1
|
Araruna MEC, Júnior EBA, Serafim CADL, Pessoa MMB, Pessôa MLDS, Alves VP, da Silva MS, Sobral MV, Alves AF, Nunes MKDS, Araújo AA, Batista LM. (-)-Fenchone Prevents Cysteamine-Induced Duodenal Ulcers and Accelerates Healing Promoting Re-Epithelialization of Gastric Ulcers in Rats via Antioxidant and Immunomodulatory Mechanisms. Pharmaceuticals (Basel) 2024; 17:641. [PMID: 38794211 PMCID: PMC11124074 DOI: 10.3390/ph17050641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/01/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND (-)-Fenchone is a naturally occurring monoterpene found in the essential oils of Foeniculum vulgare Mill., Thuja occidentalis L., and Peumus boldus Molina. Pharmacological studies have reported its antinociceptive, antimicrobial, anti-inflammatory, antidiarrheal, and antioxidant activities. METHODS The preventive antiulcer effects of (-)-Fenchone were assessed through oral pretreatment in cysteamine-induced duodenal lesion models. Gastric healing, the underlying mechanisms, and toxicity after repeated doses were evaluated using the acetic acid-induced gastric ulcer rat model with oral treatment administered for 14 days. RESULTS In the cysteamine-induced duodenal ulcer model, fenchone (37.5-300 mg/kg) significantly decreased the ulcer area and prevented lesion formation. In the acetic acid-induced ulcer model, fenchone (150 mg/kg) reduced (p < 0.001) ulcerative injury. These effects were associated with increased levels of reduced glutathione (GSH), superoxide dismutase (SOD), interleukin (IL)-10, and transforming growth factor-beta (TGF-β). Furthermore, treatment with (-)-Fenchone (150 mg/kg) significantly reduced (p < 0.001) malondialdehyde (MDA), myeloperoxidase (MPO), interleukin-1 beta (IL-1β), tumor necrosis factor-alpha (TNF-α), and nuclear transcription factor kappa B (NF-κB). A 14-day oral toxicity investigation revealed no alterations in heart, liver, spleen, or kidney weight, nor in the biochemical and hematological parameters assessed. (-)-Fenchone protected animals from body weight loss while maintaining feed and water intake. CONCLUSION (-)-Fenchone exhibits low toxicity, prevents duodenal ulcers, and enhances gastric healing activities. Antioxidant and immunomodulatory properties appear to be involved in its therapeutic effects.
Collapse
Affiliation(s)
- Maria Elaine Cristina Araruna
- Postgraduate Program in Natural and Synthetic Bioactive Products, Health Sciences Center, Federal University of Paraiba (UFPB), João Pessoa 58050-585, PB, Brazil; (M.E.C.A.); (E.B.A.J.); (C.A.d.L.S.); (M.M.B.P.); (M.L.d.S.P.); (V.P.A.); (M.S.d.S.); (M.V.S.)
| | - Edvaldo Balbino Alves Júnior
- Postgraduate Program in Natural and Synthetic Bioactive Products, Health Sciences Center, Federal University of Paraiba (UFPB), João Pessoa 58050-585, PB, Brazil; (M.E.C.A.); (E.B.A.J.); (C.A.d.L.S.); (M.M.B.P.); (M.L.d.S.P.); (V.P.A.); (M.S.d.S.); (M.V.S.)
| | - Catarina Alves de Lima Serafim
- Postgraduate Program in Natural and Synthetic Bioactive Products, Health Sciences Center, Federal University of Paraiba (UFPB), João Pessoa 58050-585, PB, Brazil; (M.E.C.A.); (E.B.A.J.); (C.A.d.L.S.); (M.M.B.P.); (M.L.d.S.P.); (V.P.A.); (M.S.d.S.); (M.V.S.)
| | - Matheus Marley Bezerra Pessoa
- Postgraduate Program in Natural and Synthetic Bioactive Products, Health Sciences Center, Federal University of Paraiba (UFPB), João Pessoa 58050-585, PB, Brazil; (M.E.C.A.); (E.B.A.J.); (C.A.d.L.S.); (M.M.B.P.); (M.L.d.S.P.); (V.P.A.); (M.S.d.S.); (M.V.S.)
| | - Michelle Liz de Souza Pessôa
- Postgraduate Program in Natural and Synthetic Bioactive Products, Health Sciences Center, Federal University of Paraiba (UFPB), João Pessoa 58050-585, PB, Brazil; (M.E.C.A.); (E.B.A.J.); (C.A.d.L.S.); (M.M.B.P.); (M.L.d.S.P.); (V.P.A.); (M.S.d.S.); (M.V.S.)
| | - Vitória Pereira Alves
- Postgraduate Program in Natural and Synthetic Bioactive Products, Health Sciences Center, Federal University of Paraiba (UFPB), João Pessoa 58050-585, PB, Brazil; (M.E.C.A.); (E.B.A.J.); (C.A.d.L.S.); (M.M.B.P.); (M.L.d.S.P.); (V.P.A.); (M.S.d.S.); (M.V.S.)
| | - Marcelo Sobral da Silva
- Postgraduate Program in Natural and Synthetic Bioactive Products, Health Sciences Center, Federal University of Paraiba (UFPB), João Pessoa 58050-585, PB, Brazil; (M.E.C.A.); (E.B.A.J.); (C.A.d.L.S.); (M.M.B.P.); (M.L.d.S.P.); (V.P.A.); (M.S.d.S.); (M.V.S.)
- Department of Pharmaceutical Sciences, IPeFarM, Federal University of Paraiba, João Pessoa 58051-970, PB, Brazil
| | - Marianna Vieira Sobral
- Postgraduate Program in Natural and Synthetic Bioactive Products, Health Sciences Center, Federal University of Paraiba (UFPB), João Pessoa 58050-585, PB, Brazil; (M.E.C.A.); (E.B.A.J.); (C.A.d.L.S.); (M.M.B.P.); (M.L.d.S.P.); (V.P.A.); (M.S.d.S.); (M.V.S.)
- Department of Pharmaceutical Sciences, IPeFarM, Federal University of Paraiba, João Pessoa 58051-970, PB, Brazil
| | - Adriano Francisco Alves
- Postgraduate Program in Natural and Synthetic Bioactive Products, Health Sciences Center, Federal University of Paraiba (UFPB), João Pessoa 58050-585, PB, Brazil; (M.E.C.A.); (E.B.A.J.); (C.A.d.L.S.); (M.M.B.P.); (M.L.d.S.P.); (V.P.A.); (M.S.d.S.); (M.V.S.)
- Department of Physiology and Pathology, Health Sciences Center, Federal University of Paraiba (UFPB), João Pessoa 58050-585, PB, Brazil; (A.F.A.); (M.K.d.S.N.)
| | - Mayara Karla dos Santos Nunes
- Department of Physiology and Pathology, Health Sciences Center, Federal University of Paraiba (UFPB), João Pessoa 58050-585, PB, Brazil; (A.F.A.); (M.K.d.S.N.)
| | - Aurigena Antunes Araújo
- Department of Morphology, Histology and Basic Pathology, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil;
| | - Leônia Maria Batista
- Postgraduate Program in Natural and Synthetic Bioactive Products, Health Sciences Center, Federal University of Paraiba (UFPB), João Pessoa 58050-585, PB, Brazil; (M.E.C.A.); (E.B.A.J.); (C.A.d.L.S.); (M.M.B.P.); (M.L.d.S.P.); (V.P.A.); (M.S.d.S.); (M.V.S.)
- Department of Pharmaceutical Sciences, IPeFarM, Federal University of Paraiba, João Pessoa 58051-970, PB, Brazil
| |
Collapse
|
2
|
Estarreja J, Caldeira G, Silva I, Mendes P, Mateus V. The Pharmacological Effect of Hemin in Inflammatory-Related Diseases: A Systematic Review. Biomedicines 2024; 12:898. [PMID: 38672251 PMCID: PMC11048114 DOI: 10.3390/biomedicines12040898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/08/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Hemin is clinically used in acute attacks of porphyria; however, recent evidence has also highlighted its capability to stimulate the heme oxygenase enzyme, being associated with cytoprotective, antioxidant, and anti-inflammatory effects. Indeed, current preclinical evidence emphasizes the potential anti-inflammatory role of hemin through its use in animal models of disease. Nevertheless, there is no consensus about the underlying mechanism(s) and the most optimal therapeutic regimens. Therefore, this review aims to summarize, analyze, and discuss the current preclinical evidence concerning the pharmacological effect of hemin. METHODS Following the application of the search expression and the retrieval of the articles, only nonclinical studies in vivo written in English were considered, where the potential anti-inflammatory effect of hemin was evaluated. RESULTS Forty-nine articles were included according to the eligibility criteria established. The results obtained show the preference of using 30 to 50 mg/kg of hemin, administered intraperitoneally, in both acute and chronic contexts. This drug demonstrates significant anti-inflammatory and antioxidant activities considering its capacity for reducing the expression of proinflammatory and oxidative markers. CONCLUSIONS This review highlighted the significant anti-inflammatory and antioxidant effects of hemin, providing a clearer vision for the medical community about the use of this drug in several human diseases.
Collapse
Affiliation(s)
- João Estarreja
- H&TRC—Health and Technology Research Center, ESTeSL—Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; (J.E.); (G.C.); (I.S.); (P.M.)
| | - Gonçalo Caldeira
- H&TRC—Health and Technology Research Center, ESTeSL—Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; (J.E.); (G.C.); (I.S.); (P.M.)
| | - Inês Silva
- H&TRC—Health and Technology Research Center, ESTeSL—Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; (J.E.); (G.C.); (I.S.); (P.M.)
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisbon, Portugal
| | - Priscila Mendes
- H&TRC—Health and Technology Research Center, ESTeSL—Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; (J.E.); (G.C.); (I.S.); (P.M.)
| | - Vanessa Mateus
- H&TRC—Health and Technology Research Center, ESTeSL—Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; (J.E.); (G.C.); (I.S.); (P.M.)
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisbon, Portugal
| |
Collapse
|
3
|
He JY, Li J, Zhang YY, He HB, He YM, Xu DX, Wang X, Wu HY, Zhang JH, Jahid H, Sadia A, Yu HF, Wang JZ, Zou K. Tormentic acid, a triterpenoid isolated from the fruits of Chaenomeles speciose, protected indomethacin-induced gastric mucosal lesion via modulating miR-139 and the CXCR4/CXCL12/PLC/PKC/Rho a/MLC pathway. PHARMACEUTICAL BIOLOGY 2023; 61:1343-1363. [PMID: 37623313 PMCID: PMC10461523 DOI: 10.1080/13880209.2023.2249526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 07/31/2023] [Accepted: 08/14/2023] [Indexed: 08/26/2023]
Abstract
CONTEXT Tormentic acid (TA), an effective triterpenoid isolated from Chaenomeles speciosa (Sweet) Nakai (Rosaceae) fruits, exerts an effective treatment for gastric damage. OBJECTIVE To investigate the gastroprotective effect of TA on indomethacin (IND) damaged GES-1 cells and rats, and explore potential mechanisms. MATERIALS AND METHODS TA concentrations of 1.563-25 µM were used. Cell proliferation, apoptosis and migration were performed using MTT, colony formation, wound healing, migration, Hoechst staining assays. SD rats were divided into control, IND, TA (1, 2 and 4 mg/kg) + IND groups, once a day for 21 continuous days. Twenty-four hours after the last administration, all groups except the control group were given IND (100 mg/kg) by gavage. Gastric juice parameters, gastric ulcer, gastric blood flow (GBF), blood biochemical parameters and cytokine analysis and gastric mucosal histopathology were detected for 2 h and 6 h after IND oral administration. The mRNA and protein expression of miR-139 and the CXCR4/CXCL12/PLC/PKC/Rho A/MLC pathway were analyzed in the IND-damaged GES-1 cells and gastric tissue of rats. RESULTS TA might ameliorate the gastric mucosal injury by accelerating the IND-damaged GES-1 cell proliferation and migration, ameliorating GBF, ulcer area and pathologic changes, the redox system and cytokine levels, the gastric juice parameters, elevating the gastric pH in IND damaged rats; suppressed miR-139 mRNA expression, elevated CXCR4 and CXCL12 mRNA and protein expression, p-PLC, p-PKC, Rho A, MLCK and p-MLC protein expression. DISCUSSION AND CONCLUSIONS TA may have potential use as a clinical drug candidate for gastric mucosal lesion treatment.
