1
|
Muliaditan M, van Steeg TJ, Avery LB, Sun W, Hammond TR, Hijdra D, Choi SL, Pillai N, Leksa NC, Mavroudis PD. Translational minimal physiologically based pharmacokinetic model for transferrin receptor-mediated brain delivery of antibodies. MAbs 2025; 17:2515414. [PMID: 40568753 DOI: 10.1080/19420862.2025.2515414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 05/29/2025] [Accepted: 05/30/2025] [Indexed: 06/28/2025] Open
Abstract
Successful development of monoclonal antibodies (mAbs) for the treatment of central nervous system disorders has been challenging due to their minimal ability to cross the blood-brain barrier (BBB), resulting in poor brain exposure. Bispecific antibodies (bsAb) that bind to transmembrane protein expressed at the BBB, such as the transferrin receptor (TfR), have shown enhanced brain exposure in rodents and non-human primate (NHP) due to receptor-mediated transcytosis. However, it remains unclear how preclinical findings translate to humans. Moreover, optimal TfR binding affinity remains a subject of debate. Model-informed drug discovery and development is a powerful approach that has been successfully used to support research and development. The goal of this analysis was to expand a published brain minimal physiologically based pharmacokinetic (mPBPK) model to investigate the optimal TfR binding affinity for maximal brain delivery in NHP and to facilitate prediction of the PK of anti-TfR bsAbs in humans from NHP data. Literature data for plasma, cerebrospinal fluid (CSF), and brain exposure after administration of non-TfR mAbs and monovalent bsAbs with respect to TfR in NHP were used to develop the TfR mPBPK model. Clinical validation using human PK data from plasma and CSF for the monovalent anti-TfR bsAb trontinemab demonstrated good predictive performance without major model recalibration. The availability of the TfR mPBPK model is envisaged to provide better understanding of the relationship between TfR binding affinity, dose, and brain exposure, which would lead to more robust selection of lead candidates and efficacious dosing regimens.
Collapse
Affiliation(s)
- Morris Muliaditan
- Leiden Experts on Advanced Pharmacokinetics and Pharmacodynamics (LAP&P), Leiden, The Netherlands
| | - Tamara J van Steeg
- Leiden Experts on Advanced Pharmacokinetics and Pharmacodynamics (LAP&P), Leiden, The Netherlands
| | - Lindsay B Avery
- Sanofi, Quantitative Pharmacology-Innovation, Cambridge, MA, USA
| | - Wei Sun
- Sanofi, Quantitative Pharmacology-Innovation, Cambridge, MA, USA
| | | | - Diana Hijdra
- Leiden Experts on Advanced Pharmacokinetics and Pharmacodynamics (LAP&P), Leiden, The Netherlands
| | - Siak-Leng Choi
- Sanofi, Quantitative Pharmacology-Pharmacometrics, Vitry-Sur-Seine, France
| | - Nikhil Pillai
- Sanofi, Quantitative Pharmacology-Pharmacometrics, Cambridge, MA, USA
| | - Nina C Leksa
- Sanofi, Rare and Neurologic Diseases, Cambridge, MA, USA
| | | |
Collapse
|
2
|
Wu S, Huang HW, Panchal A, Chowdhury EA, Shah DK. Quantitation of regional distribution of antibodies in rat brain following systemic and intra-CNS administration. J Cereb Blood Flow Metab 2025:271678X251333536. [PMID: 40357752 PMCID: PMC12075156 DOI: 10.1177/0271678x251333536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/20/2025] [Accepted: 03/24/2025] [Indexed: 05/15/2025]
Abstract
Antibody therapy has demonstrated great potential for treating central nervous system (CNS) disorders. Since therapeutic efficacy relies on sufficient exposure in specific brain regions, quantitative understanding of antibody distribution within the brain is crucial. Additionally, insights into antibody brain distribution help elucidate how pathological antibodies accumulate during encephalitis. Accordingly, this study investigated the regional distribution of a non-target-binding antibody (trastuzumab) and a brain-target-binding antibody (anti-NMDAR1) following systemic and intra-CNS administration in rats. After systemic administration, both antibodies showed similar distribution across brain regions, with the olfactory bulb exhibiting significantly higher concentrations. Other regions had comparable exposure, with the striatum or hippocampus showing the lowest exposure. Intra-CSF administration resulted in similar distribution patterns but achieved significantly higher concentrations than systemic administration. In contrast, intra-striatal administration led to diverse distribution, with the highest concentrations near the injection site. Calculations based on striatum and interstitial fluid (ISF) concentrations indicated antibody accumulation in the perivascular space after intra-CNS administration. Target binding influenced distribution primarily after intra-CSF administration, where anti-NMDAR1 showed lower ISF concentrations early and reduced CSF concentrations later. These findings provide valuable quantitative insights for optimizing brain-targeted antibody therapies and understanding pathological antibody distribution in CNS disorders.
Collapse
Affiliation(s)
- Shengjia Wu
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, NY, USA
| | - Hsien Wei Huang
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, NY, USA
| | - Aditi Panchal
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, NY, USA
| | - Ekram Ahmed Chowdhury
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, NY, USA
| | - Dhaval K Shah
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, NY, USA
| |
Collapse
|
3
|
Géraudie A, De Rossi P, Canney M, Carpentier A, Delatour B. Effects of blood-brain barrier opening using ultrasound on tauopathies: A systematic review. J Control Release 2025; 379:1029-1044. [PMID: 39875073 DOI: 10.1016/j.jconrel.2025.01.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/09/2025] [Accepted: 01/20/2025] [Indexed: 01/30/2025]
Abstract
Blood-brain barrier opening with ultrasound can potentiate drug efficacy in the treatment of brain pathologies and also provides therapeutic effects on its own. It is an innovative tool to transiently, repeatedly and safely open the barrier, with studies showing beneficial effects in both preclinical models for Alzheimer's disease and recent clinical studies. The first preclinical and clinical work has mainly shown a decrease in amyloid burden in mice models and in patients. However, Alzheimer's disease pathology also encompasses tauopathy, which is closely related to cognitive decline, making it a crucial therapeutic target. The effects of blood-brain barrier opening with ultrasound have been rarely assessed on tau and are still unclear. METHODS This systematic review, conducted through searches using Pubmed, Embase, Web of Science and Cochrane Central databases, extracted results of 15 studies reporting effects of blood-brain barrier opening using ultrasound on tau proteins. RESULTS This review of the literature indicates that blood-brain barrier opening using ultrasound can decrease the extent of the tau pathology or potentialize the effect of a therapeutic drug. However, selected studies report paradoxically that blood-brain barrier opening can increase tau pathology burden and induce brain damage. DISCUSSION Apparent discrepancies between reports could originate from the variability in protocols or analytical methods that may impact the effects of blood-brain barrier opening with ultrasound on tauopathies, glial populations, tissue integrity and functional outcomes. CONCLUSION This calls for a better standardization effort combined with improved methodologies allowing between-studies comparisons, and for further understanding of the effects of blood-brain barrier opening on tau pathology as an essential prerequisite before translation to clinic.
Collapse
Affiliation(s)
- Amandine Géraudie
- Paris Brain Institute, ICM, Inserm U1127, CNRS UMR 7225, Sorbonne University, 75013 Paris, France.
| | | | | | - Alexandre Carpentier
- Department of Neurosurgery, Sorbonne University, APHP, La Pitié-Salpêtrière Hospital, 75013 Paris, France; Faculty of Medicine, Sorbonne University, GRC 23, Brain Machine Interface, APHP, La Pitié-Salpêtrière Hospital, 75013 Paris, France; Advanced Surgical Research Technology Lab, Sorbonne University, 75013 Paris, France
| | - Benoît Delatour
- Paris Brain Institute, ICM, Inserm U1127, CNRS UMR 7225, Sorbonne University, 75013 Paris, France
| |
Collapse
|
4
|
Kunz PB, Maurer MA, Vollmer J, Machacek M, Weinmann O, Klisic J, Schwab ME. Intrathecal administration of Anti-Nogo-A antibody in macaque monkeys: Pharmacokinetics, tissue penetration and target interaction. Neurotherapeutics 2025; 22:e00484. [PMID: 39572304 PMCID: PMC12014330 DOI: 10.1016/j.neurot.2024.e00484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 10/11/2024] [Accepted: 11/06/2024] [Indexed: 03/05/2025] Open
Abstract
Intrathecal drug administration represents a promising method to deliver biologics effectively to the central nervous system (CNS). However, little is known about the tolerability and pharmacokinetics of intrathecally applied antibodies. Hence, the focus of this study was to evaluate the toxicity, pharmacokinetic, and pharmacodynamic properties of an intrathecally administered human monoclonal antibody against the growth inhibitory CNS membrane protein Nogo-A in the non-human primate (NHP). The antibody was repeatedly injected into the lumbar cerebrospinal fluid (CSF) sack of NHPs, Macaca fascicularis (N = 18), at three dose levels (placebo, 75 and 150 mg antibody/injection, n = 6/group). CSF and serum samples were collected for pharmacokinetic analysis. The health status was constantly monitored to detect any treatment-related abnormalities. After sacrifice, the CNS tissues were evaluated by immunohistochemistry and biochemistry to study the antibody distribution and target interaction in the spinal cord and brain. No treatment-related side effects were observed, and the treatment was well tolerated by NHPs. After administration, the antibody was rapidly cleared from the CSF with a half-life of 6.4 h and accumulated in the serum where it showed a half-life of 13.7 days. The antibody distributed over the spinal cord and brain, penetrated into the CNS parenchyma where it bound to Nogo-A expressing neurons and oligodendrocytes, and induced significant (P < 0.05) downregulation of the target antigen Nogo-A. Collectively, these results support the direct administration of therapeutic antibodies into the CSF and are of relevance for the antibody-based therapeutics currently in development for different CNS diseases.
