The substitution of SS bonds in a protein with their analogue, diselenide (SeSe) bonds, has been shown to alter the physical, chemical, and physiological properties of the protein. The surface SeSe bond (U11A-U11B) enhanced the yield of chain assembly while the internal SeSe bond (U10A-U15A) improved the reaction rate of the folding, indicating that these bridges play a major role in controlling the thermodynamics and kinetics, respectively, of the folding mechanism. Furthermore, SeRlx-α and SeRlx-β effectively reduced the expression of a tissue fibrosis-related factor in human endometriotic stromal cells. Thus, the findings of this study indicate that the S-to-Se substitution strategy not only enhances the foldability of relaxin, but also provides new guidance for the development of novel relaxin formulations for endometriosis treatment.
Collapse
Affiliation(s)
- Yuri Satoh
- Department of Chemistry, School of Science, Tokai University Kitakaname Hiratsuka-shi Kanagawa 259-1292 Japan +81-463-50-2094 +81-463-58-1211
| | - Yosuke Ono
- Department of Obstetrics and Gynecology, University of Yamanashi 1110 Shimokato Chuo-shi Yamanashi 409-3898 Japan
| | - Rikana Takahashi
- Department of Chemistry, School of Science, Tokai University Kitakaname Hiratsuka-shi Kanagawa 259-1292 Japan +81-463-50-2094 +81-463-58-1211
| | - Hidekazu Katayama
- Department of Bioengineering, School of Engineering, Tokai University Kitakaname Hiratsuka-shi Kanagawa 259-1292 Japan
| | - Michio Iwaoka
- Department of Chemistry, School of Science, Tokai University Kitakaname Hiratsuka-shi Kanagawa 259-1292 Japan +81-463-50-2094 +81-463-58-1211
- Institute of Advanced Biosciences, Tokai University Kitakaname Hiratsuka-shi Kanagawa 259-1292 Japan
| | - Osamu Yoshino
- Department of Obstetrics and Gynecology, University of Yamanashi 1110 Shimokato Chuo-shi Yamanashi 409-3898 Japan
| | - Kenta Arai
- Department of Chemistry, School of Science, Tokai University Kitakaname Hiratsuka-shi Kanagawa 259-1292 Japan +81-463-50-2094 +81-463-58-1211
- Institute of Advanced Biosciences, Tokai University Kitakaname Hiratsuka-shi Kanagawa 259-1292 Japan
| |
Collapse
|
10
|
Somanader DVN, Zhao P, Widdop RE, Samuel CS. The involvement of the Wnt/β-catenin signaling cascade in fibrosis progression and its therapeutic targeting by relaxin. Biochem Pharmacol 2024; 223:116130. [PMID: 38490518 DOI: 10.1016/j.bcp.2024.116130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/06/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Abstract
Organ scarring, referred to as fibrosis, results from a failed wound-healing response to chronic tissue injury and is characterised by the aberrant accumulation of various extracellular matrix (ECM) components. Once established, fibrosis is recognised as a hallmark of stiffened and dysfunctional tissues, hence, various fibrosis-related diseases collectively contribute to high morbidity and mortality in developed countries. Despite this, these diseases are ineffectively treated by currently-available medications. The pro-fibrotic cytokine, transforming growth factor (TGF)-β1, has emerged as the master regulator of fibrosis progression, owing to its ability to promote various factors and processes that facilitate rapid ECM synthesis and deposition, whilst negating ECM degradation. TGF-β1 signal transduction is tightly controlled by canonical (Smad-dependent) and non-canonical (MAP kinase- and Rho-associated protein kinase-dependent) intracellular protein activity, whereas its pro-fibrotic actions can also be facilitated by the Wnt/β-catenin pathway. This review outlines the pathological sequence of events and contributing roles of TGF-β1 in the progression of fibrosis, and how the Wnt/β-catenin pathway contributes to tissue repair in acute disease settings, but to fibrosis and related tissue dysfunction in synergy with TGF-β1 in chronic diseases. It also outlines the anti-fibrotic and related signal transduction mechanisms of the hormone, relaxin, that are mediated via its negative modulation of TGF-β1 and Wnt/β-catenin signaling, but through the promotion of Wnt/β-catenin activity in acute disease settings. Collectively, this highlights that the crosstalk between TGF-β1 signal transduction and the Wnt/β-catenin cascade may provide a therapeutic target that can be exploited to broadly treat and reverse established fibrosis.
Collapse
Affiliation(s)
- Deidree V N Somanader
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria 3800, Australia
| | - Peishen Zhao
- Drug Discovery Biology Program, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Robert E Widdop
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria 3800, Australia
| | - Chrishan S Samuel
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria 3800, Australia; Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, Victoria 3052, Australia.
| |
Collapse
|
11
|
Wu X, Lin H, Bai R, Duan H. Deep learning for advancing peptide drug development: Tools and methods in structure prediction and design. Eur J Med Chem 2024; 268:116262. [PMID: 38387334 DOI: 10.1016/j.ejmech.2024.116262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/06/2024] [Accepted: 02/17/2024] [Indexed: 02/24/2024]
Abstract
Peptides can bind challenging disease targets with high affinity and specificity, offering enormous opportunities for addressing unmet medical needs. However, peptides' unique features, including smaller size, increased structural flexibility, and limited data availability, pose additional challenges to the design process compared to proteins. This review explores the dynamic field of peptide therapeutics, leveraging deep learning to enhance structure prediction and design. Our exploration encompasses various facets of peptide research, ranging from dataset curation handling to model development. As deep learning technologies become more refined, we channel our efforts into peptide structure prediction and design, aligning with the fundamental principles of structure-activity relationships in drug development. To guide researchers in harnessing the potential of deep learning to advance peptide drug development, our insights comprehensively explore current challenges and future directions of peptide therapeutics.
Collapse
Affiliation(s)
- Xinyi Wu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Huitian Lin
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Renren Bai
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China.
| | - Hongliang Duan
- Faculty of Applied Sciences, Macao Polytechnic University, Macao, 999078, PR China.
| |
Collapse
|
12
|
Chen K, Dou X, Eum JH, Harrison RE, Brown MR, Strand MR. Insulin-like peptides and ovary ecdysteroidogenic hormone differentially stimulate physiological processes regulating egg formation in the mosquito Aedes aegypti. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 163:104028. [PMID: 37913852 PMCID: PMC10842226 DOI: 10.1016/j.ibmb.2023.104028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/12/2023] [Accepted: 10/23/2023] [Indexed: 11/03/2023]
Abstract
Mosquitoes including Aedes aegypti are human disease vectors because females must blood feed to produce and lay eggs. Blood feeding triggers insulin-insulin growth factor signaling (IIS) which regulates several physiological processes required for egg development. A. aegypti encodes 8 insulin-like peptides (ILPs) and one insulin-like receptor (IR) plus ovary ecdysteroidogenic hormone (OEH) that also activates IIS through the OEH receptor (OEHR). In this study, we assessed the expression of A. aegypti ILPs and OEH during a gonadotrophic cycle and produced each that were functionally characterized to further understand their roles in regulating egg formation. All A. aegypti ILPs and OEH were expressed during a gonadotrophic cycle. Five ILPs (1, 3, 4, 7, 8) and OEH were specifically expressed in the head, while antibodies to ILP3 and OEH indicated each was released after blood feeding from ventricular axons that terminate on the anterior midgut. A subset of ILP family members and OEH stimulated nutrient storage in previtellogenic females before blood feeding, whereas most IIS-dependent processes after blood feeding were activated by one or more of the brain-specific ILPs and/or OEH. ILPs and OEH with different biological activities also exhibited differences in IIS as measured by phosphorylation of the IR, phosphoinositide 3-kinase/Akt kinase (AKT) and mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK). Altogether, our results provide the first results that compare the functional activities of all ILP family members and OEH produced by an insect.
Collapse
Affiliation(s)
- Kangkang Chen
- Department of Entomology, University of Georgia, Athens, GA, USA
| | - Xiaoyi Dou
- Department of Entomology, University of Georgia, Athens, GA, USA
| | - Jai Hoon Eum
- Department of Entomology, University of Georgia, Athens, GA, USA
| | - Ruby E Harrison
- Department of Entomology, University of Georgia, Athens, GA, USA
| | - Mark R Brown
- Department of Entomology, University of Georgia, Athens, GA, USA.
| | - Michael R Strand
- Department of Entomology, University of Georgia, Athens, GA, USA.
| |
Collapse
|
13
|
Mita M, Feng Y, Piñon-Gonzalez VM, Elphick MR, Katayama H. Gonadotropic activity of a second relaxin-type peptide in starfish. Gen Comp Endocrinol 2023; 343:114369. [PMID: 37611673 DOI: 10.1016/j.ygcen.2023.114369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/14/2023] [Accepted: 08/20/2023] [Indexed: 08/25/2023]
Abstract
In starfish, a relaxin-like gonad-stimulating peptide (RGP) acts as a gonadotropin that triggers gamete maturation and spawning. In common with other relaxin/insulin superfamily peptides, RGP consists of an A- and a B-chain, with cross-linkages mediated by one intra- and two inter-chain disulfide bonds. In this study, a second relaxin-like peptide (RLP2) was identified in starfish species belonging to the orders Valvatida, Paxillosida, and Forcipulatida. Like RGP, RLP2 precursors comprise a signal peptide and a C-peptide in addition to the A- and B-chains. However, a unique cysteine motif [CC-(3X)-C-(10X)-C] is present in the A-chain of RLP2, which contrasts with the cysteine motif in other members of the relaxin/insulin superfamily [CC-(3X)-C-(8X)-C]. Importantly, in vitro pharmacological tests revealed that Patiria pectinifera RLP2 (Ppe-RLP2) and Asterias rubens RLP2 (Aru-RLP2) trigger shedding of mature eggs from ovaries of P. pectinifera and A. rubens, respectively. Furthermore, the potencies of Ppe-RLP2 and Aru-RLP2 as gonadotropic peptides were similar to those of Ppe-RGP and Aru-RGP, respectively, and the effect of RLP2 exhibited partial species-specificity. These findings indicate that two relaxin-type peptides regulate spawning in starfish and therefore we propose that RGP and RLP2 are renamed RGP1 and RGP2, respectively.
Collapse
Affiliation(s)
- Masatoshi Mita
- Department of Biochemistry, Showa University School of Medicine, 1-5-8, Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan.
| | - Yuling Feng
- Queen Mary University of London, School of Biological & Behavioural Sciences, Mile End Road, London E1 4NS, UK
| | - Victor M Piñon-Gonzalez
- Queen Mary University of London, School of Biological & Behavioural Sciences, Mile End Road, London E1 4NS, UK
| | - Maurice R Elphick
- Queen Mary University of London, School of Biological & Behavioural Sciences, Mile End Road, London E1 4NS, UK
| | - Hidekazu Katayama
- Department of Bioengineering, School of Engineering, Tokai University, 4-1-1, Kitakaname, Hiratsuka, Kanagawa, 259-1292, Japan
| |
Collapse
|
14
|
Zhao R, Shi P, Wei XX, Xia Z, Shi C, Shi J. Synthesis of A11 Cys-B11 Cys Disulfide Surrogates of H2 Relaxin through an Intermolecular Native Chemical Ligation-Assisted Diaminodiacid Strategy. Org Lett 2023; 25:6544-6548. [PMID: 37642298 DOI: 10.1021/acs.orglett.3c02381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
We report an intermolecular native chemical ligation-assisted diaminodiacid strategy for the flexible construction of A11Cys-B11Cys disulfide surrogates of H2 relaxin. The practicality of this strategy was evidenced by the synthesis of four new H2 relaxin analogs, among which H2-2a-B28Ile is found to exhibit improved potency, selectivity, and stability compared with native H2 relaxin.