Collapse
Affiliation(s)
- Jun-Yu He
- Department of Clinical Medicine, College of Basic Medical Science, China Three Gorges University, Yichang, P.R. China
| | - Jie Li
- Yichang Key Laboratory of Development and Utilization of Health Products with Drug Food Homology & Hubei Key Laboratory of Natural Products Research and Development, China Three Gorges University, Yichang, P.R. China
| | - Yuan-Yuan Zhang
- Yichang Key Laboratory of Development and Utilization of Health Products with Drug Food Homology & Hubei Key Laboratory of Natural Products Research and Development, China Three Gorges University, Yichang, P.R. China
| | - Hai-Bo He
- Yichang Key Laboratory of Development and Utilization of Health Products with Drug Food Homology & Hubei Key Laboratory of Natural Products Research and Development, China Three Gorges University, Yichang, P.R. China
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Shiyan, P.R. China
| | - Yu-Min He
- Department of Clinical Medicine, College of Basic Medical Science, China Three Gorges University, Yichang, P.R. China
| | - Dao-Xiang Xu
- Department of Gastroenterology, Seventh People’s Hospital of Wenzhou, Wenzhou, P.R. China
| | - Xiao Wang
- Yichang Key Laboratory of Development and Utilization of Health Products with Drug Food Homology & Hubei Key Laboratory of Natural Products Research and Development, China Three Gorges University, Yichang, P.R. China
| | - Hao-Yang Wu
- Department of Clinical Medicine, College of Basic Medical Science, China Three Gorges University, Yichang, P.R. China
| | - Ji-Hong Zhang
- Department of Gastroenterology, Chinese Medicine Clinical Medical College & Hubei Clinical Research Center for Functional Digestive Diseases of Traditional Chinese Medicine, China Three Gorges University, Yichang, P.R. China
| | - Hasan Jahid
- Yichang Key Laboratory of Development and Utilization of Health Products with Drug Food Homology & Hubei Key Laboratory of Natural Products Research and Development, China Three Gorges University, Yichang, P.R. China
| | - Akter Sadia
- Yichang Key Laboratory of Development and Utilization of Health Products with Drug Food Homology & Hubei Key Laboratory of Natural Products Research and Development, China Three Gorges University, Yichang, P.R. China
| | - Hui-Fan Yu
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Shiyan, P.R. China
| | - Jun-Zhi Wang
- Yichang Key Laboratory of Development and Utilization of Health Products with Drug Food Homology & Hubei Key Laboratory of Natural Products Research and Development, China Three Gorges University, Yichang, P.R. China
| | - Kun Zou
- Yichang Key Laboratory of Development and Utilization of Health Products with Drug Food Homology & Hubei Key Laboratory of Natural Products Research and Development, China Three Gorges University, Yichang, P.R. China
| |
Collapse
|
4
|
Magierowska K, Wójcik-Grzybek D, Korbut E, Bakalarz D, Ginter G, Danielak A, Kwiecień S, Chmura A, Torregrossa R, Whiteman M, Magierowski M. The mitochondria-targeted sulfide delivery molecule attenuates drugs-induced gastropathy. Involvement of heme oxygenase pathway. Redox Biol 2023; 66:102847. [PMID: 37597422 PMCID: PMC10458696 DOI: 10.1016/j.redox.2023.102847] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/07/2023] [Accepted: 08/11/2023] [Indexed: 08/21/2023] Open
Abstract
Hydrogen sulfide (H2S) signaling and H2S-prodrugs maintain redox balance in gastrointestinal (GI) tract. Predominant effect of any H2S-donor is mitochondrial. Non-targeted H2S-moieties were shown to decrease the non-steroidal anti-inflammatory drugs (NSAIDs)-induced gastrotoxicity but in high doses. However, direct, controlled delivery of H2S to gastric mucosal mitochondria as a molecular target improving NSAIDs-pharmacology remains overlooked. Thus, we treated Wistar rats, i.g. with vehicle, mitochondria-targeted H2S-releasing AP39 (0.004-0.5 mg/kg), AP219 (0.02 mg/kg) as structural control without H2S-releasing ability, or AP39 + SnPP (10 mg/kg) as a heme oxygenase (HMOX) inhibitor. Next, animals were administered i.g. with acetylsalicylic acid (ASA, 125 mg/kg) as NSAIDs representative or comparatively with 75% ethanol to induce translational hemorrhagic or necrotic gastric lesions, that were assessed micro-/macroscopically. Activity of mitochondrial complex IV/V, and DNA oxidation were assessed biochemically. Gastric mucosal/serum content of IL-1β, IL-10, TNF-α, TGF-β1/2, ARG1, GST-α, or phosphorylation of mTOR, NF-κB, ERK, Akt, JNK, STAT3/5 were evaluated by microbeads-fluorescent xMAP®-assay; gastric mucosal mRNA level of HMOX-1/2, COX-1/2, SOD-1/2 by real-time PCR. AP39 (but not AP219) dose-dependently (0.02 and 0.1 mg/kg) diminished NSAID- (and ethanol)-induced gastric lesions and DNA oxidation, restoring mitochondrial complexes activity, ARG1, GST-α protein levels and increasing HMOX-1 and SOD-2 expression. AP39 decreased proteins levels or phosphorylation of gastric mucosal inflammation/oxidation-sensitive markers and restored mTOR phosphorylation. Pharmacological inhibition of HMOX-1 attenuated AP39-gastroprotection. We showed that mitochondria-targeted H2S released from very low i.g. doses of AP39 improved gastric mucosal capacity to cope with NSAIDs-induced mitochondrial dysfunction and redox imbalance, mechanistically requiring the activity of HMOX-1.
Collapse
Affiliation(s)
| | | | - Edyta Korbut
- Department of Physiology, Jagiellonian University Medical College, Cracow, Poland
| | - Dominik Bakalarz
- Department of Physiology, Jagiellonian University Medical College, Cracow, Poland; Department of Forensic Toxicology, Institute of Forensic Research, Cracow, Poland
| | - Grzegorz Ginter
- Department of Physiology, Jagiellonian University Medical College, Cracow, Poland
| | - Aleksandra Danielak
- Department of Physiology, Jagiellonian University Medical College, Cracow, Poland
| | - Sławomir Kwiecień
- Department of Physiology, Jagiellonian University Medical College, Cracow, Poland
| | - Anna Chmura
- Department of Physiology, Jagiellonian University Medical College, Cracow, Poland
| | - Roberta Torregrossa
- University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| | - Matthew Whiteman
- University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| | - Marcin Magierowski
- Department of Physiology, Jagiellonian University Medical College, Cracow, Poland.
| |
Collapse
|
5
|
Cui Y, Guo C, Xia Z, Xue Y, Song B, Hu W, He X, Liang S, Wei Y, Zhang C, Wang H, Xu D, Zhang S, Fang J. Exploring the therapeutic potential of a nano micelle containing a carbon monoxide-releasing molecule for metabolic-associated fatty liver disease by modulating hypoxia-inducible factor-1α. Acta Biomater 2023; 169:500-516. [PMID: 37574157 DOI: 10.1016/j.actbio.2023.08.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/20/2023] [Accepted: 08/08/2023] [Indexed: 08/15/2023]
Abstract
Metabolic-associated fatty liver disease (MAFLD) encompasses a spectrum of chronic liver diseases, including steatohepatitis, cirrhosis, and liver cancer. Despite the increasing prevalence and severity of MAFLD, no approved pharmacological interventions are currently available. Hypoxia-inducible factor-1α (HIF-1α) has emerged as a crucial early mediator in the pathogenesis of MAFLD. Previously, we demonstrated the potent anti-inflammatory properties of the nano-designed carbon monoxide (CO) donor, styrene maleic acid copolymer (SMA) encapsulating CO-releasing molecule (SMA/CORM2), which effectively suppressed HIF-1α in various inflammatory disorders. Here, we investigated the therapeutic potential of SMA/CORM2 in a mouse model of MAFLD induced by a high-fat methionine- and choline-deficient (HF-MCD) diet. Following 4 weeks of HF-MCD diet consumption, we observed pronounced hepatic lipid accumulation accompanied by disrupted lipid metabolism, polarization of macrophages towards the pro-inflammatory M1 phenotype, activation of the NLRP3 inflammasome, and upregulation of the TGF-β fibrosis signaling pathway. Notably, the early and upstream event driving these pathological changes was the upregulation of HIF-1α. Treatment with SMA/CORM2 (10 mg/kg, three times per week) led to a significant increase in CO levels in both the circulation and liver, resulting in remarkable suppression of HIF-1α expression even before the onset of apparent pathological changes induced by the HF-MCD diet. Consequently, SMA/CORM2 administration exerted a significantly protective and therapeutic effect on MAFLD. In vitro studies using hepatocytes treated with high concentrations of fatty acids further supported these findings, as knockdown of HIF-1α using short hairpin RNA (shRNA) elicited similar effects to SMA/CORM2 treatment. Collectively, our results highlight the therapeutic potential of SMA/CORM2 in the management of MAFLD through suppression of HIF-1α. We anticipate that SMA/CORM2, with its ability to modulate HIF-1α expression, may hold promise for future applications in the treatment of MAFLD. STATEMENT OF SIGNIFICANCE: Carbon monoxide (CO) is a crucial gaseous signaling molecule that plays a vital role in maintaining homeostasis and is a potential target for treating many inflammatory diseases. Developing drug delivery systems that can deliver CO stably and target specific tissues is of great interest. Our team previously developed a nano micellar CO donor, SMA/CORM2, which exhibits superior bioavailability to native CORM2 and shows therapeutic potential in many inflammatory disease models. In this study, we showed that SMA/CORM2, through controlled CO release, significantly ameliorated steatohepatitis and liver fibrosis induced by an HF-MCD diet by suppressing an HIF-1α mediated inflammatory cascade. These findings provide new insight into the anti-inflammatory function of CO and a promising approach for controlling metabolic-associated fatty liver disease.
Collapse
Affiliation(s)
- Yingying Cui
- Department of Toxicology, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230022, Anhui, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, No 81 Meishan Road, Hefei 230022, Anhui, China; Peking University First Hispital Ningxia Women and Children's Hosptical (Ningxia Hui Autonomous Region Maternal and Child Health Hospital), Yinchuan 750000, China
| | - Chunyu Guo
- Department of Toxicology, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230022, Anhui, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, No 81 Meishan Road, Hefei 230022, Anhui, China
| | - Zhengmei Xia
- Department of Toxicology, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230022, Anhui, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, No 81 Meishan Road, Hefei 230022, Anhui, China
| | - Yanni Xue
- Department of Toxicology, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230022, Anhui, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, No 81 Meishan Road, Hefei 230022, Anhui, China
| | - Bingdong Song
- Department of Toxicology, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230022, Anhui, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, No 81 Meishan Road, Hefei 230022, Anhui, China
| | - Weirong Hu
- Department of Toxicology, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230022, Anhui, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, No 81 Meishan Road, Hefei 230022, Anhui, China
| | - Xue He
- Department of Gastroenterology, Anhui Provincial Key Laboratory of Digestive Disease, the First Affiliated Hospital of Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Shimin Liang
- Department of Gastroenterology, Anhui Provincial Key Laboratory of Digestive Disease, the First Affiliated Hospital of Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Yanyan Wei
- Department of Infectious Disease, the First Affiliated Hospital of Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Cheng Zhang
- Department of Toxicology, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230022, Anhui, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, No 81 Meishan Road, Hefei 230022, Anhui, China
| | - Hua Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230022, Anhui, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, No 81 Meishan Road, Hefei 230022, Anhui, China
| | - Dexiang Xu
- Department of Toxicology, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230022, Anhui, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, No 81 Meishan Road, Hefei 230022, Anhui, China
| | - Shichen Zhang
- School of Public Health and Health Management, Anhui Medical College, No 632 Furong Road, Hefei 230601, Anhui, China.
| | - Jun Fang
- Department of Toxicology, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230022, Anhui, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, No 81 Meishan Road, Hefei 230022, Anhui, China; School of Public Health and Health Management, Anhui Medical College, No 632 Furong Road, Hefei 230601, Anhui, China; Faculty of Pharmaceutical Science, Sojo University, Ikeda 4-22-1, Kumamoto 860-0082, Japan.
| |
Collapse
|
6
|
Silva LDD, Pinheiro JLS, Rodrigues LHM, Santos VMRD, Borges JLF, Oliveira RRD, Maciel LG, Araújo TDSL, Martins CDS, Gomes DA, Lira EC, Souza MHLP, Medeiros JVR, Damasceno ROS. Crucial role of carbon monoxide as a regulator of diarrhea caused by cholera toxin: Evidence of direct interaction with toxin. Biochem Pharmacol 2023; 216:115791. [PMID: 37689274 DOI: 10.1016/j.bcp.2023.115791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/01/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
The present study evaluated the role of heme oxygenase 1 (HO-1)/carbon monoxide (CO) pathway in the cholera toxin-induced diarrhea and its possible action mechanism. The pharmacological modulation with CORM-2 (a CO donor) or Hemin (a HO-1 inducer) decreased the intestinal fluid secretion and Cl- efflux, altered by cholera toxin. In contrast, ZnPP (a HO-1 inhibitor) reversed the antisecretory effect of Hemin and potentiated cholera toxin-induced intestinal secretion. Moreover, CORM-2 also prevented the alteration of intestinal epithelial architecture and local vascular permeability promoted by cholera toxin. The intestinal absorption was not altered by any of the pharmacological modulators. Cholera toxin inoculation also increased HO-1 immunoreactivity and bilirubin levels, a possible protective physiological response. Finally, using fluorometric technique, ELISA assay and molecular docking simulations, we show evidence that CO directly interacts with cholera toxin, forming a complex that affects its binding to GM1 receptor, which help explain the antisecretory effect. Thus, CO is an essential molecule for protection against choleric diarrhea and suggests its use as a possible therapeutic tool.
Collapse
Affiliation(s)
- Lorena Duarte da Silva
- Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife, PE, Brazil
| | | | | | | | | | | | | | | | | | - Dayane Aparecida Gomes
- Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife, PE, Brazil
| | - Eduardo Carvalho Lira
- Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife, PE, Brazil
| | | | - Jand Venes Rolim Medeiros
- Biotechnology and Biodiversity Center Research, Parnaíba Delta Federal University, Parnaíba, PI, Brazil
| | | |
Collapse
|
7
|
Głowacka U, Magierowski M, Śliwowski Z, Cieszkowski J, Szetela M, Wójcik-Grzybek D, Chmura A, Brzozowski T, Wallace JL, Magierowska K. Hydrogen Sulfide-Releasing Indomethacin-Derivative (ATB-344) Prevents the Development of Oxidative Gastric Mucosal Injuries. Antioxidants (Basel) 2023; 12:1545. [PMID: 37627540 PMCID: PMC10452022 DOI: 10.3390/antiox12081545] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
Hydrogen sulfide (H2S) emerged recently as an anti-oxidative signaling molecule that contributes to gastrointestinal (GI) mucosal defense and repair. Indomethacin belongs to the class of non-steroidal anti-inflammatory drugs (NSAIDs) and is used as an effective intervention in the treatment of gout- or osteoarthritis-related inflammation. However, its clinical use is strongly limited since indomethacin inhibits gastric mucosal prostaglandin (PG) biosynthesis, predisposing to or even inducing ulcerogenesis. The H2S moiety was shown to decrease the GI toxicity of some NSAIDs. However, the GI safety and anti-oxidative effect of a novel H2S-releasing indomethacin derivative (ATB-344) remain unexplored. Thus, we aimed here to compare the impact of ATB-344 and classic indomethacin on gastric mucosal integrity and their ability to counteract the development of oxidative gastric mucosal injuries. Wistar rats were pretreated intragastrically (i.g.) with vehicle, ATB-344 (7-28 mg/kg i.g.), or indomethacin (5-20 mg/kg i.g.). Next, animals were exposed to microsurgical gastric ischemia-reperfusion (I/R). Gastric damage was assessed micro- and macroscopically. The volatile H2S level was assessed in the gastric mucosa using the modified methylene blue method. Serum and gastric mucosal PGE2 and 8-hydroxyguanozine (8-OHG) concentrations were evaluated by ELISA. Molecular alterations for gastric mucosal barrier-specific targets such as cyclooxygenase-1 (COX)-1, COX-2, heme oxygenase-1 (HMOX)-1, HMOX-2, superoxide dismutase-1 (SOD)-1, SOD-2, hypoxia inducible factor (HIF)-1α, xanthine oxidase (XDH), suppressor of cytokine signaling 3 (SOCS3), CCAAT enhancer binding protein (C/EBP), annexin A1 (ANXA1), interleukin 1 beta (IL-1β), interleukin 1 receptor type I (IL-1R1), interleukin 1 receptor type II (IL-1R2), inducible nitric oxide synthase (iNOS), tumor necrosis factor receptor 2 (TNFR2), or H2S-producing enzymes, cystathionine γ-lyase (CTH), cystathionine β-synthase (CBS), or 3-mercaptopyruvate sulfur transferase (MPST), were assessed at the mRNA level by real-time PCR. ATB-344 (7 mg/kg i.g.) reduced the area of gastric I/R injuries in contrast to an equimolar dose of indomethacin. ATB-344 increased gastric H2S production, did not affect gastric mucosal PGE2 content, prevented RNA oxidation, and maintained or enhanced the expression of oxidation-sensitive HMOX-1 and SOD-2 in line with decreased IL-1β and XDH. We conclude that due to the H2S-releasing ability, i.g., treatment with ATB-344 not only exerts dose-dependent GI safety but even enhances gastric mucosal barrier capacity to counteract acute oxidative injury development when applied at a low dose of 7 mg/kg, in contrast to classic indomethacin. ATB-344 (7 mg/kg) inhibited COX activity on a systemic level but did not affect cytoprotective PGE2 content in the gastric mucosa and, as a result, evoked gastroprotection against oxidative damage.