Collapse
Affiliation(s)
- Pascal B Kunz
- NovaGo Therapeutics AG, 8952 Zurich-Schlieren, Switzerland
| | | | | | | | | | - Jelena Klisic
- NovaGo Therapeutics AG, 8952 Zurich-Schlieren, Switzerland
| | | |
Collapse
|
5
|
Kusaka S, Voulgaris N, Onishi K, Ueda J, Saito S, Tamaki S, Murata I, Takata T, Suzuki M. Therapeutic Effect of Boron Neutron Capture Therapy on Boronophenylalanine Administration via Cerebrospinal Fluid Circulation in Glioma Rat Models. Cells 2024; 13:1610. [PMID: 39404374 PMCID: PMC11475075 DOI: 10.3390/cells13191610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/22/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024] Open
Abstract
In recent years, various drug delivery systems circumventing the blood-brain barrier have emerged for treating brain tumors. This study aimed to improve the efficacy of brain tumor treatment in boron neutron capture therapy (BNCT) using cerebrospinal fluid (CSF) circulation to deliver boronophenylalanine (BPA) to targeted tumors. Previous experiments have demonstrated that boron accumulation in the brain cells of normal rats remains comparable to that after intravenous (IV) administration, despite BPA being administered via CSF at significantly lower doses (approximately 1/90 of IV doses). Based on these findings, BNCT was conducted on glioma model rats at the Kyoto University Research Reactor Institute (KUR), with BPA administered via CSF. This method involved implanting C6 cells into the brains of 8-week-old Wistar rats, followed by administering BPA and neutron irradiation after a 10-day period. In this study, the rats were divided into four groups: one receiving CSF administration, another receiving IV administration, and two control groups without BPA administration, with one subjected to neutron irradiation and the other not. In the CSF administration group, BPA was infused from the cisterna magna at 8 mg/kg/h for 2 h, while in the IV administration group, BPA was intravenously administered at 350 mg/kg via the tail vein over 1.5 h. Thermal neutron irradiation (5 MW) for 20 min, with an average fluence of 3.8 × 1012/cm2, was conducted at KUR's heavy water neutron irradiation facility. Subsequently, all of the rats were monitored under identical conditions for 7 days, with pre- and post-irradiation tumor size assessed through MRI and pathological examination. The results indicate a remarkable therapeutic efficacy in both BPA-administered groups (CSF and IV). Notably, the rats treated with CSF administration exhibited diminished BPA accumulation in normal tissue compared to those treated with IV administration, alongside maintaining excellent overall health. Thus, CSF-based BPA administration holds promise as a novel drug delivery mechanism in BNCT.
Collapse
Affiliation(s)
- Sachie Kusaka
- Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita 565-0871, Japan; (N.V.); (S.T.); (I.M.)
| | - Nikolaos Voulgaris
- Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita 565-0871, Japan; (N.V.); (S.T.); (I.M.)
| | - Kazuki Onishi
- Division of Health Sciences, Graduate School of Medicine, Osaka University, Yamadaoka 2-1, Suita 565-0871, Japan; (K.O.); (J.U.); (S.S.)
| | - Junpei Ueda
- Division of Health Sciences, Graduate School of Medicine, Osaka University, Yamadaoka 2-1, Suita 565-0871, Japan; (K.O.); (J.U.); (S.S.)
| | - Shigeyoshi Saito
- Division of Health Sciences, Graduate School of Medicine, Osaka University, Yamadaoka 2-1, Suita 565-0871, Japan; (K.O.); (J.U.); (S.S.)
| | - Shingo Tamaki
- Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita 565-0871, Japan; (N.V.); (S.T.); (I.M.)
| | - Isao Murata
- Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita 565-0871, Japan; (N.V.); (S.T.); (I.M.)
| | - Takushi Takata
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2 Asashiro-Nishi, Kumatori-cho, Sennan-gun 590-0494, Japan; (T.T.); (M.S.)
| | - Minoru Suzuki
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2 Asashiro-Nishi, Kumatori-cho, Sennan-gun 590-0494, Japan; (T.T.); (M.S.)
| |
Collapse
|
6
|
Wu S, Chang HY, Chowdhury EA, Huang HW, Shah DK. Investigation of Antibody Pharmacokinetics in the Brain Following Intra-CNS Administration and Development of PBPK Model to Characterize the Data. AAPS J 2024; 26:29. [PMID: 38443635 DOI: 10.1208/s12248-024-00898-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 02/12/2024] [Indexed: 03/07/2024] Open
Abstract
Despite the promising potential of direct central nervous system (CNS) antibody administration to enhance brain exposure, there remains a significant gap in understanding the disposition of antibodies following different intra-CNS injection routes. To bridge this knowledge gap, this study quantitatively investigated the brain pharmacokinetics (PK) of antibodies following intra-CNS administration. The microdialysis samples from the striatum (ST), cerebrospinal fluid (CSF) samples through cisterna magna (CM) puncture, plasma, and brain homogenate samples were collected to characterize the pharmacokinetics (PK) profiles of a non-targeting antibody, trastuzumab, following intracerebroventricular (ICV), intracisternal (ICM), and intrastriatal (IST) administration. For a comprehensive analysis, these intra-CNS injection datasets were juxtaposed against our previously acquired intravenous (IV) injection data obtained under analogous experimental conditions. Our findings highlighted that direct CSF injections, either through ICV or ICM, resulted in ~ 5-6-fold higher interstitial fluid (ISF) drug exposure than IV administration. Additionally, the low bioavailability observed following IST administration indicates the existence of a local degradation process for antibody elimination in the brain ISF along with the ISF bulk flow. The study further refined a physiologically based pharmacokinetic (PBPK) model based on new observations by adding the perivascular compartments, oscillated CSF flow, and the nonspecific uptake and degradation of antibodies by brain parenchymal cells. The updated model can well characterize the antibody PK following systemic and intra-CNS administration. Thus, our research offers quantitative insight into antibody brain disposition pathways and paves the way for determining optimal dosing and administration strategies for antibodies targeting CNS disorders.
Collapse
Affiliation(s)
- Shengjia Wu
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, New York, USA
| | - Hsueh-Yuan Chang
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, New York, USA
| | - Ekram Ahmed Chowdhury
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, New York, USA
| | - Hsien Wei Huang
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, New York, USA
| | - Dhaval K Shah
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, New York, USA.
| |
Collapse
|
7
|
Akita T, Shimamura M, Tezuka A, Takagi M, Yamashita C. GLP-1 derivatives with functional sequences transit and migrate through trigeminal neurons. Eur J Pharm Biopharm 2024; 195:114176. [PMID: 38185192 DOI: 10.1016/j.ejpb.2024.114176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
Patients with dementia are increasing with the aging of the population, and dementia has become a disease with high unmet medical needs. Glucagon-like peptide-1 (GLP-1), a neuropeptide, has been reported to improve learning and memory following intracerebroventricular administration. We focused on intranasal administration, which can deliver drugs noninvasively and efficiently to the brain. Although much of the human nasal mucosa is occupied by respiratory epithelium, many capillaries are present in the paracellular route of respiratory epithelium. Therefore, to incorporate GLP-1 into cells, we created a GLP-1 derivative by adding cell-penetrating peptides (CPP) and penetration accelerating sequences (PAS) to GLP-1. We investigated in vitro and in vivo function of PAS-CPP-GLP-1 to enable the translocation of GLP-1 directly from nose to brain. PAS-CPP-GLP-1 enhanced cellular uptake by macropinocytosis with CPP, efficiently escaped from the endosomes due to PAS, and exited the cells. PAS-CPP-GLP-1 also transited trigeminal nerve cells through axon transport and migrated to the adjacent trigeminal nerve cell. Moreover, PAS-CPP-GLP-1 showed significant improvement in learning memory in mice within 20 min of intranasal administration. These results suggested CPP and PAS may be important for the efficient transfer of GLP-1 to the site of action in the brain following intranasal administration.
Collapse
Affiliation(s)
- Tomomi Akita
- Department of Pharmaceutics and Drug Delivery, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Mizuki Shimamura
- Department of Pharmaceutics and Drug Delivery, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Ayano Tezuka
- Department of Pharmaceutics and Drug Delivery, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Marina Takagi
- Department of Pharmaceutics and Drug Delivery, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Chikamasa Yamashita
- Department of Pharmaceutics and Drug Delivery, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
| |
Collapse
|
8
|
Pardridge WM. Receptor-mediated drug delivery of bispecific therapeutic antibodies through the blood-brain barrier. FRONTIERS IN DRUG DELIVERY 2023; 3:1227816. [PMID: 37583474 PMCID: PMC10426772 DOI: 10.3389/fddev.2023.1227816] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Therapeutic antibody drug development is a rapidly growing sector of the pharmaceutical industry. However, antibody drug development for the brain is a technical challenge, and therapeutic antibodies for the central nervous system account for ~3% of all such agents. The principal obstacle to antibody drug development for brain or spinal cord is the lack of transport of large molecule biologics across the blood-brain barrier (BBB). Therapeutic antibodies can be made transportable through the blood-brain barrier by the re-engineering of the therapeutic antibody as a BBB-penetrating bispecific antibody (BSA). One arm of the BSA is the therapeutic antibody and the other arm of the BSA is a transporting antibody. The transporting antibody targets an exofacial epitope on a BBB receptor, and this enables receptor-mediated transcytosis (RMT) of the BSA across the BBB. Following BBB transport, the therapeutic antibody then engages the target receptor in brain. RMT systems at the BBB that are potential conduits to the brain include the insulin receptor (IR), the transferrin receptor (TfR), the insulin-like growth factor receptor (IGFR) and the leptin receptor. Therapeutic antibodies have been re-engineered as BSAs that target the insulin receptor, TfR, or IGFR RMT systems at the BBB for the treatment of Alzheimer's disease and Parkinson's disease.
Collapse
|
9
|
Hjelm LC, Lindberg H, Ståhl S, Löfblom J. Affibody Molecules Intended for Receptor-Mediated Transcytosis via the Transferrin Receptor. Pharmaceuticals (Basel) 2023; 16:956. [PMID: 37513868 PMCID: PMC10383291 DOI: 10.3390/ph16070956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/27/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023] Open
Abstract
The development of biologics for diseases affecting the central nervous system has been less successful compared to other disease areas, in part due to the challenge of delivering drugs to the brain. The most well-investigated and successful strategy for increasing brain uptake of biological drugs is using receptor-mediated transcytosis over the blood-brain barrier and, in particular, targeting the transferrin receptor-1 (TfR). Here, affibody molecules are selected for TfR using phage display technology. The two most interesting candidates demonstrated binding to human TfR, cross-reactivity to the murine orthologue, non-competitive binding with human transferrin, and binding to TfR-expressing brain endothelial cell lines. Single amino acid mutagenesis of the affibody molecules revealed the binding contribution of individual residues and was used to develop second-generation variants with improved properties. The second-generation variants were further analyzed and showed an ability for transcytosis in an in vitro transwell assay. The new TfR-specific affibody molecules have the potential for the development of small brain shuttles for increasing the uptake of various compounds to the central nervous system and thus warrant further investigations.