Collapse
Affiliation(s)
- Rui Zhao
- Department of Chemistry, Center for BioAnalytical Chemistry, Hefei National Laboratory of Physical Science at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Pan Shi
- Department of Chemistry, Center for BioAnalytical Chemistry, Hefei National Laboratory of Physical Science at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Xiao-Xiong Wei
- Department of Chemistry, Center for BioAnalytical Chemistry, Hefei National Laboratory of Physical Science at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Zhemin Xia
- Department of Chemistry, Center for BioAnalytical Chemistry, Hefei National Laboratory of Physical Science at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Chaowei Shi
- Department of Chemistry, Center for BioAnalytical Chemistry, Hefei National Laboratory of Physical Science at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Jing Shi
- Department of Chemistry, Center for BioAnalytical Chemistry, Hefei National Laboratory of Physical Science at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
15
|
Handley TNG, Praveen P, Tailhades J, Wu H, Bathgate RAD, Hossain MA. Further Developments towards a Minimal Potent Derivative of Human Relaxin-2. Int J Mol Sci 2023; 24:12670. [PMID: 37628851 PMCID: PMC10454739 DOI: 10.3390/ijms241612670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Human relaxin-2 (H2 relaxin) is a peptide hormone with potent vasodilatory and anti-fibrotic effects, which is of interest for the treatment of heart failure and fibrosis. H2 relaxin binds to the Relaxin Family Peptide Receptor 1 (RXFP1). Native H2 relaxin is a two-chain, three-disulfide-bond-containing peptide, which is unstable in human serum and difficult to synthesize efficiently. In 2016, our group developed B7-33, a single-chain peptide derived from the B-chain of H2 relaxin. B7-33 demonstrated poor affinity and potency in HEK cells overexpressing RXFP1; however, it displayed equivalent potency to H2 relaxin in fibroblasts natively expressing RXFP1, where it also demonstrated the anti-fibrotic effects of the native hormone. B7-33 reversed organ fibrosis in numerous pre-clinical animal studies. Here, we detail our efforts towards a minimal H2 relaxin scaffold and attempts to improve scaffold activity through Aib substitution and hydrocarbon stapling to re-create the peptide helicity present in the native H2 relaxin.
Collapse
Affiliation(s)
| | - Praveen Praveen
- The Florey, Melbourne, VIC 3052, Australia; (T.N.G.H.); (P.P.); (H.W.)
| | - Julien Tailhades
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3004, Australia;
| | - Hongkang Wu
- The Florey, Melbourne, VIC 3052, Australia; (T.N.G.H.); (P.P.); (H.W.)
| | - Ross A. D. Bathgate
- The Florey, Melbourne, VIC 3052, Australia; (T.N.G.H.); (P.P.); (H.W.)
- Department of Biochemistry and Pharmacology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Mohammed Akhter Hossain
- The Florey, Melbourne, VIC 3052, Australia; (T.N.G.H.); (P.P.); (H.W.)
- Department of Biochemistry and Pharmacology, University of Melbourne, Melbourne, VIC 3010, Australia
- School of Chemistry and Bio21, University of Melbourne, Melbourne, VIC 3010, Australia
| |
Collapse
|
16
|
Hossain MA, Praveen P, Noorzi NA, Wu H, Harrison IP, Handley T, Selemidis S, Samuel CS, Bathgate RAD. Development of Novel High-Affinity Antagonists for the Relaxin Family Peptide Receptor 1. ACS Pharmacol Transl Sci 2023; 6:842-853. [PMID: 37200817 PMCID: PMC10186362 DOI: 10.1021/acsptsci.3c00053] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Indexed: 05/20/2023]
Abstract
H2 relaxin is a peptide hormone that exerts its biological actions through the G protein-coupled receptor, RXFP1. The numerous important biological functions of H2 relaxin, including potent renal, vasodilatory, cardioprotective, and anti-fibrotic actions, have resulted in considerable interest in its use as a therapeutic for various cardiovascular diseases and other fibrotic indications. Interestingly though, H2 relaxin and RXFP1 have been shown to be overexpressed in prostate cancer, allowing for the downregulation or blocking of relaxin/RXFP1 to decrease prostate tumor growth. These findings suggest the application of an RXFP1 antagonist for the treatment of prostate cancer. However, these therapeutically relevant actions are still poorly understood and have been hindered by the lack of a high-affinity antagonist. In this study, we chemically synthesized three novel H2 relaxin analogues that have complex insulin-like structures with two chains (A and B) and three disulfide bridges. We report here the structure-activity relationship studies on H2 relaxin that resulted in the development of a novel high-affinity RXFP1 antagonist, H2 B-R13HR (∼40 nM), that has only one extra methylene group in the side chain of arginine 13 in the B-chain (ArgB13) of H2 relaxin. Most notably, the synthetic peptide was shown to be active in a mouse model of prostate tumor growth in vivo where it inhibited relaxin-mediated tumor growth. Our compound H2 B-R13HR will be an important research tool to understand relaxin actions through RXFP1 and may be a potential lead compound for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Mohammed Akhter Hossain
- Florey
Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3010, Victoria, Australia
- School
of Chemistry, University of Melbourne, Parkville 3010, Victoria, Australia
- Department
of Biochemistry and Pharmacology, University
of Melbourne, Parkville 3010, Victoria, Australia
| | - Praveen Praveen
- Florey
Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3010, Victoria, Australia
| | - Nurhayati Ahmad Noorzi
- Cardiovascular
Disease Program, Monash Biomedicine Discovery Institute, Monash University, Clayton 3800, Victoria, Australia
- Department
of Pharmacology, Monash University, Clayton 3800, Victoria, Australia
| | - Hongkang Wu
- Florey
Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3010, Victoria, Australia
- Department
of Biochemistry and Pharmacology, University
of Melbourne, Parkville 3010, Victoria, Australia
| | - Ian P. Harrison
- Cardiovascular
Disease Program, Monash Biomedicine Discovery Institute, Monash University, Clayton 3800, Victoria, Australia
- Department
of Pharmacology, Monash University, Clayton 3800, Victoria, Australia
| | - Thomas Handley
- Florey
Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3010, Victoria, Australia
| | - Stavros Selemidis
- School
of
Health and Biomedical Sciences, RMIT University, Bundoora 3083, Victoria, Australia
| | - Chrishan S. Samuel
- Cardiovascular
Disease Program, Monash Biomedicine Discovery Institute, Monash University, Clayton 3800, Victoria, Australia
- Department
of Pharmacology, Monash University, Clayton 3800, Victoria, Australia
| | - Ross A. D. Bathgate
- Florey
Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3010, Victoria, Australia
- Department
of Biochemistry and Pharmacology, University
of Melbourne, Parkville 3010, Victoria, Australia
| |
Collapse
|
17
|
Mita M. Relaxin-like Gonad-Stimulating Peptides in Asteroidea. Biomolecules 2023; 13:781. [PMID: 37238650 PMCID: PMC10216564 DOI: 10.3390/biom13050781] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Starfish relaxin-like gonad-stimulating peptide (RGP) is the first identified peptide hormone with gonadotropin-like activity in invertebrates. RGP is a heterodimeric peptide, comprising A and B chains with disulfide cross-linkages. Although RGP had been named a gonad-stimulating substance (GSS), the purified peptide is a member of relaxin-type peptide family. Thus, GSS was renamed as RGP. The cDNA of RGP encodes not only the A and B chains, but also signal and C-peptides. After the rgp gene is translated as a precursor, mature RGP is produced by eliminating the signal and C-peptides. Hitherto, twenty-four RGP orthologs have been identified or predicted from starfish in the orders Valvatida, Forcipulatida, Paxillosida, Spinulosida, and Velatida. The molecular evolution of the RGP family is in good accordance with the phylogenetic taxonomy in Asteroidea. Recently, another relaxin-like peptide with gonadotropin-like activity, RLP2, was found in starfish. RGP is mainly present in the radial nerve cords and circumoral nerve rings, but also in the arm tips, the gonoducts, and the coelomocytes. RGP acts on ovarian follicle cells and testicular interstitial cells to induce the production of 1-methyladenine (1-MeAde), a starfish maturation-inducing hormone. RGP-induced 1-MeAde production is accompanied by an increase in intracellular cyclic AMP levels. This suggests that the receptor for RGP (RGPR) is a G protein-coupled receptor (GPCR). Two types of GPCRs, RGPR1 and RGPR2, have been postulated as candidates. Furthermore, 1-MeAde produced by RGP not only induces oocyte maturation, but also induces gamete shedding, possibly by stimulating the secretion of acetylcholine in the ovaries and testes. Thus, RGP plays an important role in starfish reproduction, but its secretion mechanism is still unknown. It has also been revealed that RGP is found in the peripheral adhesive papillae of the brachiolaria arms. However, gonads are not developed in the larvae before metamorphosis. It may be possible to discover new physiological functions of RGP other than gonadotropin-like activity.
Collapse
Affiliation(s)
- Masatoshi Mita
- Department of Biochemistry, Showa University School of Medicine, Hatanodai 8-5-1, Shinagawa-ku, Tokyo 142-8555, Japan
| |
Collapse
|
18
|
Zhao R, Shi P, Cui JB, Shi C, Wei XX, Luo J, Xia Z, Shi WW, Zhou Y, Tang J, Tian C, Meininghaus M, Bierer D, Shi J, Li YM, Liu L. Single-Shot Solid-Phase Synthesis of Full-Length H2 Relaxin Disulfide Surrogates. Angew Chem Int Ed Engl 2023; 62:e202216365. [PMID: 36515186 DOI: 10.1002/anie.202216365] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/10/2022] [Accepted: 12/13/2022] [Indexed: 12/15/2022]
Abstract
Chemical synthesis of insulin superfamily proteins (ISPs) has recently been widely studied to develop next-generation drugs. Separate synthesis of multiple peptide fragments and tedious chain-to-chain folding are usually encountered in these studies, limiting accessibility to ISP derivatives. Here we report the finding that insulin superfamily proteins (e.g. H2 relaxin, insulin itself, and H3 relaxin) incorporating a pre-made diaminodiacid bridge at A-B chain terminal disulfide can be easily and rapidly synthesized by a single-shot automated solid-phase synthesis and expedient one-step folding. Our new H2 relaxin analogues exhibit almost identical structures and activities when compared to their natural counterparts. This new synthetic strategy will expediate production of new ISP analogues for pharmaceutical studies.