Collapse
Affiliation(s)
- Urszula Głowacka
- Department of Physiology, Jagiellonian University Medical College, 16 Grzegórzecka Street, 31-531 Kraków, Poland
- Doctoral School of Medical and Health Sciences, Jagiellonian University Medical College, 31-530 Kraków, Poland
| | - Marcin Magierowski
- Department of Physiology, Jagiellonian University Medical College, 16 Grzegórzecka Street, 31-531 Kraków, Poland
| | - Zbigniew Śliwowski
- Department of Physiology, Jagiellonian University Medical College, 16 Grzegórzecka Street, 31-531 Kraków, Poland
| | - Jakub Cieszkowski
- Department of Physiology, Jagiellonian University Medical College, 16 Grzegórzecka Street, 31-531 Kraków, Poland
| | - Małgorzata Szetela
- Department of Physiology, Jagiellonian University Medical College, 16 Grzegórzecka Street, 31-531 Kraków, Poland
| | - Dagmara Wójcik-Grzybek
- Department of Physiology, Jagiellonian University Medical College, 16 Grzegórzecka Street, 31-531 Kraków, Poland
| | - Anna Chmura
- Department of Physiology, Jagiellonian University Medical College, 16 Grzegórzecka Street, 31-531 Kraków, Poland
| | - Tomasz Brzozowski
- Department of Physiology, Jagiellonian University Medical College, 16 Grzegórzecka Street, 31-531 Kraków, Poland
| | - John L. Wallace
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Katarzyna Magierowska
- Department of Physiology, Jagiellonian University Medical College, 16 Grzegórzecka Street, 31-531 Kraków, Poland
| |
Collapse
|
8
|
Potential effects of carbon monoxide donor and its nanoparticles on experimentally induced gastric ulcer in rats. Inflammopharmacology 2023; 31:1495-1510. [PMID: 36882659 DOI: 10.1007/s10787-023-01166-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 02/13/2023] [Indexed: 03/09/2023]
Abstract
The prevalence of gastric ulcers is increasing worldwide, especially those brought on by non-steroidal anti-inflammatory drugs (NSAIDS), so prevention is extremely crucial. The protective potential of carbon monoxide (CO) in several inflammatory disorders has been clarified. The goal of the current study was to investigate the gastroprotective effect of CO produced by its pharmacological donor (CORM2) and its nanoparticles (NPs) against indomethacin (INDO)-induced ulcers. Investigations on CORM2's dose-dependent effects were also conducted. For induction of gastric ulcer, 100 mg kg-1 of INDO was given orally. Before ulcer induction, CORM2 (5, 10, and 15 mg kg-1), CORM2 nanoparticles (5 mg kg-1), or ranitidine (30 mg kg-1) were given intraperitoneally for 7 days. Ulcer score, gastric acidity, gastric contents of malondialdehyde (MDA), nitric oxide (NO), heme oxygenase-1 (HO-1), and carboxyhemoglobin (COHb) blood content were estimated. Additionally, gene expression of nuclear factor erythroid 2-related factor 2 (NRF2) and immunohistochemical staining of cyclooxygenase-1 (COX-1) as well as cyclooxygenase-2 (COX-2) were analyzed. Results demonstrated a substantial dose-dependent decrease in ulcer score, pro-inflammatory indicators, and oxidative stress markers with CORM2 and its NPs. Furthermore, CORM2 and its NPs markedly increased NRF2, COX-1, and HO-1, but CORM2 NPs outperformed CORM2 in this regard. In conclusion, the CO released by CORM2 can protect against INDO-induced gastric ulcers dose dependently, and the highest used dose had no effect on COHb concentration.
Collapse
|
9
|
Therapeutic Versus Preventative Use of Ginkgo biloba Extract (EGb 761) against Indomethacin-Induced Gastric Ulcer in Mice. Molecules 2022; 27:molecules27175598. [PMID: 36080365 PMCID: PMC9458100 DOI: 10.3390/molecules27175598] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/25/2022] [Accepted: 08/28/2022] [Indexed: 11/29/2022] Open
Abstract
The main bioactive constituents in the standardized Ginkgo biloba leaf extract (EGb 761) are the terpene lactones and flavonoid glycosides. EGb 761’s antioxidant and anti-inflammatory properties have previously been demonstrated. Indomethacin-induced gastric ulcers have a multifactorial etiology and represent a major restriction to its therapeutic utility. The underlying ulcerogenic process involves oxidative and inflammatory biomolecular insults. This study was performed to explore the curative and preventative benefits of EGb 761 in experimentally-induced ulcers. To develop gastric ulcers in mice, indomethacin (40 mg/kg) was administered orally. EGb 761 (200 mg/kg) was given by gavage for 7 days before (preventative) and after (therapeutic) indomethacin administration. The histological alterations and macroscopic mucosal lesions were assessed. In gastric tissue homogenates, malondialdehyde (MDA), reduced glutathione (GSH), nitric oxide (NO), and inflammatory cytokines were measured. The expressions of cyclooxygenase-2 (COX-2), cytokines, and proliferating cell nuclear antigen (PCNA) in the stomach mucosa were also investigated. The ulcer index, histological alterations, gastric oxidants, and inflammatory biomarkers were all significantly increased by indomethacin. In stomach specimens, it increased COX-2 and PCNA expression. EGb 761 treatments, both prophylactic and therapeutic, resulted in significant reductions in ulcer lesions, nitrosative and oxidative damage, and inflammatory markers, along with the lowering of COX-2 and PCNA expressions. Furthermore, in the fight against stomach ulcers, EGb 761 treatment was found to be more efficient than prevention.
Collapse
|
10
|
Magierowska K, Korbut E, Wójcik-Grzybek D, Bakalarz D, Sliwowski Z, Cieszkowski J, Szetela M, Torregrossa R, Whiteman M, Magierowski M. Mitochondria-targeted hydrogen sulfide donors versus acute oxidative gastric mucosal injury. J Control Release 2022; 348:321-334. [PMID: 35654168 DOI: 10.1016/j.jconrel.2022.05.051] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/23/2022] [Accepted: 05/26/2022] [Indexed: 12/14/2022]
Abstract
Hydrogen sulfide (H2S) as a gaseous molecule prevents gastrointestinal (GI)-tract against various injuries. This study aimed to evaluate for the first time the detailed molecular mechanism of mitochondria-targeting H2S-prodrugs, AP39 and RT01 in gastroprotection against ischemia/reperfusion (I/R)-induced lesions. Wistar rats exposed to I/R were pretreated i.g. with vehicle, AP39 (0.004-2 mg/kg), RT01 (0.1 mg/kg), or with AP219 (0.1 mg/kg) as structural control without ability to release H2S. AP39 was also administered with mTOR1 inhibitor, rapamycin (1 mg/kg i.g.). Gastric damage area was assessed micro-/macroscopically, gastric blood flow (GBF) by laser flowmetry, mRNA level of HIF-1α, GPx, SOD1, SOD2, annexin-A1, SOCS3, IL-1RA, IL-1β, IL-1R1, IL-1R2, TNFR2, iNOS by real-time PCR. Gastric mucosal and/or serum content of IL-1β, IL-4, IL-5, IL-10, G-CSF, M-CSF, VEGFA, GRO, RANTES, MIP-1α, MCP1, TNF-α, TIMP1, FABP3, GST-α, STAT3/5 and phosphorylation of mTOR, NF-κB, ERK, Akt was evaluated by microbeads-fluorescent assay. Mitochondrial complexes activities were measured biochemically. RNA damage was assessed as 8-OHG by ELISA. AP39 and RT01 reduced micro-/macroscopic gastric I/R-injury increasing GBF. AP39-gastroprotection was accompanied by maintained activity of mitochondrial complexes, prevented RNA oxidation and enhanced mRNA/protein expression of SOCS3, IL-1RA, annexin-A1, GST-α, HIF-1α. Rapamycin reversed AP-39-gastroprotection. AP39-gastroprotection was followed by decreased NF-κB, ERK, IL-1β and enhanced Akt and mTOR proteins phosphorylation. AP39-prevented gastric mucosal damage caused by I/R-injury, partly by mitochondrial complex activity maintenance. AP39-mediated attenuation of gastric mucosal oxidation, hypoxia and inflammation involved mTOR1 and Akt pathways activity and modulation of HIF-1α, GST-α, SOCS3, IL1RA and TIMP1 molecular interplay.
Collapse
Affiliation(s)
| | - Edyta Korbut
- Department of Physiology, Jagiellonian University Medical College, Cracow, Poland
| | | | - Dominik Bakalarz
- Department of Physiology, Jagiellonian University Medical College, Cracow, Poland; Department of Forensic Toxicology, Institute of Forensic Research, Cracow, Poland
| | - Zbigniew Sliwowski
- Department of Physiology, Jagiellonian University Medical College, Cracow, Poland
| | - Jakub Cieszkowski
- Department of Physiology, Jagiellonian University Medical College, Cracow, Poland
| | - Małgorzata Szetela
- Department of Physiology, Jagiellonian University Medical College, Cracow, Poland
| | | | | | - Marcin Magierowski
- Department of Physiology, Jagiellonian University Medical College, Cracow, Poland.
| |
Collapse
|
11
|
Krukowska K, Magierowski M. Carbon monoxide (CO)/heme oxygenase (HO)-1 in gastrointestinal tumors pathophysiology and pharmacology - possible anti- and pro-cancer activities. Biochem Pharmacol 2022; 201:115058. [PMID: 35490732 DOI: 10.1016/j.bcp.2022.115058] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/20/2022] [Accepted: 04/20/2022] [Indexed: 11/02/2022]
Abstract
Gastrointestinal (GI) tract cancers pose a significant pharmacological challenge for researchers in terms of the discovery of molecular agents and the development of targeted therapies. Although many ongoing clinical trials have brought new perspectives, there is still a lack of successful long-term treatment. Several novel pharmacological and molecular agents are being studied in the prevention and treatment of GI cancers. On the other hand, pharmacological tools designed to release an endogenous gaseous mediator, carbon monoxide (CO), were shown to prevent the gastric mucosa against various types of injuries and exert therapeutic properties in the treatment of GI pathologies. In this review, we summarized the current evidence on the role of CO and heme oxygenase 1 (HO-1) as a CO producing enzyme in the pathophysiology of GI tumors. We focused on a beneficial role of HO-1 and CO in biological systems and common pathological conditions. We further discussed the complex and ambiguous function of the HO-1/CO pathway in cancer cells with a special emphasis on molecular and cellular pro-cancerous and anti-cancer mechanisms. We also focused on the role that HO-1/CO plays in GI cancers, especially within upper parts such as esophagus or stomach.
Collapse
Affiliation(s)
- Kinga Krukowska
- Cellular Engineering and Isotope Diagnostics Laboratory, Department of Physiology, Jagiellonian University Medical College, Poland
| | - Marcin Magierowski
- Cellular Engineering and Isotope Diagnostics Laboratory, Department of Physiology, Jagiellonian University Medical College, Poland.
| |
Collapse
|
12
|
Damasceno ROS, Soares PMG, Barbosa ALDR, Nicolau LAD, Medeiros JVR, Souza MHLP. Modulatory Role of Carbon Monoxide on the Inflammatory Response and Oxidative Stress Linked to Gastrointestinal Disorders. Antioxid Redox Signal 2022; 37:98-114. [PMID: 34806398 DOI: 10.1089/ars.2020.8223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Significance: Carbon monoxide (CO) is an endogenous gaseous mediator that plays an important role in maintaining gastrointestinal (GI) tract homeostasis, acting in mucosal defense, and providing negative modulation of pathophysiological markers of clinical conditions. Recent Advances: Preclinical studies using animal models and/or cell culture show that CO can modulate the inflammatory response and oxidative stress in GI mucosal injuries and pathological conditions, reducing proinflammatory cytokines and reactive oxygen species, while increasing antioxidant defense mechanisms. Critical Issues: CO has potent anti-inflammatory and antioxidant effects. The defense mechanisms of the GI tract are subject to aggression by different chemical agents (e.g., drugs and ethanol) as well as complex and multifactorial diseases, with inflammation and oxidative stress as strong triggers for the deleterious effects. Thus, it is possible that CO acts on a variety of molecules involved in the inflammatory and oxidative signaling cascades, as well as reinforcing several defense mechanisms that maintain GI homeostasis. Future Directions: CO-based therapies are promising tools for the treatment of GI disorders, such as gastric and intestinal injuries, inflammatory bowel disease, and pancreatitis. Therefore, it is necessary to develop safe and selective CO-releasing agents and/or donor drugs to facilitate effective treatments and methods for analysis of CO levels that are simple and inexpensive. Antioxid. Redox Signal. 37, 98-114.