Collapse
Affiliation(s)
- Linnea Charlotta Hjelm
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 106 91 Stockholm, Sweden
| | - Hanna Lindberg
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 106 91 Stockholm, Sweden
| | - Stefan Ståhl
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 106 91 Stockholm, Sweden
| | - John Löfblom
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 106 91 Stockholm, Sweden
| |
Collapse
|
10
|
Meyer AH, Feldsien TM, Mezler M, Untucht C, Venugopalan R, Lefebvre DR. Novel Developments to Enable Treatment of CNS Diseases with Targeted Drug Delivery. Pharmaceutics 2023; 15:pharmaceutics15041100. [PMID: 37111587 PMCID: PMC10145602 DOI: 10.3390/pharmaceutics15041100] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/07/2023] [Accepted: 03/17/2023] [Indexed: 04/29/2023] Open
Abstract
The blood-brain barrier (BBB) is a major hurdle for the development of systemically delivered drugs against diseases of the central nervous system (CNS). Because of this barrier there is still a huge unmet need for the treatment of these diseases, despite years of research efforts across the pharmaceutical industry. Novel therapeutic entities, such as gene therapy and degradomers, have become increasingly popular in recent years, but have not been the focus for CNS indications so far. To unfold their full potential for the treatment of CNS diseases, these therapeutic entities will most likely have to rely on innovative delivery technologies. Here we will describe and assess approaches, both invasive and non-invasive, that can enable, or at least increase, the probability of a successful drug development of such novel therapeutics for CNS indications.
Collapse
Affiliation(s)
- Axel H Meyer
- Quantitative, Translational & ADME Sciences, AbbVie Deutschland GmbH & Co. KG, Knollstraße, 67061 Ludwigshafen, Germany
| | - Thomas M Feldsien
- Drug Delivery and Combination Products, Development Sciences, AbbVie Inc., 1 N Waukegan Road, North Chicago, IL 60064, USA
| | - Mario Mezler
- Quantitative, Translational & ADME Sciences, AbbVie Deutschland GmbH & Co. KG, Knollstraße, 67061 Ludwigshafen, Germany
| | - Christopher Untucht
- Neuroscience Discovery, AbbVie Deutschland GmbH & Co. KG, Knollstraße, 67061 Ludwigshafen, Germany
| | - Ramakrishna Venugopalan
- Drug Delivery and Combination Products, Development Sciences, AbbVie Inc., 1 N Waukegan Road, North Chicago, IL 60064, USA
| | - Didier R Lefebvre
- Drug Delivery and Combination Products, Development Sciences, AbbVie Inc., 1 N Waukegan Road, North Chicago, IL 60064, USA
| |
Collapse
|
11
|
CNS Delivery of Nucleic Acid Therapeutics: Beyond the Blood-Brain Barrier and Towards Specific Cellular Targeting. Pharm Res 2023; 40:77-105. [PMID: 36380168 DOI: 10.1007/s11095-022-03433-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 11/03/2022] [Indexed: 11/16/2022]
Abstract
Nucleic acid-based therapeutic molecules including small interfering RNA (siRNA), microRNA(miRNA), antisense oligonucleotides (ASOs), messenger RNA (mRNA), and DNA-based gene therapy have tremendous potential for treating diseases in the central nervous system (CNS). However, achieving clinically meaningful delivery to the brain and particularly to target cells and sub-cellular compartments is typically very challenging. Mediating cell-specific delivery in the CNS would be a crucial advance that mitigates off-target effects and toxicities. In this review, we describe these challenges and provide contemporary evidence of advances in cellular and sub-cellular delivery using a variety of delivery mechanisms and alternative routes of administration, including the nose-to-brain approach. Strategies to achieve subcellular localization, endosomal escape, cytosolic bioavailability, and nuclear transfer are also discussed. Ultimately, there are still many challenges to translating these experimental strategies into effective and clinically viable approaches for treating patients.
Collapse
|
12
|
Burns S, Selman A, Sehar U, Rawat P, Reddy AP, Reddy PH. Therapeutics of Alzheimer's Disease: Recent Developments. Antioxidants (Basel) 2022; 11:2402. [PMID: 36552610 PMCID: PMC9774459 DOI: 10.3390/antiox11122402] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
With increasing aging, dementia is a growing public health concern globally. Patients with dementia have multiple psychological and behavioral changes, including depression, anxiety, inappropriate behavior, paranoia, agitation, and hallucinations. The major types of dementia are Alzheimer's disease (AD), vascular dementia (VCID), Lewy body dementia (LBD), frontotemporal dementia (FTD), and mixed dementia (MiAD). Among these, AD is the most common form of dementia in the elderly population. In the last three decades, tremendous progress has been made in understanding AD's biology and disease progression, particularly its molecular basis, biomarker development, and drug discovery. Multiple cellular changes have been implicated in the progression of AD, including amyloid beta, phosphorylated tau, synaptic damage, mitochondrial dysfunction, deregulated microRNAs, inflammatory changes, hormonal deregulation, and others; based on these changes, therapeutic strategies have been developed, which are currently being tested in animal models and human clinical trials. The purpose of our article is to highlight recent therapeutic strategies' developments, critically discuss current strategies' failures, and propose new strategies to combat this devasting mental illness.
Collapse
Affiliation(s)
- Scott Burns
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Ashley Selman
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Ujala Sehar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Priyanka Rawat
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Arubala P. Reddy
- Neurology, Departments of School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - P. Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Neurology, Departments of School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Speech, Language and Hearing Sciences, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
13
|
Bespalov A, Courade JP, Khiroug L, Terstappen GC, Wang Y. A call for better understanding of target engagement in Tau antibody development. Drug Discov Today 2022; 27:103338. [PMID: 35973661 DOI: 10.1016/j.drudis.2022.103338] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 07/08/2022] [Accepted: 08/11/2022] [Indexed: 11/21/2022]
Abstract
Significant efforts have been channeled into developing antibodies for the treatment of CNS indications. Disappointment with the first generation of clinical Tau antibodies in Alzheimer's disease has highlighted the challenges in understanding whether an antibody can reach or affect the target in the compartment where it is involved in pathological processes. Here, we highlight different aspects essential for improving translatability of Tau-based immunotherapy.
Collapse
Affiliation(s)
| | | | | | | | - Yipeng Wang
- Shanghai Qiangrui Biotech, Shanghai, PR China
| |
Collapse
|
14
|
Biodistribution Analysis of an Anti-EGFR Antibody in the Rat Brain: Validation of CSF Microcirculation as a Viable Pathway to Circumvent the Blood-Brain Barrier for Drug Delivery. Pharmaceutics 2022; 14:pharmaceutics14071441. [PMID: 35890344 PMCID: PMC9324388 DOI: 10.3390/pharmaceutics14071441] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/24/2022] [Accepted: 07/04/2022] [Indexed: 01/02/2023] Open
Abstract
Cerebrospinal fluid (CSF) microcirculation refers to CSF flow through brain or spinal parenchyma. CSF enters the tissue along the perivascular spaces of the penetrating arteries where it mixes with the interstitial fluid circulating through the extracellular space. The potential of harnessing CSF microcirculation for drug delivery to deep areas of the brain remains an area of controversy. This paper sheds additional light on this debate by showing that ABT-806, an EGFR-specific humanized IgG1 monoclonal antibody (mAb), reaches both the cortical and the deep subcortical layers of the rat brain following intra-cisterna magna (ICM) injection. This is significant because the molecular weight of this mAb (150 kDa) is highest among proteins reported to have penetrated deeply into the brain via the CSF route. This finding further confirms the potential of CSF circulation as a drug delivery system for a large subset of molecules offering promise for the treatment of various brain diseases with poor distribution across the blood-brain barrier (BBB). ABT-806 is the parent antibody of ABT-414, an antibody-drug conjugate (ADC) developed to engage EGFR-overexpressing glioblastoma (GBM) tumor cells. To pave the way for future efficacy studies for the treatment of GBM with an intra-CSF administered ADC consisting of a conjugate of ABT-806 (or of one of its close analogs), we verified in vivo the binding of ABT-414 to GBM tumor cells implanted in the cisterna magna and collected toxicity data from both the central nervous system (CNS) and peripheral tissues. The current study supports further exploration of harnessing CSF microcirculation as an alternative to systemic delivery to achieve higher brain tissue exposure, while reducing previously reported ocular toxicity with ABT-414.
Collapse
|
15
|
Pardridge WM. A Historical Review of Brain Drug Delivery. Pharmaceutics 2022; 14:1283. [PMID: 35745855 PMCID: PMC9229021 DOI: 10.3390/pharmaceutics14061283] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 12/13/2022] Open
Abstract
The history of brain drug delivery is reviewed beginning with the first demonstration, in 1914, that a drug for syphilis, salvarsan, did not enter the brain, due to the presence of a blood-brain barrier (BBB). Owing to restricted transport across the BBB, FDA-approved drugs for the CNS have been generally limited to lipid-soluble small molecules. Drugs that do not cross the BBB can be re-engineered for transport on endogenous BBB carrier-mediated transport and receptor-mediated transport systems, which were identified during the 1970s-1980s. By the 1990s, a multitude of brain drug delivery technologies emerged, including trans-cranial delivery, CSF delivery, BBB disruption, lipid carriers, prodrugs, stem cells, exosomes, nanoparticles, gene therapy, and biologics. The advantages and limitations of each of these brain drug delivery technologies are critically reviewed.
Collapse
Affiliation(s)
- William M Pardridge
- Department of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| |
Collapse
|
16
|
Pardridge WM. Blood-brain barrier delivery for lysosomal storage disorders with IgG-lysosomal enzyme fusion proteins. Adv Drug Deliv Rev 2022; 184:114234. [PMID: 35307484 DOI: 10.1016/j.addr.2022.114234] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 02/25/2022] [Accepted: 03/14/2022] [Indexed: 12/12/2022]
Abstract
The majority of lysosomal storage diseases affect the brain. Treatment of the brain with intravenous enzyme replacement therapy is not successful, because the recombinant lysosomal enzymes do not cross the blood-brain barrier (BBB). Biologic drugs, including lysosomal enzymes, can be re-engineered for BBB delivery as IgG-enzyme fusion proteins. The IgG domain of the fusion protein is a monoclonal antibody directed against an endogenous receptor-mediated transporter at the BBB, such as the insulin receptor or the transferrin receptor. This receptor transports the IgG across the BBB, in parallel with the endogenous receptor ligand, and the IgG acts as a molecular Trojan horse to ferry into brain the lysosomal enzyme genetically fused to the IgG. The IgG-enzyme fusion protein is bi-functional and retains both high affinity binding for the BBB receptor, and high lysosomal enzyme activity. IgG-lysosomal enzymes are presently in clinical trials for treatment of the brain in Mucopolysaccharidosis.
Collapse
|
17
|
Ghosh S, Huda P, Fletcher NL, Howard CB, Walsh B, Campbell D, Pinkham MB, Thurecht KJ. Antibody-Based Formats to Target Glioblastoma: Overcoming Barriers to Protein Drug Delivery. Mol Pharm 2022; 19:1233-1247. [PMID: 35438509 DOI: 10.1021/acs.molpharmaceut.1c00996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Glioblastoma (GB) is recognized as the most aggressive form of primary brain cancer. Despite advances in treatment strategies that include surgery, radiation, and chemotherapy, the median survival time (∼15 months) of patients with GB has not significantly improved. The poor prognosis of GB is also associated with a very high chance of tumor recurrence (∼90%), and current treatment measures have failed to address the complications associated with this disease. However, targeted therapies enabled through antibody engineering have shown promise in countering GB when used in combination with conventional approaches. Here, we discuss the challenges in conventional as well as future GB therapeutics and highlight some of the known advantages of using targeted biologics to overcome these impediments. We also review a broad range of potential alternative routes that could be used clinically to administer anti-GB biologics to the brain through evasion of its natural barriers.