Collapse
Affiliation(s)
- Rui Zhao
- Department of Chemistry, Center for BioAnalytical Chemistry, Hefei National Laboratory of Physical Science at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China.,School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, 230009, China
| | - Pan Shi
- Department of Chemistry, Center for BioAnalytical Chemistry, Hefei National Laboratory of Physical Science at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Ji-Bin Cui
- School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, 230009, China
| | - Chaowei Shi
- Department of Chemistry, Center for BioAnalytical Chemistry, Hefei National Laboratory of Physical Science at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiao-Xiong Wei
- Department of Chemistry, Center for BioAnalytical Chemistry, Hefei National Laboratory of Physical Science at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jie Luo
- School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, 230009, China
| | - Zhemin Xia
- Department of Chemistry, Center for BioAnalytical Chemistry, Hefei National Laboratory of Physical Science at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Wei-Wei Shi
- Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, 100084, China
| | - Yingxin Zhou
- Department of Chemistry, Center for BioAnalytical Chemistry, Hefei National Laboratory of Physical Science at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jiahui Tang
- School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, 230009, China
| | - Changlin Tian
- Department of Chemistry, Center for BioAnalytical Chemistry, Hefei National Laboratory of Physical Science at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Mark Meininghaus
- Drug Discovery Sciences, Bayer AG, Pharmaceuticals, Aprather Weg 18 A, 42096, Wuppertal, Germany
| | - Donald Bierer
- Drug Discovery Sciences, Bayer AG, Pharmaceuticals, Aprather Weg 18 A, 42096, Wuppertal, Germany
| | - Jing Shi
- Department of Chemistry, Center for BioAnalytical Chemistry, Hefei National Laboratory of Physical Science at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yi-Ming Li
- School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, 230009, China
| | - Lei Liu
- Department of Chemistry, Center for BioAnalytical Chemistry, Hefei National Laboratory of Physical Science at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China.,Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
19
|
Chen Y, Zhou Q, Wang J, Xu Y, Wang Y, Yan J, Wang Y, Zhu Q, Zhao F, Li C, Chen CW, Cai X, Bathgate RAD, Shen C, Eric Xu H, Yang D, Liu H, Wang MW. Ligand recognition mechanism of the human relaxin family peptide receptor 4 (RXFP4). Nat Commun 2023; 14:492. [PMID: 36717591 PMCID: PMC9886975 DOI: 10.1038/s41467-023-36182-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 01/19/2023] [Indexed: 02/01/2023] Open
Abstract
Members of the insulin superfamily regulate pleiotropic biological processes through two types of target-specific but structurally conserved peptides, insulin/insulin-like growth factors and relaxin/insulin-like peptides. The latter bind to the human relaxin family peptide receptors (RXFPs). Here, we report three cryo-electron microscopy structures of RXFP4-Gi protein complexes in the presence of the endogenous ligand insulin-like peptide 5 (INSL5) or one of the two small molecule agonists, compound 4 and DC591053. The B chain of INSL5 adopts a single α-helix that penetrates into the orthosteric pocket, while the A chain sits above the orthosteric pocket, revealing a peptide-binding mode previously unknown. Together with mutagenesis and functional analyses, the key determinants responsible for the peptidomimetic agonism and subtype selectivity were identified. Our findings not only provide insights into ligand recognition and subtype selectivity among class A G protein-coupled receptors, but also expand the knowledge of signaling mechanisms in the insulin superfamily.
Collapse
Affiliation(s)
- Yan Chen
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Qingtong Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Jiang Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,Lingang Laboratory, Shanghai, 200031, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 310024, China
| | - Youwei Xu
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yun Wang
- Genova Biotech (Changzhou) Co., Ltd, Changzhou, 213125, China
| | - Jiahui Yan
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yibing Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Qi Zhu
- Genova Biotech (Changzhou) Co., Ltd, Changzhou, 213125, China
| | - Fenghui Zhao
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Chenghao Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 310024, China
| | - Chuan-Wei Chen
- Research Center for Deepsea Bioresources, Sanya, Hainan, 572025, China
| | - Xiaoqing Cai
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Ross A D Bathgate
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, 3052, Australia.,Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, 3052, Australia
| | - Chun Shen
- Genova Biotech (Changzhou) Co., Ltd, Changzhou, 213125, China
| | - H Eric Xu
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Dehua Yang
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China. .,The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China. .,Research Center for Deepsea Bioresources, Sanya, Hainan, 572025, China.
| | - Hong Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China. .,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 310024, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China. .,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| | - Ming-Wei Wang
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China. .,The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China. .,The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China. .,Research Center for Deepsea Bioresources, Sanya, Hainan, 572025, China. .,Department of Chemistry, School of Science, The University of Tokyo, Tokyo, 113-0033, Japan.
| |
Collapse
|
20
|
Bigler NA, Gross JJ, Baumrucker CR, Bruckmaier RM. Endocrine changes during the peripartal period related to colostrogenesis in mammalian species. J Anim Sci 2023; 101:skad146. [PMID: 37158662 PMCID: PMC10237234 DOI: 10.1093/jas/skad146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/05/2023] [Indexed: 05/10/2023] Open
Abstract
This review discusses endocrine and functional changes during the transition from late gestation to lactation that are related to the production of colostrum in different mammalian species. Species covered in this article include ungulate species (cattle, sheep, goats, pigs, horses), rodents (rat, mouse), rabbits, and carnivores (cats, dogs), as well as humans. An immediate availability of high quality colostrum for the newborn after birth is crucial in species where a transfer of immunoglobulins (Ig) does not or only partially occur via the placenta during pregnancy. Declining activity of gestagens, in most species progesterone (P4), is crucial at the end of pregnancy to allow for the characteristic endocrine changes to initiate parturition and lactation, but the endocrine regulation of colostrogenesis is negligible. Both, the functional pathways and the timing of gestagen withdrawal differ considerably among mammalian species. In species with a sustaining corpus luteum throughout the entire pregnancy (cattle, goat, pig, cat, dog, rabbit, mouse, and rat), a prostaglandin F2α (PGF2α)-induced luteolysis shortly before parturition is assumed to be the key event to initiate parturition as well as lactogenesis. In species where the gestagen production is taken over by the placenta during the course of gestation (e.g., sheep, horse, and human), the reduction of gestagen activity is more complex, as PGF2α does not affect placental gestagen production. In sheep the steroid hormone synthesis is directed away from P4 towards estradiol-17β (E2) to achieve a low gestagen activity at high E2 concentrations. In humans the uterus becomes insensitive to P4, as parturition occurs despite still high P4 concentrations. However, lactogenesis is not completed as long as P4 concentration is high. Early colostrum and thus Ig intake for immune protection is not needed for the human newborn which allows a delayed onset of copious milk secretion for days until the placenta expulsion causes the P4 drop. Like humans, horses do not need low gestagen concentrations for successful parturition. However, newborn foals need immediate immune protection through Ig intake with colostrum. This requires the start of lactogenesis before parturition which is not fully clarified. The knowledge of the endocrine changes and related pathways to control the key events integrating the processes of colostrogenesis, parturition, and start of lactation are incomplete in many species.
Collapse
Affiliation(s)
- Naomi A Bigler
- Veterinary Physiology, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109a, 3012 Bern, Switzerland
| | - Josef J Gross
- Veterinary Physiology, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109a, 3012 Bern, Switzerland
| | - Craig R Baumrucker
- Department of Animal Science, Penn State University, University Park, PA 16802, USA
| | - Rupert M Bruckmaier
- Veterinary Physiology, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109a, 3012 Bern, Switzerland
| |
Collapse
|
21
|
Lv C, Zheng H, Jiang B, Ren Q, Zhang J, Zhang X, Li J, Wang Y. Characterization of relaxin 3 and its receptors in chicken: Evidence for relaxin 3 acting as a novel pituitary hormone. Front Physiol 2022; 13:1010851. [PMID: 36419837 PMCID: PMC9676923 DOI: 10.3389/fphys.2022.1010851] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/12/2022] [Indexed: 02/04/2025] Open
Abstract
Mammalian relaxin (RLN) family peptides binding their receptors (RXFPs) play a variety of roles in many physiological processes, such as reproduction, stress, appetite regulation, and energy balance. In birds, although two relaxin family peptides (RLN3 and INSL5) and four receptors (RXFP1, RXFP2, RXFP2-like, and RXFP3) were predicated, their sequence features, signal properties, tissue distribution, and physiological functions remain largely unknown. In this study, using chickens as the experimental model, we cloned the cDNA of the cRLN3 gene and two receptor (cRXFP1 and cRXFP3) genes. Using cell-based luciferase reporter assays, we demonstrate that cRLN3 is able to activate both cRXFP1 and cRXFP3 for downstream signaling. cRXFP1, rather than cRXFP3, is a cognate receptor for cRLN3, which is different from the mammals. Tissue distribution analyses reveal that cRLN3 is highly expressed in the pituitary with lower abundance in the hypothalamus and ovary of female chicken, together with the detection that cRLN3 co-localizes with pituitary hormone genes LHB/FSHB/GRP/CART and its expression is tightly regulated by hypothalamic factors (GnRH and CRH) and sex steroid hormone (E2). The present study supports that cRLN3 may function as a novel pituitary hormone involving female reproduction.
Collapse
Affiliation(s)
- Can Lv
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Huilu Zheng
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Biying Jiang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Qin Ren
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Jiannan Zhang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
- Joint Nutrition Center for Animal Feeding of Sichuan University-Shengliyuan Group, Chengdu, China
| | - Xin Zhang
- Joint Nutrition Center for Animal Feeding of Sichuan University-Shengliyuan Group, Chengdu, China
| | - Juan Li
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
- Joint Nutrition Center for Animal Feeding of Sichuan University-Shengliyuan Group, Chengdu, China
| | - Yajun Wang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
- Joint Nutrition Center for Animal Feeding of Sichuan University-Shengliyuan Group, Chengdu, China
| |
Collapse
|
22
|
Kirsch JR, Williamson AK, Yeritsyan D, Blessing WA, Momenzadeh K, Leach TR, Williamson PM, Korunes-Miller JT, DeAngelis JP, Zurakowski D, Nazarian RM, Rodriguez EK, Nazarian A, Grinstaff MW. Minimally invasive, sustained-release relaxin-2 microparticles reverse arthrofibrosis. Sci Transl Med 2022; 14:eabo3357. [PMID: 36223449 PMCID: PMC9948766 DOI: 10.1126/scitranslmed.abo3357] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Substantial advances in biotherapeutics are distinctly lacking for musculoskeletal diseases. Musculoskeletal diseases are biomechanically complex and localized, highlighting the need for novel therapies capable of addressing these issues. All frontline treatment options for arthrofibrosis, a debilitating musculoskeletal disease, fail to treat the disease etiology-the accumulation of fibrotic tissue within the joint space. For millions of patients each year, the lack of modern and effective treatment options necessitates surgery in an attempt to regain joint range of motion (ROM) and escape prolonged pain. Human relaxin-2 (RLX), an endogenous peptide hormone with antifibrotic and antifibrogenic activity, is a promising biotherapeutic candidate for musculoskeletal fibrosis. However, RLX has previously faltered through multiple clinical programs because of pharmacokinetic barriers. Here, we describe the design and in vitro characterization of a tailored drug delivery system for the sustained release of RLX. Drug-loaded, polymeric microparticles released RLX over a multiweek time frame without altering peptide structure or bioactivity. In vivo, intraarticular administration of microparticles in rats resulted in prolonged, localized concentrations of RLX with reduced systemic drug exposure. Furthermore, a single injection of RLX-loaded microparticles restored joint ROM and architecture in an atraumatic rat model of arthrofibrosis with clinically derived end points. Finally, confirmation of RLX receptor expression, RXFP1, in multiple human tissues relevant to arthrofibrosis suggests the clinical translational potential of RLX when administered in a sustained and targeted manner.