Collapse
Affiliation(s)
| | | | | | | | - Jand-Venes Rolim Medeiros
- Biotechnology and Biodiversity Center Research, Federal University of the Parnaíba Delta, Parnaíba, Brazil
| | | |
Collapse
|
13
|
Byrne JD, Gallo D, Boyce H, Becker SL, Kezar KM, Cotoia AT, Feig VR, Lopes A, Csizmadia E, Longhi MS, Lee JS, Kim H, Wentworth AJ, Shankar S, Lee GR, Bi J, Witt E, Ishida K, Hayward A, Kuosmanen JLP, Jenkins J, Wainer J, Aragon A, Wong K, Steiger C, Jeck WR, Bosch DE, Coleman MC, Spitz DR, Tift M, Langer R, Otterbein LE, Traverso G. Delivery of therapeutic carbon monoxide by gas-entrapping materials. Sci Transl Med 2022; 14:eabl4135. [PMID: 35767653 DOI: 10.1126/scitranslmed.abl4135] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Carbon monoxide (CO) has long been considered a toxic gas but is now a recognized bioactive gasotransmitter with potent immunomodulatory effects. Although inhaled CO is currently under investigation for use in patients with lung disease, this mode of administration can present clinical challenges. The capacity to deliver CO directly and safely to the gastrointestinal (GI) tract could transform the management of diseases affecting the GI mucosa such as inflammatory bowel disease or radiation injury. To address this unmet need, inspired by molecular gastronomy techniques, we have developed a family of gas-entrapping materials (GEMs) for delivery of CO to the GI tract. We show highly tunable and potent delivery of CO, achieving clinically relevant CO concentrations in vivo in rodent and swine models. To support the potential range of applications of foam GEMs, we evaluated the system in three distinct disease models. We show that a GEM containing CO dose-dependently reduced acetaminophen-induced hepatocellular injury, dampened colitis-associated inflammation and oxidative tissue injury, and mitigated radiation-induced gut epithelial damage in rodents. Collectively, foam GEMs have potential paradigm-shifting implications for the safe therapeutic use of CO across a range of indications.
Collapse
Affiliation(s)
- James D Byrne
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,Harvard Radiation Oncology Residency Program, Boston, MA 02114, USA.,Department of Radiation Oncology, University of Iowa, Iowa City, IA 52242, USA.,Department of Biomedical Engineering, University of Iowa, Iowa City, IA 52240, USA.,Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA
| | - David Gallo
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Hannah Boyce
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Sarah L Becker
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Kristi M Kezar
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC 28403, USA
| | - Alicia T Cotoia
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC 28403, USA
| | - Vivian R Feig
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Aaron Lopes
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Eva Csizmadia
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Maria Serena Longhi
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Jung Seung Lee
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,Department of Intelligent Precision Healthcare Convergence, SKKU Institute of Convergence, Sungkyunkwan University, Suwon 16419, South Korea
| | - Hyunjoon Kim
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Adam J Wentworth
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Sidharth Shankar
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Ghee Rye Lee
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Jianling Bi
- Department of Radiation Oncology, University of Iowa, Iowa City, IA 52242, USA
| | - Emily Witt
- Department of Radiation Oncology, University of Iowa, Iowa City, IA 52242, USA
| | - Keiko Ishida
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Alison Hayward
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Johannes L P Kuosmanen
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Josh Jenkins
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Jacob Wainer
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Aya Aragon
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kaitlyn Wong
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Christoph Steiger
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - William R Jeck
- Department of Pathology, Duke University, Durham, NC 27710, USA
| | - Dustin E Bosch
- Department of Pathology, University of Iowa, Iowa City, IA 52242, USA
| | - Mitchell C Coleman
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA
| | - Douglas R Spitz
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA
| | - Michael Tift
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC 28403, USA
| | - Robert Langer
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Leo E Otterbein
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Giovanni Traverso
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| |
Collapse
|
14
|
Magierowska K, Magierowski M. COin Gastrointestinal Physiology and Protection. CARBON MONOXIDE IN DRUG DISCOVERY 2022:466-481. [DOI: 10.1002/9781119783435.ch27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
15
|
Zhu J, Wang J, Wang G, Zhang J, Tao W, Liu C, Liu M, Zhang H, Xie R, Ye F, Liu Y, Fang W, Chen X, Li Y. Precise Identification of the Dimethyl Sulfoxide Triggered Tricarbonyldichlororuthenium(II) Dimer for Releasing CO. J Phys Chem Lett 2021; 12:4658-4665. [PMID: 33978423 DOI: 10.1021/acs.jpclett.1c00905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Low concentrations of carbon monoxide (CO) can play vital roles in pharmacological and physiological functions in the human body. The transition-metal carbonyl complexes of the tricarbonyldichlororuthenium(II) dimer [Ru2(CO)6Cl4 (CORM-2)] were proposed as CO-releasing molecules (CORMs) to improve the delivery efficiency of CO for therapeutic effects. The accurate identification of final products for CORMs in solution and the detailed mechanisms of the release of CO were the essential prerequisite for its effective physiological application, which have been deficient. In this study, utilizing the cutting-edge two-dimensional (2D) IR spectroscopy, with the intrinsic vibrational modes and the coupling information on dynamics of intramolecular vibrational energy redistribution (IVR), the final products of A, B, C, and E are accurately identified when CORM-2 is dissolved in dimethyl sulfoxide (DMSO). Furthermore, with the clues on intermolecular interaction and chemical exchange dynamics between different products, the transformations between different products are also directly characterized for the first time. These findings challenge the results from the classic 1D spectroscopic pattern, and they evidently demonstrated that the release of CO from CORM-2 in DMSO was slow and complicated with multiple reaction pathways. Combining with DFT simulations, the detailed mechanisms of release of CO for CORM-2 dissolved in DMSO are schematically proposed, which can significantly contribute to its drug optimization and pharmacological as well as physiological applications.
Collapse
Affiliation(s)
- Jiangrui Zhu
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Juanjuan Wang
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Guosheng Wang
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Jia Zhang
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Tao
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Chang Liu
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Ming Liu
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Hao Zhang
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Ruipei Xie
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fangfu Ye
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Songshan Lake Materials Laboratory, Chinese Academy of Sciences, Dongguan, Guangdong 523808, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Ying Liu
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Weihai Fang
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Xuebo Chen
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Yunliang Li
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Songshan Lake Materials Laboratory, Chinese Academy of Sciences, Dongguan, Guangdong 523808, China
| |
Collapse
|
16
|
Bakalarz D, Korbut E, Yuan Z, Yu B, Wójcik D, Danielak A, Magierowska K, Kwiecień S, Brzozowski T, Marcinkowska M, Wang B, Magierowski M. Novel Hydrogen Sulfide (H 2S)-Releasing BW-HS-101 and Its Non-H 2S Releasing Derivative in Modulation of Microscopic and Molecular Parameters of Gastric Mucosal Barrier. Int J Mol Sci 2021; 22:5211. [PMID: 34069086 PMCID: PMC8155842 DOI: 10.3390/ijms22105211] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 12/19/2022] Open
Abstract
Hydrogen sulfide (H2S) is an endogenously produced molecule with anti-inflammatory and cytoprotective properties. We aimed to investigate for the first time if a novel, esterase-sensitive H2S-prodrug, BW-HS-101 with the ability to release H2S in a controllable manner, prevents gastric mucosa against acetylsalicylic acid-induced gastropathy on microscopic and molecular levels. Wistar rats were pretreated intragastrically with vehicle, BW-HS-101 (0.5-50 μmol/kg) or its analogue without the ability to release H2S, BW-iHS-101 prior to ASA administration (125 mg/kg, intragastrically). BW-HS-101 was administered alone or in combination with nitroarginine (L-NNA, 20 mg/kg, intraperitoneally) or zinc protoporphyrin IX (10 mg/kg, intraperitoneally). Gastroprotective effects of BW-HS-101 were additionally evaluated against necrotic damage induced by intragastrical administration of 75% ethanol. Gastric mucosal damage was assessed microscopically, and gastric blood flow was determined by laser flowmetry. Gastric mucosal DNA oxidation and PGE2 concentration were assessed by ELISA. Serum and/or gastric protein concentrations of IL-1α, IL-1β, IL-2, IL-4, IL-6, IL-10, IL-13, VEGF, GM-CSF, IFN-γ, TNF-α, and EGF were determined by a microbeads/fluorescent-based multiplex assay. Changes in gastric mucosal iNOS, HMOX-1, SOCS3, IL1-R1, IL1-R2, TNF-R2, COX-1, and COX-2 mRNA were assessed by real-time PCR. BW-HS-101 or BW-iHS-101 applied at a dose of 50 μmol/kg protected gastric mucosa against ASA-induced gastric damage and prevented a decrease in the gastric blood flow level. H2S prodrug decreased DNA oxidation, systemic and gastric mucosal inflammation with accompanied upregulation of SOCS3, and EGF and HMOX-1 expression. Pharmacological inhibition of nitric oxide (NO) synthase but not carbon monoxide (CO)/heme oxygenase (HMOX) activity by L-NNA or ZnPP, respectively, reversed the gastroprotective effect of BW-HS-101. BW-HS-101 also protected against ethanol-induced gastric injury formation. We conclude that BW-HS-101, due to its ability to release H2S in a controllable manner, prevents gastric mucosa against drugs-induced gastropathy, inflammation and DNA oxidation, and upregulate gastric microcirculation. Gastroprotective effects of this H2S prodrug involves endogenous NO but not CO activity and could be mediated by cytoprotective and anti-inflammatory SOCS3 and EGF pathways.
Collapse
Affiliation(s)
- Dominik Bakalarz
- Department of Physiology, Jagiellonian University Medical College, 31531 Cracow, Poland; (D.B.); (E.K.); (D.W.); (A.D.); (K.M.); (S.K.); (T.B.)
- Department of Forensic Toxicology, Institute of Forensic Research, 31033 Cracow, Poland
| | - Edyta Korbut
- Department of Physiology, Jagiellonian University Medical College, 31531 Cracow, Poland; (D.B.); (E.K.); (D.W.); (A.D.); (K.M.); (S.K.); (T.B.)
| | - Zhengnan Yuan
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30302, USA; (Z.Y.); (B.Y.)
| | - Bingchen Yu
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30302, USA; (Z.Y.); (B.Y.)
| | - Dagmara Wójcik
- Department of Physiology, Jagiellonian University Medical College, 31531 Cracow, Poland; (D.B.); (E.K.); (D.W.); (A.D.); (K.M.); (S.K.); (T.B.)
| | - Aleksandra Danielak
- Department of Physiology, Jagiellonian University Medical College, 31531 Cracow, Poland; (D.B.); (E.K.); (D.W.); (A.D.); (K.M.); (S.K.); (T.B.)
| | - Katarzyna Magierowska
- Department of Physiology, Jagiellonian University Medical College, 31531 Cracow, Poland; (D.B.); (E.K.); (D.W.); (A.D.); (K.M.); (S.K.); (T.B.)
| | - Slawomir Kwiecień
- Department of Physiology, Jagiellonian University Medical College, 31531 Cracow, Poland; (D.B.); (E.K.); (D.W.); (A.D.); (K.M.); (S.K.); (T.B.)
| | - Tomasz Brzozowski
- Department of Physiology, Jagiellonian University Medical College, 31531 Cracow, Poland; (D.B.); (E.K.); (D.W.); (A.D.); (K.M.); (S.K.); (T.B.)
| | - Monika Marcinkowska
- Faculty of Pharmacy, Jagiellonian University Medical College, 30688 Cracow, Poland;
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30302, USA; (Z.Y.); (B.Y.)
| | - Marcin Magierowski
- Department of Physiology, Jagiellonian University Medical College, 31531 Cracow, Poland; (D.B.); (E.K.); (D.W.); (A.D.); (K.M.); (S.K.); (T.B.)
| |
Collapse
|
17
|
Danielak A, Wallace JL, Brzozowski T, Magierowski M. Gaseous Mediators as a Key Molecular Targets for the Development of Gastrointestinal-Safe Anti-Inflammatory Pharmacology. Front Pharmacol 2021; 12:657457. [PMID: 33995080 PMCID: PMC8116801 DOI: 10.3389/fphar.2021.657457] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/23/2021] [Indexed: 12/14/2022] Open
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) represent one of the most widely used classes of drugs and play a pivotal role in the therapy of numerous inflammatory diseases. However, the adverse effects of these drugs, especially when applied chronically, frequently affect gastrointestinal (GI) tract, resulting in ulceration and bleeding, which constitutes a significant limitation in clinical practice. On the other hand, it has been recently discovered that gaseous mediators nitric oxide (NO), hydrogen sulfide (H2S) and carbon monoxide (CO) contribute to many physiological processes in the GI tract, including the maintenance of GI mucosal barrier integrity. Therefore, based on the possible therapeutic properties of NO, H2S and CO, a novel NSAIDs with ability to release one or more of those gaseous messengers have been synthesized. Until now, both preclinical and clinical studies have shown promising effects with respect to the anti-inflammatory potency as well as GI-safety of these novel NSAIDs. This review provides an overview of the gaseous mediators-based NSAIDs along with their mechanisms of action, with special emphasis on possible implications for GI mucosal defense mechanisms.
