1
|
Gao JM, Li WB, Yi Y, Wei JJ, Gong MX, Pan BB, Su XC, Pan YC, Guo DS, Gong QH. α-Synuclein targeted therapy with multiple pathological improvement for Parkinson's disease by macrocyclic amphiphile nanomedicine. Biomaterials 2025; 322:123378. [PMID: 40319681 DOI: 10.1016/j.biomaterials.2025.123378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 04/12/2025] [Accepted: 04/25/2025] [Indexed: 05/07/2025]
Abstract
The toxic species formed by the pathological aggregation of α-synuclein (α-Syn) is one of the core pathogenic mechanisms in Parkinson's disease, leading to mitochondrial dysfunction, oxidative stress and ultimately degeneration and loss of dopaminergic neurons. Developing effective inhibitors targeting α-Syn fibrillization critically requires the simultaneous achievement of (1) strong and selective binding of α-Syn for efficient disintegration of fibrils, as well as (2) robust transmembrane capability for efficient cellular uptake. Herein, the co-assembly of guanidinium-modified calixarene (GCA) and cyclodextrin (CD), termed GCA-CD, is screened fully accommodating these conditions. GCA-CD binds tightly and selectively towards α-Syn, thereby effectively inhibiting α-Syn aggregation and disintegrating its fibrils, meanwhile the guanidinium of GCA can additionally improve the transmembrane capability of the co-assembly. In vivo investigations demonstrate that the GCA-CD nanomedicine significantly rescues motor deficits and nigrostriatal degeneration of PD-like rats by decreasing the content of α-Syn as well as restoring mitochondrial dysfunction and suppressing oxidative stress. Astonishingly, transcriptome analysis further reveals the role of GCA-CD in dampening cuproptosis through inhibiting FDX1/LIAS signaling pathway, highlighting the multifaceted therapeutic effects of the co-assembly in PD. The findings in this study underscore the comprehensive exposition on the actual function mechanisms of the therapeutic agents, thereby providing valuable insights for informing material design.
Collapse
Affiliation(s)
- Jian-Mei Gao
- School of Pharmacy, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China
| | - Wen-Bo Li
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, China; Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, China
| | - Yang Yi
- School of Pharmacy, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China
| | - Jia-Jia Wei
- School of Pharmacy, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China
| | - Miao-Xian Gong
- School of Pharmacy, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China
| | - Bin-Bin Pan
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, China
| | - Xun-Cheng Su
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, China
| | - Yu-Chen Pan
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, China; Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, China.
| | - Dong-Sheng Guo
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, China; Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, China.
| | - Qi-Hai Gong
- School of Pharmacy, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China.
| |
Collapse
|
2
|
Gao Q, Li X, Huang T, Gao L, Wang S, Deng Y, Wang F, Xue X, Duan R. Angiotensin-(1-7) relieves behavioral defects and α-synuclein expression through NEAT1/miR-153-3p axis in Parkinson's disease. Aging (Albany NY) 2024; 16:13304-13322. [PMID: 39422618 PMCID: PMC11719108 DOI: 10.18632/aging.206028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 07/05/2024] [Indexed: 10/19/2024]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder, whose characteristic pathology involves progressive deficiency of dopaminergic neurons and generation of Lewy bodies (LBs). Aggregated and misfolded α-synuclein (α-syn) is the major constituent of LBs. As the newly discovered pathway of renin-angiotensin system (RAS), Angiotensin-(1-7) (Ang-(1-7)) and receptor Mas have attracted increasing attentions for their correlation with PD, but underlying mechanisms remain not fully clear. Based on above, this study established PD models of mice and primary dopaminergic neurons with AAV-hα-syn(A53T), then discussed the effects of Ang-(1-7)/Mas on α-syn level and neuronal apoptosis for these models combined with downstream long non-coding RNA (lncRNA) and microRNA (miRNA). Results showed that Ang-(1-7) alleviated behavioral impairments, rescued dopaminergic neurons loss and lowered α-syn expression in substantia nigra of hα-syn(A53T) overexpressed PD mice. We also discovered that Ang-(1-7) decreased level of α-syn and apoptosis in the hα-syn(A53T) overexpressed dopaminergic neurons through lncRNA NEAT1/miR-153-3p axis. Moreover, miR-153-3p level in peripheral blood is found negatively correlated with that of α-syn. In conclusion, our work not only showed neuroprotective effect and underlying mechanisms for Ang-(1-7) on α-syn in vivo and vitro, but also brought new hope on miR-153-3p and NEAT1 for diagnosis and treatment in PD.
Collapse
Affiliation(s)
- Qing Gao
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, P.R. China
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, P.R. China
| | - Xiaoyuan Li
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, P.R. China
| | - Ting Huang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, P.R. China
| | - Li Gao
- Department of Neurology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, P.R. China
| | - Siyu Wang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, P.R. China
| | - Yang Deng
- Department of Neurology, Nanjing First Hospital, China Pharmaceutical University, Nanjing 210006, Jiangsu, P.R. China
| | - Feng Wang
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, P.R. China
| | - Xue Xue
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, P.R. China
| | - Rui Duan
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, P.R. China
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, P.R. China
| |
Collapse
|
3
|
Lian B, Zhang J, Yin X, Wang J, Li L, Ju Q, Wang Y, Jiang Y, Liu X, Chen Y, Tang X, Sun C. SIRT1 improves lactate homeostasis in the brain to alleviate parkinsonism via deacetylation and inhibition of PKM2. Cell Rep Med 2024; 5:101684. [PMID: 39128469 PMCID: PMC11384727 DOI: 10.1016/j.xcrm.2024.101684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 04/15/2024] [Accepted: 07/22/2024] [Indexed: 08/13/2024]
Abstract
Sirtuin 1 (SIRT1) is a histone deacetylase and plays diverse functions in various physiological events, from development to lifespan regulation. Here, in Parkinson's disease (PD) model mice, we demonstrated that SIRT1 ameliorates parkinsonism, while SIRT1 knockdown further aggravates PD phenotypes. Mechanistically, SIRT1 interacts with and deacetylates pyruvate kinase M2 (PKM2) at K135 and K206, thus leading to reduced PKM2 enzyme activity and lactate production, which eventually results in decreased glial activation in the brain. Administration of lactate in the brain recapitulates PD-like phenotypes. Furthermore, increased expression of PKM2 worsens PD symptoms, and, on the contrary, inhibition of PKM2 by shikonin or PKM2-IN-1 alleviates parkinsonism in mice. Collectively, our data indicate that excessive lactate in the brain might be involved in the progression of PD. By improving lactate homeostasis, SIRT1, together with PKM2, are likely drug targets for developing agents for the treatment of neurodegeneration in PD.
Collapse
Affiliation(s)
- Bolin Lian
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu 226001, China; School of Life Sciences, Nantong University, 9 Seyuan Road, Nantong, Jiangsu 226019, China
| | - Jing Zhang
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu 226001, China
| | - Xiang Yin
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu 226001, China
| | - Jiayan Wang
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu 226001, China
| | - Li Li
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu 226001, China
| | - Qianqian Ju
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu 226001, China
| | - Yuejun Wang
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu 226001, China
| | - Yuhui Jiang
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu 226001, China
| | - Xiaoyu Liu
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu 226001, China
| | - Yu Chen
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong 226001, China.
| | - Xin Tang
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu 226001, China.
| | - Cheng Sun
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu 226001, China.
| |
Collapse
|
4
|
Huang W, Wang Y, Huang W. Mangiferin alleviates 6-OHDA-induced Parkinson's disease by inhibiting AKR1C3 to activate Wnt signaling pathway. Neurosci Lett 2024; 821:137608. [PMID: 38142926 DOI: 10.1016/j.neulet.2023.137608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 12/26/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder with a lack of effective treatment options. mangiferin, a bioactive compound derived from mango, has been shown to possess strong neuroprotective properties. In this study, we investigated the neuroprotective effects of mangiferin on PD and its underlying mechanisms using both in vitro and in vivo models of 6-OHDA-induced PD. Additionally, we conducted molecular docking experiments to evaluate the interaction between mangiferin and AKR1C3 and β-catenin. Our results demonstrated that treatment with mangiferin significantly attenuated 6-OHDA-induced cell damage in PC12 cells, reducing intracellular oxidative stress, improving mitochondrial membrane potential, and restoring the expression of tyrosine hydroxylase (TH), a characteristic protein of dopaminergic neurons. Furthermore, mangiferin reduced the accumulation of α-synuclein and inhibited the expression of AKR1C3, thereby activating the Wnt/β-catenin signaling pathway. In vivo studies revealed that mangiferin improved motor dysfunction in 6-OHDA-induced PD mice. Molecular docking analysis confirmed the interaction between mangiferin and AKR1C3 and β-catenin. These findings indicate that mangiferin exerts significant neuroprotective effects in 6-OHDA-induced PD by inhibiting AKR1C3 and activating the Wnt/β-catenin signaling pathway. Therefore, mangiferin may emerge as an innovative therapeutic strategy in the comprehensive treatment regimen of PD patients, providing them with better clinical outcomes and quality of life.