Collapse
Affiliation(s)
- Jack R. Kirsch
- Department of Biomedical Engineering, Boston University; Boston, MA, 02215, USA
| | | | - Diana Yeritsyan
- Musculoskeletal Translational Innovation Initiative, Carl J Shapiro Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School; Boston, MA, 02215, USA
| | | | - Kaveh Momenzadeh
- Musculoskeletal Translational Innovation Initiative, Carl J Shapiro Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School; Boston, MA, 02215, USA
| | - Todd R. Leach
- Department of Biomedical Engineering, Boston University; Boston, MA, 02215, USA
| | - Patrick M. Williamson
- Musculoskeletal Translational Innovation Initiative, Carl J Shapiro Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School; Boston, MA, 02215, USA
| | | | - Joseph P. DeAngelis
- Carl J Shapiro Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School; Boston, MA, 02215, USA
| | - David Zurakowski
- Departments of Anesthesiology and Surgery, Boston Children’s Hospital, Harvard Medical School; Boston, MA, 02115, USA
| | - Rosalynn M. Nazarian
- Pathology Service, Dermatopathology Unit, Massachusetts General Hospital, Harvard Medical School; Boston, MA, 02114, USA
| | - Edward K. Rodriguez
- Musculoskeletal Translational Innovation Initiative, Carl J Shapiro Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School; Boston, MA, 02215, USA,Carl J Shapiro Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School; Boston, MA, 02215, USA
| | - Ara Nazarian
- Musculoskeletal Translational Innovation Initiative, Carl J Shapiro Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School; Boston, MA, 02215, USA,Department of Orthopaedic Surgery, Yerevan State Medical University, Yerevan, 0025, Armenia
| | - Mark W. Grinstaff
- Department of Biomedical Engineering, Boston University; Boston, MA, 02215, USA,Department of Chemistry, Boston University; Boston, MA, 02215, USA,Corresponding author.
| |
Collapse
|
23
|
Kogkos G, Gkartziou F, Mourtas S, Barlos KK, Klepetsanis P, Barlos K, Antimisiaris SG. Liposomal Entrapment or Chemical Modification of Relaxin2 for Prolongation of Its Stability and Biological Activity. Biomolecules 2022; 12:biom12101362. [PMID: 36291571 PMCID: PMC9599704 DOI: 10.3390/biom12101362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/24/2022] Open
Abstract
Relaxin (RLX) is a protein that is structurally similar to insulin and has interesting biological activities. As with all proteins, preservation of RLX’s structural integrity/biological functionality is problematic. Herein, we investigated two methods for increasing the duration of relaxin-2’s (RLX2) biological activity: synthesis of a palmitoyl RLX2 conjugate (P-RLX2) with the use of a Palmitoyl-l-Glu-OtBu peptide modifier, and encapsulation into liposomes of P-RLX2, RLX2, and its oxidized form (O-RLX2). For liposomal encapsulation thin-film hydration and DRV methods were applied, and different lipid compositions were tested for optimized protein loading. RLX2 and O-RLX2 were quantified by HPLC. The capability of the peptides/conjugate to stimulate transfected cells to produce cyclic adenosine monophosphate (cAMP) was used as a measure of their biological activity. The stability and bioactivity of free and liposomal RLX2 types were monitored for a 30 d period, in buffer (in some cases) and bovine serum (80%) at 37 °C. The results showed that liposome encapsulation substantially increased the RLX2 integrity in buffer; PEGylated liposomes demonstrated a higher protection. Liposome encapsulation also increased the stability of RLX2 and O-RLX2 in serum. Considering the peptide’s biological activity, cAMP production of RLX2 was higher than that of the oxidized form and the P-RLX2 conjugate (which demonstrated a similar activity to O-RLX2 when measured in buffer, but lower when measured in the presence of serum proteins), while liposome encapsulation resulted in a slight decrease of bioactivity initially, but prolonged the peptide bioactivity during incubation in serum. It was concluded that liposome encapsulation of RLX2 and synthetic modification to P-RLX2 can both prolong RLX2 peptide in vitro stability; however, the applied chemical conjugation results in a significant loss of bioactivity (cAMP production), whereas the effect of liposome entrapment on RLX2 activity was significantly lower.
Collapse
Affiliation(s)
- George Kogkos
- Lab Pharm Technology, Department of Pharmacy, University of Patras, Rio, 26504 Patras, Greece
| | - Foteini Gkartziou
- Foundation for Research and Technology Hellas, Institute of Chemical Engineering, FORTH/ICE-HT, Platani, 26504 Patras, Greece
| | - Spyridon Mourtas
- Lab Pharm Technology, Department of Pharmacy, University of Patras, Rio, 26504 Patras, Greece
- Department of Chemistry, University of Patras, Rio, 26504 Patras, Greece
| | - Kostas K. Barlos
- Chemical & Biopharmaceutical Laboratories CBL Patras, Ind. Area of Patras, Block 1, 25018 Patras, Greece
| | - Pavlos Klepetsanis
- Lab Pharm Technology, Department of Pharmacy, University of Patras, Rio, 26504 Patras, Greece
- Foundation for Research and Technology Hellas, Institute of Chemical Engineering, FORTH/ICE-HT, Platani, 26504 Patras, Greece
| | - Kleomenis Barlos
- Chemical & Biopharmaceutical Laboratories CBL Patras, Ind. Area of Patras, Block 1, 25018 Patras, Greece
| | - Sophia G. Antimisiaris
- Lab Pharm Technology, Department of Pharmacy, University of Patras, Rio, 26504 Patras, Greece
- Foundation for Research and Technology Hellas, Institute of Chemical Engineering, FORTH/ICE-HT, Platani, 26504 Patras, Greece
- Correspondence: ; Tel.: +30-2610962332
| |
Collapse
|
24
|
Tapia Cáceres F, Gaspari TA, Hossain MA, Samuel CS. Relaxin Inhibits the Cardiac Myofibroblast NLRP3 Inflammasome as Part of Its Anti-Fibrotic Actions via the Angiotensin Type 2 and ATP (P2X7) Receptors. Int J Mol Sci 2022; 23:ijms23137074. [PMID: 35806076 PMCID: PMC9266307 DOI: 10.3390/ijms23137074] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 12/18/2022] Open
Abstract
Chronic NLRP3 inflammasome activation can promote fibrosis through its production of interleukin (IL)-1β and IL-18. Conversely, recombinant human relaxin (RLX) can inhibit the pro-fibrotic interactions between IL-1β, IL-18 and transforming growth factor (TGF)-β1. Here, the broader extent by which RLX targeted the myofibroblast NLRP3 inflammasome to mediate its anti-fibrotic effects was elucidated. Primary human cardiac fibroblasts (HCFs), stimulated with TGF-β1 (to promote myofibroblast (HCMF) differentiation), LPS (to prime the NLRP3 inflammasome) and ATP (to activate the NLRP3 inflammasome) (T+L+A) or benzoylbenzoyl-ATP (to activate the ATP receptor; P2X7R) (T+L+Bz), co-expressed relaxin family peptide receptor-1 (RXFP1), the angiotensin II type 2 receptor (AT2R) and P2X7R, and underwent increased protein expression of toll-like receptor (TLR)-4, NLRP3, caspase-1, IL-1β and IL-18. Whilst RLX co-administration to HCMFs significantly prevented the T+L+A- or T+L+Bz-stimulated increase in these end points, the inhibitory effects of RLX were annulled by the pharmacological antagonism of either RXFP1, AT2R, P2X7R, TLR-4, reactive oxygen species (ROS) or caspase-1. The RLX-induced amelioration of left ventricular inflammation, cardiomyocyte hypertrophy and fibrosis in isoproterenol (ISO)-injured mice, was also attenuated by P2X7R antagonism. Thus, the ability of RLX to ameliorate the myofibroblast NLRP3 inflammasome as part of its anti-fibrotic effects, appeared to involve RXFP1, AT2R, P2X7R and the inhibition of TLR-4, ROS and caspase-1.
Collapse
Affiliation(s)
- Felipe Tapia Cáceres
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Melbourne, VIC 3800, Australia; (F.T.C.); (T.A.G.)
| | - Tracey A. Gaspari
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Melbourne, VIC 3800, Australia; (F.T.C.); (T.A.G.)
| | - Mohammed Akhter Hossain
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC 3010, Australia;
| | - Chrishan S. Samuel
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Melbourne, VIC 3800, Australia; (F.T.C.); (T.A.G.)
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, VIC 3010, Australia
- Correspondence:
| |
Collapse
|
25
|
Speck D, Kleinau G, Meininghaus M, Erbe A, Einfeldt A, Szczepek M, Scheerer P, Pütter V. Expression and Characterization of Relaxin Family Peptide Receptor 1 Variants. Front Pharmacol 2022; 12:826112. [PMID: 35153771 PMCID: PMC8832513 DOI: 10.3389/fphar.2021.826112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/31/2021] [Indexed: 12/31/2022] Open
Abstract
G-protein coupled receptors (GPCR) transduce extracellular stimuli into the cell interior and are thus centrally involved in almost all physiological-neuronal processes. This essential function and association with many diseases or pathological conditions explain why GPCRs are one of the priority targets in medical and pharmacological research, including structure determination. Despite enormous experimental efforts over the last decade, both the expression and purification of these membrane proteins remain elusive. This is attributable to specificities of each GPCR subtype and the finding of necessary experimental in vitro conditions, such as expression in heterologous cell systems or with accessory proteins. One of these specific GPCRs is the leucine-rich repeat domain (LRRD) containing GPCR 7 (LGR7), also termed relaxin family peptide receptor 1 (RXFP1). This receptor is characterized by a large extracellular region of around 400 amino acids constituted by several domains, a rare feature among rhodopsin-like (class A) GPCRs. In the present study, we describe the expression and purification of RXFP1, including the design of various constructs suitable for functional/biophysical studies and structure determination. Based on available sequence information, homology models, and modern biochemical and genetic tools, several receptor variations with different purification tags and fusion proteins were prepared and expressed in Sf9 cells (small-scale), followed by an analytic fluorescence-detection size-exclusion chromatography (F-SEC) to evaluate the constructs. The most promising candidates were expressed and purified on a large-scale, accompanied by ligand binding studies using surface plasmon resonance spectroscopy (SPR) and by determination of signaling capacities. The results may support extended studies on RXFP1 receptor constructs serving as targets for small molecule ligand screening or structural elucidation by protein X-ray crystallography or cryo-electron microscopy.
Collapse
Affiliation(s)
- David Speck
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Group Protein X-ray Crystallography & Signal Transduction, Berlin, Germany
| | - Gunnar Kleinau
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Group Protein X-ray Crystallography & Signal Transduction, Berlin, Germany
| | - Mark Meininghaus
- Bayer AG, Research and Development, Pharmaceuticals, Wuppertal, Germany
| | - Antje Erbe
- Bayer AG, Research and Development, Pharmaceuticals, Berlin, Germany
- NUVISAN ICB GmbH, Berlin, Germany
| | - Alexandra Einfeldt
- Bayer AG, Research and Development, Pharmaceuticals, Berlin, Germany
- NUVISAN ICB GmbH, Berlin, Germany
| | - Michal Szczepek
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Group Protein X-ray Crystallography & Signal Transduction, Berlin, Germany
| | - Patrick Scheerer
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Group Protein X-ray Crystallography & Signal Transduction, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
- *Correspondence: Patrick Scheerer, ; Vera Pütter,
| | - Vera Pütter
- Bayer AG, Research and Development, Pharmaceuticals, Berlin, Germany
- NUVISAN ICB GmbH, Berlin, Germany
- *Correspondence: Patrick Scheerer, ; Vera Pütter,
| |
Collapse
|
26
|
Considerations for lactation with Ehlers-Danlos syndrome: a narrative review. Int Breastfeed J 2022; 17:4. [PMID: 34983567 PMCID: PMC8725515 DOI: 10.1186/s13006-021-00442-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 12/13/2021] [Indexed: 12/13/2022] Open
Abstract
Background Ehlers-Danlos syndrome (EDS) is a rare genetic connective tissue condition that is poorly understood in relation to lactation. As diagnostic methods improve, prevalence has increased. EDS, a disorder that impacts connective tissue, is characterized by skin extensibility, joint hypermobility, and fragile tissue which can affect every organ and body system leading to complications during pregnancy, delivery, and the postpartum period. Traits of this disease can cause mild to severe physiologic and functional obstacles during lactation. Unfortunately, there is little clinical evidence and minimal guidance for lactation management, and providers may feel uncomfortable and hesitant to address these concerns with patients due to a lack of readily available resources on the subject and inexperience with such patients. This narrative review describes and discusses the types of EDS, identifying symptoms, considerations, and precautions for care providers to implement during lactation and breastfeeding. Methods An electronic search of relevant citations was conducted using the databases Cochrane, PubMed, and Google Scholar from 1 January 2000 to 1 November 2021. Search terms used were Ehlers-Danlos syndrome, Hypermobility Syndrome, breastfeeding, lactation, breastmilk expression, breastmilk collection, human milk expression, human milk collection, and infant feeding. The search of these databases yielded zero results. As no research articles on EDS were directly related to lactation, this narrative review includes articles found that related to the health of mothers relevant to maternal function during lactation. Discussion For the healthcare provider, identifying characteristics of EDS can improve the management of lactation challenges. Mothers may experience generalized symptoms from gastrointestinal distress to fatigue or chronic pain, while they also may suffer from more specific joint complaints and injuries, such as dislocations / subluxations, or skin fragility. Such obstacles can generate impediments to breastfeeding and create unique challenges for breastfeeding mothers with EDS. Unfortunately, new mothers with these symptoms may have them overlooked or not addressed, impacting a mother’s ability to meet her breastfeeding intentions. While there are some published research manuscripts on EDS and pregnancy, there is a lack of information regarding breastfeeding and lactation. Additional research is needed to help guide EDS mothers to achieve their breastfeeding intentions.