Collapse
Affiliation(s)
- Saikat Ghosh
- Centre for Advanced Imaging (CAI), Australian Institute for Bioengineering and Nanotechnology (AIBN) and ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Pie Huda
- Centre for Advanced Imaging (CAI), Australian Institute for Bioengineering and Nanotechnology (AIBN) and ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Nicholas L Fletcher
- Centre for Advanced Imaging (CAI), Australian Institute for Bioengineering and Nanotechnology (AIBN) and ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Christopher B Howard
- Centre for Advanced Imaging (CAI), Australian Institute for Bioengineering and Nanotechnology (AIBN) and ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Bradley Walsh
- GlyTherix, Ltd., Sydney, New South Wales 2113, Australia
| | | | - Mark B Pinkham
- Department of Radiation Oncology, Princess Alexandra Hospital, Woolloongabba, Queensland 4102, Australia
| | - Kristofer J Thurecht
- Centre for Advanced Imaging (CAI), Australian Institute for Bioengineering and Nanotechnology (AIBN) and ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
18
|
Kaulen LD, Gumbinger C, Hinz F, Kessler T, Winkler F, Bendszus M, Sahm F, Wick W. Intraventricular immune checkpoint inhibition with nivolumab in relapsed primary central nervous system lymphoma. Neurooncol Adv 2022; 4:vdac051. [PMID: 35571985 PMCID: PMC9092640 DOI: 10.1093/noajnl/vdac051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
SUMMARY
Intrathecal nivolumab combined with its systemic administration was recently found safe and effective in melanoma with leptomeningeal dissemination, prompting us to evaluate intraventricular nivolumab for recurrent primary CNS lymphoma (PCNSL) in an elderly patient unable to tolerate aggressive systemic polychemotherapy. Intraventricular nivolumab achieved a lasting (>12 months) complete remission including parenchymal lesions distant from cerebrospinal fluid spaces. No toxicities or adverse events related to the mode of administration were noted. Our case suggests intraventricular nivolumab is active in recurrent parenchymal PCNSL. Together with detected 9p24.1 gains this argues for further prospective evaluation, for which our treatment protocol provides a framework.
Collapse
Affiliation(s)
- Leon D Kaulen
- Department of Neurology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Neuro-Oncology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christoph Gumbinger
- Department of Neurology, Heidelberg University Hospital, Heidelberg, Germany
| | - Felix Hinz
- Department of Neuropathology, Heidelberg University Hospital, and Clinical Cooperation Unit Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Tobias Kessler
- Department of Neurology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Neuro-Oncology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Frank Winkler
- Department of Neurology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Neuro-Oncology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martin Bendszus
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Felix Sahm
- Department of Neuropathology, Heidelberg University Hospital, and Clinical Cooperation Unit Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Wolfgang Wick
- Department of Neurology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Neuro-Oncology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
19
|
Hladky SB, Barrand MA. The glymphatic hypothesis: the theory and the evidence. Fluids Barriers CNS 2022; 19:9. [PMID: 35115036 PMCID: PMC8815211 DOI: 10.1186/s12987-021-00282-z] [Citation(s) in RCA: 128] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/15/2021] [Indexed: 12/13/2022] Open
Abstract
The glymphatic hypothesis proposes a mechanism for extravascular transport into and out of the brain of hydrophilic solutes unable to cross the blood-brain barrier. It suggests that there is a circulation of fluid carrying solutes inwards via periarterial routes, through the interstitium and outwards via perivenous routes. This review critically analyses the evidence surrounding the mechanisms involved in each of these stages. There is good evidence that both influx and efflux of solutes occur along periarterial routes but no evidence that the principal route of outflow is perivenous. Furthermore, periarterial inflow of fluid is unlikely to be adequate to provide the outflow that would be needed to account for solute efflux. A tenet of the hypothesis is that flow sweeps solutes through the parenchyma. However, the velocity of any possible circulatory flow within the interstitium is too small compared to diffusion to provide effective solute movement. By comparison the earlier classical hypothesis describing extravascular transport proposed fluid entry into the parenchyma across the blood-brain barrier, solute movements within the parenchyma by diffusion, and solute efflux partly by diffusion near brain surfaces and partly carried by flow along "preferred routes" including perivascular spaces, white matter tracts and subependymal spaces. It did not suggest fluid entry via periarterial routes. Evidence is still incomplete concerning the routes and fate of solutes leaving the brain. A large proportion of the solutes eliminated from the parenchyma go to lymph nodes before reaching blood but the proportions delivered directly to lymph or indirectly via CSF which then enters lymph are as yet unclear. In addition, still not understood is why and how the absence of AQP4 which is normally highly expressed on glial endfeet lining periarterial and perivenous routes reduces rates of solute elimination from the parenchyma and of solute delivery to it from remote sites of injection. Neither the glymphatic hypothesis nor the earlier classical hypothesis adequately explain how solutes and fluid move into, through and out of the brain parenchyma. Features of a more complete description are discussed. All aspects of extravascular transport require further study.
Collapse
Affiliation(s)
- Stephen B. Hladky
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD UK
| | - Margery A. Barrand
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD UK
| |
Collapse
|
20
|
Chang HY, Wu S, Chowdhury EA, Shah DK. Towards a translational physiologically-based pharmacokinetic (PBPK) model for receptor-mediated transcytosis of anti-transferrin receptor monoclonal antibodies in the central nervous system. J Pharmacokinet Pharmacodyn 2022; 49:337-362. [DOI: 10.1007/s10928-021-09800-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 12/22/2021] [Indexed: 12/19/2022]
|
21
|
Sadekar SS, Bowen M, Cai H, Jamalian S, Rafidi H, Shatz‐Binder W, Lafrance‐Vanasse J, Chan P, Meilandt WJ, Oldendorp A, Sreedhara A, Daugherty A, Crowell S, Wildsmith KR, Atwal J, Fuji RN, Horvath J. Translational approaches for brain delivery of biologics via cerebrospinal fluid. Clin Pharmacol Ther 2022; 111:826-834. [PMID: 35064573 PMCID: PMC9305158 DOI: 10.1002/cpt.2531] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 01/04/2022] [Indexed: 11/14/2022]
Abstract
Delivery of biologics via cerebrospinal fluid (CSF) has demonstrated potential to access the tissues of the central nervous system (CNS) by circumventing the blood‐brain barrier and blood‐CSF barrier. Developing an effective CSF drug delivery strategy requires optimization of multiple parameters, including choice of CSF access point, delivery device technology, and delivery kinetics to achieve effective therapeutic concentrations in the target brain region, whereas also considering the biologic modality, mechanism of action, disease indication, and patient population. This review discusses key preclinical and clinical examples of CSF delivery for different biologic modalities (antibodies, nucleic acid‐based therapeutics, and gene therapy) to the brain via CSF or CNS access routes (intracerebroventricular, intrathecal‐cisterna magna, intrathecal‐lumbar, intraparenchymal, and intranasal), including the use of novel device technologies. This review also discusses quantitative models of CSF flow that provide insight into the effect of fluid dynamics in CSF on drug delivery and CNS distribution. Such models can facilitate delivery device design and pharmacokinetic/pharmacodynamic translation from preclinical species to humans in order to optimize CSF drug delivery to brain regions of interest.
Collapse
Affiliation(s)
- Shraddha S Sadekar
- Genentech Research and Early Development Genentech, Inc., a member of the Roche Group 1 DNA Way South San Francisco CA 94080 USA
| | - Mayumi Bowen
- Pharma Technical Development. Genentech, Inc, a member of the Roche Group 1 DNA Way South San Francisco CA 94080 USA
| | - Hao Cai
- Genentech Research and Early Development Genentech, Inc., a member of the Roche Group 1 DNA Way South San Francisco CA 94080 USA
| | - Samira Jamalian
- Genentech Research and Early Development Genentech, Inc., a member of the Roche Group 1 DNA Way South San Francisco CA 94080 USA
| | - Hanine Rafidi
- Genentech Research and Early Development Genentech, Inc., a member of the Roche Group 1 DNA Way South San Francisco CA 94080 USA
| | - Whitney Shatz‐Binder
- Genentech Research and Early Development Genentech, Inc., a member of the Roche Group 1 DNA Way South San Francisco CA 94080 USA
| | - Julien Lafrance‐Vanasse
- Genentech Research and Early Development Genentech, Inc., a member of the Roche Group 1 DNA Way South San Francisco CA 94080 USA
| | - Pamela Chan
- Genentech Research and Early Development Genentech, Inc., a member of the Roche Group 1 DNA Way South San Francisco CA 94080 USA
| | - William J. Meilandt
- Genentech Research and Early Development Genentech, Inc., a member of the Roche Group 1 DNA Way South San Francisco CA 94080 USA
| | - Amy Oldendorp
- Genentech Research and Early Development Genentech, Inc., a member of the Roche Group 1 DNA Way South San Francisco CA 94080 USA
| | - Alavattam Sreedhara
- Pharma Technical Development. Genentech, Inc, a member of the Roche Group 1 DNA Way South San Francisco CA 94080 USA
| | - Ann Daugherty
- Pharma Technical Development. Genentech, Inc, a member of the Roche Group 1 DNA Way South San Francisco CA 94080 USA
| | - Susan Crowell
- Genentech Research and Early Development Genentech, Inc., a member of the Roche Group 1 DNA Way South San Francisco CA 94080 USA
| | - Kristin R. Wildsmith
- Clinical pharmacology and translational medicine Neurology business Eisai, Nutley NJ 07110 USA
| | - Jasvinder Atwal
- Genentech Research and Early Development Genentech, Inc., a member of the Roche Group 1 DNA Way South San Francisco CA 94080 USA
| | - Reina N. Fuji
- Genentech Research and Early Development Genentech, Inc., a member of the Roche Group 1 DNA Way South San Francisco CA 94080 USA
| | - Josh Horvath
- Pharma Technical Development. Genentech, Inc, a member of the Roche Group 1 DNA Way South San Francisco CA 94080 USA
| |
Collapse
|
22
|
Ayalon G, Lee SH, Adolfsson O, Foo-Atkins C, Atwal JK, Blendstrup M, Booler H, Bravo J, Brendza R, Brunstein F, Chan R, Chandra P, Couch JA, Datwani A, Demeule B, DiCara D, Erickson R, Ernst JA, Foreman O, He D, Hötzel I, Keeley M, Kwok MCM, Lafrance-Vanasse J, Lin H, Lu Y, Luk W, Manser P, Muhs A, Ngu H, Pfeifer A, Pihlgren M, Rao GK, Scearce-Levie K, Schauer SP, Smith WB, Solanoy H, Teng E, Wildsmith KR, Bumbaca Yadav D, Ying Y, Fuji RN, Kerchner GA. Antibody semorinemab reduces tau pathology in a transgenic mouse model and engages tau in patients with Alzheimer's disease. Sci Transl Med 2021; 13:13/593/eabb2639. [PMID: 33980574 DOI: 10.1126/scitranslmed.abb2639] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 12/10/2020] [Indexed: 11/02/2022]
Abstract
Tau has become an attractive alternative target for passive immunotherapy efforts for Alzheimer's disease (AD). The anatomical distribution and extent of tau pathology correlate with disease course and severity better than other disease markers to date. We describe here the generation, preclinical characterization, and phase 1 clinical characterization of semorinemab, a humanized anti-tau monoclonal antibody with an immunoglobulin G4 (igG4) isotype backbone. Semorinemab binds all six human tau isoforms and protects neurons against tau oligomer neurotoxicity in cocultures of neurons and microglia. In addition, when administered intraperitoneally once weekly for 13 weeks, murine versions of semorinemab reduced the accumulation of tau pathology in a transgenic mouse model of tauopathy, independent of antibody effector function status. Semorinemab also showed clear evidence of target engagement in vivo, with increases in systemic tau concentrations observed in tau transgenic mice, nonhuman primates, and humans. Higher concentrations of systemic tau were observed after dosing in AD participants compared to healthy control participants. No concerning safety signals were observed in the phase 1 clinical trial at single doses up to 16,800 mg and multiple doses totaling 33,600 mg in a month.