Collapse
Affiliation(s)
- Wanran Huang
- Pharmacy Department, The Second Affiliated Hospital of Wenzhou Medical University (The second Affiliated Hospital &Yuying Children's Hospital), Wenzhou, Zhejiang 325024, China
| | - Yanni Wang
- Pharmacy Department, The Third Affiliated Hospital of Wenzhou Medical University, Ruian People' s Hospital, Wenzhou, Zhejiang 325200, China
| | - Wei Huang
- Pharmacy Department, Ruian Hospital of Traditional Chinese Medicine, Wenzhou, Zhejiang 325200, China.
| |
Collapse
|
5
|
Song R, Chen H, Zhan R, Han M, Zhao L, Shen X. Vitamin E protects dopaminergic neurons against manganese-induced neurotoxicity through stimulation of CHRM1 and KCNJ4. J Trace Elem Med Biol 2024; 81:127326. [PMID: 37939525 DOI: 10.1016/j.jtemb.2023.127326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 11/10/2023]
Abstract
BACKGROUND Manganese (Mn) overexposure can induce neurotoxicity and lead to manganism. Vitamin E (Vit E) has neuroprotective effects by acting as an ROS scavenger, preventing mitochondrial dysfunction and neuronal apoptosis. However, the effects of Vit E on Mn-induced nigrostriatal system lesions remains unknown. OBJECTIVES We aim to investigate whether Vit E has protective effects on Mn-induced nigrostriatal system lesions and mRNA expression profiles in the SN of mice. METHODS Sixty 8-week-old C57BL/6 male mice were randomly divided into the Control, MnCl2, MnCl2 +Vit E, and Vit E group. Twenty-four hours after the last injection, the behaviour test was performed. The numbers of dopaminergic neurons in Substantia nigra (SN), the contents of dopamine and its metabolite levels in striatium, and the morphology of mitochondria and nuclei in the dopaminergic neurons in SN were detected by immunofluorescence staining, high-performance liquid chromatography, and transmission electron microscopy. Transcriptome analysis was used to analyze the signaling pathways and RT-PCR was used to verify the mRNA levels. RESULTS Vit E ameliorates behavioral disorders and attenuates the loss of nigral dopaminergic neurons in the Mn-induced mouse model. In addition, Vit E antagonized Mn-induced toxicity by restoring mitochondrial function. The results of transcriptome sequencing and RTPCR show that the protective effect of Vit E was related to the upregulation of CHRM1 and KCNJ4 mRNA in the SN. CONCLUSIONS Vit E has neuroprotective effects on Mn-induced neurodegeneration in the nigrostriatal system. This effect may be related to the upregulation of CHRM1 and KCNJ4 mRNA stimulated by Vit E in the SN.
Collapse
Affiliation(s)
- Ruihan Song
- Department of Epidemiology and Health Statistics, Medical School of Qingdao University, Qingdao, Shandong, China
| | - Huanhuan Chen
- Qingdao Municipal Center for Disease Control and Prevention/Qingdao Institute of Preventive Medicine, Qingdao, Shandong, China
| | - Runqing Zhan
- Qingdao University Affiliated Hiser Hospital, Qingdao, Shandong, China
| | - Miaomiao Han
- Department of Epidemiology and Health Statistics, Medical School of Qingdao University, Qingdao, Shandong, China
| | - Longzhu Zhao
- Department of Epidemiology and Health Statistics, Medical School of Qingdao University, Qingdao, Shandong, China
| | - Xiaoli Shen
- Department of Epidemiology and Health Statistics, Medical School of Qingdao University, Qingdao, Shandong, China.
| |
Collapse
|
6
|
Zhu M, Long S, Tao Y, Zhang Z, Zhou Z, Wang X, Chen W. The P38MAPK/ATF2 signaling pathway is involved in PND in mice. Exp Brain Res 2024; 242:109-121. [PMID: 37973625 PMCID: PMC10786957 DOI: 10.1007/s00221-023-06730-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 10/23/2023] [Indexed: 11/19/2023]
Abstract
Accumulating evidence indicates that microglia-mediated neuroinflammation in the hippocampus contributes to the development of perioperative neurocognitive disorder (PND). P38MAPK, a point of convergence for different signaling processes involved in inflammation, can be activated by various stresses. This study aims to investigate the role of the P38MAPK/ATF2 signaling pathway in the development of PND in mice. Aged C57BL/6 mice were subjected to tibial fracture surgery under isoflurane anesthesia to establish a PND animal model. The open field test was used to evaluate the locomotor activity of the mice. Neurocognitive function was assessed with the Morris water maze (MWM) and fear conditioning test (FCT) on postoperative days 1, 3 and 7. The mice exhibited cognitive impairment accompanied by increased expression of proinflammatory factors (IL-1β, TNF-α), proapoptotic molecules (caspase-3, bax) and microglial activation in the hippocampus 1, 3 and 7 days after surgery. Treatment with SB239063 (a P38MAPK inhibitor) decreased the expression of proinflammatory factors, proapoptotic molecules and Iba-1 in the CA1 region of the hippocampus. The number of surviving neurons was significantly increased. Inhibition of the P38MAPK/ATF2 signaling pathway attenuates hippocampal neuroinflammation and neuronal apoptosis in aged mice with PND, thus improving the perioperative cognitive function of the mice.
Collapse
Affiliation(s)
- Mengjiao Zhu
- Department of Anesthesiology, The Central Hospital of Wuhan, Tongji Medical College of Huazhong University of Science and Technology, Nanjing Road, Wuhan, 430030, Hubei Province, China
- Department of Anesthesiology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei Province, China
| | - Si Long
- Department of Anesthesiology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, 510080, Guangdong Province, China
| | - Yizhi Tao
- Department of Anesthesiology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei Province, China
| | - Zhifa Zhang
- Department of Anesthesiology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei Province, China
| | - Zhiqiang Zhou
- Department of Anesthesiology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei Province, China
| | - Xueren Wang
- Department of Anesthesiology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei Province, China.
| | - Wei Chen
- Department of Integrated Traditional Chinese and Western Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei Province, China.
| |
Collapse
|
7
|
Wu Y, Bai Y, Lu Y, Zhang Z, Zhao Y, Huang S, Tang L, Liang Y, Hu Y, Xu C. Transcriptome sequencing and network pharmacology-based approach to reveal the effect and mechanism of Ji Chuan Jian against Parkinson's disease. BMC Complement Med Ther 2023; 23:182. [PMID: 37270490 DOI: 10.1186/s12906-023-03999-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/14/2023] [Indexed: 06/05/2023] Open
Abstract
BACKGROUND Ji Chuan Jian (JCJ), a classic Traditional Chinese Medicine (TCM) formula, has been widely applied in treating Parkinson's disease (PD) in China, However, the interaction of bioactive compounds from JCJ with the targets involved in PD remains elusive. METHODS Based on the transcriptome sequencing and network pharmacology approaches, the chemical compounds of JCJ and gene targets for treating PD were identified. Then, the Protein-protein interaction (PPI) and "Compound-Disease-Target" (C-D-T) network were constructed by using of Cytoscape. Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were applied to these target proteins. Finally, AutoDock Vina was used for applying molecular docking. RESULTS In the present study, a total number of 2669 differentially expressed genes (DEGs) were identified between PD and healthy controls using whole transcriptome RNA sequencing. Then, 260 targets of 38 bioactive compounds in JCJ were identified. Of these targets, 47 were considered PD-related targets. Based on the PPI degree, the top 10 targets were identified. In C-D-T network analysis, the most important anti-PD bioactive compounds in JCJ were determined. Molecular docking revealed that potential PD-related targets, matrix metalloproteinases-9 (MMP9) were more stably bound with naringenin, quercetin, baicalein, kaempferol and wogonin. CONCLUSION Our study preliminarily investigated the bioactive compounds, key targets, and potential molecular mechanism of JCJ against PD. It also provided a promising approach for identifying the bioactive compounds in TCM as well as a scientific basis for further elucidating the mechanism of TCM formulae in treating diseases.
Collapse
Affiliation(s)
- Yao Wu
- Department of Neurology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yu Bai
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yan Lu
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Zhennian Zhang
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yang Zhao
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Sirui Huang
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Lili Tang
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yan Liang
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yue Hu
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.
| | - Chengcheng Xu
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.
| |
Collapse
|
8
|
Rani L, Ghosh B, Ahmad MH, Mondal AC. Evaluation of Potential Neuroprotective Effects of Vanillin Against MPP +/MPTP-Induced Dysregulation of Dopaminergic Regulatory Mechanisms in SH-SY5Y Cells and a Mouse Model of Parkinson's Disease. Mol Neurobiol 2023:10.1007/s12035-023-03358-z. [PMID: 37145378 DOI: 10.1007/s12035-023-03358-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 04/18/2023] [Indexed: 05/06/2023]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative condition. The pathogenesis of PD is still unknown, and drugs available for PD treatment either have side effects or have suboptimal efficacy. Flavonoids are potent antioxidants having little toxicity with extended use, suggesting they might hold promising therapeutic potential against PD. Vanillin (Van) is a phenolic compound that has exhibited neuroprotective properties in various neurological disorders, including PD. However, the neuroprotective role of Van in PD and its underlying mechanisms are scarce and therefore need more exploration. Here, we evaluated the neuroprotective potential of Van and its associated mechanisms against MPP+/MPTP-induced neuronal loss in differentiated human neuroblastoma (SH-SY5Y) cells and the mouse model of PD. In the present study, Van treatment significantly enhanced the cell viability and alleviated oxidative stress, mitochondrial membrane potential, and apoptosis in MPP+-intoxicated SH-SY5Y cells. Moreover, Van significantly ameliorated the MPP+-induced dysregulations in protein expression of tyrosine hydroxylase (TH) and mRNA expressions of GSK-3β, PARP1, p53, Bcl-2, Bax, and Caspase-3 genes in SH-SY5Y cells. Similar to our in vitro results, Van significantly alleviated MPTP-induced neurobehavioral dysregulations, oxidative stress, aberrant TH protein expressions, and immunoreactivity in SNpc of mice brains. Treatment of Van also prevented MPTP-mediated loss of TH-positive intrinsic dopaminergic neurons to SNpc and TH-fibers projecting to the striatum of mice. Thus, Van exhibited promising neuroprotective properties in the current study against MPP+/MPTP-intoxicated SH-SY5Y cells and mice, indicating its potential therapeutic properties against PD pathology.