Collapse
|
27
|
Wong WLE, Dawe GS, Young AH. The putative role of the relaxin-3/RXFP3 system in clinical depression and anxiety: A systematic literature review. Neurosci Biobehav Rev 2021; 131:429-450. [PMID: 34537263 DOI: 10.1016/j.neubiorev.2021.09.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 09/13/2021] [Accepted: 09/13/2021] [Indexed: 12/14/2022]
Abstract
The relaxin-3/RXFP3 system is one of several neuropeptidergic systems putatively implicated in regulating the behavioural alterations that characterise clinical depression and anxiety, making it a potential target for clinical translation. Accordingly, this systematic review identified published reports on the role of relaxin-3/RXFP3 signalling in these neuropsychiatric disorders and their behavioural endophenotypes, evaluating evidence from animal and human studies to ascertain any relationship. We searched PubMed, EMBASE, PsycINFO and Google Scholar databases up to February 2021, finding 609 relevant records. After stringent screening, 51 of these studies were included in the final synthesis. There was considerable heterogeneity in study designs and some inconsistency across study outcomes. However, experimental evidence is consistent with an ability of relaxin-3/RXFP3 signalling to promote arousal and suppress depressive- and anxiety-like behaviour. Moreover, meta-analyses of six to eight articles investigating food intake revealed that acute RXFP3 activation had strong orexigenic effects in rats. This appraisal also identified the lack of high-quality clinical studies pertinent to the relaxin-3/RXFP3 system, a gap that future research should attempt to bridge.
Collapse
Affiliation(s)
- Win Lee Edwin Wong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom.
| | - Gavin Stewart Dawe
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore
| | - Allan H Young
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom; South London & Maudsley NHS Foundation Trust, Bethlem Royal Hospital, Monks Orchard Road, London, United Kingdom
| |
Collapse
|
28
|
Bian R, Gong J, Li J, Li P. Relaxin increased blood pressure and sympathetic activity in paraventricular nucleus of hypertensive rats via enhancing oxidative stress. Peptides 2021; 141:170550. [PMID: 33839220 DOI: 10.1016/j.peptides.2021.170550] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 04/05/2021] [Accepted: 04/06/2021] [Indexed: 02/08/2023]
Abstract
Relaxin, an ovarian polypeptide hormone, is found in the hypothalamic paraventricular nucleus (PVN) which is an important central integrative site for the control of blood pressure and sympathetic outflow. The aim of this study was to determine if superoxide anions modulate the effects of relaxin in the PVN. Experiments were performed in normotensive Wistar-Kyoto (WKY) rats and spontaneously hypertensive rats (SHRs). Relaxin mRNA and protein, and its receptor, relaxin family peptide receptor 1 (RXFP1) levels in PVN were 3.24, 3.17, and 3.64 times higher in SHRs than in WKY rats, respectively. Microinjection of relaxin-2 into the PVN dose-dependently increased mean arterial pressure (MAP), renal sympathetic nerve activity (RSNA) and heart rate (HR) in both WKY rats and SHRs, although the effects on MAP (16.87 ± 1.99 vs. 8.97 ± 1.48 mm Hg in 100 nmol), RSNA (22.60 ± 2.15 vs. 11.77 ± 1.43 % in 100 nmol) and HR (22.85 ± 3.13 vs. 12.62 ± 2.83 beats/min in 100 nmol) were greater in SHRs. Oxidative stress level was enhanced after relaxin-2 microinjection into the PVN. Pretreatment with superoxide anion scavengers or NADPH oxidase inhibitor blocked, and superoxide dismutase inhibitor potentiated the effects of relaxin-2 on MAP, RSNA and HR. RXFP1 knockdown significantly attenuated the blood pressure of SHRs, and inhibited the increases of atrial natriuretic peptide, brain natriuretic peptide, collagen I, collagen III and fibronectin in the heart of SHRs. These results demonstrated that relaxin is expressed in the PVN, and contributes to hypertension and sympathetic overdrive via oxidative stress. Down-regulation of RXFP1 in the PVN could attenuate hypertension and cardiac remodeling.
Collapse
Affiliation(s)
- Rong Bian
- Center of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Juexiao Gong
- Department of Cardiology, the Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jianan Li
- Center of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Peng Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
29
|
Abstract
The pancreatic peptide hormone insulin, first discovered exactly 100 years ago, is essential for glycemic control and is used as a therapeutic for the treatment of type 1 and, increasingly, type 2 diabetes. With a worsening global diabetes epidemic and its significant health budget imposition, there is a great demand for new analogues possessing improved physical and functional properties. However, the chemical synthesis of insulin's intricate 51-amino acid, two-chain, three-disulfide bond structure, together with the poor physicochemical properties of both the individual chains and the hormone itself, has long represented a major challenge to organic chemists. This review provides a timely overview of the past efforts to chemically assemble this fascinating hormone using an array of strategies to enable both correct folding of the two chains and selective formation of disulfide bonds. These methods not only have contributed to general peptide synthesis chemistry and enabled access to the greatly growing numbers of insulin-like and cystine-rich peptides but also, today, enable the production of insulin at the synthetic efficiency levels of recombinant DNA expression methods. They have led to the production of a myriad of novel analogues with optimized structural and functional features and of the feasibility for their industrial manufacture.
Collapse
|
30
|
Lin L, Lin G, Zhou Q, Bathgate RAD, Gong GQ, Yang D, Liu Q, Wang MW. Design, synthesis and pharmacological evaluation of tricyclic derivatives as selective RXFP4 agonists. Bioorg Chem 2021; 110:104782. [PMID: 33730669 DOI: 10.1016/j.bioorg.2021.104782] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 02/07/2021] [Accepted: 02/23/2021] [Indexed: 12/18/2022]
Abstract
Relaxin family peptide receptors (RXFPs) are the potential therapeutic targets for neurological, cardiovascular, and metabolic indications. Among them, RXFP3 and RXFP4 (formerly known as GPR100 or GPCR142) are homologous class A G protein-coupled receptors with short N-terminal domain. Ligands of RXFP3 or RXFP4 are only limited to endogenous peptides and their analogues, and no natural product or synthetic agonists have been reported to date except for a scaffold of indole-containing derivatives as dual agonists of RXFP3 and RXFP4. In this study, a new scaffold of tricyclic derivatives represented by compound 7a was disclosed as a selective RXFP4 agonist after a high-throughput screening campaign against a diverse library of 52,000 synthetic and natural compounds. Two rounds of structural modification around this scaffold were performed focusing on three parts: 2-chlorophenyl group, 4-hydroxylphenyl group and its skeleton including cyclohexane-1,3-dione and 1,2,4-triazole group. Compound 14b with a new skeleton of 7,9-dihydro-4H-thiopyrano[3,4-d][1,2,4]triazolo[1,5-a]pyrimidin-8(5H)-one was thus obtained. The enantiomers of 7a and 14b were also resolved with their 9-(S)-conformer favoring RXFP4 agonism. Compared with 7a, compound 9-(S)-14b exhibited 2.3-fold higher efficacy and better selectivity for RXFP4 (selective ratio of RXFP4 vs. RXFP3 for 9-(S)-14b and 7a were 26.9 and 13.9, respectively).
Collapse
Affiliation(s)
- Lin Lin
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Guangyao Lin
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingtong Zhou
- School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Ross A D Bathgate
- Florey Institute of Neuroscience and Mental Health, Department of Biochemistry and Molecular Biology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Grace Qun Gong
- The National Center for Drug Screening and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai 201203, China
| | - Dehua Yang
- University of Chinese Academy of Sciences, Beijing 100049, China; The National Center for Drug Screening and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai 201203, China.
| | - Qing Liu
- The National Center for Drug Screening and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai 201203, China.
| | - Ming-Wei Wang
- School of Pharmacy, Fudan University, Shanghai 201203, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; The National Center for Drug Screening and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai 201203, China.
| |
Collapse
|
31
|
Mita M, Matsubara S, Osugi T, Shiraishi A, Wada A, Satake H. A novel G protein-coupled receptor for starfish gonadotropic hormone, relaxin-like gonad-stimulating peptide. PLoS One 2020; 15:e0242877. [PMID: 33226996 PMCID: PMC7682835 DOI: 10.1371/journal.pone.0242877] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/10/2020] [Indexed: 12/12/2022] Open
Abstract
Gonadotropic hormones play important regulatory roles in reproduction. Relaxin-like gonad-stimulating peptide (RGP) is a gonadotropin-like hormone in starfish. However, a receptor for RGP remains to be identified. Here, we describe the identification of an authentic receptor for RGP (RGPR) in the starfish, Patiria pectinifera. A binding assay using radioiodinated P. pectinifera RGP (PpeRGP) revealed that RGPR was expressed in ovarian follicle cells. A RGPR candidate was identified by homology-searching of transcriptome data of P. pectinifera follicle cells. Based on the contig sequences, a putative 947-amino acid PpeRGPR was cloned from follicle cells. Like the vertebrate relaxin family peptide receptors (RXFP 1 and 2), PpeRGPR was a G protein-coupled receptor that harbored a low-density lipoprotein-receptor class A motif and leucine-rich repeat sequences in the extracellular domain of the N-terminal region. Sf9 cells transfected with Gαq16-fused PpeRGPR activated calcium ion mobilization in response to PpeRGP, but not to RGP of another starfish Asterias amurensis, in a dose-dependent fashion. These results confirmed the species-specific reactivity of RGP and the cognate receptor. Thus, the present study provides evidence that PpeRGPR is a specific receptor for PpeRGP. To the best of our knowledge, this is the first report on the identification of a receptor for echinoderm RGP.
Collapse
Affiliation(s)
- Masatoshi Mita
- Department of Biochemistry, Showa University School of Medicine, Tokyo, Japan
| | - Shin Matsubara
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
| | - Tomohiro Osugi
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
| | - Akira Shiraishi
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
| | - Azumi Wada
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
| | - Honoo Satake
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
| |
Collapse
|
32
|
Praveen P, Tailhades J, Rosengren KJ, Liu M, Wade JD, Bathgate RAD, Hossain MA. Effects of C-Terminal B-Chain Modifications in a Relaxin 3 Agonist Analogue. ACS Med Chem Lett 2020; 11:2336-2340. [PMID: 33214850 DOI: 10.1021/acsmedchemlett.0c00456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/20/2020] [Indexed: 01/11/2023] Open
Abstract
The receptor for the neuropeptide relaxin 3, relaxin family peptide 3 (RXFP3) receptor, is an attractive pharmacological target for the control of eating, addictive, and psychiatric behaviors. Several structure-activity relationship studies on both human relaxin 3 (containing 3 disulfide bonds) and its analogue A2 (two disulfide bonds) suggest that the C-terminal carboxylic acid of the tryptophan residue in the B-chain is important for RXFP3 activity. In this study, we have added amide, alcohol, carbamate, and ester functionalities to the C-terminus of A2 and compared their structures and functions. As expected, the C-terminal amide form of A2 showed lower binding affinity for RXFP3 while ester and alcohol substitutions also demonstrated lower affinity. However, while these analogues showed slightly lower binding affinity, there was no significant difference in activation of RXFP3 compared to A2 bearing a C-terminal carboxylic acid, suggesting the binding pocket is able to accommodate additional atoms.