Collapse
Affiliation(s)
- Gai Ayalon
- Department of Neuroscience, Genentech Inc., San Francisco, CA 94080, USA
| | - Seung-Hye Lee
- Department of Neuroscience, Genentech Inc., San Francisco, CA 94080, USA
| | - Oskar Adolfsson
- AC Immune SA, EPFL Innovation Park, Building B, CH-1015 Lausanne, Switzerland
| | | | - Jasvinder K Atwal
- Department of Neuroscience, Genentech Inc., San Francisco, CA 94080, USA
| | - Mira Blendstrup
- Department of Early Clinical Development, Genentech Inc., San Francisco, CA 94080, USA
| | - Helen Booler
- Department of Safety Assessment, Genentech Inc., San Francisco, CA 94080, USA
| | - Joseph Bravo
- Department of Safety Assessment, Genentech Inc., San Francisco, CA 94080, USA
| | - Robert Brendza
- Department of Neuroscience, Genentech Inc., San Francisco, CA 94080, USA
| | - Flavia Brunstein
- Department of Licensing and Early Development Safety, Genentech Inc., San Francisco, CA 94080, USA
| | - Ruby Chan
- Department of Protein Chemistry, Genentech Inc., San Francisco, CA 94080, USA
| | - Priya Chandra
- Department of Clinical Pharmacology, Genentech Inc., San Francisco, CA 94080, USA
| | - Jessica A Couch
- Project Team Leadership, Genentech Inc., San Francisco, CA 94080, USA
| | - Akash Datwani
- Department of Bioanalytical Sciences, Genentech Inc., San Francisco, CA 94080, USA
| | - Barthélemy Demeule
- Department of Late Stage Pharmaceutical Development, Genentech Inc., San Francisco, CA 94080, USA
| | - Danielle DiCara
- Department of Antibody Engineering, Genentech Inc., San Francisco, CA 94080, USA
| | - Rich Erickson
- Department of Bioanalytical Sciences, Genentech Inc., San Francisco, CA 94080, USA
| | - James A Ernst
- Department of Protein Chemistry, Genentech Inc., San Francisco, CA 94080, USA
| | - Oded Foreman
- Department of Pathology, Genentech Inc., San Francisco, CA 94080, USA
| | - Dongping He
- Department of Biochemical and Cellular Pharmacology, Genentech Inc., San Francisco, CA 94080, USA
| | - Isidro Hötzel
- Department of Antibody Engineering, Genentech Inc., San Francisco, CA 94080, USA
| | - Michael Keeley
- Project Team Leadership, Genentech Inc., San Francisco, CA 94080, USA
| | - Michael C M Kwok
- Department of Protein Chemistry, Genentech Inc., San Francisco, CA 94080, USA
| | | | - Han Lin
- Department of Neuroscience, Genentech Inc., San Francisco, CA 94080, USA
| | - Yanmei Lu
- Department of Biochemical and Cellular Pharmacology, Genentech Inc., San Francisco, CA 94080, USA
| | - Wilman Luk
- Department of Biochemical and Cellular Pharmacology, Genentech Inc., San Francisco, CA 94080, USA
| | - Paul Manser
- Biostatistics, Genentech Inc., San Francisco, CA 94080, USA
| | - Andreas Muhs
- AC Immune SA, EPFL Innovation Park, Building B, CH-1015 Lausanne, Switzerland
| | - Hai Ngu
- Department of Pathology, Genentech Inc., San Francisco, CA 94080, USA
| | - Andrea Pfeifer
- AC Immune SA, EPFL Innovation Park, Building B, CH-1015 Lausanne, Switzerland
| | - Maria Pihlgren
- AC Immune SA, EPFL Innovation Park, Building B, CH-1015 Lausanne, Switzerland
| | - Gautham K Rao
- Department of Safety Assessment, Genentech Inc., San Francisco, CA 94080, USA
| | | | - Stephen P Schauer
- Department of Biomarker Development, Genentech Inc., San Francisco, CA 94080, USA
| | - William B Smith
- Alliance for Multispecialty Research, University of Tennessee Medical Center, Knoxville, TN 37920, USA
| | - Hilda Solanoy
- Department of Neuroscience, Genentech Inc., San Francisco, CA 94080, USA
| | - Edmond Teng
- Department of Early Clinical Development, Genentech Inc., San Francisco, CA 94080, USA
| | - Kristin R Wildsmith
- Department of Biomarker Development, Genentech Inc., San Francisco, CA 94080, USA
| | - Daniela Bumbaca Yadav
- Department of Preclinical and Translational Pharmacokinetics and Pharmacodynamics, Genentech Inc., San Francisco, CA 94080, USA
| | - Yong Ying
- Department of Bioanalytical Sciences, Genentech Inc., San Francisco, CA 94080, USA
| | - Reina N Fuji
- Department of Safety Assessment, Genentech Inc., San Francisco, CA 94080, USA.
| | - Geoffrey A Kerchner
- Department of Early Clinical Development, Genentech Inc., San Francisco, CA 94080, USA
| |
Collapse
|
23
|
Zou P, Wang F, Wang J, Lu Y, Tran D, Seo SK. Impact of injection sites on clinical pharmacokinetics of subcutaneously administered peptides and proteins. J Control Release 2021; 336:310-321. [PMID: 34186147 DOI: 10.1016/j.jconrel.2021.06.038] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/28/2021] [Accepted: 06/24/2021] [Indexed: 01/26/2023]
Abstract
For most approved subcutaneously (SC) administered drug products in the US, the recommended injection sites (i.e., abdomen, thigh, and upper arm) are usually based on experience from phase 3 trials. Relative bioavailability data directly comparing the pharmacokinetics (PK) of different SC injection sites are often not available and the underlying mechanisms that may affect SC absorption have not been systematically investigated. In this study, we surveyed clinical PK data (AUC, Cmax, and Tmax) for SC administered drug products including therapeutic proteins and peptides based on literature and FDA database. The PK data after abdominal injection was used as a reference to determine the relative bioavailability of SC injections to the arm and thigh. The survey retrieved 19 immunoglobulin G (IgGs), 18 peptides/small proteins (molecular weight < 16 kDa), and 8 non-IgG proteins that had available clinical PK data from multiple SC injection sites. Among these, 5 (26%) IgGs, 9 (50%) peptides/small proteins, and 3 (38%) non-IgG proteins, exhibited injection site-dependent PK (i.e. PK differed by injection sites). Correlation analyses revealed that the PK of peptides/small proteins undergoing rapid SC absorption (Tmax ≤ 2 h), elimination (CL/F ≥ 39 L/h) or low plasma protein binding were more sensitive to injection sites. Similarly, non-IgG proteins (molecular weight ≥ 16 kDa) with high CL/F and low Tmax are associated with high risk of injection site-dependent SC absorption. IgGs with T1/2 < 15 days or Tmax < 5 days are more likely to show injection site-dependent SC absorption. Positive charge of the drug molecule (isoelectric point ≥8) may reduce SC absorption from all three injection sites but is not associated with high risk of injection site-dependent SC absorption. In summary, the results suggested that regional differences in pre-systemic catabolism and local SC blood flow potentially contribute injection site-dependent SC absorption of peptides/small proteins while local lymphatic flow and FcRn binding likely contribute to site-dependent SC absorption of IgGs.
Collapse
Affiliation(s)
- Peng Zou
- Office of Clinical Pharmacology, Center for Drug Evaluation and Research, Food and Drug Administration (FDA), Silver Spring, MD, USA.
| | - Fuyuan Wang
- Office of Clinical Pharmacology, Center for Drug Evaluation and Research, Food and Drug Administration (FDA), Silver Spring, MD, USA; Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN, USA
| | - Jie Wang
- Office of Clinical Pharmacology, Center for Drug Evaluation and Research, Food and Drug Administration (FDA), Silver Spring, MD, USA
| | - Yanhui Lu
- Office of Clinical Pharmacology, Center for Drug Evaluation and Research, Food and Drug Administration (FDA), Silver Spring, MD, USA
| | - Doanh Tran
- Office of Clinical Pharmacology, Center for Drug Evaluation and Research, Food and Drug Administration (FDA), Silver Spring, MD, USA
| | - Shirley K Seo
- Office of Clinical Pharmacology, Center for Drug Evaluation and Research, Food and Drug Administration (FDA), Silver Spring, MD, USA
| |
Collapse
|
24
|
Kariolis MS, Wells RC, Getz JA, Kwan W, Mahon CS, Tong R, Kim DJ, Srivastava A, Bedard C, Henne KR, Giese T, Assimon VA, Chen X, Zhang Y, Solanoy H, Jenkins K, Sanchez PE, Kane L, Miyamoto T, Chew KS, Pizzo ME, Liang N, Calvert MEK, DeVos SL, Baskaran S, Hall S, Sweeney ZK, Thorne RG, Watts RJ, Dennis MS, Silverman AP, Zuchero YJY. Brain delivery of therapeutic proteins using an Fc fragment blood-brain barrier transport vehicle in mice and monkeys. Sci Transl Med 2021; 12:12/545/eaay1359. [PMID: 32461332 DOI: 10.1126/scitranslmed.aay1359] [Citation(s) in RCA: 206] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 02/10/2020] [Accepted: 04/02/2020] [Indexed: 12/14/2022]
Abstract
Effective delivery of protein therapeutics to the central nervous system (CNS) has been greatly restricted by the blood-brain barrier (BBB). We describe the development of a BBB transport vehicle (TV) comprising an engineered Fc fragment that exploits receptor-mediated transcytosis for CNS delivery of biotherapeutics by binding a highly expressed brain endothelial cell target. TVs were engineered using directed evolution to bind the apical domain of the human transferrin receptor (hTfR) without the use of amino acid insertions, deletions, or unnatural appendages. A crystal structure of the TV-TfR complex revealed the TV binding site to be away from transferrin and FcRn binding sites, which was further confirmed experimentally in vitro and in vivo. Recombinant expression of TVs fused to anti-β-secretase (BACE1) Fabs yielded antibody transport vehicle (ATV) molecules with native immunoglobulin G (IgG) structure and stability. Peripheral administration of anti-BACE1 ATVs to hTfR-engineered mice and cynomolgus monkeys resulted in substantially improved CNS uptake and sustained pharmacodynamic responses. The TV platform readily accommodates numerous additional configurations, including bispecific antibodies and protein fusions, yielding a highly modular CNS delivery platform.