Collapse
Affiliation(s)
- Linchi Rani
- Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India, 110067
| | - Balaram Ghosh
- Midnapore Medical College and Hospital, West Medinipur, Kolkata, West Bengal, India
| | - Mir Hilal Ahmad
- Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India, 110067
| | - Amal Chandra Mondal
- Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India, 110067.
| |
Collapse
|
9
|
Zheng T, Shi X, Nie S, Yin L, Zhu J, Yu E, Shen H, Mo F. Effects of Chinese herbal diet on hematopoiesis, immunity, and intestines of mice exposed to different doses of radiation. Heliyon 2023; 9:e15473. [PMID: 37131450 PMCID: PMC10149268 DOI: 10.1016/j.heliyon.2023.e15473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/20/2023] [Accepted: 04/11/2023] [Indexed: 05/04/2023] Open
Abstract
Radiotherapy causes a series of side effects in patients with malignant tumors. Polygonati Rhizoma, Achyranthis Bidentatae Radix, and Epimedii Folium are all traditional Chinese herbs with varieties of functions such as anti-radiation and immune regulation. In this study, the above three herbs were used as a herbal diet to study their effects on the hematopoietic, immune, and intestinal systems of mice exposed to three doses of radiation. Our study showed that the diet had no radiation-protective effect on the hematopoietic and immune systems. However, at the radiation dose of 4 Gy and 8 Gy, the diet showed an obvious radiation-protective effect on intestinal crypts. At the dose of 8 Gy, we also found that the Chinese herbal diet had an anti-radiation effect on reducing the loss of the inhibitory nNOS+ neurons in the intestine. That provides a new diet for relieving the symptoms of hyperperistalsis and diarrhea in patients after radiotherapy.
Collapse
Affiliation(s)
- Tianyu Zheng
- Department of Naval Nutrition and Food Hygiene, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai 200433, China
| | - Xiaohui Shi
- Department of Colorectal Surgery, The First Affiliated Hospital of Naval Medical University, 800 Xiangyin Road, Shanghai 200433, China
| | - Shuang Nie
- Department of Naval Nutrition and Food Hygiene, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai 200433, China
| | - Lifeng Yin
- Department of Naval Nutrition and Food Hygiene, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai 200433, China
| | - Jian Zhu
- Department of Naval Nutrition and Food Hygiene, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai 200433, China
| | - Enda Yu
- Department of Colorectal Surgery, The First Affiliated Hospital of Naval Medical University, 800 Xiangyin Road, Shanghai 200433, China
| | - Hui Shen
- Department of Naval Nutrition and Food Hygiene, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai 200433, China
- Corresponding author. Department of Naval Nutrition and Food Hygiene, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Rd, Shanghai 200433, China.
| | - Fengfeng Mo
- Department of Colorectal Surgery, The First Affiliated Hospital of Naval Medical University, 800 Xiangyin Road, Shanghai 200433, China
- Corresponding author. Department of Naval Nutrition and Food Hygiene, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Rd, Shanghai 200433, China.
| |
Collapse
|
10
|
Liu X, Guan J, Wu Z, Xu L, Sun C. The TGR5 Agonist INT-777 Promotes Peripheral Nerve Regeneration by Activating cAMP-dependent Protein Kinase A in Schwann Cells. Mol Neurobiol 2023; 60:1901-1913. [PMID: 36593434 DOI: 10.1007/s12035-022-03182-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 12/15/2022] [Indexed: 01/04/2023]
Abstract
Schwann cell (SC) myelination is a pivotal event in the normal physiological functioning of the peripheral nervous system (PNS), where myelination is finely controlled by a series of factors within SCs to ensure timely onset and correct myelin thickness for saltatory conduction. Among these, cyclic AMP (cAMP) is a promising factor for driving myelin gene expression in SCs. It has been shown that TGR5 activation is often associated with increased production of cAMP. Therefore, we speculated that the G-protein-coupled receptor (TGR5) might be involved in the PNS myelination. To test this hypothesis, sciatic nerve crush-injured mice were treated with INT-777, a specific agonist of TGR5, which significantly improved remyelination and functional recovery. Furthermore, rats that underwent sciatic nerve transection were treated with INT-777, which also promoted nerve regeneration and functional recovery. In primary SCs, the stimulatory effect of INT-777 on myelin gene expression was largely counteracted by H89, a potent inhibitor of cAMP-dependent protein kinase A (PKA). Additionally, INT-777 stimulated cell migration was blunted in the presence of H89. Overall, these data indicate that INT-777 is capable of promoting peripheral nerve regeneration and functional recovery after injury, and these benefits are likely due to the activation of the TGR5/cAMP/PKA axis. As such, INT-777, together with other TGR5 agonists, may hold great therapeutic potential for treating peripheral nerve injury.
Collapse
Affiliation(s)
- Xiaoyu Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neurogeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 19 Qixiu Road, Nantong, China
| | - Jindong Guan
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neurogeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 19 Qixiu Road, Nantong, China
| | - Zhiguan Wu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neurogeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 19 Qixiu Road, Nantong, China
| | - Lingchi Xu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neurogeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 19 Qixiu Road, Nantong, China.
| | - Cheng Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neurogeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 19 Qixiu Road, Nantong, China.
| |
Collapse
|
11
|
Exosomes from Inflamed Macrophages Promote the Progression of Parkinson's Disease by Inducing Neuroinflammation. Mol Neurobiol 2023; 60:1914-1928. [PMID: 36596964 DOI: 10.1007/s12035-022-03179-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/14/2022] [Indexed: 01/05/2023]
Abstract
Inflammation is a common feature both for Parkinson's disease (PD) and obesity-associated metabolic syndromes. Inflammation mediated by inflamed macrophages in white adipose tissue plays a pivotal role for the pathogenesis of metabolic syndromes. Exosomes are important carriers connecting peripheral tissues and the central nervous system (CNS). Therefore, we speculate that exosomes derived from inflamed macrophages may be involved in the pathological progression of PD. Here, we prepared exosomes from lipopolysaccharide (LPS) or interferon gamma (IFNγ) treated macrophages (inflamed macrophages) and examined their potential roles in PD. Our data showed that exosomes from inflamed macrophages stimulate proinflammatory cytokine expression in primary microglia and astrocytes. In vivo, inflamed macrophage exosomes induce behavioral defects in mice as evidenced by shortened duration in the rotarod test and prolonged latency in the pole test. The treatment of exosomes also reduces tyrosine hydroxylase (TH) positive cells in the substantia nigra pars compacta (SNpc) and striatum. All these PD-like phenotypes are likely due to the activation of microglia and astrocytes induced by exosomes from inflamed macrophages. Exosome sequencing, together with bioinformatics analysis and functional studies, revealed that exosomal miRNAs such as miR-155-5p are likely a key factor for inducing an inflammatory response in glial cells. These results indicate that exosomes derived from inflamed macrophages are likely a causative factor for developing PD. In this regard, inflamed macrophage exosomes might be a linker transducing the peripheral tissue inflammation into the CNS.
Collapse
|
12
|
Yao Y, Zhao Z, Zhang F, Miao N, Wang N, Xu X, Yang C. microRNA-221 rescues the loss of dopaminergic neurons in a mouse model of Parkinson's disease. Brain Behav 2023; 13:e2921. [PMID: 36795044 PMCID: PMC10013949 DOI: 10.1002/brb3.2921] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/21/2022] [Accepted: 01/31/2023] [Indexed: 02/17/2023] Open
Abstract
BACKGROUND Parkinson's disease (PD) is one of the most common systemic neurodegenerative diseases and is related to the loss of dopaminergic neurons in the substantia nigra. Several studies verified that microRNA (miRNAs) targeting the Bim/Bax/caspase-3 signaling axis is involved in the apoptosis of dopaminergic neurons in substantia nigra. In this study, we aimed to explore the role of miR-221 in PD. METHODS To examine the function of miR-221 in vivo, we used a well-established 6-OHDA-induced PD mouse model. Then we conducted adenovirus-mediated miR-221 overexpression in the PD mice. RESULTS Our results showed that miR-221 overexpression improved motor behavior of the PD mice. We demonstrated that overexpression of miR-221 reduced the loss of dopaminergic neurons in the substantia nigra striatum by promoting their antioxidative and antiapoptosis capacities. Mechanistically, miR-221 targets Bim, thus inhibiting Bim and Bax caspase-3 mediated apoptosis signaling pathways. CONCLUSION Our findings suggest miR-221 participates in the pathological process of PD and might be a potential drug target and provide new insight into PD treatment.
Collapse
Affiliation(s)
- Yufang Yao
- Department 7 of NeurologyCangzhou Central HospitalCangzhouHebeiChina
| | - Zhiyue Zhao
- College of Mechanical and Electrical EngineeringCangzhou Normal UniversityCangzhouHebeiChina
| | - Fubo Zhang
- Department 4 of NeurologyCangzhou Central HospitalCangzhouHebeiChina
| | - Na Miao
- Department 7 of NeurologyCangzhou Central HospitalCangzhouHebeiChina
| | - Nan Wang
- Department 4 of NeurologyCangzhou Central HospitalCangzhouHebeiChina
| | - Xin Xu
- Department 1 of Traditional Chinese MedicineCangzhou Central HospitalCangzhouHebeiChina
| | - Chaoping Yang
- Department 4 of NeurologyCangzhou Central HospitalCangzhouHebeiChina
| |
Collapse
|
13
|
Zhang L, Yong YY, Deng L, Wang J, Law BYK, Hu ML, Wu JM, Yu L, Wong VKW, Yu CL, Qin DL, Zhou XG, Wu AG. Therapeutic potential of Polygala saponins in neurological diseases. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 108:154483. [PMID: 36260972 DOI: 10.1016/j.phymed.2022.154483] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/09/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND There are many types of neurological diseases with complex etiologies. At present, most clinical drugs can only relieve symptoms but cannot cure these diseases. Radix Polygalae, a famous traditional Chinese medicine from the root of plants of the genus Polygala, has the traditional effect of treating insomnia, forgetfulness, and palpitation and improving intelligence and other symptoms of neurological diseases. Saponins are important bioactive components of plants of the genus Polygala and exhibit neuroprotective effects. PURPOSE This review aimed to summarize the traditional use of Polygala species and discuss the latest phytochemical, pharmacological, and toxicological findings, mainly with regard to Polygala saponins in the treatment of neurological disorders. METHODS Literature was searched and collected using databases, including PubMed, Science Direct, CNKI, and Google Scholar. The search terms used included "Polygala", "saponins", "neurological diseases", "Alzheimer's disease", "toxicity", etc., and combinations of these keywords. A total of 1202 papers were retrieved until August 2022, and we included 135 of these papers on traditional uses, phytochemistry, pharmacology, toxicology and other fields. RESULTS This literature review mainly reports on the traditional use of the Polygala genus and prescriptions containing Radix Polygalae in neurological diseases. Phytochemical studies have shown that plants of the genus Polygala mainly include saponins, flavonoids, oligosaccharide esters, alkaloids, coumarins, lignans, flavonoids, etc. Among them, saponins are the majority. Modern pharmacological studies have shown that Polygala saponins have neuroprotective effects on a variety of neurological diseases. Its mechanism of action involves autophagic degradation of misfolded proteins, anti-inflammatory, anti-apoptotic, antioxidative stress and so on. Toxicological studies have shown that Polygala saponins trigger gastrointestinal toxicity, and honey processing and glycosyl disruption of Polygala saponins can effectively ameliorate its gastrointestinal side effect. CONCLUSION Polygala saponins are the major bioactive components in plants of the genus Polygala that exhibit therapeutic potential in various neurological diseases. This review provides directions for the future study of Polygala saponins and references for the clinical use of prescriptions containing Radix Polygalae for the treatment of neurological diseases.