Collapse
Affiliation(s)
- Aleksandra Danielak
- Department of Physiology, Jagiellonian University Medical College, Cracow, Poland
| | - John L Wallace
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Tomasz Brzozowski
- Department of Physiology, Jagiellonian University Medical College, Cracow, Poland
| | - Marcin Magierowski
- Department of Physiology, Jagiellonian University Medical College, Cracow, Poland
| |
Collapse
|
18
|
Bakalarz D, Surmiak M, Yang X, Wójcik D, Korbut E, Śliwowski Z, Ginter G, Buszewicz G, Brzozowski T, Cieszkowski J, Głowacka U, Magierowska K, Pan Z, Wang B, Magierowski M. Organic carbon monoxide prodrug, BW-CO-111, in protection against chemically-induced gastric mucosal damage. Acta Pharm Sin B 2021; 11:456-475. [PMID: 33643824 PMCID: PMC7893125 DOI: 10.1016/j.apsb.2020.08.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/18/2020] [Accepted: 07/17/2020] [Indexed: 02/07/2023] Open
Abstract
Metal-based carbon monoxide (CO)-releasing molecules have been shown to exert anti-inflammatory and anti-oxidative properties maintaining gastric mucosal integrity. We are interested in further development of metal-free CO-based therapeutics for oral administration. Thus, we examine the protective effect of representative CO prodrug, BW-CO-111, in rat models of gastric damage induced by necrotic ethanol or aspirin, a representative non-steroidal anti-inflammatory drug. Treatment effectiveness was assessed by measuring the microscopic/macroscopic gastric damage area and gastric blood flow by laser flowmetry. Gastric mucosal mRNA and/or protein expressions of HMOX1, HMOX2, nuclear factor erythroid 2-related factor 2, COX1, COX2, iNos, Anxa1 and serum contents of TGFB1, TGFB2, IL1B, IL2, IL4, IL5, IL6, IL10, IL12, tumor necrosis factor α, interferon γ, and GM-CSF were determined. CO content in gastric mucosa was assessed by gas chromatography. Pretreatment with BW-CO-111 (0.1 mg/kg, i.g.) increased gastric mucosal content of CO and reduced gastric lesions area in both models followed by increased GBF. These protective effects of the CO prodrug were supported by changes in expressions of molecular biomarkers. However, because the pathomechanisms of gastric damage differ between topical administration of ethanol and aspirin, the possible protective and anti-inflammatory mechanisms of BW-CO-111 may be somewhat different in these models.
Collapse
Affiliation(s)
- Dominik Bakalarz
- Department of Physiology, Jagiellonian University Medical College, Cracow 31-531, Poland
- Department of Forensic Toxicology, Institute of Forensic Research, Cracow 31-033, Poland
| | - Marcin Surmiak
- Department of Physiology, Jagiellonian University Medical College, Cracow 31-531, Poland
- Department of Internal Medicine, Jagiellonian University Medical College, Cracow 31-531, Poland
| | - Xiaoxiao Yang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Dagmara Wójcik
- Department of Physiology, Jagiellonian University Medical College, Cracow 31-531, Poland
| | - Edyta Korbut
- Department of Physiology, Jagiellonian University Medical College, Cracow 31-531, Poland
| | - Zbigniew Śliwowski
- Department of Physiology, Jagiellonian University Medical College, Cracow 31-531, Poland
| | - Grzegorz Ginter
- Department of Physiology, Jagiellonian University Medical College, Cracow 31-531, Poland
| | - Grzegorz Buszewicz
- Department of Forensic Medicine, Medical University of Lublin, Lublin 20-093, Poland
| | - Tomasz Brzozowski
- Department of Physiology, Jagiellonian University Medical College, Cracow 31-531, Poland
| | - Jakub Cieszkowski
- Department of Physiology, Jagiellonian University Medical College, Cracow 31-531, Poland
| | - Urszula Głowacka
- Department of Physiology, Jagiellonian University Medical College, Cracow 31-531, Poland
| | - Katarzyna Magierowska
- Department of Physiology, Jagiellonian University Medical College, Cracow 31-531, Poland
| | - Zhixiang Pan
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Marcin Magierowski
- Department of Physiology, Jagiellonian University Medical College, Cracow 31-531, Poland
| |
Collapse
|
19
|
Song B, Zhang C, Hu W, Guo C, Xia Z, Hu W, Qin M, Jiang W, Lv J, Xu D, Zhang S, Fang J. Nano-designed carbon monoxide donor SMA/CORM2 exhibits protective effect against acetaminophen induced liver injury through macrophage reprograming and promoting liver regeneration. J Control Release 2021; 331:350-363. [PMID: 33482271 DOI: 10.1016/j.jconrel.2021.01.025] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/17/2020] [Accepted: 01/11/2021] [Indexed: 02/07/2023]
Abstract
Acetaminophen (APAP) induced liver injury is the most common drug-induced liver injury, accounting for the top cause of acute liver failure in the United State, however the therapeutic options for it is very limited. Excess generation of reactive oxygen species (ROS) and the subsequent inflammatory responses are the major factors of the liver injury. Carbon monoxide (CO) is an important gaseous molecule with versatile functions including anti-oxidation and anti-inflammation, and we previous reported the therapeutic potential of a nano-designed CO donor SMA/CORM2 in a dextran sulphate sodium (DSS) induced mouse colitis model. In this context, we investigated the effect of SMA/CORM2 in an APAP-induced mouse acute liver injury model and tackled the mechanisms involved. We found upregulation of heme oxygenase-1 (HO-1, endogenous CO generating enzyme) and the dynamic changes of macrophage polarization (pro-inflammatory M1/anti-inflammatory M2), which played important roles in the process of live injury. SMA/CORM2 treatment remarkably increased the CO levels in the liver and circulation, by which oxidative stresses in the liver were significantly reduced, and more importantly, it remarkably suppressed the expression of M1 macrophages but alternatively increased M2 polarization. Consequently the liver injury was significantly ameliorated, and the proliferation and regeneration were greatly promoted through the Pi3k/Akt/mTOR signaling pathway. The shift of macrophage polarization accompanied with the downregulated hypoxia-inducible factor-1α (HIF-1α) level. These findings suggested CO released from SMA/CORM2 manipulated the macrophage reprogramming toward M2 phenotype by inhibiting HIF-1α, which subsequently protected liver against inflammatory injury and benefited tissue repair. Moreover, compared to native CORM2, SMA/CORM2 exhibited superior bioavailability and protective effect. We thus anticipate the application of SMA/CORM2 as a therapeutic regimen for APAP induced liver injury as well as other inflammatory diseases and disorders.
Collapse
Affiliation(s)
- Bingdong Song
- Department of Toxicology, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, School of Public Health, Anhui Medical University, Hefei 230022, China
| | - Cheng Zhang
- Department of Toxicology, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, School of Public Health, Anhui Medical University, Hefei 230022, China
| | - Weirong Hu
- Department of Toxicology, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, School of Public Health, Anhui Medical University, Hefei 230022, China
| | - Chunyu Guo
- Department of Toxicology, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, School of Public Health, Anhui Medical University, Hefei 230022, China
| | - Zhengmei Xia
- Department of Toxicology, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, School of Public Health, Anhui Medical University, Hefei 230022, China
| | - Wanxia Hu
- School of Health Management, Anhui Medical University, No.81, MeiShan Road, Hefei 230032, Anhui, China
| | - Mingqiang Qin
- Department of Toxicology, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, School of Public Health, Anhui Medical University, Hefei 230022, China; The Fourth Affiliated Hospital, Anhui Medical University, Hefei 230022, China
| | - Weiying Jiang
- Department of Toxicology, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, School of Public Health, Anhui Medical University, Hefei 230022, China; The Fourth Affiliated Hospital, Anhui Medical University, Hefei 230022, China
| | - Jinwei Lv
- Department of Toxicology, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, School of Public Health, Anhui Medical University, Hefei 230022, China
| | - Dexiang Xu
- Department of Toxicology, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, School of Public Health, Anhui Medical University, Hefei 230022, China
| | - Shichen Zhang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei 230022, China; MOE Key Laboratory of Population Health Across Life Cycle / Anhui Provincial Key Laboratory of Population Health and Aristogenics, No. 81 Meishan Road, Hefei 230032, China.
| | - Jun Fang
- Department of Toxicology, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, School of Public Health, Anhui Medical University, Hefei 230022, China; Faculty of Pharmaceutical Science, Sojo University, Ikeda 4-22-1, Kumamoto 860-0082, Japan.
| |
Collapse
|
20
|
Hopper CP, De La Cruz LK, Lyles KV, Wareham LK, Gilbert JA, Eichenbaum Z, Magierowski M, Poole RK, Wollborn J, Wang B. Role of Carbon Monoxide in Host-Gut Microbiome Communication. Chem Rev 2020; 120:13273-13311. [PMID: 33089988 DOI: 10.1021/acs.chemrev.0c00586] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Nature is full of examples of symbiotic relationships. The critical symbiotic relation between host and mutualistic bacteria is attracting increasing attention to the degree that the gut microbiome is proposed by some as a new organ system. The microbiome exerts its systemic effect through a diverse range of metabolites, which include gaseous molecules such as H2, CO2, NH3, CH4, NO, H2S, and CO. In turn, the human host can influence the microbiome through these gaseous molecules as well in a reciprocal manner. Among these gaseous molecules, NO, H2S, and CO occupy a special place because of their widely known physiological functions in the host and their overlap and similarity in both targets and functions. The roles that NO and H2S play have been extensively examined by others. Herein, the roles of CO in host-gut microbiome communication are examined through a discussion of (1) host production and function of CO, (2) available CO donors as research tools, (3) CO production from diet and bacterial sources, (4) effect of CO on bacteria including CO sensing, and (5) gut microbiome production of CO. There is a large amount of literature suggesting the "messenger" role of CO in host-gut microbiome communication. However, much more work is needed to begin achieving a systematic understanding of this issue.
Collapse
Affiliation(s)
- Christopher P Hopper
- Institute for Experimental Biomedicine, University Hospital Wuerzburg, Wuerzburg, Bavaria DE 97080, Germany.,Department of Medicinal Chemistry, College of Pharmacy, The University of Florida, Gainesville, Florida 32611, United States
| | - Ladie Kimberly De La Cruz
- Department of Chemistry & Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Kristin V Lyles
- Department of Biology, Georgia State University, Atlanta, Georgia 30303, United States
| | - Lauren K Wareham
- The Vanderbilt Eye Institute and Department of Ophthalmology & Visual Sciences, The Vanderbilt University Medical Center and School of Medicine, Nashville, Tennessee 37232, United States
| | - Jack A Gilbert
- Department of Pediatrics, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, United States
| | - Zehava Eichenbaum
- Department of Biology, Georgia State University, Atlanta, Georgia 30303, United States
| | - Marcin Magierowski
- Cellular Engineering and Isotope Diagnostics Laboratory, Department of Physiology, Jagiellonian University Medical College, Cracow PL 31-531, Poland
| | - Robert K Poole
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Sheffield S10 2TN, U.K
| | - Jakob Wollborn
- Department of Anesthesiology and Critical Care, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg DE 79085, Germany.,Department of Anesthesiology, Perioperative and Pain Management, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Binghe Wang
- Department of Chemistry & Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| |
Collapse
|
21
|
He H, Feng M, Xu H, Li X, He Y, Qin H, Zhang Y, Tang H, Zou K. Total triterpenoids from the fruits of Chaenomeles speciosa exerted gastroprotective activities on indomethacin-induced gastric damage via modulating microRNA-423-5p-mediated TFF/NAG-1 and apoptotic pathways. Food Funct 2020; 11:662-679. [PMID: 31895380 DOI: 10.1039/c9fo02322d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Our previous studies have demonstrated that the total triterpenes from the fruits of Chaenomeles speciosa (CSTT) exhibit effective therapeutic effects on gastric ulcer patients and animals. The present aim is to further investigate the mechanisms involved. The results indicated that CSTT could ameliorate IND-induced gastric injury, which was related to promoting IND-damaged GES-1 cell proliferation and migration, improving the IND-damaged rat GBF, ulcer area, inhibition rate and pathologic changes of gastric mucous tissue, increasing the amount of adhered gastric mucus, attenuating the volume and total acidity of the gastric effluents, and augmenting the gastric pH; further studies showed that CSTT obviously downregulated miR-423-5p mRNA, NAG-1 mRNA and protein expression, Bax, Bad, cytosol cytochrome C, Apaf-1, cleaved-caspase-3, and cleaved-caspase-9 protein expression and cytosol cytochrome C concentration, and upregulated TFF1, TFF2 and TFF3 mRNA and protein expression, Bcl-2, Bcl-xl, pro-caspase-3, and pro-caspase-9 protein expression, mitochondrial viability, mitochondrial cytochrome C concentration and Bcl-2/Bax, Bcl-xl/Bad ratios. These findings demonstrated that CSTT protected against IND-induced gastric damage by depressing miR-423-5p expression and modulating the TFF/NAG-1 pathway, which in turn restrained mitochondrion-mediated apoptosis.
Collapse
Affiliation(s)
- Haibo He
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, Hubei 443002, China
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Aroca A, Gotor C, Bassham DC, Romero LC. Hydrogen Sulfide: From a Toxic Molecule to a Key Molecule of Cell Life. Antioxidants (Basel) 2020; 9:E621. [PMID: 32679888 PMCID: PMC7402122 DOI: 10.3390/antiox9070621] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/08/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023] Open
Abstract
Hydrogen sulfide (H2S) has always been considered toxic, but a huge number of articles published more recently showed the beneficial biochemical properties of its endogenous production throughout all regna. In this review, the participation of H2S in many physiological and pathological processes in animals is described, and its importance as a signaling molecule in plant systems is underlined from an evolutionary point of view. H2S quantification methods are summarized and persulfidation is described as the underlying mechanism of action in plants, animals and bacteria. This review aims to highlight the importance of its crosstalk with other signaling molecules and its fine regulation for the proper function of the cell and its survival.