Collapse
Affiliation(s)
- Mihalis S Kariolis
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA.
| | - Robert C Wells
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Jennifer A Getz
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Wanda Kwan
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Cathal S Mahon
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Raymond Tong
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Do Jin Kim
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Ankita Srivastava
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Catherine Bedard
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Kirk R Henne
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Tina Giese
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Victoria A Assimon
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Xiaocheng Chen
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Yin Zhang
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Hilda Solanoy
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Katherine Jenkins
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Pascal E Sanchez
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Lesley Kane
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Takashi Miyamoto
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Kylie S Chew
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Michelle E Pizzo
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Nicholas Liang
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Meredith E K Calvert
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Sarah L DeVos
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | | | - Sejal Hall
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Zachary K Sweeney
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Robert G Thorne
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Ryan J Watts
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Mark S Dennis
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Adam P Silverman
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Y Joy Yu Zuchero
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA.
| |
Collapse
|
25
|
Akita T, Kimura R, Akaguma S, Nagai M, Nakao Y, Tsugane M, Suzuki H, Oka JI, Yamashita C. Usefulness of cell-penetrating peptides and penetration accelerating sequence for nose-to-brain delivery of glucagon-like peptide-2. J Control Release 2021; 335:575-583. [PMID: 34116136 DOI: 10.1016/j.jconrel.2021.06.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/02/2021] [Accepted: 06/06/2021] [Indexed: 01/19/2023]
Abstract
Neuropeptides are expected as therapeutic drug candidates for central nervous system (CNS) disorders. Intracerebroventricular (i.c.v.) administration of glucagon-like peptide-2 (GLP-2) has an antidepressant-like effect not only in depression model mice but also in treatment-resistant depression model mice. However, because i.c.v. administration is very invasive, research is progressing on brain delivery using intranasal administration as a non-invasive method. After intranasal administration of the drug, there are two routes to the brain. That of direct delivery from the paracellular route of olfactory epithelium to the brain via the olfactory bulb has been studied, and that of systemic absorption via the paracellular route of respiratory epithelium has been put to practical use. The high degree of vascularization and permeability of the nasal mucosa enables drug delivery via the paracellular route that leads to systemic delivery. Therefore, suppressing systemic absorption may increase drug delivery to brain, so we focused on the transcellular route. We created a GLP-2 derivative by adding cell-penetrating peptides (CPP) and penetration accelerating sequences (PAS), which are reported to provide efficient intracellular uptake, to GLP-2. However, to deliver GLP-2 by the transcellular route, GLP-2 must not only be taken up into cells but also move out of the cells. We investigated in vitro and in vivo function of PAS-CPP-GLP-2 to enable the translocation of GLP-2 directly from the nose to the brain. Derivatization of PAS-CPP-GLP-2 prevented its degradation. In the evaluation of intracellular dynamics, PAS-CPP-GLP-2 enhanced cellular uptake by macropinocytosis with CPP and promoted escape from endosomal vesicles by PAS. This study also showed that PAS-CPP-GLP-2 can move out of cells. Furthermore, only this PAS-CPP-GLP-2 showed an antidepression-like effect within 20 min of intranasal administration. Intranasal administered PAS-CPP-GLP-2 surprisingly showed the effect at the same dose with i.c.v. administration, but intravenous administered PAS-CPP-GLP-2 did not show the effect. These results suggested that PAS-CPP-GLP-2 can be efficiently delivered from the nose to the CNS and show a pharmacological effect, demonstrating the usefulness of PAS and CPP for nose-to-brain delivery of GLP-2.
Collapse
Affiliation(s)
- Tomomi Akita
- Department of Pharmaceutics and Drug Delivery, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Ryosuke Kimura
- Department of Pharmaceutics and Drug Delivery, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Saki Akaguma
- Department of Pharmaceutics and Drug Delivery, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Mio Nagai
- Department of Pharmaceutics and Drug Delivery, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Yusuke Nakao
- Department of Pharmaceutics and Drug Delivery, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Mamiko Tsugane
- Department of Precision Mechanics, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Hiroaki Suzuki
- Department of Precision Mechanics, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Jun-Ichiro Oka
- Department of Pharmaceutics and Drug Delivery, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Chikamasa Yamashita
- Department of Pharmaceutics and Drug Delivery, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
| |
Collapse
|
26
|
Naseri Kouzehgarani G, Feldsien T, Engelhard HH, Mirakhur KK, Phipps C, Nimmrich V, Clausznitzer D, Lefebvre DR. Harnessing cerebrospinal fluid circulation for drug delivery to brain tissues. Adv Drug Deliv Rev 2021; 173:20-59. [PMID: 33705875 DOI: 10.1016/j.addr.2021.03.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/10/2021] [Accepted: 03/01/2021] [Indexed: 12/31/2022]
Abstract
Initially thought to be useful only to reach tissues in the immediate vicinity of the CSF circulatory system, CSF circulation is now increasingly viewed as a viable pathway to deliver certain therapeutics deeper into brain tissues. There is emerging evidence that this goal is achievable in the case of large therapeutic proteins, provided conditions are met that are described herein. We show how fluid dynamic modeling helps predict infusion rate and duration to overcome high CSF turnover. We posit that despite model limitations and controversies, fluid dynamic models, pharmacokinetic models, preclinical testing, and a qualitative understanding of the glymphatic system circulation can be used to estimate drug penetration in brain tissues. Lastly, in addition to highlighting landmark scientific and medical literature, we provide practical advice on formulation development, device selection, and pharmacokinetic modeling. Our review of clinical studies suggests a growing interest for intra-CSF delivery, particularly for targeted proteins.
Collapse
|
27
|
Shi Y, Gao F, Yang X, Liu D, Han Q, Liu Z, Zhu H, Shen Y. Increase of BACE1, Brain-Renal Risk Factor, Contributes to Kidney Damage in an Alzheimer's Disease Mouse Model. J Alzheimers Dis 2021; 76:237-248. [PMID: 32444547 DOI: 10.3233/jad-200204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND It is believed that there is a certain correlation between the brain and kidneys, but it is poorly understood. Many findings suggested that there were previously unknown signaling pathways involving AβPP and BACE1 in the kidney. OBJECTIVE Exploring the changes of BACE1 activity in APP23 mouse kidneys, providing evidence for the function of AβPP and BACE1 activity in the kidney. METHODS The activity and expression of BACE1 were detected in the kidney of APP23 mice by enzymatic assay and western blotting. The protein expression levels of AβPP, claudin1, occludin, VE-cadherin, and Klotho (membrane-form klotho) were examined by using western blotting. The renal pathological changes of APP23 mice were examined by the routine renal pathological procedures. RESULTS In this study, we found that the AβPP protein level was increased in kidneys of APP23 mice compared with wild-type (WT) mice. Additionally, the activity and expression of BACE1 were increased in kidneys of APP23 mice compared to that of WT. BACE1 was predominantly distributed on the lumen side of renal tubular epithelial cells. The protein levels of Klotho and VE-cadherin were decreased, occludin expression was also decreased, and claudin-1 expression was increased. Renal pathological damage which observed in kidneys of APP23 mice was more serious than that in kidneys of WT mice. CONCLUSION Our findings suggest that the increase of AβPP protein levels under Thy-1 neuron promoter in the APP23 mice promoted the increase of renal BACE1 expression and enzymatic activity in the kidneys. Moreover, certain pathological damage in the kidneys of APP23 mice were observed. APP23 mice are easily affected by external risk factors compared with WT mice.
Collapse
Affiliation(s)
- Yan Shi
- Department of Nephrology, the First Medical Centre, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Beijing Key Laboratory of Kidney Disease, Beijing, China.,Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Research Institute of Nephrology, Zhengzhou University, Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Core Unit of National Clinical Medical Research Center of Kidney Disease, Zhengzhou, China
| | - Feng Gao
- Institute on Aging and Brain Disorders, First Affiliated Hospital of University of Science and Technology of China, Hefei, China.,Neurodegenerative Disorder Research Center, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xiaoli Yang
- Institute on Aging and Brain Disorders, First Affiliated Hospital of University of Science and Technology of China, Hefei, China.,Neurodegenerative Disorder Research Center, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Dongwei Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Research Institute of Nephrology, Zhengzhou University, Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Core Unit of National Clinical Medical Research Center of Kidney Disease, Zhengzhou, China
| | - Qiuxia Han
- Department of Nephrology, the First Medical Centre, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Beijing Key Laboratory of Kidney Disease, Beijing, China.,Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Research Institute of Nephrology, Zhengzhou University, Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Core Unit of National Clinical Medical Research Center of Kidney Disease, Zhengzhou, China
| | - Zhangsuo Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Research Institute of Nephrology, Zhengzhou University, Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Core Unit of National Clinical Medical Research Center of Kidney Disease, Zhengzhou, China
| | - Hanyu Zhu
- Department of Nephrology, the First Medical Centre, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Beijing Key Laboratory of Kidney Disease, Beijing, China
| | - Yong Shen
- Institute on Aging and Brain Disorders, First Affiliated Hospital of University of Science and Technology of China, Hefei, China.,Neurodegenerative Disorder Research Center, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
28
|
Delivery of Therapeutic Agents to the Central Nervous System and the Promise of Extracellular Vesicles. Pharmaceutics 2021; 13:pharmaceutics13040492. [PMID: 33916841 PMCID: PMC8067091 DOI: 10.3390/pharmaceutics13040492] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/26/2021] [Accepted: 03/30/2021] [Indexed: 12/17/2022] Open
Abstract
The central nervous system (CNS) is surrounded by the blood–brain barrier (BBB), a semipermeable border of endothelial cells that prevents pathogens, solutes and most molecules from non-selectively crossing into the CNS. Thus, the BBB acts to protect the CNS from potentially deleterious insults. Unfortunately, the BBB also frequently presents a significant barrier to therapies, impeding passage of drugs and biologicals to target cells within the CNS. This review provides an overview of different approaches to deliver therapeutics across the BBB, with an emphasis in extracellular vesicles as delivery vehicles to the CNS.