Collapse
Affiliation(s)
- Li Zhang
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Materia Medica, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Education Ministry Key Laboratory of Medical Electrophysiology, School of Preclinical Medicine, Southwest Medical University, Luzhou, 646000, PR. China
| | - Yuan-Yuan Yong
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Materia Medica, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Education Ministry Key Laboratory of Medical Electrophysiology, School of Preclinical Medicine, Southwest Medical University, Luzhou, 646000, PR. China
| | - Lan Deng
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Materia Medica, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Education Ministry Key Laboratory of Medical Electrophysiology, School of Preclinical Medicine, Southwest Medical University, Luzhou, 646000, PR. China
| | - Jing Wang
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Materia Medica, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Education Ministry Key Laboratory of Medical Electrophysiology, School of Preclinical Medicine, Southwest Medical University, Luzhou, 646000, PR. China
| | - Betty Yuen-Kwan Law
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR 99078, PR. China
| | - Meng-Ling Hu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Materia Medica, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Education Ministry Key Laboratory of Medical Electrophysiology, School of Preclinical Medicine, Southwest Medical University, Luzhou, 646000, PR. China
| | - Jian-Ming Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Materia Medica, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Education Ministry Key Laboratory of Medical Electrophysiology, School of Preclinical Medicine, Southwest Medical University, Luzhou, 646000, PR. China
| | - Lu Yu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Materia Medica, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Education Ministry Key Laboratory of Medical Electrophysiology, School of Preclinical Medicine, Southwest Medical University, Luzhou, 646000, PR. China
| | - Vincent Kam-Wai Wong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR 99078, PR. China
| | - Chong-Lin Yu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Materia Medica, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Education Ministry Key Laboratory of Medical Electrophysiology, School of Preclinical Medicine, Southwest Medical University, Luzhou, 646000, PR. China
| | - Da-Lian Qin
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Materia Medica, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Education Ministry Key Laboratory of Medical Electrophysiology, School of Preclinical Medicine, Southwest Medical University, Luzhou, 646000, PR. China.
| | - Xiao-Gang Zhou
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Materia Medica, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Education Ministry Key Laboratory of Medical Electrophysiology, School of Preclinical Medicine, Southwest Medical University, Luzhou, 646000, PR. China.
| | - An-Guo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Materia Medica, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Education Ministry Key Laboratory of Medical Electrophysiology, School of Preclinical Medicine, Southwest Medical University, Luzhou, 646000, PR. China.
| |
Collapse
|
14
|
Li QM, Li X, Su SQ, Wang YT, Xu T, Zha XQ, Pan LH, Shang ZZ, Zhang FY, Luo JP. Dendrobine inhibits dopaminergic neuron apoptosis via MANF-mediated ER stress suppression in MPTP/MPP +-induced Parkinson's disease models. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 102:154193. [PMID: 35636177 DOI: 10.1016/j.phymed.2022.154193] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 05/16/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Parkinson's disease (PD) is an age-related neurodegenerative disorder without effective treatments. Mesencephalic astrocyte-derived neurotrophic factor (MANF) has been suggested to be capable of protecting against PD by inhibiting endoplasmic reticulum (ER) stress-mediated neuronal apoptosis. PURPOSE This study was aimed to evaluate the antiparkinsonian effect of dendrobine and reveal its underlying mechanisms from the perspective of MANF-mediated ER stress suppression. METHODS Behavioral assessments of PD mice as well as LDH/CCK-8 assay in SH-SY5Y cells and primary midbrain neurons were carried out to detect the antiparkinsonian effect of dendrobine. Immunofluorescence, western blot, flow cytometry and shRNA-mediated MANF knockdown were used to determine the apoptosis of dopaminergic neurons and the expressions of ER stress-related proteins for investigating the underlying mechanism of dendrobine. RESULTS Dendrobine significantly ameliorated the motor performance of PD mice and attenuated the injuries of dopaminergic neurons. Dendrobine could also relieve neuronal apoptosis, up-regulate MANF expression and inhibit ER stress, which were largely abolished by shRNA-mediated MANF knockdown in PD model. CONCLUSION Dendrobine might protect against PD by inhibiting dopaminergic neuron apoptosis, which was achieved by facilitating MANF-mediated ER stress suppression. Our study suggested that dendrobine could act as a MANF up-regulator to protect against PD, and provided a potential candidate for exploring etiological agents of PD.
Collapse
Affiliation(s)
- Qiang-Ming Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China
| | - Xiang Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China
| | - Shuang-Qiao Su
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China
| | - Yu-Tong Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China
| | - Tong Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China
| | - Xue-Qiang Zha
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China
| | - Li-Hua Pan
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China
| | - Zhen-Zi Shang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China
| | - Feng-Yun Zhang
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, People's Republic of China.
| | - Jian-Ping Luo
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China.
| |
Collapse
|
15
|
Chen J, Xu J, Huang P, Luo Y, Shi Y, Ma P. The potential applications of traditional Chinese medicine in Parkinson's disease: A new opportunity. Biomed Pharmacother 2022; 149:112866. [PMID: 35367767 DOI: 10.1016/j.biopha.2022.112866] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/20/2022] [Accepted: 03/23/2022] [Indexed: 11/02/2022] Open
Abstract
Parkinson's disease (PD) presents a common challenge for people all over the world and has become a major research hotspot due to the large population affected by the illness and the difficulty of clinical treatment. The prevalence of PD is increasing every year, the pathogenesis is complex, and the current treatment is ineffective. Therefore, it has become imperative to find effective drugs for PD. With the advantages of low cost, high safety and high biological activity, Chinese medicine has great advantages in the prevention and treatment of PD. This review systematically summarizes the potential of Chinese medicine for the treatment of PD, showing that Chinese medicine can exert anti-PD effects through various pathways, such as anti-inflammatory and antioxidant pathways, reducing mitochondrial dysfunction, inhibiting endoplasmic reticulum stress and iron death, and regulating intestinal flora. These mainly involve HMGB1/TLR4, PI3K/Akt, NLRP3/ caspase-1/IL-1β, Nrf2/HO-1, SIRT1/Akt1, PINK1/parkin, Bcl-2/Bax, BDNF-TrkB and other signaling pathways. In sum, based on modern phytochemistry, pharmacology and genomic proteomics, Chinese medicine is likely to be a potential candidate for PD treatment, which requires more clinical trials to further elucidate its importance in the treatment of PD.
Collapse
Affiliation(s)
- Jiaxue Chen
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jingke Xu
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ping Huang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yining Luo
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yuanshu Shi
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ping Ma
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
16
|
Neuroprotective effects of microRNA 124 in Parkinson's disease mice. Arch Gerontol Geriatr 2022; 99:104588. [DOI: 10.1016/j.archger.2021.104588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 11/02/2021] [Accepted: 11/24/2021] [Indexed: 11/17/2022]
|
17
|
Wang Y, Li L, Wu Y, Zhang S, Ju Q, Yang Y, Jin Y, Shi H, Sun C. CD44 deficiency represses neuroinflammation and rescues dopaminergic neurons in a mouse model of Parkinson's disease. Pharmacol Res 2022; 177:106133. [PMID: 35182746 DOI: 10.1016/j.phrs.2022.106133] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/02/2022] [Accepted: 02/13/2022] [Indexed: 02/07/2023]
Abstract
CD44 is a transmembrane protein that transduces extracellular stimuli to immune response. Neuroinflammation is a causative factor in neurodegenerative diseases, such as Parkinson's disease (PD). Owing to its role in inflammation, this study investigated whether CD44 is involved in the pathological progression of PD. Our data showed that CD44 deficiency largely abolished proinflammatory cytokine expression in primary microglia and astrocytes. In PD model mice, CD44 knockout improved behavioral defects, prevented TH loss in the SNpc and striatum, and blocked activation of microglia and astrocytes. Moreover, CD44 neutralization by anti-CD44 antibody recapitulated the phenotypes observed in CD44 knockout mice. Mechanistically, CD44 neutralization blocked TLR4 expression and NF-κB p65 nuclear translocation induced by lipopolysaccharide in BV2 cells. Overall, our results indicate that CD44 deficiency has a beneficial role against PD, which is likely due to repression of the TLR4/NF-κB axis, leading to reduced neuroinflammation. Therefore, CD44 might be a therapeutic target for the development of anti-PD agents.