Collapse
Affiliation(s)
- Praveen Praveen
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Julien Tailhades
- The Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
- EMBL Australia, Monash University, Clayton, Victoria 3800, Australia
| | - K. Johan Rosengren
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Mengjie Liu
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - John D. Wade
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Ross A. D. Bathgate
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Mohammed Akhter Hossain
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3052, Australia
| |
Collapse
|
33
|
Nistri S, Fiorillo C, Becatti M, Bani D. Human Relaxin-2 (Serelaxin) Attenuates Oxidative Stress in Cardiac Muscle Cells Exposed In Vitro to Hypoxia-Reoxygenation. Evidence for the Involvement of Reduced Glutathione Up-Regulation. Antioxidants (Basel) 2020; 9:antiox9090774. [PMID: 32825567 PMCID: PMC7555919 DOI: 10.3390/antiox9090774] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/13/2020] [Accepted: 08/19/2020] [Indexed: 02/07/2023] Open
Abstract
Serelaxin (RLX) designates the pharmaceutical form of the human natural hormone relaxin-2 that has been shown to markedly reduce tissue and cell damage induced by hypoxia and reoxygenation (HR). The evidence that RLX exerts similar protective effects on different organs and cells at relatively low, nanomolar concentrations suggests that it specifically targets a common pathogenic mechanism of HR-induced damage, namely oxidative stress. In this study we offer experimental evidence that RLX (17 nmol L-1), added to the medium of HR-exposed H9c2 rat cardiac muscle cells, significantly reduces cell oxidative damage, mitochondrial dysfunction and apoptosis. These effects appear to rely on the up-regulation of the cellular availability of reduced glutathione (GSH), a ubiquitous endogenous antioxidant metabolite. Conversely, superoxide dismutase activity was not influenced by RLX, which, however, was not endowed with chemical antioxidant properties. Taken together, these findings verify the major pharmacological role of RLX in the protection against HR-induced oxidative stress, and shed first light on its mechanisms of action.
Collapse
Affiliation(s)
- Silvia Nistri
- Department of Experimental & Clinical Medicine, Research Unit of Histology & Embryology, University of Florence, viale G. Pieraccini 6, 50139 Florence, Italy;
| | - Claudia Fiorillo
- Department of, Experimental & Clinical Biomedical Sciences “Mario Serio”, Section of Biochemical Sciences, University of Florence, viale G.B. Morgagni 50, 50134 Florence, Italy;
| | - Matteo Becatti
- Department of, Experimental & Clinical Biomedical Sciences “Mario Serio”, Section of Biochemical Sciences, University of Florence, viale G.B. Morgagni 50, 50134 Florence, Italy;
- Correspondence: (M.B.); (D.B.); Tel.: +39-055-2751-261 (M.B.); +39-055-2758-153 (D.B.)
| | - Daniele Bani
- Department of Experimental & Clinical Medicine, Research Unit of Histology & Embryology, University of Florence, viale G. Pieraccini 6, 50139 Florence, Italy;
- Correspondence: (M.B.); (D.B.); Tel.: +39-055-2751-261 (M.B.); +39-055-2758-153 (D.B.)
| |
Collapse
|
34
|
Li HZ, Li N, Shao XX, Liu YL, Xu ZG, Guo ZY. Hydrophobic interactions of relaxin family peptide receptor 3 with ligands identified using a NanoBiT-based binding assay. Biochimie 2020; 177:117-126. [PMID: 32810565 DOI: 10.1016/j.biochi.2020.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/23/2020] [Accepted: 08/12/2020] [Indexed: 10/23/2022]
Abstract
Relaxin family peptide receptor 3 (RXFP3) is a G protein-coupled receptor implicated in the regulation of food intake and stress response upon activation by the neuropeptide relaxin-3. In recent studies, interactions of RXFP3 with some natural or synthetic ligands have been investigated. In the present study, we identified the hydrophobic interactions of human RXFP3 with the chimeric agonist R3/I5 and the chimeric antagonist R3(ΔB23-27)R/I5 using a newly developed NanoBiT-based homogenous binding assay. We first demonstrated that the conserved large aliphatic B15Ile and B19Ile were important for the binding of the agonist and antagonist to RXFP3, because alanine replacement significantly decreased their receptor-binding potency. Thereafter, we demonstrated that the conserved large aliphatic Leu246 and Leu248 in extracellular loop 2 were important for RXFP3 binding to the agonist and antagonist, because alanine replacement significantly decreased the binding affinity of RXFP3 for both ligands. Finally, we deduced probable hydrophobic interactions based on the ability of RXFP3 mutants to distinguish the wild-type and mutant ligands: Leu246 of RXFP3 interacted with B15Ile of both ligands, while Leu248 of RXFP3 interacted with both B15Ile and B19Ile of the agonist and antagonist. The present results not only provided new insights into the interaction mechanism of RXFP3 with agonists and antagonists, but also demonstrated usefulness of the NanoBiT-based homogenous binding assay to study the interaction mechanism of certain receptors with their ligands.
Collapse
Affiliation(s)
- Hao-Zheng Li
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Ning Li
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xiao-Xia Shao
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Ya-Li Liu
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Zeng-Guang Xu
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Zhan-Yun Guo
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China.
| |
Collapse
|
35
|
D'Ercole A, Sabatino G, Pacini L, Impresari E, Capecchi I, Papini AM, Rovero P. On‐resin microwave‐assisted copper‐catalyzed azide‐alkyne cycloaddition of H1‐relaxin B single chain ‘stapled’ analogues. Pept Sci (Hoboken) 2020. [DOI: 10.1002/pep2.24159] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Annunziata D'Ercole
- Laboratory of Peptide and Protein Chemistry and Biology, Department of Chemistry ‘Ugo Schiff’University of Florence Sesto Fiorentino Italy
- FIS Fabbrica Italiana Sintetici S.p.A Vicenza Italy
| | - Giuseppina Sabatino
- Laboratory of Peptide and Protein Chemistry and Biology, Department of Chemistry ‘Ugo Schiff’University of Florence Sesto Fiorentino Italy
- CNR‐IC Istituto di Cristallografia Catania Italy
| | | | - Elisa Impresari
- Laboratory of Peptide and Protein Chemistry and Biology, Department of Neurosciences, Psychology, Drug Research and Child Health—Section of Pharmaceutical Sciences and NutraceuticsUniversity of Florence Sesto Fiorentino Italy
| | - Ilaria Capecchi
- Laboratory of Peptide and Protein Chemistry and Biology, Department of Neurosciences, Psychology, Drug Research and Child Health—Section of Pharmaceutical Sciences and NutraceuticsUniversity of Florence Sesto Fiorentino Italy
| | - Anna Maria Papini
- Laboratory of Peptide and Protein Chemistry and Biology, Department of Chemistry ‘Ugo Schiff’University of Florence Sesto Fiorentino Italy
- CNR‐IC Istituto di Cristallografia Catania Italy
- PeptLab@UCP and Laboratory of Chemical Biology EA4505CY Cergy Paris University Cergy‐Pontoise France
| | - Paolo Rovero
- CNR‐IC Istituto di Cristallografia Catania Italy
- Laboratory of Peptide and Protein Chemistry and Biology, Department of Neurosciences, Psychology, Drug Research and Child Health—Section of Pharmaceutical Sciences and NutraceuticsUniversity of Florence Sesto Fiorentino Italy
| |
Collapse
|
36
|
Fry CH, Chakrabarty B, Hashitani H, Andersson KE, McCloskey K, Jabr RI, Drake MJ. New targets for overactive bladder-ICI-RS 2109. Neurourol Urodyn 2020; 39 Suppl 3:S113-S121. [PMID: 31737931 PMCID: PMC8114459 DOI: 10.1002/nau.24228] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 10/31/2019] [Indexed: 12/16/2022]
Abstract
AIM To review evidence for novel drug targets that can manage overactive bladder (OAB) symptoms. METHODS A think tank considered evidence from the literature and their own research experience to propose new drug targets in the urinary bladder to characterize their use to treat OAB. RESULTS Five classes of agents or cellular pathways were considered. (a) Cyclic nucleotide-dependent (cyclic adenosine monophosphate and cyclic guanosine monophosphate) pathways that modulate adenosine triphosphate release from motor nerves and urothelium. (b) Novel targets for β3 agonists, including the bladder wall vasculature and muscularis mucosa. (c) Several TRP channels (TRPV1 , TRPV4 , TRPA1 , and TRPM4 ) and their modulators in affecting detrusor overactivity. (d) Small conductance Ca2+ -activated K+ channels and their influence on spontaneous contractions. (e) Antifibrosis agents that act to modulate directly or indirectly the TGF-β pathway-the canonical fibrosis pathway. CONCLUSIONS The specificity of action remains a consideration if particular classes of agents can be considered for future development as receptors or pathways that mediate actions of the above mentioned potential agents are distributed among most organ systems. The tasks are to determine more detail of the pathological changes that occur in the OAB and how the specificity of potential drugs may be directed to bladder pathological changes. An important conclusion was that the storage, not the voiding, phase in the micturition cycle should be investigated and potential targets lie in the whole range of tissue in the bladder wall and not just detrusor.
Collapse
Affiliation(s)
- Christopher Henry Fry
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Basu Chakrabarty
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Hikaru Hashitani
- Department of Cell Physiology, Nagoya City University, Nagoya, Japan
| | - Karl-Erik Andersson
- Institute of Laboratory Medicine, Lund University, Lund, Sweden
- Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Karen McCloskey
- School of Medicine, Dentistry and Biomedical Sciences, Queens University Belfast, Belfast, UK
| | - Rita I. Jabr
- Division of Biochemical Sciences, Faculty of Health and Biomedical Sciences, University of Surrey, Guildford, UK
| | | |
Collapse
|
37
|
Tombling BJ, Wang CK, Craik DJ. EGF‐artige und andere disulfidreiche Mikrodomänen als therapeutische Molekülgerüste. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201913809] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Benjamin J. Tombling
- Institute for Molecular Bioscience The University of Queensland Brisbane QLD 4072 Australien
| | - Conan K. Wang
- Institute for Molecular Bioscience The University of Queensland Brisbane QLD 4072 Australien
| | - David J. Craik
- Institute for Molecular Bioscience The University of Queensland Brisbane QLD 4072 Australien
| |
Collapse
|
38
|
Tombling BJ, Wang CK, Craik DJ. EGF-like and Other Disulfide-rich Microdomains as Therapeutic Scaffolds. Angew Chem Int Ed Engl 2020; 59:11218-11232. [PMID: 31867866 DOI: 10.1002/anie.201913809] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Indexed: 12/20/2022]
Abstract
Disulfide bonds typically introduce conformational constraints into peptides and proteins, conferring improved biopharmaceutical properties and greater therapeutic potential. In our opinion, disulfide-rich microdomains from proteins are potentially a rich and under-explored source of drug leads. A survey of the UniProt protein database shows that these domains are widely distributed throughout the plant and animal kingdoms, with the EGF-like domain being the most abundant of these domains. EGF-like domains exhibit large diversity in their disulfide bond topologies and calcium binding modes, which we classify in detail here. We found that many EGF-like domains are associated with disease phenotypes, and the interactions they mediate are potential therapeutic targets. Indeed, EGF-based therapeutic leads have been identified, and we further propose that these domains can be optimized to expand their therapeutic potential using chemical design strategies. This Review highlights the potential of disulfide-rich microdomains as future peptide therapeutics.