Collapse
|
29
|
Chang HY, Wu S, Li Y, Zhang W, Burrell M, Webster CI, Shah DK. Brain pharmacokinetics of anti-transferrin receptor antibody affinity variants in rats determined using microdialysis. MAbs 2021; 13:1874121. [PMID: 33499723 PMCID: PMC7849817 DOI: 10.1080/19420862.2021.1874121] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/28/2020] [Accepted: 01/06/2021] [Indexed: 01/10/2023] Open
Abstract
Receptor-mediated transcytosis (RMT) is used to enhance the delivery of monoclonal antibodies (mAb) into the central nervous system (CNS). While the binding to endogenous receptors on the brain capillary endothelial cells (BCECs) may facilitate the uptake of mAbs in the brain, a strong affinity for the receptor may hinder the efficiency of transcytosis. To quantitatively investigate the effect of binding affinity on the pharmacokinetics (PK) of anti-transferrin receptor (TfR) mAbs in different regions of the rat brain, we conducted a microdialysis study to directly measure the concentration of free mAbs at different sites of interest. Our results confirmed that bivalent anti-TfR mAb with an optimal dissociation constant (KD) value (76 nM) among four affinity variants can have up to 10-fold higher transcytosed free mAb exposure in the brain interstitial fluid (bISF) compared to lower and higher affinity mAbs (5 and 174 nM). This bell-shaped relationship between KD values and the increased brain exposure of mAbs was also visible when using whole-brain PK data. However, we found that mAb concentrations in postvascular brain supernatant (obtained after capillary depletion) were almost always higher than the concentrations measured in bISF using microdialysis. We also observed that the increase in mAb area under the concentration curve in CSF compartments was less significant, which highlights the challenge in using CSF measurement as a surrogate for estimating the efficiency of RMT delivery. Our results also suggest that the determination of mAb concentrations in the brain using microdialysis may be necessary to accurately measure the PK of CNS-targeted antibodies at the site-of-actions in the brain.
Collapse
Affiliation(s)
- Hsueh-Yuan Chang
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, NY, USA
| | - Shengjia Wu
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, NY, USA
| | - Yingyi Li
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, NY, USA
| | - Wanying Zhang
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, NY, USA
| | - Matthew Burrell
- Antibody Discovery and Protein Engineering, R&D, AstraZeneca, Cambridge, UK
| | - Carl I. Webster
- Antibody Discovery and Protein Engineering, R&D, AstraZeneca, Cambridge, UK
| | - Dhaval K. Shah
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, NY, USA
| |
Collapse
|
30
|
Pardridge WM. Blood-Brain Barrier and Delivery of Protein and Gene Therapeutics to Brain. Front Aging Neurosci 2020; 11:373. [PMID: 31998120 PMCID: PMC6966240 DOI: 10.3389/fnagi.2019.00373] [Citation(s) in RCA: 236] [Impact Index Per Article: 47.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 12/19/2019] [Indexed: 01/02/2023] Open
Abstract
Alzheimer’s disease (AD) and treatment of the brain in aging require the development of new biologic drugs, such as recombinant proteins or gene therapies. Biologics are large molecule therapeutics that do not cross the blood-brain barrier (BBB). BBB drug delivery is the limiting factor in the future development of new therapeutics for the brain. The delivery of recombinant protein or gene medicines to the brain is a binary process: either the brain drug developer re-engineers the biologic with BBB drug delivery technology, or goes forward with brain drug development in the absence of a BBB delivery platform. The presence of BBB delivery technology allows for engineering the therapeutic to enable entry into the brain across the BBB from blood. Brain drug development may still take place in the absence of BBB delivery technology, but with a reliance on approaches that have rarely led to FDA approval, e.g., CSF injection, stem cells, small molecules, and others. CSF injection of drug is the most widely practiced approach to brain delivery that bypasses the BBB. However, drug injection into the CSF results in limited drug penetration to the brain parenchyma, owing to the rapid export of CSF from the brain to blood. A CSF injection of a drug is equivalent to a slow intravenous (IV) infusion of the pharmaceutical. Given the profound effect the existence of the BBB has on brain drug development, future drug or gene development for the brain will be accelerated by future advances in BBB delivery technology in parallel with new drug discovery.
Collapse
Affiliation(s)
- William M Pardridge
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
31
|
Johnsen KB, Burkhart A, Thomsen LB, Andresen TL, Moos T. Targeting the transferrin receptor for brain drug delivery. Prog Neurobiol 2019; 181:101665. [DOI: 10.1016/j.pneurobio.2019.101665] [Citation(s) in RCA: 206] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/10/2019] [Accepted: 07/18/2019] [Indexed: 02/07/2023]
|
32
|
Pardridge WM. Alzheimer’s disease: future drug development and the blood-brain barrier. Expert Opin Investig Drugs 2019; 28:569-572. [DOI: 10.1080/13543784.2019.1627325] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
33
|
Chang HY, Wu S, Meno-Tetang G, Shah DK. A translational platform PBPK model for antibody disposition in the brain. J Pharmacokinet Pharmacodyn 2019; 46:319-338. [PMID: 31115858 DOI: 10.1007/s10928-019-09641-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 05/06/2019] [Indexed: 12/31/2022]
Abstract
In this manuscript, we have presented the development of a novel platform physiologically-based pharmacokinetic (PBPK) model to characterize brain disposition of mAbs in the mouse, rat, monkey and human. The model accounts for known anatomy and physiology of the brain, including the presence of distinct blood-brain barrier and blood-cerebrospinal fluid (CSF) barrier. CSF and interstitial fluid turnover, and FcRn mediated transport of mAbs are accounted for. The model was first used to characterize published and in-house pharmacokinetic (PK) data on the disposition of mAbs in rat brain, including the data on PK of mAb in different regions of brain determined using microdialysis. Majority of model parameters were fixed based on literature reported values, and only 3 parameters were estimated using rat data. The rat PBPK model was translated to mouse, monkey, and human, simply by changing the values of physiological parameters corresponding to each species. The translated PBPK models were validated by a priori predicting brain PK of mAbs in all three species, and comparing predicted exposures with observed data. The platform PBPK model was able to a priori predict all the validation PK profiles reasonably well (within threefold), without estimating any parameters. As such, the platform PBPK model presented here provides an unprecedented quantitative tool for prediction of mAb PK at the site-of-action in the brain, and preclinical-to-clinical translation of mAbs being developed against central nervous system (CNS) disorders. The proposed model can be further expanded to account for target engagement, disease pathophysiology, and novel mechanisms, to support discovery and development of novel CNS targeting mAbs.
Collapse
Affiliation(s)
- Hsueh-Yuan Chang
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, 455 Kapoor Hall, Buffalo, NY, 14214-8033, USA
| | - Shengjia Wu
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, 455 Kapoor Hall, Buffalo, NY, 14214-8033, USA
| | - Guy Meno-Tetang
- Quantitative Clinical Pharmacology/PK-PD, Modeling & Simulation, Immunology/Inflammation, UCB Pharmaceuticals, Brussels, Belgium
| | - Dhaval K Shah
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, 455 Kapoor Hall, Buffalo, NY, 14214-8033, USA.
| |
Collapse
|
34
|
Mandikian D, Figueroa I, Oldendorp A, Rafidi H, Ulufatu S, Schweiger MG, Couch JA, Dybdal N, Joseph SB, Prabhu S, Ferl GZ, Boswell CA. Tissue Physiology of Cynomolgus Monkeys: Cross-Species Comparison and Implications for Translational Pharmacology. AAPS JOURNAL 2018; 20:107. [PMID: 30298434 DOI: 10.1208/s12248-018-0264-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 09/10/2018] [Indexed: 01/08/2023]
Abstract
We previously performed a comparative assessment of tissue-level vascular physiological parameters in mice and rats, two of the most commonly utilized species in translational drug development. The present work extends this effort to non-human primates by measuring tissue- and organ-level vascular volumes (Vv), interstitial volumes (Vi), and blood flow rates (Q) in cynomolgus monkeys. These measurements were accomplished by red blood cell labeling, extracellular marker infusion, and rubidium chloride bolus distribution, respectively, the same methods used in previous rodent measurements. In addition, whole-body blood volumes (BV) were determined across species. The results demonstrate that Vv, Vi, and Q, measured using our methods scale approximately by body weight across mouse, rat, and monkey in the tissues considered here, where allometric analysis allowed extrapolation to human parameters. Significant differences were observed between the values determined in this study and those reported in the literature, including Vv in muscle, brain, and skin and Q in muscle, adipose, heart, thymus, and spleen. The impact of these differences for selected tissues was evaluated via sensitivity analysis using a physiologically based pharmacokinetic model. The blood-brain barrier in monkeys was shown to be more impervious to an infused radioactive tracer, indium-111-pentetate, than in mice or rats. The body weight-normalized total BV measured in monkey agreed well with previously measured value in rats but was lower than that in mice. These findings have important implications for the common practice of scaling physiological parameters from rodents to primates in translational pharmacology.