Collapse
Affiliation(s)
- Yuejun Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education; Co-innovation Center of Neuroregeneration; NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 19 Qixiu Road, Nantong, China
| | - Li Li
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education; Co-innovation Center of Neuroregeneration; NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 19 Qixiu Road, Nantong, China
| | - Yuting Wu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education; Co-innovation Center of Neuroregeneration; NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 19 Qixiu Road, Nantong, China
| | - Shouping Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education; Co-innovation Center of Neuroregeneration; NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 19 Qixiu Road, Nantong, China
| | - Qianqian Ju
- Department of Cardiothoracic Surgery, Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, Nantong Clinical Medical Research Center of Cardiothoracic Diseases, and Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China; Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yinuo Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education; Co-innovation Center of Neuroregeneration; NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 19 Qixiu Road, Nantong, China
| | - Yan Jin
- School of Life Sciences, Nantong University, Nantong, China.
| | - Hui Shi
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China.
| | - Cheng Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education; Co-innovation Center of Neuroregeneration; NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 19 Qixiu Road, Nantong, China; Department of Cardiothoracic Surgery, Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, Nantong Clinical Medical Research Center of Cardiothoracic Diseases, and Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China.
| |
Collapse
|
18
|
Yang Y, Zhang S, Guan J, Jiang Y, Zhang J, Luo L, Sun C. SIRT1 attenuates neuroinflammation by deacetylating HSPA4 in a mouse model of Parkinson's disease. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166365. [PMID: 35158021 DOI: 10.1016/j.bbadis.2022.166365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/21/2022] [Accepted: 02/07/2022] [Indexed: 02/08/2023]
Abstract
As a deacetylase, SIRT1 plays essential roles in various physiological events, from development to lifespan regulation. SIRT1 has been shown neuroprotective effects in neurodegeneration disorders such as Parkinson's disease (PD). However, the underlying molecular mechanisms are still not well understood. Here, we generated transgenic mice with increased expression of Sirt1 in the brain and examined the potential roles of SIRT1 in PD. Our data showed that SIRT1 repressed proinflammatory cytokine expression both in microglia and astrocytes. In MPTP induced PD model mice, lower levels of microglia and astrocyte activation were observed in SIRT1 transgenic mice. Moreover, the tyrosine hydroxylase (TH) loss in the substantia nigra pars compacta (SNpc) and striatum induced by MPTP was also attenuated by SIRT1. As a consequence, the behavioral defects induced by MPTP were largely prevented in SIRT1 transgenic mice. Mechanistically, SIRT1 interacts with heat shock 70 kDa protein 4 (HSPA4) and deacetylates it at 305, 351 and 605 lysine residues. This deacetylation modification induces the nuclear translocation of HSPA4 and thus to repress proinflammatory cytokine expression. On the contrary, mutated HSPA4, in which 305/351/605 lysine residues were replaced with arginine, was mainly localized in the cytoplasm and losses its repression on proinflammatory cytokine expression. Taken together, our data indicate that SIRT1 plays beneficial roles in PD model mice, which is likely due to, at least in part, its anti-inflammation activity in glial cells by deacetylating HSPA4. Furthermore, HSPA4 might be a druggable target for developing novel agents for treating neuroinflammation associated disorders such as PD.
Collapse
Affiliation(s)
- Yinuo Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 19 Qixiu Road, Nantong, China
| | - Shouping Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 19 Qixiu Road, Nantong, China
| | - Jindong Guan
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 19 Qixiu Road, Nantong, China
| | - Yuhui Jiang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 19 Qixiu Road, Nantong, China
| | - Jing Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 19 Qixiu Road, Nantong, China
| | - Lan Luo
- Department of Geriatrics, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, China.
| | - Cheng Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 19 Qixiu Road, Nantong, China; Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, Nantong Clinical Medical Research Center of Cardiothoracic Disease, Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong, China.
| |
Collapse
|
19
|
Wang Y, Ge X, Yu S, Cheng Q. Achyranthes bidentata polypeptide alleviates neurotoxicity of lipopolysaccharide-activated microglia via PI3K/Akt dependent NOX2/ROS pathway. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1522. [PMID: 34790728 PMCID: PMC8576683 DOI: 10.21037/atm-21-4027] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/02/2021] [Indexed: 01/02/2023]
Abstract
Background Achyranthes bidentata polypeptide fraction k (ABPPk) has been shown to protect ischemic stroke and Parkinson’s disease, and can inhibit neuroinflammation in lipopolysaccharide (LPS)-activated BV2 microglia. However, the effect of ABPPk responsible for alleviating microglial neurotoxicity remains unknown. Methods Primary microglia were cultured to investigate the effect of ABPPk on LPS-induced neuroinflammation. Microglia conditioned medium (MCM) was collected to stimulate primary cortical neurons and then the neuronal viability, lactate dehydrogenase (LDH) release, intracellular calcium influx, mitochondria membrane potential (MMP) were assessed, respectively. Postnatal day 5 Sprague-Dawley rat pups were intracerebral injected with LPS to establish an LPS-induced brain injury model. Double immunohistochemical staining for NeuN and Iba1 was performed to evaluate the effects of ABPPk on LPS-induced neuronal damage and microglial activation. TUNEL assay was conducted to detect cell apoptosis in LPS-injected brain. The effect of ABPPk on LPS-induced NADPH oxidase 2 (NOX2) expression and reactive oxygen species (ROS) production as well as the phosphorylation of protein kinase B (Akt) was detected. Moreover, LY294002 (a specific PI3K inhibitor) and SC79 (a specific Akt activator) were used to further reveal the underlying mechanism. Results ABPPk pretreatment inhibited LPS-induced NLRP3 and cleaved caspase 1 expressions as well as the mRNA levels of IL-1β and IL-18. Moreover, ABPPk inhibited glutamate release from LPS-activated microglia in a concentration-dependent manner. MCM stimulation resulted in characteristic neuronal toxicity including neuronal viability decrease, LDH release increase, calcium overload, and MMP drop. However, ABPPk pretreatment on microglia reduced the neurotoxicity of MCM. LPS intracerebral injection led to neuronal damage, microglial activation and cell apoptosis in the brain, while ABPPk preadministration significantly inhibited LPS-induced microglial activation and alleviated the brain injury. ABPPk pretreatment inhibited NOX2 expression and ROS production in LPS-activated primary microglia. Signaling pathway analysis showed that ABPPk promoted the phosphorylation of Akt in microglia and inhibited LPS-upregulated NOX2 expression, ROS production, and glutamate release, which can be eliminated by pharmacological inhibition of PI3K. Specific Akt activator could inhibit LPS-induced NOX2 expression, ROS production and glutamate release. Conclusions The present results suggested that ABPPk could alleviate neurotoxicity of LPS-activated microglia via PI3K/Akt dependent NOX2/ROS pathway.
Collapse
Affiliation(s)
- Yitong Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| | - Xiangyu Ge
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| | - Shu Yu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| | - Qiong Cheng
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| |
Collapse
|
20
|
Sugimoto K, Liu J, Li M, Song Y, Zhang C, Zhai Z, Gao Y. Neuroprotective Effects of Shenqi Fuzheng Injection in a Transgenic SOD1-G93A Mouse Model of Amyotrophic Lateral Sclerosis. Front Pharmacol 2021; 12:701886. [PMID: 34737697 PMCID: PMC8560685 DOI: 10.3389/fphar.2021.701886] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 09/14/2021] [Indexed: 02/04/2023] Open
Abstract
Background: Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease, in the pathogenesis of which oxidative stress (OS) was believed to play a key role. Shenqi Fuzheng Injection (SFI) concocted from two kinds of Chinese medicinal herbs, Radix Codonopsis and Radix Astragali, was proven to be eligible to reduce the OS injury and increase the activity of the nuclear factor-erythroid-2–related factor 2 (Nrf2) pathway, an antioxidant enzymes inducer. Objective: We aim to investigate the effects and potential mechanisms underlying the action of SFI on a well-established transgenic mouse model of ALS. Methods: Transgenic SOD1-G93A mice were intraperitoneally injected with SFI (40 ml/kg) three times a week from 87 days of age. Motor function, survival, pathological manifestations in the brain, and Nrf2 pathway-related assessments of the mice were performed. Results: SFI treatment efficiently postponed the disease onset (p = 0.022) and extended the overall survival (p = 0.038) of the SOD1-G93A mice. Moreover, SFI significantly reduced motor neuron loss (p < 0.001) and astrocytic activation (p < 0.05) in the motor cortex of the brain of SOD1-G93A mice at 130 days of age. The protective effects of SFI in the SOD1-G93A mice were associated with decreasing the level of malondialdehyde (p < 0.05) and increasing the levels of superoxide dismutase (p < 0.05), Nrf2 (p < 0.05), heme oxygenase-1 (p < 0.05), and glutathione S-transferase (p < 0.05) in the SOD1-G93A mice. Conclusion: The SFI treatment efficiently extended the overall survival and improved the pathological manifestations of the brain via alleviating the OS injury and activating the Nrf2 pathway in the animal model of ALS, which made SFI a potentially promising candidate for ALS treatment.
Collapse
Affiliation(s)
- Kazuo Sugimoto
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.,Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China
| | - Jia Liu
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.,Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China
| | - MingXuan Li
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - YueBo Song
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Chi Zhang
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.,Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China
| | - ZhiGuang Zhai
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China.,Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| | - Ying Gao
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.,Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
21
|
Tang L, Zhang M, Liu X, Zhu Y, Chen X, Zhong J, Li M. Effects and molecular mechanisms of Achyranthes bidentata polypeptide k on proliferation of Schwann cells. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1581. [PMID: 34790787 PMCID: PMC8576723 DOI: 10.21037/atm-21-5181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 10/16/2021] [Indexed: 11/06/2022]
Abstract
BACKGROUND Achyranthes bidentata polypeptide k (ABPPk) is an active ingredient separated from the Achyranthes bidentata polypeptides (ABPP) in traditional Chinese medicine. In the present study, we investigated the promoting effects and molecular mechanisms of ABPPk on the proliferation of Schwann cells (SCs). METHODS Primary SCs were cultured with ABPPk or nerve growth factor (NGF) in vitro, and cell viability, cell cycle, EdU assay, and the expressions of proliferating cell nuclear antigen (PCNA) and Ki67 were analyzed. In addition, RNA-seq was used for bioinformatics analysis at different time points. PCNA was detected at different time points in a rat sciatic nerve injury model to further determining the role of ABPPk in sciatic nerve injury repair. RESULTS We found that ABPPk could effectively promote the proliferation of SCs, while ABPPk and NGF had different molecular mechanisms for their proliferation at different time points. Weighted gene co-expression network analysis (WGCNA) showed that ABPPk was mainly involved in the positive regulation of cell proliferation and epigenetic regulation of cell proliferation, while the main cell proliferation-related modules that NGF participated in were attenuation of negative regulation of cell proliferation and positive regulation of cell cycle. There were significant differences in the genes involved in different modules between the two groups, and ABPPk differed from NGF in the biological process of SC migration, differentiation, movement, and development in terms of action time and key genes. Functional enrichment analysis revealed ABPPk had more advantages and participation in the axon extension and vascular system areas. Furthermore, ABPPk significantly promoted the proliferation of SCs in vivo. CONCLUSIONS Through in vitro and in vivo studies, we identified the promoting effects of ABPPk on the proliferation of SCs. Using high-throughput sequencing technology, our work more comprehensively revealed the characteristics and mechanism of ABPPk on SCs. These results further enrich an understanding of the positive function and molecular mechanism of ABPPk in peripheral nerve regeneration and are conducive to the discovery of new therapeutic targets for peripheral nerve regeneration.