Collapse
Affiliation(s)
- Benjamin J Tombling
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Conan K Wang
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - David J Craik
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| |
Collapse
|
39
|
Lee HS, Postan M, Song A, Clark RJ, Bathgate RAD, Haugaard-Kedström LM, Rosengren KJ. Development of Relaxin-3 Agonists and Antagonists Based on Grafted Disulfide-Stabilized Scaffolds. Front Chem 2020; 8:87. [PMID: 32133341 PMCID: PMC7039932 DOI: 10.3389/fchem.2020.00087] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 01/27/2020] [Indexed: 12/22/2022] Open
Abstract
Relaxin-3 is a neuropeptide with important roles in metabolism, arousal, learning and memory. Its cognate receptor is the relaxin family peptide-3 (RXFP3) receptor. Relaxin-3 agonist and antagonist analogs have been shown to be able to modulate food intake in rodent models. The relaxin-3 B-chain is sufficient for receptor interactions, however, in the absence of a structural support, linear relaxin-3 B-chain analogs are rapidly degraded and thus unsuitable as drug leads. In this study, two different disulfide-stabilized scaffolds were used for grafting of important relaxin-3 B-chain residues to improve structure and stability. The use of both Veronica hederifolia Trypsin inhibitor (VhTI) and apamin grafting resulted in agonist and antagonist analogs with improved helicity. VhTI grafted peptides showed poor binding and low potency at RXFP3, on the other hand, apamin variants retained significant activity. These variants also showed improved half-life in serum from ~5 min to >6 h, and thus are promising RXFP3 specific pharmacological tools and drug leads for neuropharmacological diseases.
Collapse
Affiliation(s)
- Han Siean Lee
- Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Michael Postan
- Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Angela Song
- Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Richard J Clark
- Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Ross A D Bathgate
- Florey Department of Neuroscience and Mental Health, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia.,Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Linda M Haugaard-Kedström
- Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - K Johan Rosengren
- Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
40
|
Welch NG, Mukherjee S, Hossain MA, Praveen P, Werkmeister JA, Wade JD, Bathgate RAD, Winkler DA, Thissen H. Coatings Releasing the Relaxin Peptide Analogue B7-33 Reduce Fibrotic Encapsulation. ACS APPLIED MATERIALS & INTERFACES 2019; 11:45511-45519. [PMID: 31713411 DOI: 10.1021/acsami.9b17859] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The development of antifibrotic materials and coatings that can resist the foreign body response (FBR) continues to present a major hurdle in the advancement of current and next-generation implantable medical devices, biosensors, and cell therapies. From an implant perspective, the most important issue associated with the FBR is the prolonged inflammatory response leading to a collagenous capsule that ultimately blocks mass transport and communication between the implant and the surrounding tissue. Up to now, most attempts to reduce the capsule thickness have focused on providing surface coatings that reduce protein fouling and cell attachment. Here, we present an approach that is based on the sustained release of a peptide drug interfering with the FBR. In this study, the biodegradable polymer poly(lactic-co-glycolic) acid (PLGA) was used as a coating releasing the relaxin peptide analogue B7-33, which has been demonstrated to reduce organ fibrosis in animal models. While in vitro protein quantification was used to demonstrate controlled release of the antifibrotic peptide B7-33 from PLGA coatings, an in vitro reporter cell assay was used to demonstrate that B7-33 retains activity against the relaxin family peptide receptor 1 (RXFP1). Subcutaneous implantation of PLGA-coated polypropylene samples in mice with and without the peptide demonstrated a marked reduction in capsule thickness (49.2%) over a 6 week period. It is expected that this novel approach will open the door to a range of new and improved implantable medical devices.
Collapse
Affiliation(s)
- Nicholas G Welch
- CSIRO Manufacturing , Research Way , Clayton , VIC 3168 , Australia
| | - Shayanti Mukherjee
- The Ritchie Centre , Hudson Institute of Medical Research , Clayton , VIC 3168 , Australia
| | - Mohammed A Hossain
- The Florey Institute of Neuroscience and Mental Health , Parkville , VIC 3052 , Australia
| | - Praveen Praveen
- The Florey Institute of Neuroscience and Mental Health , Parkville , VIC 3052 , Australia
| | - Jerome A Werkmeister
- The Ritchie Centre , Hudson Institute of Medical Research , Clayton , VIC 3168 , Australia
| | - John D Wade
- The Florey Institute of Neuroscience and Mental Health , Parkville , VIC 3052 , Australia
| | - Ross A D Bathgate
- The Florey Institute of Neuroscience and Mental Health , Parkville , VIC 3052 , Australia
| | - David A Winkler
- CSIRO Manufacturing , Research Way , Clayton , VIC 3168 , Australia
- La Trobe Institute for Molecular Science , La Trobe University , Kingsbury Drive , Bundoora , VIC 3083 , Australia
- Monash Institute of Pharmaceutical Sciences , Royal Parade , Parkville , VIC 3052 , Australia
- School of Pharmacy , The University of Nottingham , Nottingham NG7 2RD , U.K
| | - Helmut Thissen
- CSIRO Manufacturing , Research Way , Clayton , VIC 3168 , Australia
| |
Collapse
|
41
|
Engineering of chimeric peptides as antagonists for the G protein-coupled receptor, RXFP4. Sci Rep 2019; 9:17828. [PMID: 31780677 PMCID: PMC6882824 DOI: 10.1038/s41598-019-53707-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 11/05/2019] [Indexed: 11/20/2022] Open
Abstract
Insulin-like peptide 5 (INSL5) is a very important pharma target for treating human conditions such as anorexia and diabetes. However, INSL5 with two chains and three disulfide bridges is an extremely difficult peptide to assemble by chemical or recombinant means. In a recent study, we were able to engineer a simplified INSL5 analogue 13 which is a relaxin family peptide receptor 4 (RXFP4)-specific agonist. To date, however, no RXFP4-specific antagonist (peptide or small molecule) has been reported in the literature. The focus of this study was to utilize the non-specific RXFP3/RXFP4 antagonist ΔR3/I5 as a template to rationally design an RXFP4 specific antagonist. Unexpectedly, we demonstrated that ΔR3/I5 exhibited partial agonism at RXFP4 when expressed in CHO cells which is associated with only partial antagonism of INSL5 analogue activation. In an attempt to improve RXFP4 specificity and antagonist activity we designed and chemically synthesized a series of analogues of ΔR3/I5. While all the chimeric analogues still demonstrated partial agonism at RXFP4, one peptide (Analogue 17) exhibited significantly improved RXFP4 specificity. Importantly, analogue 17 has a simplified structure which is more amenable to chemical synthesis. Therefore, analogue 17 is an ideal template for further development into a specific high affinity RXFP4 antagonist which will be an important tool to probe the physiological role of RXFP4/INSL5 axis.
Collapse
|
42
|
Tikhonova IG, Gigoux V, Fourmy D. Understanding Peptide Binding in Class A G Protein-Coupled Receptors. Mol Pharmacol 2019; 96:550-561. [PMID: 31436539 PMCID: PMC6776014 DOI: 10.1124/mol.119.115915] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 06/13/2019] [Indexed: 12/13/2022] Open
Abstract
Many physiologic processes are controlled through the activation of G protein-coupled receptors (GPCRs) by regulatory peptides, making peptide GPCRs particularly useful targets for major human diseases such as diabetes and cancer. Peptide GPCRs are also being evaluated as next-generation targets for the development of novel antiparasite agents and insecticides in veterinary medicine and agriculture. Resolution of crystal structures for several peptide GPCRs has advanced our understanding of peptide-receptor interactions and fueled interest in correlating peptide heterogeneity with receptor-binding properties. In this review, the knowledge of recently crystalized peptide-GPCR complexes, previously accumulated peptide structure-activity relationship studies, receptor mutagenesis, and sequence alignment are integrated to better understand peptide binding to the transmembrane cavity of class A GPCRs. Using SAR data, we show that peptide class A GPCRs can be divided into groups with distinct hydrophilic residues. These characteristic residues help explain the preference of a receptor to bind the C-terminal free carboxyl group, the C-terminal amidated group, or the N-terminal ammonium group of peptides.
Collapse
Affiliation(s)
- Irina G Tikhonova
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, Belfast, Northern Ireland, United Kingdom, (I.G.T.) and INSERM ERL1226-Receptology and Therapeutic Targeting of Cancers, Laboratoire de Physique et Chimie des Nano-Objets, CNRS UMR5215-INSA, Université de Toulouse III, Toulouse, France (V.G., D.F.)
| | - Veronique Gigoux
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, Belfast, Northern Ireland, United Kingdom, (I.G.T.) and INSERM ERL1226-Receptology and Therapeutic Targeting of Cancers, Laboratoire de Physique et Chimie des Nano-Objets, CNRS UMR5215-INSA, Université de Toulouse III, Toulouse, France (V.G., D.F.)
| | - Daniel Fourmy
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, Belfast, Northern Ireland, United Kingdom, (I.G.T.) and INSERM ERL1226-Receptology and Therapeutic Targeting of Cancers, Laboratoire de Physique et Chimie des Nano-Objets, CNRS UMR5215-INSA, Université de Toulouse III, Toulouse, France (V.G., D.F.)
| |
Collapse
|
43
|
Serelaxin (recombinant human relaxin-2) treatment affects the endogenous synthesis of long chain poly-unsaturated fatty acids and induces substantial alterations of lipidome and metabolome profiles in rat cardiac tissue. Pharmacol Res 2019; 144:51-65. [DOI: 10.1016/j.phrs.2019.04.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/25/2019] [Accepted: 04/03/2019] [Indexed: 02/07/2023]
|
44
|
Mita M, Nakamura K, Tsutsui K, Katayama H. Interaction of starfish gonadotropin with its receptor: Effect of chimeric relaxin-like gonad-stimulating peptides. Gen Comp Endocrinol 2019; 276:30-36. [PMID: 30796897 DOI: 10.1016/j.ygcen.2019.02.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 02/15/2019] [Accepted: 02/19/2019] [Indexed: 10/27/2022]
Abstract
A relaxin-like gonad-stimulating peptide (RGP) of starfish Patiria (Asterina) pectinifera is the first identified invertebrate gonadotropin for final gamete maturation. Recently, we found three orthologs of RGP in the class Asteroida; PpeRGP in P. pectinifera, AamRGP in Asterias amurensis, and AjaRGP in Aphelasterias japonica. In this study, nine kinds of RGP derivatives with exchanged each A- and B-chain were synthesized chemically to analyze the interaction of RGP with its receptor. Among these RGP derivatives, PpeRGP and its chimeric RGPs with B-chains from AamRGP or AjaRGP could induce oocyte maturation and ovulation in P. pectinifera ovaries. In contrast, other RGP derivatives were failed to induce spawning in P. pectinifera ovaries. Circular dichroism spectra of PpeRGP were similar to those of chimeric RGPs with the B-chains from AamRGP or AjaRGP. Furthermore, the predicted three-dimensional structure models of the B-chains from RGP derivatives have almost the same conformation. These findings suggest that the B-chain of PpeRGP is involved in binding to its receptor. Thus, it is likely that the A-chain of AamRGP or AjaRGP disturbs the binding of the PpeRGP B-chain to its receptor.