Collapse
Affiliation(s)
- Angeles Aroca
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA;
- Institute of Plant Biochemistry and Photosynthesis, University of Seville and CSIC, 41092 Seville, Spain; (C.G.); (L.C.R.)
| | - Cecilia Gotor
- Institute of Plant Biochemistry and Photosynthesis, University of Seville and CSIC, 41092 Seville, Spain; (C.G.); (L.C.R.)
| | - Diane C. Bassham
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA;
| | - Luis C. Romero
- Institute of Plant Biochemistry and Photosynthesis, University of Seville and CSIC, 41092 Seville, Spain; (C.G.); (L.C.R.)
| |
Collapse
|
23
|
Garabadu D, Singh S, Gautam T. Manilkara hexandra (Roxb.) Dubard Ameliorates Acetic Acid-induced Rat Gastric Ulcer. J Diet Suppl 2020; 18:278-292. [PMID: 32449638 DOI: 10.1080/19390211.2020.1770393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Manilkara hexandra (Roxb; Family:sapotaceae) is reported to exert preventive effect in several experimental ulcer models. However, there is no report of M. hexandra on gastric ulcer healing property. Thus, the present study was designed to evaluate the gastric ulcer healing activity of methanolic stem bark extract of M. hexandra (MH) and to derive a plausible molecular level of mechanism of action. MH was subjected to several phytochemical screening tests and standardized to quercetin by HPTLC. In the first pharmacological experiment, the standardized MH (50, 100 and 200 mg/kg) was carried out for ulcer healing activity against acetic acid (AA)-induced gastric ulcer in male rats. MH (100 and 200 mg/kg) ameliorated AA-induced rat gastric lesions. Further, MH (100 and 200 mg/kg) attenuated AA-induced changes in the levels of lipid peroxidation (LPO), reduced glutathione (GSH), oxidized glutathione (GSSG) and ratio of GSH/GSSG and activity of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione reductase (GR) enzymes, and level of hame oxygenase-1 (HO-1) in stomach tissue. In the subsequent set of experiment, trigonelline (30 mg/kg; p.o.), a potent Nrf2 antagonist, significantly abrogated the gastric ulcer healing activity of MH (100 mg/kg) in AA challenged animals. Further, trigonelline attenuated the effects of MH (100 mg/kg) on the levels of LPO, GSH, GSSG and ratio of GSH/GSSG and activity of SOD, CAT, GPx and GR enzymes, and level of HO-1 in AA challenged rodents. These observations implicate the fact that MH could be a better therapeutic alternative in the management of gastric ulcer.
Collapse
Affiliation(s)
- Debapriya Garabadu
- Division of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Sonia Singh
- Division of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Tancha Gautam
- Division of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, India
| |
Collapse
|
24
|
Magierowska K, Bakalarz D, Wójcik D, Korbut E, Danielak A, Głowacka U, Pajdo R, Buszewicz G, Ginter G, Surmiak M, Kwiecień S, Chmura A, Magierowski M, Brzozowski T. Evidence for Cytoprotective Effect of Carbon Monoxide Donor in the Development of Acute Esophagitis Leading to Acute Esophageal Epithelium Lesions. Cells 2020; 9:1203. [PMID: 32408627 PMCID: PMC7291282 DOI: 10.3390/cells9051203] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/09/2020] [Accepted: 05/10/2020] [Indexed: 12/19/2022] Open
Abstract
Exposure to acidic gastric content due to malfunction of lower esophageal sphincter leads to acute reflux esophagitis (RE) leading to disruption of esophageal epithelial cells. Carbon monoxide (CO) produced by heme oxygenase (HMOX) activity or released from its donor, tricarbonyldichlororuthenium (II) dimer (CORM-2) was reported to protect gastric mucosa against acid-dependent non-steroidal anti-inflammatory drug-induced damage. Thus, we aimed to investigate if CO affects RE-induced esophageal epithelium lesions development. RE induced in Wistar rats by the ligation of a junction between pylorus and forestomach were pretreated i.g. with vehicle CORM-2; RuCl3; zinc protoporphyrin IX, or hemin. CORM-2 was combined with NG-nitro-L-arginine (L-NNA), indomethacin, capsazepine, or capsaicin-induced sensory nerve ablation. Esophageal lesion score (ELS), esophageal blood flow (EBF), and mucus production were determined by planimetry, laser flowmetry, histology. Esophageal Nrf-2, HMOXs, COXs, NOSs, TNF-α and its receptor, IL-1 family and IL-1 receptor antagonist (RA), NF-κB, HIF-1α, annexin-A1, suppressor of cytokine signaling (SOCS3), TRPV1, c-Jun, c-Fos mRNA/protein expressions, PGE2, 8-hydroxy-deoxyguanozine (8-OHdG) and serum COHb, TGF-β1, TGF-β2, IL-1β, and IL-6 content were assessed by PCR, immunoblotting, immunohistochemistry, gas chromatography, ELISA or Luminex platform. Hemin or CORM-2 alone or combined with L-NNA or indomethacin decreased ELS. Capsazepine or capsaicin-induced denervation reversed CORM-2 effects. COHb blood content, esophageal HMOX-1, Nrf-2, TRPV1 protein, annexin-A1, HIF-1α, IL-1 family, NF-κB, c-Jun, c-Fos, SOCS3 mRNA expressions, and 8-OHdG levels were elevated while PGE2 concentration was decreased after RE. CO donor-maintained elevated mucosal TRPV1 protein, HIF-1 α, annexin-A1, IL-1RA, SOCS3 mRNA expression, or TGF-β serum content, decreasing 8-OHdG level, and particular inflammatory markers expression/concentration. CORM-2 and Nrf-2/HMOX-1/CO pathway prevent esophageal mucosa against RE-induced lesions, DNA oxidation, and inflammatory response involving HIF-1α, annexin-A1, SOCS3, IL-1RA, TGF-β-modulated pathways. Esophagoprotective and hyperemic CO effects are in part mediated by afferent sensory neurons and TRPV1 receptors activity with questionable COX/PGE2 or NO/NOS systems involvement.
Collapse
Affiliation(s)
- Katarzyna Magierowska
- Department of Physiology, Jagiellonian University Medical College, 31-531 Cracow, Poland; (D.B.); (D.W.); (E.K.); (A.D.); (U.G.); (R.P.); (G.G.); (M.S.); (S.K.); (A.C.); (M.M.)
| | - Dominik Bakalarz
- Department of Physiology, Jagiellonian University Medical College, 31-531 Cracow, Poland; (D.B.); (D.W.); (E.K.); (A.D.); (U.G.); (R.P.); (G.G.); (M.S.); (S.K.); (A.C.); (M.M.)
- Department of Forensic Toxicology, Institute of Forensic Research, 31-033 Cracow, Poland
| | - Dagmara Wójcik
- Department of Physiology, Jagiellonian University Medical College, 31-531 Cracow, Poland; (D.B.); (D.W.); (E.K.); (A.D.); (U.G.); (R.P.); (G.G.); (M.S.); (S.K.); (A.C.); (M.M.)
| | - Edyta Korbut
- Department of Physiology, Jagiellonian University Medical College, 31-531 Cracow, Poland; (D.B.); (D.W.); (E.K.); (A.D.); (U.G.); (R.P.); (G.G.); (M.S.); (S.K.); (A.C.); (M.M.)
| | - Aleksandra Danielak
- Department of Physiology, Jagiellonian University Medical College, 31-531 Cracow, Poland; (D.B.); (D.W.); (E.K.); (A.D.); (U.G.); (R.P.); (G.G.); (M.S.); (S.K.); (A.C.); (M.M.)
| | - Urszula Głowacka
- Department of Physiology, Jagiellonian University Medical College, 31-531 Cracow, Poland; (D.B.); (D.W.); (E.K.); (A.D.); (U.G.); (R.P.); (G.G.); (M.S.); (S.K.); (A.C.); (M.M.)
| | - Robert Pajdo
- Department of Physiology, Jagiellonian University Medical College, 31-531 Cracow, Poland; (D.B.); (D.W.); (E.K.); (A.D.); (U.G.); (R.P.); (G.G.); (M.S.); (S.K.); (A.C.); (M.M.)
| | - Grzegorz Buszewicz
- Department of Forensic Medicine, Medical University of Lublin, 20-090 Lublin, Poland;
| | - Grzegorz Ginter
- Department of Physiology, Jagiellonian University Medical College, 31-531 Cracow, Poland; (D.B.); (D.W.); (E.K.); (A.D.); (U.G.); (R.P.); (G.G.); (M.S.); (S.K.); (A.C.); (M.M.)
| | - Marcin Surmiak
- Department of Physiology, Jagiellonian University Medical College, 31-531 Cracow, Poland; (D.B.); (D.W.); (E.K.); (A.D.); (U.G.); (R.P.); (G.G.); (M.S.); (S.K.); (A.C.); (M.M.)
- Department of Internal Medicine, Jagiellonian University Medical College, 31-066 Cracow, Poland
| | - Sławomir Kwiecień
- Department of Physiology, Jagiellonian University Medical College, 31-531 Cracow, Poland; (D.B.); (D.W.); (E.K.); (A.D.); (U.G.); (R.P.); (G.G.); (M.S.); (S.K.); (A.C.); (M.M.)
| | - Anna Chmura
- Department of Physiology, Jagiellonian University Medical College, 31-531 Cracow, Poland; (D.B.); (D.W.); (E.K.); (A.D.); (U.G.); (R.P.); (G.G.); (M.S.); (S.K.); (A.C.); (M.M.)
| | - Marcin Magierowski
- Department of Physiology, Jagiellonian University Medical College, 31-531 Cracow, Poland; (D.B.); (D.W.); (E.K.); (A.D.); (U.G.); (R.P.); (G.G.); (M.S.); (S.K.); (A.C.); (M.M.)
| | - Tomasz Brzozowski
- Department of Physiology, Jagiellonian University Medical College, 31-531 Cracow, Poland; (D.B.); (D.W.); (E.K.); (A.D.); (U.G.); (R.P.); (G.G.); (M.S.); (S.K.); (A.C.); (M.M.)
| |
Collapse
|
25
|
Głowacka U, Brzozowski T, Magierowski M. Synergisms, Discrepancies and Interactions between Hydrogen Sulfide and Carbon Monoxide in the Gastrointestinal and Digestive System Physiology, Pathophysiology and Pharmacology. Biomolecules 2020; 10:445. [PMID: 32183095 PMCID: PMC7175135 DOI: 10.3390/biom10030445] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/07/2020] [Accepted: 03/11/2020] [Indexed: 02/07/2023] Open
Abstract
Endogenous gas transmitters, hydrogen sulfide (H2S), carbon monoxide (CO) and nitric oxide (NO) are important signaling molecules known to exert multiple biological functions. In recent years, the role of H2S, CO and NO in regulation of cardiovascular, neuronal and digestive systems physiology and pathophysiology has been emphasized. Possible link between these gaseous mediators and multiple diseases as well as potential therapeutic applications has attracted great attention from biomedical scientists working in many fields of biomedicine. Thus, various pharmacological tools with ability to release CO or H2S were developed and implemented in experimental animal in vivo and in vitro models of many disorders and preliminary human studies. This review was designed to review signaling functions, similarities, dissimilarities and a possible cross-talk between H2S and CO produced endogenously or released from chemical donors, with special emphasis on gastrointestinal digestive system pathologies prevention and treatment.
Collapse
Affiliation(s)
| | | | - Marcin Magierowski
- Department of Physiology, Jagiellonian University Medical College, 16 Grzegórzecka Street, 31-531 Cracow, Poland; (U.G.); (T.B.)
| |
Collapse
|
26
|
Majka J, Wierdak M, Szlachcic A, Magierowski M, Targosz A, Urbanczyk K, Krzysiek-Maczka G, Ptak-Belowska A, Bakalarz D, Magierowska K, Chmura A, Brzozowski T. Interaction of epidermal growth factor with COX-2 products and peroxisome proliferator-activated receptor-γ system in experimental rat Barrett's esophagus. Am J Physiol Gastrointest Liver Physiol 2020; 318:G375-G389. [PMID: 31928220 DOI: 10.1152/ajpgi.00410.2018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Mixed acidic-alkaline refluxate is a major pathogenic factor in chronic esophagitis progressing to Barrett's esophagus (BE). We hypothesized that epidermal growth factor (EGF) can interact with COX-2 and peroxisome proliferator-activated receptor-γ (PPARγ) in rats surgically prepared with esophagogastroduodenal anastomosis (EGDA) with healthy or removed salivary glands to deplete salivary EGF. EGDA rats were treated with 1) vehicle, 2) EGF or PPARγ agonist pioglitazone with or without EGFR kinase inhibitor tyrphostin A46, EGF or PPARγ antagonist GW9662 respectively, 3) ranitidine or pantoprazole, and 4) the selective COX-2 inhibitor celecoxib combined with pioglitazone. At 3 mo, the esophageal damage and the esophageal blood flow (EBF) were determined, the mucosal expression of EGF, EGFR, COX-2, TNFα, and PPARγ mRNA and phospho-EGFR/EGFR protein was analyzed. All EGDA rats developed chronic esophagitis, esophageal ulcerations, and intestinal metaplasia followed by a fall in the EBF, an increase in the plasma of IL-1β, TNFα, and mucosal PGE2 content, the overexpression of COX-2-, and EGF-EGFR mRNAs, and proteins, and these effects were aggravated by EGF and attenuated by pioglitazone. The rise in EGF and COX-2 mRNA was inhibited by pioglitazone but reversed by pioglitazone cotreated with GW9662. We conclude that 1) EGF can interact with PG/COX-2 and the PPARγ system in the mechanism of chronic esophagitis; 2) the deleterious effect of EGF involves an impairment of EBF and the overexpression of COX-2 and EGFR, and 3) agonists of PPARγ and inhibitors of EGFR may be useful in the treatment of chronic esophagitis progressing to BE.NEW & NOTEWORTHY Rats with EGDA exhibited chronic esophagitis accompanied by a fall in EBF and an increase in mucosal expression of mRNAs for EGF, COX-2, and TNFα, and these effects were exacerbated by exogenous EGF and reduced by removal of a major source of endogenous EGF with salivectomy or concurrent treatment with tyrphostin A46 or pioglitazone combined with EGF. Beneficial effects of salivectomy in an experimental model of BE were counteracted by PPARγ antagonist, whereas selective COX-2 inhibitor celecoxib synergistically with pioglitazone reduced severity of esophageal damage and protected esophageal mucosa from reflux. We propose the cross talk among EGF/EGFR, PG/COX-2, and proinflammatory cytokines with PPARγ pathway in the mechanism of pathogenesis of chronic esophagitis progressing to BE and EAC.