Collapse
Affiliation(s)
- Leili Tang
- Key Laboratory of Neuroregeneration of Jiangsu, Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Min Zhang
- Key Laboratory of Neuroregeneration of Jiangsu, Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Xingyu Liu
- School of Medicine, Nantong University, Nantong, China
| | - Ye Zhu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Xin Chen
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, China
| | | | - Meiyuan Li
- Key Laboratory of Neuroregeneration of Jiangsu, Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
22
|
Gao Q, Chen R, Wu L, Huang Q, Wang XX, Tian YY, Zhang YD. Angiotensin-(1-7) reduces α-synuclein aggregation by enhancing autophagic activity in Parkinson's disease. Neural Regen Res 2021; 17:1138-1145. [PMID: 34558543 PMCID: PMC8552854 DOI: 10.4103/1673-5374.324854] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Abnormal accumulation of α-synuclein contributes to the formation of Lewy bodies in the substantia nigra, which is considered the typical pathological hallmark of Parkinson's disease. Recent research indicates that angiotensin-(1-7) plays a crucial role in several neurodegenerative disorders, including Parkinson's disease, but the underlying mechanisms remain elusive. In this study, we used intraperitoneal administration of rotenone to male Sprague-Dawley rats for 4 weeks to establish a Parkinson's disease model. We investigated whether angiotensin-(1-7) is neuroprotective in this model by continuous administration of angiotensin-(1-7) into the right substantia nigra for 4 weeks. We found that angiotensin-(1-7) infusion relieved characteristic parkinsonian behaviors and reduced α-synuclein aggregation in the substantia nigra. Primary dopaminergic neurons were extracted from newborn Sprague-Dawley rat substantia nigras and treated with rotenone, angiotensin-(1-7), and/or the Mas receptor blocker A-779 for 24 hours. After binding to the Mas receptor, angiotensin-(1-7) attenuated apoptosis and α-synuclein aggregation in rotenone-treated cells. Primary dopaminergic neurons were also treated with angiotensin-(1-7) and/or the autophagy inhibitor 3-methyladenine for 24 hours. Angiotensin-(1-7) increased α-synuclein removal and increased the autophagy of rotenone-treated cells. We conclude that angiotensin-(1-7) reduces α-synuclein aggregation by alleviating autophagy dysfunction in Parkinson's disease. Therefore, the angiotensin-(1-7)/Mas receptor axis plays an important role in the pathogenesis of Parkinson's disease and angiotensin-(1-7) has potential therapeutic value for Parkinson's disease. All experiments were approved by the Biological Research Ethics Committee of Nanjing First Hospital (approval No. DWSY-2000932) in January 2020.
Collapse
Affiliation(s)
- Qing Gao
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Rui Chen
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Liang Wu
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Qing Huang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xi-Xi Wang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - You-Yong Tian
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Ying-Dong Zhang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| |
Collapse
|
23
|
Ge X, Wang Y, Yu S, Cao X, Chen Y, Cheng Q, Ding F. Anti-inflammatory Activity of a Polypeptide Fraction From Achyranthes bidentate in Amyloid β Oligomers Induced Model of Alzheimer's Disease. Front Pharmacol 2021; 12:716177. [PMID: 34456729 PMCID: PMC8397449 DOI: 10.3389/fphar.2021.716177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/03/2021] [Indexed: 01/16/2023] Open
Abstract
Neuroinflammation plays a crucial role in neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD), and anti-inflammation has been considered as a potential therapeutic strategy. Achyranthes bidentate polypeptide fraction k (ABPPk) was shown to protect neurons from death and suppress microglia and astrocyte activation in PD model mice. However, how ABPPk regulates neuroinflammation to exert a neuroprotective role remains unclear. Toxic Aβ oligomers (AβOs) can trigger inflammatory response and play an important role in the pathogenesis of AD. In the present study, for the first time, we investigated the effects and underlying mechanisms of ABPPk on neuroinflammation in AβOs-induced models of AD. In vitro, ABPPk pretreatment dose-dependently inhibited AβOs-induced pro-inflammatory cytokines mRNA levels in BV2 and primary microglia. ABPPk pretreatment also reduced the neurotoxicity of BV2 microglia-conditioned media on primary hippocampal neurons. Furthermore, ABPPk down-regulated the AβOs-induced phosphorylation of IκBα and NF-κB p65 as well as the expression of NLRP3 in BV2 microglia. In vivo, ABPPk pre-administration significantly improved locomotor activity, alleviated memory deficits, and rescued neuronal degeneration and loss in the hippocampus of AβOs-injected mice. ABPPk inhibited the activation of microglia in hippocampal CA3 region and suppressed the activation of NF-κB as well as the expression of NLRP3, cleaved caspase-1, and ASC in the brain after AβOs injection. ABPPk hindered the release of pro-inflammatory cytokines and promoted the release of anti-inflammatory cytokines in the brain. Notably, the polarization experiment on BV2 microglia demonstrated that ABPPk inhibited M1-phenotype polarization and promoted M2-phenotype polarization by activating the LPS- or AβOs-impaired autophagy in microglia. Taken together, our observations indicate that ABPPk can restore the autophagy of microglia damaged by AβOs, thereby promoting M2-phenotype polarization and inhibiting M1-phenotype polarization, thus playing a role in regulating neuroinflammation and alleviating neurotoxicity.
Collapse
Affiliation(s)
- Xiangyu Ge
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Province Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| | - Yitong Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Province Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| | - Shu Yu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Province Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| | - Xuemin Cao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Province Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China.,School of Medicine, Nantong University, Nantong, China
| | - Yicong Chen
- School of Medicine, Nantong University, Nantong, China
| | - Qiong Cheng
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Province Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| | - Fei Ding
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Province Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China.,Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong, China
| |
Collapse
|
24
|
Ding F, Bai Y, Cheng Q, Yu S, Cheng M, Wu Y, Zhang X, Liang X, Gu X. Bidentatide, a Novel Plant Peptide Derived from Achyranthes bidentata Blume: Isolation, Characterization, and Neuroprotection through Inhibition of NR2B-Containing NMDA Receptors. Int J Mol Sci 2021; 22:ijms22157977. [PMID: 34360755 PMCID: PMC8348887 DOI: 10.3390/ijms22157977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 12/11/2022] Open
Abstract
Increasing attention is being focused on the use of polypeptide-based N-methyl-d-aspartate (NMDA) receptor antagonists for the treatment of nervous system disorders. In our study on Achyranthes bidentata Blume, we identified an NMDA receptor subtype 2B (NR2B) antagonist that exerts distinct neuroprotective actions. This antagonist is a 33 amino acid peptide, named bidentatide, which contains three disulfide bridges that form a cysteine knot motif. We determined the neuroactive potential of bidentatide by evaluating its in vitro effects against NMDA-mediated excitotoxicity. The results showed that pretreating primary cultured hippocampal neurons with bidentatide prevented NMDA-induced cell death and apoptosis via multiple mechanisms that involved intracellular Ca2+ inhibition, NMDA current inhibition, and apoptosis-related protein expression regulation. These mechanisms were all dependent on bidentatide-induced inhibitory regulation of NR2B-containing NMDA receptors; thus, bidentatide may contribute to the development of neuroprotective agents that would likely possess the high selectivity and safety profiles inherent in peptide drugs.
Collapse
Affiliation(s)
- Fei Ding
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong 226001, China; (F.D.); (Q.C.); (S.Y.)
| | - Yunpeng Bai
- CAS Key Laboratory of Separation Sciences of Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China; (Y.B.); (M.C.); (Y.W.)
| | - Qiong Cheng
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong 226001, China; (F.D.); (Q.C.); (S.Y.)
| | - Shu Yu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong 226001, China; (F.D.); (Q.C.); (S.Y.)
| | - Mengchun Cheng
- CAS Key Laboratory of Separation Sciences of Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China; (Y.B.); (M.C.); (Y.W.)
| | - Yulin Wu
- CAS Key Laboratory of Separation Sciences of Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China; (Y.B.); (M.C.); (Y.W.)
- School of Pharmacy, Henan University of Chinese Medicine, East Jinshui Road 156, Zhengzhou 450046, China
| | - Xiaozhe Zhang
- CAS Key Laboratory of Separation Sciences of Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China; (Y.B.); (M.C.); (Y.W.)
- Partner Group of Max Planck Society, Dalian 116023, China
- Correspondence: (X.Z.); (X.L.); (X.G.)
| | - Xinmiao Liang
- CAS Key Laboratory of Separation Sciences of Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China; (Y.B.); (M.C.); (Y.W.)
- Correspondence: (X.Z.); (X.L.); (X.G.)
| | - Xiaosong Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong 226001, China; (F.D.); (Q.C.); (S.Y.)