Collapse
Affiliation(s)
- Masatoshi Mita
- Center for Advanced Biomedical Sciences, Research Institute for Science and Engineering, Waseda University, 2-2, Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan.
| | - Keitaro Nakamura
- Department of Applied Biochemistry, School of Engineering, Tokai University, 4-1-1, Kitakaname, Hiratsuka, Kanagawa 259-1292, Japan
| | - Kazuyoshi Tsutsui
- Center for Advanced Biomedical Sciences, Research Institute for Science and Engineering, Waseda University, 2-2, Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan; Laboratory of Integrative Brain Sciences, Department of Biology, Faculty of Education and Integrated Arts and Sciences, Waseda University, Wakamatsucho 2-2, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Hidekazu Katayama
- Department of Applied Biochemistry, School of Engineering, Tokai University, 4-1-1, Kitakaname, Hiratsuka, Kanagawa 259-1292, Japan
| |
Collapse
|
45
|
Praveen P, Kocan M, Valkovic A, Bathgate R, Hossain MA. Single chain peptide agonists of relaxin receptors. Mol Cell Endocrinol 2019; 487:34-39. [PMID: 30641102 DOI: 10.1016/j.mce.2019.01.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/08/2019] [Accepted: 01/10/2019] [Indexed: 12/16/2022]
Abstract
There are seven human relaxin family peptides that have two chains (A and B) and three disulfide bonds. The target receptors for four of these peptides are known as relaxin family peptide receptors, RXFP1-RXFP4. Detailed structure-activity relationship (SAR) studies of relaxin family peptides have been reported over the years and have led to the design of new analogs with agonistic and antagonistic properties. This review briefly summarizes the SAR of human relaxin 2 (H2 relaxin) and human relaxin 3 (H3 relaxin) leading to the design and development of single-B-chain only agonists, B7-33 and peptide 5. The physiological functions of these new peptides agonists in cellular and animal models are also described.
Collapse
Affiliation(s)
- Praveen Praveen
- Florey Institute for Neuroscience & Mental Health, VIC, Australia
| | - Martina Kocan
- Florey Institute for Neuroscience & Mental Health, VIC, Australia
| | - Adam Valkovic
- Florey Institute for Neuroscience & Mental Health, VIC, Australia
| | - Ross Bathgate
- Florey Institute for Neuroscience & Mental Health, VIC, Australia; Department of Biochemistry and Molecular Biology, University of Melbourne, VIC, Australia
| | - Mohammed Akhter Hossain
- Florey Institute for Neuroscience & Mental Health, VIC, Australia; School of Chemistry and Bio21, University of Melbourne, University of Melbourne, VIC, Australia.
| |
Collapse
|
46
|
Wang JH, Nie WH, Shao XX, Li HZ, Hu MJ, Liu YL, Xu ZG, Guo ZY. Exploring electrostatic interactions of relaxin family peptide receptor 3 and 4 with ligands using a NanoBiT-based binding assay. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:776-786. [DOI: 10.1016/j.bbamem.2019.01.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 01/16/2019] [Accepted: 01/21/2019] [Indexed: 12/15/2022]
|
47
|
Castro-Arnau J, Marín A, Castells M, Ferrer I, Maestro JL. The expression of cockroach insulin-like peptides is differentially regulated by physiological conditions and affected by compensatory regulation. JOURNAL OF INSECT PHYSIOLOGY 2019; 114:57-67. [PMID: 30822409 DOI: 10.1016/j.jinsphys.2019.02.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 02/21/2019] [Accepted: 02/21/2019] [Indexed: 06/09/2023]
Abstract
In insects, the insulin receptor (InR) pathway is involved in regulating key physiological processes, including juvenile hormone (JH) synthesis, vitellogenin production, and oocyte growth. This raises the question about which ligand (or ligands) binds to InR to trigger the above effects. We have cloned seven insulin-like peptides (BgILP1 to 7) from female Blattella germanica cockroaches and found that the brain expresses BgILP1 to 6, the fat body BgILP7, and the ovary BgILP2. Starvation induces the reduction of BgILP3, 5, and 6 mRNA levels in the brain, and the various BgILPs are differentially expressed during the gonadotrophic cycle. In addition, by knocking down the BgILPs we were able to identify compensatory regulation at transcriptional level between the different BgILPs, although none of the BgILP knockdown assays, including the knockdown of the seven BgILPs, produced the same phenotypes that we achieved by depleting InR. Taken together, the results indicate that B. germanica ILPs are differentially expressed in tissues and in response to physiological conditions, and that they are affected by compensatory regulation.
Collapse
Affiliation(s)
- Júlia Castro-Arnau
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain
| | - Ainoa Marín
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain
| | - Marc Castells
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain
| | - Iamil Ferrer
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain
| | - José L Maestro
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain.
| |
Collapse
|
48
|
Mita M. Starfish Gonadotropic Hormone: From Gamete-Shedding Substance to Relaxin-Like Gonad-Stimulating Peptide. Front Endocrinol (Lausanne) 2019; 10:182. [PMID: 30967842 PMCID: PMC6442644 DOI: 10.3389/fendo.2019.00182] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 03/04/2019] [Indexed: 12/02/2022] Open
Abstract
The first report of a gonadotropic substance in an invertebrate hot-water extract of radial nerve cords from starfish Asterias forbesi that induced the shedding of gametes when injected into the coelomic cavity in a ripe individual occurred in 1959. The active substance was named gamete-shedding substance (GSS) or radial nerve factor. GSS is the primary mediator of oocyte maturation and ovulation in starfish. However, the effect of GSS is indirect. Resumption of meiosis in immature oocytes and release from the ovary are induced by a second mediator, maturation-inducing hormone, identified as 1-methyladenine (1-MeAde) in starfish. The role of GSS is to induce 1-MeAde production by ovarian follicle cells. Thus, GSS was redesignated as gonad-stimulating substance (also GSS). Although GSS has been characterized biochemically as a peptide hormone, identification of the chemical structure had to wait until 2009. Fifty years after the initial finding, GSS was purified from the radial nerve cords of starfish Patiria pectinifera (P. pectinifera). The purified hormone was a heterodimer composed of A- and B-chains, with disulfide cross-linkages. Based on its cysteine motif, GSS is classified as a member of the insulin/insulin-like growth factor (IGF)/relaxin superfamily. More specifically, phylogenetic sequence analysis revealed that P. pectinifera GSS is a member of the relaxin-type peptide family. Therefore, GSS in starfish has been redesignated as relaxin-like gonad-stimulating peptide (RGP). Subsequently, orthologs of P. pectinifera RGP have been identified in other starfish species, including Asterias amurensis (A. amurensis), and Aphelasterias japonica (A. japonica).
Collapse
Affiliation(s)
- Masatoshi Mita
- Center for Advanced Biomedical Sciences, Research Institute for Science and Engineering, Waseda University, Tokyo, Japan
| |
Collapse
|
49
|
DeChristopher B, Park SH, Vong L, Bamford D, Cho HH, Duvadie R, Fedolak A, Hogan C, Honda T, Pandey P, Rozhitskaya O, Su L, Tomlinson E, Wallace I. Discovery of a small molecule RXFP3/4 agonist that increases food intake in rats upon acute central administration. Bioorg Med Chem Lett 2019; 29:991-994. [PMID: 30824200 DOI: 10.1016/j.bmcl.2019.02.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 01/04/2019] [Accepted: 02/10/2019] [Indexed: 01/07/2023]
Abstract
The relaxin family peptide receptors have been implicated in numerous physiological processes including energy homeostasis, cardiac function, wound healing, and reproductive function. Two family members, RXFP3 and RXFP4, are class A GPCRs with endogenous peptide ligands (relaxin-3 and insulin-like peptide 5 (INSL5), respectively). Polymorphisms in relaxin-3 and RXFP3 have been associated with obesity, diabetes, and hypercholesterolemia. Moreover, central administration of relaxin-3 in rats has been shown to increase food intake, leading to body weight gain. Reported RXFP3 and RXFP4 ligands have been restricted to peptides (both endogenous and synthetic) as well as a low molecular weight positive allosteric modulator requiring a non-endogenous orthosteric ligand. Described here is the discovery of the first potent low molecular weight dual agonists of RXFP3/4. The scaffold identified is competitive with a chimeric relaxin-3/INSL5 peptide for RXFP3 binding, elicits similar downstream signaling as relaxin-3, and increases food intake in rats following acute central administration. This is the first report of small molecule RXFP3/4 agonism.
Collapse
Affiliation(s)
- Brian DeChristopher
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, MA 02139, United States.
| | - Soo-Hee Park
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, MA 02139, United States
| | - Linh Vong
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, MA 02139, United States
| | - Derek Bamford
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, MA 02139, United States
| | - Hyun-Hee Cho
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, MA 02139, United States
| | - Rohit Duvadie
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, MA 02139, United States
| | - Allison Fedolak
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, MA 02139, United States
| | - Christopher Hogan
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, MA 02139, United States
| | - Toshiyuki Honda
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, MA 02139, United States
| | - Pramod Pandey
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, MA 02139, United States
| | - Olga Rozhitskaya
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, MA 02139, United States
| | - Liansheng Su
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, MA 02139, United States
| | - Elizabeth Tomlinson
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, MA 02139, United States
| | - Iain Wallace
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, MA 02139, United States
| |
Collapse
|
50
|
Wong LLL, Scott DJ, Hossain MA, Kaas Q, Rosengren KJ, Bathgate RAD. Distinct but overlapping binding sites of agonist and antagonist at the relaxin family peptide 3 (RXFP3) receptor. J Biol Chem 2018; 293:15777-15789. [PMID: 30131340 DOI: 10.1074/jbc.ra118.002645] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 08/09/2018] [Indexed: 12/22/2022] Open
Abstract
The relaxin-3 neuropeptide activates the relaxin family peptide 3 (RXFP3) receptor to modulate stress, appetite, and cognition. RXFP3 shows promise as a target for treating neurological disorders, but realization of its clinical potential requires development of smaller RXFP3-specific drugs that can penetrate the blood-brain barrier. Designing such drugs is challenging and requires structural knowledge of agonist- and antagonist-binding modes. Here, we used structure-activity data for relaxin-3 and a peptide RXFP3 antagonist termed R3 B1-22R to guide receptor mutagenesis and develop models of their binding modes. RXFP3 residues were alanine-substituted individually and in combination and tested in cell-based binding and functional assays to refine models of agonist and antagonist binding to active- and inactive-state homology models of RXFP3, respectively. These models suggested that both agonists and antagonists interact with RXFP3 via similar residues in their B-chain central helix. The models further suggested that the B-chain Trp27 inserts into the binding pocket of RXFP3 and interacts with Trp138 and Lys271, the latter through a salt bridge with the C-terminal carboxyl group of Trp27 in relaxin-3. R3 B1-22R, which does not contain Trp27, used a non-native Arg23 residue to form cation-π and salt-bridge interactions with Trp138 and Glu141 in RXFP3, explaining a key contribution of Arg23 to affinity. Overall, relaxin-3 and R3 B1-22R appear to share similar binding residues but may differ in binding modes, leading to active and inactive RXFP3 conformational states, respectively. These mechanistic insights may assist structure-based drug design of smaller relaxin-3 mimetics to manage neurological disorders.
Collapse
Affiliation(s)
| | - Daniel James Scott
- From the Florey Institute of Neuroscience and Mental Health.,Department of Biochemistry and Molecular Biology, and
| | - Mohammed Akhter Hossain
- From the Florey Institute of Neuroscience and Mental Health.,School of Chemistry, University of Melbourne, Parkville, Victoria 3052, Australia and
| | | | - K Johan Rosengren
- Faculty of Medicine, School of Biomedical Sciences, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Ross A D Bathgate
- From the Florey Institute of Neuroscience and Mental Health, .,Department of Biochemistry and Molecular Biology, and
| |
Collapse
|