Collapse
Affiliation(s)
- Jolanta Majka
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland
| | - Mateusz Wierdak
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland
| | - Aleksandra Szlachcic
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland
| | - Marcin Magierowski
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland
| | - Aneta Targosz
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland
| | - Katarzyna Urbanczyk
- Department of Pathomorphology, Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland
| | - Gracjana Krzysiek-Maczka
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland
| | - Agata Ptak-Belowska
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland
| | - Dominik Bakalarz
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland
| | - Katarzyna Magierowska
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland
| | - Anna Chmura
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland
| | - Tomasz Brzozowski
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland
| |
Collapse
|
27
|
Magierowska K, Korbut E, Hubalewska-Mazgaj M, Surmiak M, Chmura A, Bakalarz D, Buszewicz G, Wójcik D, Śliwowski Z, Ginter G, Gromowski T, Kwiecień S, Brzozowski T, Magierowski M. Oxidative gastric mucosal damage induced by ischemia/reperfusion and the mechanisms of its prevention by carbon monoxide-releasing tricarbonyldichlororuthenium (II) dimer. Free Radic Biol Med 2019; 145:198-208. [PMID: 31568823 DOI: 10.1016/j.freeradbiomed.2019.09.032] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/25/2019] [Accepted: 09/26/2019] [Indexed: 02/08/2023]
Abstract
Endogenous gaseous mediators, such as nitric oxide, hydrogen sulfide or carbon monoxide (CO) are known to exert anti-inflammatory and anti-oxidative activity due to modulation of various molecular pahtways. Therefore, we aimed to investigate if CO released from tricarbonyldichlororuthenium (II) dimer (CORM-2) prevents gastric mucosa against ischemia/reperfusion (I/R)-induced injury in male Wistar rats. Animals were pretreated i.g. With vehicle (DMSO and saline, 1:10), CORM-2 (1, 5 or 10 mg/kg) or zinc protoporphyrin IX (ZnPP, 10 mg/kg i.p.), the HMOXs inhibitor. In separate series, rats were pretreated with CORM-2 (5 mg/kg) applied in combination with glibenclamide (10 mg/kg i.g.), NG-nitro-l-arginine (L-NNA, 20 mg/kg i.p.), 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ, 10 mg/kg i.p.) or indomethacin (5 mg/kg i.p.). I/R-injuries were induced by clamping celiac artery for 30 min (I) followed by removal of the clamp to obtain R for 3 h. The macroscopic and microscopic area of gastric damage, mucus production and protein expression for HMOX-1/Nrf-2 was determined by planimetry, histology and immunohistochemistry, respectively. Gastric mucosal HMOX-1, HMOX-2, COX-1, COX-2, Kir6.1, Sur2, sGC-α1, sGC-α2, iNOS and eNOS mRNA expression was assessed by real-time PCR. COHb in blood and gastric mucosal CO concentration was analyzed by gas chromatography. Serum content of TGF-β1, TGF-β2, TGF-β3, IL-1α, IL-1β, IL-2, IL-4, IL-5, IL-6, IL-10, IL-12, TNF-α, IFN-γ, GM-CSF was evaluated using Luminex platform. PGE2 concentration and 8-hydroxyguanozine (8-OHG) concentration in gastric mucosa was determined by ELISA. Exposure to I/R induced extensive hemorrhagic erosions in gastric mucosa pretreated with vehicle as compared with intact rats and the area of this gastric damage was reduced by pretreatment with CORM-2 (5 mg/kg i.g.). This effect of CO donor was accompanied by the increased PGE2 content and a significant decrease in 8-OHG and expression of pro- and anti-inflammatory markers mRNA and proteins. Concurrent treatment of CORM-2 with glibenclamide, L-NNA, ODQ but not with indomethacin significantly increased the area of I/R-induced injury and significantly decreased GBF as compared with the group treated with CORM-2 alone. We conclude that CO releasing CORM-2 prevents gastric mucosal oxidative damage induced by I/R improving GBF, decreasing DNA oxidation and inflammatory response on systemic level. This CO-gastroprotection is mediated by the activity of sGC, NOS and K-ATP channels. CO delivered from its donor maintained physiological gastric mucosal PGE2 concentration but the involvement of endogenous COX in beneficial activity of this gaseous mediator at least in this model is questionable.
Collapse
Affiliation(s)
| | - Edyta Korbut
- Department of Physiology, Jagiellonian University Medical College, Cracow, Poland
| | | | - Marcin Surmiak
- Department of Physiology, Jagiellonian University Medical College, Cracow, Poland
| | - Anna Chmura
- Department of Physiology, Jagiellonian University Medical College, Cracow, Poland
| | - Dominik Bakalarz
- Department of Physiology, Jagiellonian University Medical College, Cracow, Poland; Department of Forensic Toxicology, Institute of Forensic Research, Cracow, Poland
| | - Grzegorz Buszewicz
- Department of Forensic Medicine, Medical University of Lublin, Lublin, Poland
| | - Dagmara Wójcik
- Department of Physiology, Jagiellonian University Medical College, Cracow, Poland
| | - Zbigniew Śliwowski
- Department of Physiology, Jagiellonian University Medical College, Cracow, Poland
| | - Grzegorz Ginter
- Department of Physiology, Jagiellonian University Medical College, Cracow, Poland
| | - Tomasz Gromowski
- Human Genome Variation Research Group & Genomics Centre, Malopolska Centre of Biotechnology, Jagiellonian University, Cracow, Poland
| | - Sławomir Kwiecień
- Department of Physiology, Jagiellonian University Medical College, Cracow, Poland
| | - Tomasz Brzozowski
- Department of Physiology, Jagiellonian University Medical College, Cracow, Poland
| | - Marcin Magierowski
- Department of Physiology, Jagiellonian University Medical College, Cracow, Poland.
| |
Collapse
|
28
|
Magierowska K, Bakalarz D, Wójcik D, Chmura A, Hubalewska-Mazgaj M, Licholai S, Korbut E, Kwiecien S, Sliwowski Z, Ginter G, Brzozowski T, Magierowski M. Time-dependent course of gastric ulcer healing and molecular markers profile modulated by increased gastric mucosal content of carbon monoxide released from its pharmacological donor. Biochem Pharmacol 2019; 163:71-83. [PMID: 30753813 DOI: 10.1016/j.bcp.2019.02.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 02/08/2019] [Indexed: 01/16/2023]
Abstract
BACKGROUND AND PURPOSE Besides hydrogen sulfide (H2S) and nitric oxide (NO), carbon monoxide (CO) contributes to the maintenance of gastric mucosal integrity. We investigated increased CO bioavailability effects on time-dependent dynamics of gastric ulcer healing mediated by particular growth factors, anti-inflammatory and molecular pathways. EXPERIMENTAL APPROACH Wistar rats with gastric ulcers induced by serosal acetic acid application (day 0) were treated i.g. throughout 3, 6 or 14 days with vehicle or CO-releasing tricarbonyldichlororuthenium (II) dimer (CORM-2, 2.5 mg/kg). Gross and microscopic alterations in gastric ulcer size and gastric blood flow (GBF) at ulcer margin were determined by planimetry, histology and laser flowmetry, respectively. Gastric mRNA/protein expressions of platelet derived growth factors (PDGFA-D), insulin-like growth factor (IGF-1), epidermal growth factor (EGF), hepatocyte growth factor (HGF), vascular endothelial growth factor (VEGFA) and their receptors, heme oxygenases (HMOX), nuclear factor (erythroid-derived 2)-like 2 (Nrf-2), cyclooxygenase (COX-2), hypoxia inducible factor (HIF)-1α, anti-inflammatory annexin-1 and transforming growth factor (TGF-β1) were assessed by real-time PCR or Western blot. TGF-β1-3 and IL-10 plasma concentration were measured using Luminex platform. Prostaglandin E2 content at ulcer margin was assessed by ELISA. KEY RESULTS CORM-2 decreased ulcer area and increased GBF after 6 and 14 days of treatment comparing to vehicle. CO donor upregulated HGF, HGFr, VEGFR1, VEGFR2, TGF-β1, annexin-1 and maintained increased IGF-1, PDGFC and EGF expression at various time-intervals of ulcer healing. TGF-β3 and IL-10 plasma concentration were significantly increased after COMR-2 vs. vehicle. CONCLUSIONS CO time-dependently accelerates gastric ulcer healing and raises GBF at ulcer margin by mechanism involving subsequent upregulation of anti-inflammatory, growth promoting and angiogenic factors response, not observed physiologically.
Collapse
Affiliation(s)
- Katarzyna Magierowska
- Department of Physiology, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531 Cracow, Poland
| | - Dominik Bakalarz
- Department of Physiology, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531 Cracow, Poland; Department of Forensic Toxicology, Institute of Forensic Research, 9 Westerplatte Street, 31-033 Cracow, Poland
| | - Dagmara Wójcik
- Department of Physiology, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531 Cracow, Poland
| | - Anna Chmura
- Department of Physiology, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531 Cracow, Poland
| | - Magdalena Hubalewska-Mazgaj
- Department of Physiology, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531 Cracow, Poland
| | - Sabina Licholai
- Department of Molecular Biology and Clinical Genetics, Jagiellonian University Medical College, 8 Skawinska Street, 31-066 Cracow, Poland
| | - Edyta Korbut
- Department of Physiology, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531 Cracow, Poland
| | - Slawomir Kwiecien
- Department of Physiology, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531 Cracow, Poland
| | - Zbigniew Sliwowski
- Department of Physiology, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531 Cracow, Poland
| | - Grzegorz Ginter
- Department of Physiology, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531 Cracow, Poland
| | - Tomasz Brzozowski
- Department of Physiology, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531 Cracow, Poland
| | - Marcin Magierowski
- Department of Physiology, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531 Cracow, Poland.
| |
Collapse
|
29
|
Viana AFSC, Lopes MTP, Oliveira FTB, Nunes PIG, Santos VG, Braga AD, Silva ACA, Sousa DP, Viana DA, Rao VS, Oliveira RDCM, Santos FA. (-)-Myrtenol accelerates healing of acetic acid-induced gastric ulcers in rats and in human gastric adenocarcinoma cells. Eur J Pharmacol 2019; 854:139-148. [PMID: 30991046 DOI: 10.1016/j.ejphar.2019.04.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 03/02/2019] [Accepted: 04/11/2019] [Indexed: 02/07/2023]
Abstract
The gastroprotective property of (-)-myrtenol, a monoterpenoid, has been demonstrated previously against acute gastric ulceration induced by ethanol. However, the healing property of (-)-myrtenol in a chronic gastric ulcer model remains to be verified. This study evaluated its healing efficacy and the mechanism involved using the rat model of chronic gastric ulcer induced by serosal injection of 80% acetic acid in vivo, and human gastric adenocarcinoma cells (AGS) in vitro. The results showed that compared to vehicle-treated ulcer controls, oral administration of (-)-myrtenol (50 and 100 mg/kg/day) for 7 days promoted ulcer healing, as indicated by significant decreases in ulcer area and volume. The macroscopic and microscopic findings confirmed the healing potential of (-)-myrtenol. The ulcer healing activity was also associated with significant increases in gastric mucin content, collagen deposition, number of cells with positive marking for proliferating cell nuclear antigen (PCNA), and by changes in the expression of the inflammatory parameters tumor necrosis factor (TNF)-α, interleukin (IL)-1β and cyclooxygenase (COX)-2, as well as a decrease of metalloproteinases (MMP-9 and MMP-2) activity. Furthermore, in vitro assays using the AGS cultures revealed that (-)-myrtenol favors wound healing activity via stimulation of cell proliferation and migration without altering the cell viability. Taken together, these findings indicate that (-)-myrtenol has gastro-cytoprotective and ulcer healing properties that can be further explored to develop a new therapeutic agent from a natural source for the treatment of gastric ulcer.
Collapse
Affiliation(s)
- Ana Flavia S C Viana
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil; Medicinal Plants Research Center, Health Sciences Center, Federal University of Piauí, Teresina, Piauí, Brazil.
| | - Miriam Teresa P Lopes
- Department of Pharmacology, Laboratory of Antitumor Substances, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Francisca Tuelly B Oliveira
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Paulo Iury G Nunes
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Verlane G Santos
- Department of Pharmacology, Laboratory of Antitumor Substances, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ariadne D Braga
- Department of Pharmacology, Laboratory of Antitumor Substances, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ana Cândida A Silva
- Department of Pharmacology, Laboratory of Antitumor Substances, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Damião P Sousa
- Department of Pharmaceutical Sciences, Federal University of Paraiba, João Pessoa, Paraiba, Brazil
| | - Daniel A Viana
- Laboratory of Pathology and Legal Medicine, Faculty of Veterinary Science, State University of Ceará, Fortaleza, Ceará, Brazil
| | - Vietla S Rao
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Rita de Cássia M Oliveira
- Medicinal Plants Research Center, Health Sciences Center, Federal University of Piauí, Teresina, Piauí, Brazil
| | - Flavia A Santos
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| |
Collapse
|
30
|
Abstract
Inhalation of high concentrations of carbon monoxide (CO) is known to lead to serious systemic complications and neuronal disturbances. However, it has been found that not only is CO produced endogenously, but also that low concentrations can bestow beneficial effects which may be of interest in biology and medicine. As translocation of CO through the human organism is difficult, small molecules known as CO-releasing molecules (CORMs) deliver controlled amounts of CO to biological systems, and these are of great interest from a medical point of view. These actions may prevent vascular dysfunction, regulate blood pressure, inhibit blood platelet aggregation or have anti-inflammatory effects. This review summarizes the functions of various CO-releasing molecules in biology and medicine.