- Correspondence: (X.Z.); (X.L.); (X.G.)
| |
Collapse
|
25
|
Chen Y, Jiang Y, Yang Y, Huang X, Sun C. SIRT1 Protects Dopaminergic Neurons in Parkinson's Disease Models via PGC-1α-Mediated Mitochondrial Biogenesis. Neurotox Res 2021; 39:1393-1404. [PMID: 34251648 DOI: 10.1007/s12640-021-00392-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/19/2021] [Accepted: 07/01/2021] [Indexed: 11/25/2022]
Abstract
SIRT1 is a deacetylase with multiple physiological functions by targeting histones and non-histone proteins. It has been shown that SIRT1 activation is involved in neuroprotection in Parkinson's disease (PD) models. In the present study, we provided direct evidences showing the neuroprotective roles of SIRT1 in dopaminergic neurons. Our data showed that increased expression of SIRT1 plays beneficial roles against MPP+ insults in SH-SY5Y cells and primary dopaminergic neurons, including increased cell viability, reduced LDH release, improved the mitochondrial membrane potential (MMP), and attenuated cell apoptosis. On the contrary, knockdown of SIRT1 further aggravated cell injuries induced by MPP+. Moreover, mutated SIRT1 without deacetylase activity (SIRT1 H363Y) failed to protect dopaminergic neurons from MPP+ injuries. Mechanistically, SIRT1 improved PGC-1α expression and mitochondrial biogenesis. Knockdown of PGC-1α almost completely abolished the neuroprotective roles of SIRT1 in SH-SY5Y cells. Collectively, our data indicate that SIRT1 has neuroprotective roles in dopaminergic neurons, which is dependent upon PGC-1α-mediated mitochondrial biogenesis. These findings suggest that SIRT1 may hold great therapeutic potentials for treating dopaminergic neuron loss associated disorders such as PD.
Collapse
Affiliation(s)
- Yu Chen
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Yuhui Jiang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 19 Qixiu Road, Nantong, China
| | - Yinuo Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 19 Qixiu Road, Nantong, China
| | - Xinzhong Huang
- Department of Nephrology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu, China
| | - Cheng Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 19 Qixiu Road, Nantong, China.
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, Institute of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, 20 Xishi Road, Nantong, China.
| |
Collapse
|
26
|
Achyranthes bidentata polypeptide k enhances the survival, growth and axonal regeneration of spinal cord motor neurons in vitro. Neuroreport 2021; 32:518-524. [PMID: 33788819 DOI: 10.1097/wnr.0000000000001621] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Achyranthes bidentata polypeptide k (ABPPk), a powerful active component from a traditional Chinese medicinal herb-Achyranthes bidentata Bl., has exhibited promising neuroprotective activity due to its multiple-targeting capability. However, the effect of ABPPk on the survival, growth and axonal regeneration of spinal cord motor neurons remains unclear. Here, a modified method, which is more optimized for embryonic cells in ambient carbon dioxide levels, was used for acquisition of rat embryonic spinal cord motor neurons with high survival and purity. ABPPk concentration-dependently enhanced the neuronal viability and promoted the neurite outgrowth. Co-culture of motor neurons and skeletal myocytes model indicated that ABPPk enhanced the neuromuscular junction development and maturation. A microfluidic axotomy model was further established for the axonal disconnection, and ABPPk significantly accelerated the axonal regeneration of motor neurons. Furthermore, we demonstrated that the upregulation of three neurofilament protein subunits in motor neurons might be relevant to the mechanisms of the growth-promoting effect of ABPPk. Our findings provide an experimental and theoretical basis for the development of ABPPk as a potential application in the development of treatment strategy for nerve injury diseases.
Collapse
|
27
|
Li M, Zhu Y, Tang L, Xu H, Zhong J, Peng W, Yuan Y, Gu X, Wang H. Protective effects and molecular mechanisms of Achyranthes bidentata polypeptide k on Schwann cells. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:381. [PMID: 33842602 PMCID: PMC8033397 DOI: 10.21037/atm-20-2900] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Background Achyranthes bidentata polypeptide k (ABPPk) is an active ingredient used in traditional Chinese medicine separated from Achyranthes bidentata polypeptides. So far, the role of ABPPk in peripheral nerve protection has not been comprehensively studied. Methods In this study, primary Schwann cells exposed to serum deprivation were treated with ABPPk or nerve growth factor (NGF) in vitro. Cell viability, cell apoptosis, apoptosis-related protein expression, and antioxidant enzyme activity were analyzed. To further explore the underlying molecular mechanisms and key regulatory molecules involved in the effects of ABPPk, integrative and dynamic bioinformatics analysis at different time points was carried out following RNA-seq of Schwann cells subjected to serum deprivation. Results We found that ABPPk could effectively reduce Schwann cell apoptosis caused by serum deprivation, which was comparable to NGF’s anti-apoptotic effects. ABPPk had the largest number of upregulated and downregulated differential expression genes at the earliest 0.5 h time, while NGF had fewer differential expression genes at this early stage. The significant difference at this time point between the two groups was also displayed in heatmaps. The molecular regulation of diseases and functions and canonical pathways revealed that ABPPk had more participation and advantages in the vasculature and immune system areas, especially angiogenesis regulation. Also, ABPPk demonstrated an earlier start in these molecular regulations than NGF. Furthermore, the analysis of transcription factors also illustrated that ABPPk not only had more key initial regulatory factors participating in vascular-related processes, but these also remained for a longer period. There was no significant difference in neural-related molecular regulation between the two groups. Conclusions Using high-throughput sequencing technology, our work unveiled the protective effects of ABPPk on Schwann cells after serum deprivation in a more comprehensive manner. These results further enrich the positive functions and molecular mechanisms of ABPPk and traditional Chinese medicine and benefit the discovery of novel therapeutic targets for peripheral nerve regeneration.
Collapse
Affiliation(s)
- Meiyuan Li
- Key Laboratory of Neuroregeneration of Jiangsu, Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Ye Zhu
- Key Laboratory of Neuroregeneration of Jiangsu, Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Leili Tang
- Key Laboratory of Neuroregeneration of Jiangsu, Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Hua Xu
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, China
| | | | - Wenqiang Peng
- Key Laboratory of Neuroregeneration of Jiangsu, Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Ying Yuan
- Key Laboratory of Neuroregeneration of Jiangsu, Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Xiaosong Gu
- Key Laboratory of Neuroregeneration of Jiangsu, Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Hongkui Wang
- Key Laboratory of Neuroregeneration of Jiangsu, Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
28
|
Hu W, He J, Wang Y, Xu L, Zhao Y, Hu X, Shen H. Protective effect of Achyranthes bidentata polypeptides on NMDA-mediated injury is developmentally regulated via modulating NR2A and NR2B differentially. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:248. [PMID: 33708875 PMCID: PMC7940890 DOI: 10.21037/atm-20-581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Background Achyranthes bidentata polypeptides (ABPPs) are a potent intervention for excitotoxicity-related disorders such as Parkinson’s disease and ischemic stroke. Previous work suggests that overstimulation of N-methyl-D-aspartate (NMDA) receptors plays a critical role in excitotoxicity, and expression of NR2 subunit variations is developmentally regulated. Our current study focused on neuroprotection of ABPPs on cultured neurons by modulation of NR2A and NR2B differentially. Methods Primary cultured neurons were treated with NVP-AAM077, Ro-256981, ABPPs, and then the neurons were exposed to NMDA to induce excitotoxicity. Cellular viability was detected promptly and 24-hour after exposure to NMDA by MTT assay. Patch-clamp recording was applied to evaluate the effect of ABPPs on NMDA-evoked current and the differential modulation of ABPPs on NR2A and NR2B subunits in conjunction with NVP-AAM077 and Ro-256981. Results ABPPs (10 µg/mL) blocked neuronal injury by NMDA in mature cultures, and the peptides conferred neuroprotection in immature cultures unless co-applied with NVP-AAM077. Furthermore, ABPPs enhanced NMDA current in mature cultures, while decreasing NMDA current in immature cultures. On the other hand, we showed that ABPPs increased NMDA current when Ro-256981 was present and decreased NMDA current when NVP-AAM007 was present. Conclusions Neuroprotection of ABPPs on NMDA-mediated injury differentially in immature and mature cultures involves enhancement of NR2A subunits and prevention of NR2B subunits, indicating that dosage of ABPP should be considered in treatment with patients at different developmental stages.
Collapse
Affiliation(s)
- Wenqing Hu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Department of Bioengineering, Jacobs School of Engineering, UC San Diego, La Jolla, CA, USA
| | - Jianghong He
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yu Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Lingchi Xu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Ying Zhao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Xinping Hu
- Department of Information Technology, Library of Nantong University, Nantong University, Nantong, China
| | - Hongmei Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Affiliated Mental Health Center of Nantong University, Brain Hospital of Nantong City, Nantong, China
| |
Collapse
|
29
|
Chen H, Li X, Ma H, Zheng W, Shen X. Reduction in Nesfatin-1 Levels in the Cerebrospinal Fluid and Increased Nigrostriatal Degeneration Following Ventricular Administration of Anti-nesfatin-1 Antibody in Mice. Front Neurosci 2021; 15:621173. [PMID: 33613183 PMCID: PMC7890421 DOI: 10.3389/fnins.2021.621173] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 01/11/2021] [Indexed: 12/19/2022] Open
Abstract
Nesfatin-1 is one of several brain-gut peptides that have a close relationship with the central dopaminergic system. Our previous studies have shown that nesfatin-1 is capable of protecting nigral dopaminergic neurons against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurotoxicity. A recent study also revealed a reduced blood level of nesfatin-1 in patients with Parkinson’s disease (PD). The current study was designed to investigate whether reduced nesfatin-1 in cerebrospinal fluid (CSF) induces nigrostriatal system degeneration. An intra-cerebroventricular (ICV) injection technique was used to administer anti-nesfatin-1 antibody directly into the lateral ventricle of the brain. Enzyme-linked immunosorbent assay (ELISA) results showed that ICV injection of anti-nesfatin-1 antibody into the lateral ventricle of the brain once daily for 2 weeks caused a significant reduction in nesfatin-1 levels in the CSF (93.1%). Treatment with anti-nesfatin-1 antibody resulted in a substantial loss (23%) of TH-positive (TH+) dopaminergic neurons in the substantia nigra pars compacta (SNpc), as shown by immunofluorescence staining, a depletion in dopamine and its metabolites in the striatum detected by high-performance liquid chromatography (HPLC), and obvious nuclear shrinkage and mitochondrial lesions in dopaminergic neurons in the SNpc detected by transmission electron microscopy (TEM). Furthermore, the results from our Western blot and ELISA experiments demonstrated that anti-nesfatin-1 antibody injection induced an upregulation of caspase-3 activation, increased the expression of p-ERK, and elevated brain-derived neurotrophic factor (BDNF) levels in the SNpc. Taken together, these observations suggest that reduced nesfatin-1 in the brain may induce nigrostriatal dopaminergic system degeneration; this effect may be mediated via mitochondrial dysfunction-related apoptosis. Our data support a role of nesfatin-1 in maintaining the normal physiological function of the nigrostriatal dopaminergic system.