Collapse
Affiliation(s)
- Danielle Mandikian
- Preclinical and Translational Pharmacokinetics, Genentech Research and Early Development, South San Francisco, California, 94080, USA
| | - Isabel Figueroa
- Preclinical and Translational Pharmacokinetics, Genentech Research and Early Development, South San Francisco, California, 94080, USA
| | - Amy Oldendorp
- Safety Assessment, Genentech Research and Early Development, South San Francisco, California, 94080, USA
| | - Hanine Rafidi
- Preclinical and Translational Pharmacokinetics, Genentech Research and Early Development, South San Francisco, California, 94080, USA
| | - Sheila Ulufatu
- Safety Assessment, Genentech Research and Early Development, South San Francisco, California, 94080, USA
| | - Michelle G Schweiger
- Safety Assessment, Genentech Research and Early Development, South San Francisco, California, 94080, USA
| | - Jessica A Couch
- Safety Assessment, Genentech Research and Early Development, South San Francisco, California, 94080, USA
| | - Noel Dybdal
- Safety Assessment, Genentech Research and Early Development, South San Francisco, California, 94080, USA
| | - Sean B Joseph
- Preclinical and Translational Pharmacokinetics, Genentech Research and Early Development, South San Francisco, California, 94080, USA
| | - Saileta Prabhu
- Preclinical and Translational Pharmacokinetics, Genentech Research and Early Development, South San Francisco, California, 94080, USA
| | - Gregory Z Ferl
- Preclinical and Translational Pharmacokinetics, Genentech Research and Early Development, South San Francisco, California, 94080, USA. .,Genentech Inc., 1 DNA Way MS 463a, South San Francisco, California, 94080, USA.
| | - C Andrew Boswell
- Preclinical and Translational Pharmacokinetics, Genentech Research and Early Development, South San Francisco, California, 94080, USA. .,Genentech Inc., 1 DNA Way MS 463a, South San Francisco, California, 94080, USA.
| |
Collapse
|
35
|
Pardridge WM, Boado RJ, Patrick DJ, Ka-Wai Hui E, Lu JZ. Blood-Brain Barrier Transport, Plasma Pharmacokinetics, and Neuropathology Following Chronic Treatment of the Rhesus Monkey with a Brain Penetrating Humanized Monoclonal Antibody Against the Human Transferrin Receptor. Mol Pharm 2018; 15:5207-5216. [PMID: 30226787 DOI: 10.1021/acs.molpharmaceut.8b00730] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A monoclonal antibody (mAb) against the blood-brain barrier (BBB) transferrin receptor (TfR) is a potential agent for delivery of biologic drugs to the brain across the BBB. However, to date, no TfRMAb has been tested with chronic dosing in a primate model. A humanized TfRMAb against the human (h) TfR1, which cross reacts with the primate TfR, was genetically engineered with high affinity (ED50 = 0.18 ± 0.04 nM) for the human TfR type 1 (TfR1). For acute dosing, the hTfRMAb was tritiated and injected intravenously (IV) in the Rhesus monkey, which confirmed rapid delivery of the humanized hTfRMAb into both brain parenchyma, via transport across the BBB, and into cerebrospinal fluid (CSF), via transport across the choroid plexus. For chronic dosing, a total of 8 adult Rhesus monkeys (4 males, 4 females) were treated twice weekly for 4 weeks with 0, 3, 10, or 30 mg/kg of the humanized hTfRMAb via a 60 min IV infusion for a total of 8 doses prior to euthanasia and microscopic examination of brain and peripheral organs. A pharmacokinetics analysis showed the plasma clearance of the hTfRMAb in the primate was nonlinear, and plasma clearance was increased over 20-fold with chronic treatment of the low dose, 3 mg/kg, of the antibody. Chronic treatment of the primates with the 30 mg/kg dose caused anemia associated with suppressed blood reticulocytes. Immunohistochemistry of terminal brain tissue showed microglia activation, based on enhanced IBA1 immuno-staining, in conjunction with astrogliosis, based on increased GFAP immuno-staining. Moderate axonal/myelin degeneration was observed in the sciatic nerve. Further studies need to be conducted to determine if this neuropathology is induced by the antibody effector function, or is an intrinsic property of targeting the TfR in brain. The results indicate that chronic treatment of Rhesus monkeys with a humanized hTfRMAb may have a narrow therapeutic index, with associated toxicity related to microglial activation and astrogliosis of the brain.
Collapse
Affiliation(s)
| | - Ruben J Boado
- ArmaGen, Inc. , Calabasas , California 91302 , United States
| | | | - Eric Ka-Wai Hui
- ArmaGen, Inc. , Calabasas , California 91302 , United States
| | | |
Collapse
|
36
|
Ovacik M, Lin K. Tutorial on Monoclonal Antibody Pharmacokinetics and Its Considerations in Early Development. Clin Transl Sci 2018; 11:540-552. [PMID: 29877608 PMCID: PMC6226118 DOI: 10.1111/cts.12567] [Citation(s) in RCA: 183] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 05/11/2018] [Indexed: 12/21/2022] Open
Abstract
The tutorial introduces the readers to the fundamentals of antibody pharmacokinetics (PK) in the context of drug development. Topics covered include an overview of antibody development, PK characteristics, and the application of antibody PK/pharmacodynamics (PD) in research and development decision-making. We also discuss the general considerations for planning a nonclinical PK program and describe the types of PK studies that should be performed during early development of monoclonal antibodies.
Collapse
Affiliation(s)
- Meric Ovacik
- Department of Preclinical and Translational Pharmacokinetics, Genentech, Inc., South San Francisco, California, USA
| | - Kedan Lin
- Clinical Pharmacology, NGM Biopharmaceuticals, Inc., South San Francisco, California, USA
| |
Collapse
|
37
|
Chang HY, Morrow K, Bonacquisti E, Zhang W, Shah DK. Antibody pharmacokinetics in rat brain determined using microdialysis. MAbs 2018; 10:843-853. [PMID: 29944439 PMCID: PMC6260134 DOI: 10.1080/19420862.2018.1473910] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 04/20/2018] [Accepted: 04/30/2018] [Indexed: 12/21/2022] Open
Abstract
Here, we present the first case-study where microdialysis is used to investigate the pharmacokinetics of antibody in different regions of rat brain. Endogenous IgG was used to understand antibody disposition at steady-state and exogenously administered trastuzumab was used to understand the disposition in a dynamic setting. Microdialysis samples from the striatum (ST), lateral ventricle (LV), and cisterna magna (CM) were collected, along with plasma and brain homogenate, to comprehensively understand brain pharmacokinetics of antibodies. Antibody concentrations in cerebrospinal fluid (CSF) were found to vary based on the site-of-collection, where CM concentrations were several-fold higher than LV. In addition, antibody concentrations in CSF (CM/LV) were found to not accurately represent the concentrations of antibody inside brain parenchyma (e.g., ST). Elimination of CSF from CM was found to be slower than LV, and the entry and exit of antibody from ST was also slower. Pharmacokinetics of exogenously administered antibody revealed that the entry of antibody into LV via the blood-CSF barrier may represent an early pathway for antibody entry into the brain. Plasma concentrations of antibody were 247-667, 104-184, 165-435, and 377-909 fold higher than the antibody concentrations in LV, CM, ST, and brain homogenate. It was found that the measurement of antibody pharmacokinetics in different regions of the brain using microdialysis provides an unprecedented insight into brain disposition of antibody. This insight can help in designing better molecules, dosing regimens, and route of administration, which can in turn improve the efficacy of antibodies for central nervous system disorders.
Collapse
Affiliation(s)
- Hsueh-Yuan Chang
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, NY, USA
| | - Kasey Morrow
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, NY, USA
| | - Emily Bonacquisti
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, NY, USA
| | - WanYing Zhang
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, NY, USA
| | - Dhaval K. Shah
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, NY, USA
| |
Collapse
|
38
|
Yadav DB, Maloney JA, Wildsmith KR, Fuji RN, Meilandt WJ, Solanoy H, Lu Y, Peng K, Wilson B, Chan P, Gadkar K, Kosky A, Goo M, Daugherty A, Couch JA, Keene T, Hayes K, Nikolas LJ, Lane D, Switzer R, Adams E, Watts RJ, Scearce-Levie K, Prabhu S, Shafer L, Thakker DR, Hildebrand K, Atwal JK. Widespread brain distribution and activity following i.c.v. infusion of anti-β-secretase (BACE1) in nonhuman primates. Br J Pharmacol 2017; 174:4173-4185. [PMID: 28859225 DOI: 10.1111/bph.14021] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 07/09/2017] [Accepted: 08/15/2017] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND AND PURPOSE The potential for therapeutic antibody treatment of neurological diseases is limited by poor penetration across the blood-brain barrier. I.c.v. delivery is a promising route to the brain; however, it is unclear how efficiently antibodies delivered i.c.v. penetrate the cerebrospinal spinal fluid (CSF)-brain barrier and distribute throughout the brain parenchyma. EXPERIMENTAL APPROACH We evaluated the pharmacokinetics and pharmacodynamics of an inhibitory monoclonal antibody against β-secretase 1 (anti-BACE1) following continuous infusion into the left lateral ventricle of healthy adult cynomolgus monkeys. KEY RESULTS Animals infused with anti-BACE1 i.c.v. showed a robust and sustained reduction (~70%) of CSF amyloid-β (Aβ) peptides. Antibody distribution was near uniform across the brain parenchyma, ranging from 20 to 40 nM, resulting in a ~50% reduction of Aβ in the cortical parenchyma. In contrast, animals administered anti-BACE1 i.v. showed no significant change in CSF or cortical Aβ levels and had a low (~0.6 nM) antibody concentration in the brain. CONCLUSION AND IMPLICATIONS I.c.v. administration of anti-BACE1 resulted in enhanced BACE1 target engagement and inhibition, with a corresponding dramatic reduction in CNS Aβ concentrations, due to enhanced brain exposure to antibody.
Collapse
Affiliation(s)
| | - Janice A Maloney
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA, USA
| | - Kristin R Wildsmith
- Department of Development Sciences, Genentech, Inc., South San Francisco, CA, USA
| | - Reina N Fuji
- Department of Development Sciences, Genentech, Inc., South San Francisco, CA, USA
| | - William J Meilandt
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA, USA
| | - Hilda Solanoy
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA, USA
| | - Yanmei Lu
- Department of Biochemical and Cellular Pharmacology, Genentech, Inc., South San Francisco, CA, USA
| | - Kun Peng
- Department of Development Sciences, Genentech, Inc., South San Francisco, CA, USA
| | - Blair Wilson
- Department of Biochemical and Cellular Pharmacology, Genentech, Inc., South San Francisco, CA, USA
| | - Pamela Chan
- Department of Biochemical and Cellular Pharmacology, Genentech, Inc., South San Francisco, CA, USA
| | - Kapil Gadkar
- Department of Development Sciences, Genentech, Inc., South San Francisco, CA, USA
| | - Andrew Kosky
- Department of Pharmaceutical Technical Development, Genentech, Inc., South San Francisco, CA, USA
| | - Marisa Goo
- Department of Pharmaceutical Technical Development, Genentech, Inc., South San Francisco, CA, USA
| | - Ann Daugherty
- Department of Pharmaceutical Technical Development, Genentech, Inc., South San Francisco, CA, USA
| | - Jessica A Couch
- Department of Development Sciences, Genentech, Inc., South San Francisco, CA, USA
| | | | | | | | | | | | - Eric Adams
- Northern Biomedical Research, Norton Shores, MI, USA
| | - Ryan J Watts
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA, USA
| | | | - Saileta Prabhu
- Department of Development Sciences, Genentech, Inc., South San Francisco, CA, USA
| | | | | | | | - Jasvinder K Atwal
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA, USA
| |
Collapse
|