Collapse
|
31
|
Magierowska K, Wojcik D, Chmura A, Bakalarz D, Wierdak M, Kwiecien S, Sliwowski Z, Brzozowski T, Magierowski M. Alterations in Gastric Mucosal Expression of Calcitonin Gene-Related Peptides, Vanilloid Receptors, and Heme Oxygenase-1 Mediate Gastroprotective Action of Carbon Monoxide against Ethanol-Induced Gastric Mucosal Lesions. Int J Mol Sci 2018; 19:2960. [PMID: 30274172 PMCID: PMC6213448 DOI: 10.3390/ijms19102960] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 09/23/2018] [Accepted: 09/26/2018] [Indexed: 02/07/2023] Open
Abstract
Carbon monoxide (CO) has been reported to contribute to the maintenance of gastric mucosal integrity, gastroprotection, and ulcer healing. However, involvement of transient receptor potential vanilloid receptor type 1 (TRPV1) located on afferent sensory fibers endings and sensory neuropeptide calcitonin gene-related peptide (CGRP) in CO-mediated gastroprotection against ethanol-induced gastric damage has not been explored. Male Wistar rats with and without denervation of afferent sensory neurons induced by capsaicin (total dose 125 mg/kg within 3 days) were pretreated with vehicle, CO donor tricarbonyldichlororuthenium (II) dimer (CORM-2, 5 mg/kg i.g.), administered alone or with CGRP-α (10 μg/kg i.p.) or TRPV1 antagonist capsazepine (5 mg/kg i.g.), followed 30 min later by intragastric (i.g.) administration of 75% ethanol. The area of gastric damage and gastric blood flow (GBF) were assessed planimetrically and by laser flowmetry, respectively. Microscopic evaluation of ethanol-induced gastric lesions was performed after haematoxylin/eosin (H&E) or alcian blue/periodic acid-Schiff/alcian blue (AB/PAS) staining. Gastric mucosal mRNA fold change for heme oxygenase (HMOX)-1, HMOX-2, CGRP-α, CGRP-β, inducible nitric oxide synthase (iNOS), endothelial (e)NOS, neuronal (n)NOS, cyclooxygenase (COX)-1, COX-2, and protein expression for HMOX-1 and TRPV1 was determined by real-time PCR or Western blot, respectively. Pretreatment with CORM-2 combined or not with CGRP reduced ethanol-induced gastric lesions and elevated GBF. Capsaicin-denervation or co-treatment with capsazepine or CGRP and CORM-2 in capsaicin-denervated animals failed to affect these beneficial effects of CO donor. In rats with intact sensory nerves, CORM-2 increased gastric mRNA level for HMOX-1 and CGRP-α. In capsaicin-denervated rats, CORM-2 increased eNOS mRNA fold change and TRPV1 protein expression while capsaicin denervation itself decreased HMOX-1 protein expression and eNOS mRNA level. We conclude that CO prevents gastric mucosa from ethanol-induced lesions due to activation of TRPV1/CGRP-α system and accompanying increase in gastric microcirculation but independently on afferent sensory nerve activity despite the stimulation of TRPV1 protein and CGRP-α mRNA expression.
Collapse
Affiliation(s)
- Katarzyna Magierowska
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 31-531 Cracow, Poland.
| | - Dagmara Wojcik
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 31-531 Cracow, Poland.
| | - Anna Chmura
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 31-531 Cracow, Poland.
| | - Dominik Bakalarz
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 31-531 Cracow, Poland.
| | - Mateusz Wierdak
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 31-531 Cracow, Poland.
| | - Slawomir Kwiecien
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 31-531 Cracow, Poland.
| | - Zbigniew Sliwowski
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 31-531 Cracow, Poland.
| | - Tomasz Brzozowski
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 31-531 Cracow, Poland.
| | - Marcin Magierowski
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 31-531 Cracow, Poland.
| |
Collapse
|
32
|
García-Rayado G, Navarro M, Lanas A. NSAID induced gastrointestinal damage and designing GI-sparing NSAIDs. Expert Rev Clin Pharmacol 2018; 11:1031-1043. [DOI: 10.1080/17512433.2018.1516143] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Guillermo García-Rayado
- Service of Digestive Diseases, Hospital Clínico Universitario Lozano Blesa, Zaragoza, Spain
- IIS Aragón, Zaragoza, Spain
| | - Mercedes Navarro
- Service of Digestive Diseases, Hospital Clínico Universitario Lozano Blesa, Zaragoza, Spain
- IIS Aragón, Zaragoza, Spain
| | - Angel Lanas
- Service of Digestive Diseases, Hospital Clínico Universitario Lozano Blesa, Zaragoza, Spain
- IIS Aragón, Zaragoza, Spain
- CIBERehd, Madrid, Spain
- University of Zaragoza, Zaragoza, Spain
| |
Collapse
|
33
|
Magierowska K, Brzozowski T, Magierowski M. Emerging role of carbon monoxide in regulation of cellular pathways and in the maintenance of gastric mucosal integrity. Pharmacol Res 2018; 129:56-64. [PMID: 29360501 DOI: 10.1016/j.phrs.2018.01.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 01/12/2018] [Accepted: 01/18/2018] [Indexed: 12/14/2022]
Abstract
Heme oxygenase (HO) catalyzes the degradation of toxic free heme to the equimolar amounts of biliverdin, Fe2+ and concurrently releases of carbon monoxide (CO). CO is nowadays increasingly recognized as an important signaling molecule throughout the body that is involved in many physiological processes and shows multidirectional biological activity. Recent evidence indicates that CO exhibits the anti-inflammatory, anti-proliferative, anti-apoptotic, anti-aggregatory and vasodilatory properties. The cellular mechanisms underlying the activity of CO involve stimulation of cGMP-dependent signaling pathway and large conductance calcium activated K+ channels, the activation of mitogen-activated protein kinases and the nuclear factor k-light chain-enhancer of activated B cells transcription factor pathway. Stimulation of endogenous CO production by HO inducers or the inhalation of CO or the delivery of this gaseous molecule by novel pharmaceutical agents have been found in experimental animal models to be promising in the future therapy of various diseases. CO appears to act as a significant component of the complex mechanism of gastrointestinal (GI) mucosal defense. This gaseous molecule plays an important role in diabetic gastroparesis, prevention of the upper GI mucosal damage, post-operative ileus and the healing of ulcerative colitis. This review focuses on the better understanding mechanisms through which CO contributes to the mechanism of protection, resistance to injury and ulcer healing. It is becoming apparent that the pleiotropic effect of this molecule may increase clinical applicability of CO donors and their implementation in many pharmacological research areas, pharmaceutical industry and health-care system.
Collapse
Affiliation(s)
- Katarzyna Magierowska
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531 Cracow, Poland
| | - Tomasz Brzozowski
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531 Cracow, Poland
| | - Marcin Magierowski
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531 Cracow, Poland.
| |
Collapse
|
34
|
Magierowski M, Magierowska K, Hubalewska-Mazgaj M, Surmiak M, Sliwowski Z, Wierdak M, Kwiecien S, Chmura A, Brzozowski T. Cross-talk between hydrogen sulfide and carbon monoxide in the mechanism of experimental gastric ulcers healing, regulation of gastric blood flow and accompanying inflammation. Biochem Pharmacol 2018; 149:131-142. [PMID: 29203367 DOI: 10.1016/j.bcp.2017.11.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 11/29/2017] [Indexed: 12/26/2022]
Abstract
Hydrogen sulfide (H2S) and carbon monoxide (CO) exert gastroprotection against acute gastric lesions. We determined the cross-talk between H2S and CO in gastric ulcer healing process and regulation of gastric blood flow (GBF) at ulcer margin. Male Wistar rats with acetic acid-induced gastric ulcers were treated i.g. throughout 9 days with vehicle (control), NaHS (0.1-10 mg/kg) +/- zinc protoporphyrin (ZnPP, 10 mg/kg), d,l-propargylglycine (PAG, 30 mg/kg), CO-releasing CORM-2 (2.5 mg/kg) +/- PAG. GBF was assessed by laser flowmetry, ulcer area was determined by planimetry/histology. Gastric mucosal H2S production was analysed spectrophotometrically. Protein and/or mRNA expression at ulcer margin for vascular endothelial growth factor (VEGF)A, epidermal growth factor receptor (EGFr), cystathionine-γ-lyase (CSE), cystathionine-β-synthase (CBS), 3-mercaptopyruvate sulfurtransferase (3-MST), heme oxygenases (HOs), nuclear factor (erythroid-derived 2)-like 2 (Nrf-2), cyclooxygenase (COX)-2, inducible nitric oxide synthase (iNOS), IL-1β, TNF-α and hypoxia inducible factor (HIF)-1α were determined by real-time PCR or western blot. IL-1α, IL-1β, IL-2, IL-4, IL-5, IL-6, IL-10, IL-12, IL-13, IFN-γ, TNF-α, GM-CSF plasma concentration was assessed using Luminex platform. NaHS dose-dependently decreased ulcer area and increased GBF but ZnPP attenuated these effects. PAG decreased H2S production but failed to affect CORM-2-mediated ulcer healing and vasodilation. NaHS increased Nrf-2, EGFr, VEGFA and decreased pro-inflammatory markers expression and IL-1β, IL-2, IL-13, TNF-α, GM-CSF plasma concentration. CORM-2 decreased IL-1β and GM-CSF plasma levels. We conclude that NaHS accelerates gastric ulcer healing increasing microcirculation and Nrf-2, EGFr, VEGFA expression. H2S-mediated ulcer healing involves endogenous CO activity while CO does not require H2S. NaHS decreases systemic inflammation more effectively than CORM-2.
Collapse
Affiliation(s)
- Marcin Magierowski
- Department of Physiology, Jagiellonian University Medical College, 16 Grzegorzecka Street 31-531 Cracow, Poland.
| | - Katarzyna Magierowska
- Department of Physiology, Jagiellonian University Medical College, 16 Grzegorzecka Street 31-531 Cracow, Poland
| | - Magdalena Hubalewska-Mazgaj
- Department of Physiology, Jagiellonian University Medical College, 16 Grzegorzecka Street 31-531 Cracow, Poland
| | - Marcin Surmiak
- Department of Physiology, Jagiellonian University Medical College, 16 Grzegorzecka Street 31-531 Cracow, Poland
| | - Zbigniew Sliwowski
- Department of Physiology, Jagiellonian University Medical College, 16 Grzegorzecka Street 31-531 Cracow, Poland
| | - Mateusz Wierdak
- Department of Physiology, Jagiellonian University Medical College, 16 Grzegorzecka Street 31-531 Cracow, Poland
| | - Slawomir Kwiecien
- Department of Physiology, Jagiellonian University Medical College, 16 Grzegorzecka Street 31-531 Cracow, Poland
| | - Anna Chmura
- Department of Physiology, Jagiellonian University Medical College, 16 Grzegorzecka Street 31-531 Cracow, Poland
| | - Tomasz Brzozowski
- Department of Physiology, Jagiellonian University Medical College, 16 Grzegorzecka Street 31-531 Cracow, Poland
| |
Collapse
|
35
|
Magierowski M, Magierowska K, Hubalewska‐Mazgaj M, Sliwowski Z, Ginter G, Pajdo R, Chmura A, Kwiecien S, Brzozowski T. Carbon monoxide released from its pharmacological donor, tricarbonyldichlororuthenium (II) dimer, accelerates the healing of pre-existing gastric ulcers. Br J Pharmacol 2017; 174:3654-3668. [PMID: 28768046 PMCID: PMC5610153 DOI: 10.1111/bph.13968] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 07/10/2017] [Accepted: 07/25/2017] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND AND PURPOSE Carbon monoxide (CO), a gaseous mediator produced by haem oxygenases (HOs), has been shown to prevent stress-, ethanol-, aspirin- and alendronate-induced gastric damage; however, its role in gastric ulcer healing has not been fully elucidated. We investigated whether CO released from tricarbonyldichlororuthenium (II) dimer (CORM-2) can affect gastric ulcer healing and determined the mechanisms involved in this healing action. EXPERIMENTAL APPROACH Gastric ulcers were induced in Wistar rats by serosal application of acetic acid. Animals received 9 days of treatment with RuCl3 [2.5 mg·kg-1 intragastrically (i.g.)], haemin (5 mg·kg-1 i.g.), CORM-2 (0.1-10 mg·kg-1 i.g.) administered alone or with zinc protoporphyrin IX (ZnPP, 10 mg·kg-1 i.g.), 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ, 5 mg·kg-1 i.g.), NG -nitro-l-arginine (l-NNA, 15 mg·kg-1 i.g.), indomethacin (5 mg·kg-1 i.g.) or glibenclamide (10 mg·kg-1 i.g.). Gastric ulcer area and gastric blood flow (GBF) were assessed planimetrically, microscopically and by laser flowmeter respectively. Gastric mRNA/protein expressions of EGF, EGF receptors, VEGFA, HOs, nuclear factor (erythroid-derived 2)-like 2 (Nrf2), COX-2, hypoxia-inducible factor (HIF)-1α and pro-inflammatory iNOS, IL-1β and TNF-α were determined by real-time PCR or Western blots. KEY RESULTS CORM-2 and haemin but not RuCl3 or ZnPP decreased ulcer size while increasing GBF. These effects were reduced by ODQ, indomethacin, l-NNA and glibenclamide. CORM-2 significantly decreased the expression of pro-inflammatory markers, Nrf2/HO1 and HIF-1α, and up-regulated EGF. CONCLUSIONS AND IMPLICATIONS CO released from CORM-2 or endogenously produced by the HO1/Nrf2 pathway accelerates gastric ulcer healing via an increase in GBF, an up-regulation in EGF expression and down-regulation of the inflammatory response.
Collapse
Affiliation(s)
- Marcin Magierowski
- Department of Physiology, Faculty of MedicineJagiellonian University Medical CollegeCracowPoland
| | - Katarzyna Magierowska
- Department of Physiology, Faculty of MedicineJagiellonian University Medical CollegeCracowPoland
| | | | - Zbigniew Sliwowski
- Department of Physiology, Faculty of MedicineJagiellonian University Medical CollegeCracowPoland
| | - Grzegorz Ginter
- Department of Physiology, Faculty of MedicineJagiellonian University Medical CollegeCracowPoland
| | - Robert Pajdo
- Department of Physiology, Faculty of MedicineJagiellonian University Medical CollegeCracowPoland
| | - Anna Chmura
- Department of Physiology, Faculty of MedicineJagiellonian University Medical CollegeCracowPoland
| | - Slawomir Kwiecien
- Department of Physiology, Faculty of MedicineJagiellonian University Medical CollegeCracowPoland
| | - Tomasz Brzozowski
- Department of Physiology, Faculty of MedicineJagiellonian University Medical CollegeCracowPoland
| |
Collapse
|