Collapse
Affiliation(s)
- Huanhuan Chen
- Department of Epidemiology and Health Statistics, Medical School of Qingdao University, Qingdao, China
| | - Xuelian Li
- Department of Epidemiology and Health Statistics, Medical School of Qingdao University, Qingdao, China
| | - Hui Ma
- Department of Epidemiology and Health Statistics, Medical School of Qingdao University, Qingdao, China
| | - Wei Zheng
- School of Health Sciences, Purdue University, West Lafayette, IN, United States
| | - Xiaoli Shen
- Department of Epidemiology and Health Statistics, Medical School of Qingdao University, Qingdao, China.,School of Health Sciences, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
30
|
Liu Y, Jin W, Deng Z, Zhang Q, Wang J. Glucuronomannan GM2 from Saccharina japonica Enhanced Mitochondrial Function and Autophagy in a Parkinson's Model. Mar Drugs 2021; 19:58. [PMID: 33503975 PMCID: PMC7912055 DOI: 10.3390/md19020058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/15/2021] [Accepted: 01/20/2021] [Indexed: 12/29/2022] Open
Abstract
Parkinson's disease (PD), one of the most common neurodegenerative disorders, is caused by dopamine depletion in the striatum and dopaminergic neuron degeneration in the substantia nigra. In our previous study, we hydrolyzed the fucoidan from Saccharina japonica, obtaining three glucuronomannan oligosaccharides (GMn; GM1, GM2, and GM3) and found that GMn ameliorated behavioral deficits in Parkinsonism mice and downregulated the apoptotic signaling pathway, especially with GM2 showing a more effective role in neuroprotection. However, the neuroprotective mechanism is unclear. Therefore, in this study, we aimed to assess the neuroprotective effects of GM2 in vivo and in vitro. We applied GM2 in 1-methyl-4-phenylpyridinium (MPP+)-treated PC12 cells, and the results showed that GM2 markedly improved the cell viability and mitochondrial membrane potential, inhibited MPP+-induced apoptosis, and enhanced autophagy. Furthermore, GM2 contributed to reducing the loss of dopaminergic neurons in 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mice through enhancing autophagy. These data indicate that a possible protection of mitochondria and upregulation of autophagy might underlie the observed neuroprotective effects, suggesting that GM2 has potential as a promising multifunctional lead disease-modifying therapy for PD. These findings might pave the way for additional treatment strategies utilizing carbohydrate drugs in PD.
Collapse
Affiliation(s)
- Yingjuan Liu
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Y.L.); (Z.D.); (Q.Z.)
- School of Basic Medicine, Qingdao University, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Weihua Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China;
| | - Zhenzhen Deng
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Y.L.); (Z.D.); (Q.Z.)
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Quanbin Zhang
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Y.L.); (Z.D.); (Q.Z.)
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Jing Wang
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Y.L.); (Z.D.); (Q.Z.)
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| |
Collapse
|
31
|
Lu Y, Gong Z, Jin X, Zhao P, Zhang Y, Wang Z. LncRNA MALAT1 targeting miR-124-3p regulates DAPK1 expression contributes to cell apoptosis in Parkinson's Disease. J Cell Biochem 2020; 121:4838-4848. [PMID: 32277510 DOI: 10.1002/jcb.29711] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 02/13/2020] [Indexed: 02/03/2023]
Abstract
Death associated protein kinase 1 (DAPK1) was initially discovered in the progress of gamma-interferon induced programmed cell death, it is a key factor in the central nervous system, including Parkinson's disease (PD). However, the underlying mechanisms of DAPK1 in PD remain unclear and this research work aims to explore the potential mechanisms of DAPK1 in PD. In the study, we exposed SH-SY5Y cells to MPP+ and treated mice with MPTP to investigate the roles of DAPK1 in PD and the underlying mechanisms. The results indicated that the expression of DAPK1 is significantly upregulated and negatively correlated with miR-124-3p levels in SH-SY5Y cells treated by MPP+ , and miR-124-3p mimics could effectively inhibit DAPK1 expressions and alleviate MPP+ -induced cell apoptosis. In addition, knockdown MALAT1 reduces the levels of DAPK1 and the ratio of SH-SY5Y cell apoptosis, which is reversed via miR-124-3p inhibitor in vitro. Similarly, knockdown MALAT1 could improve behavioral changes and reduce apoptosis by miR-124-3p upregulation and DAPK1 downregulation in MPTP induced PD mice. Taken together, our data showed that lncRNA MALAT1 positively regulates DAPK1 expression by targeting miR-124-3p, and mediates cell apoptosis and motor disorders in PD. In summary, these results suggest that MALAT1/miR-124-3p /DAPK1 signaling cascade mediates cell apoptosis in vitro and in vivo, which may provide experimental evidence of developing potential therapeutic strategies for PD.
Collapse
Affiliation(s)
- Yi Lu
- Department of Neurology, Tianjin First Central Hospital, Tianjin, China
| | - Zhongying Gong
- Department of Neurology, Tianjin First Central Hospital, Tianjin, China
| | - Xiaojie Jin
- Department of Neurology, Tianjin First Central Hospital, Tianjin, China
| | - Peng Zhao
- Department of Neurology, Tianjin First Central Hospital, Tianjin, China
| | - Yuting Zhang
- Department of Neurology, Tianjin First Central Hospital, Tianjin, China
| | - Zhiyun Wang
- Department of Neurology, Tianjin First Central Hospital, Tianjin, China
| |
Collapse
|
32
|
Preparation and Neuroprotective Activity of Glucuronomannan Oligosaccharides in an MPTP-Induced Parkinson's Model. Mar Drugs 2020; 18:md18090438. [PMID: 32842556 PMCID: PMC7551172 DOI: 10.3390/md18090438] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/14/2020] [Accepted: 08/18/2020] [Indexed: 12/22/2022] Open
Abstract
Parkinson’s disease (PD), characterized by dopaminergic neuron degeneration in the substantia nigra and dopamine depletion in the striatum, affects up to 1% of the global population over 50 years of age. Our previous study found that a heteropolysaccharide from Saccharina japonica exhibits neuroprotective effects through antioxidative stress. In view of its high molecular weight and complex structure, we degraded the polysaccharide and subsequently obtained four oligosaccharides. In this study, we aimed to further detect the neuroprotective mechanism of the oligosaccharides. We applied MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) to induce PD, and glucuronomannan oligosaccharides (GMn) was subsequently administered. Results showed that GMn ameliorated behavioral deficits in Parkinsonism mice. Furthermore, we observed that glucuronomannan oligosaccharides contributed to down-regulating the apoptotic signaling pathway through enhancing the expression of tyrosine hydroxylase (TH) in dopaminergic neurons. These results suggest that glucuronomannan oligosaccharides protect dopaminergic neurons from apoptosis in PD mice.
Collapse
|
33
|
Sodium Butyrate Exacerbates Parkinson's Disease by Aggravating Neuroinflammation and Colonic Inflammation in MPTP-Induced Mice Model. Neurochem Res 2020; 45:2128-2142. [PMID: 32556930 DOI: 10.1007/s11064-020-03074-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 06/01/2020] [Accepted: 06/12/2020] [Indexed: 12/11/2022]
Abstract
The abnormal production of short chain fatty acid (SCFAs) caused by gut microbial dysbiosis plays an important role in the pathogenesis and progression of Parkinson's disease (PD). This study sought to evaluate how butyrate, one of SCFAs, affect the pathology in a subacute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine hydrochloride (MPTP) treated mouse model of PD. Sodium butyrate (NaB; 165 mg/kg/day i.g., 7 days) was administrated from the day after the last MPTP injection. Interestingly, NaB significantly aggravated MPTP-induced motor dysfunction (P < 0.01), decreased dopamine (P < 0.05) and 5-HT (P < 0.05) levels, exacerbated declines of dopaminergic neurons (34%, P < 0.05) and downregulated expression of tyrosine hydroxylase (TH, 47%, P < 0.05), potentiated glia-mediated neuroinflammation by increasing the number of microglia (17%, P < 0.05) and activating astrocytes (28%, P < 0.01). In vitro study also confirmed that NaB could significantly exacerbate pro-inflammatory cytokines expression (IL-1β, 4.11-fold, P < 0.01; IL-18, 3.42-fold, P < 0.01 and iNOS, 2.52-fold, P < 0.05) and NO production (1.55-fold, P < 0.001) in LPS-stimulated BV2 cells. In addition, NaB upregulated the expression of pro-inflammatory cytokines (IL-6, 3.52-fold, P < 0.05; IL-18, 1.72-fold, P < 0.001) and NLRP3 (3.11-fold, P < 0.001) in the colon of PD mice. However, NaB had no effect on NFκB, MyD88 and TNF-α expression in PD mice. Our results indicate that NaB exacerbates MPTP-induced PD by aggravating neuroinflammation and colonic inflammation independently of the NFκB/MyD88/TNF-α signaling pathway.
Collapse
|
34
|
LncRNA H19 diminishes dopaminergic neuron loss by mediating microRNA-301b-3p in Parkinson's disease via the HPRT1-mediated Wnt/β-catenin signaling pathway. Aging (Albany NY) 2020; 12:8820-8836. [PMID: 32434961 PMCID: PMC7288916 DOI: 10.18632/aging.102877] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 02/04/2020] [Indexed: 01/07/2023]
Abstract
Long non-coding RNAs (lncRNA) and microRNAs (miRNAs) are a subject of active investigation in neurodegenerative disorders including Parkinson's disease (PD). We hypothesized a regulatory role of lncRNA H19 with involvement of hypoxanthine phosphoribosyltransferase 1 (HPRT1) in dopaminergic neuron loss in PD model mice obtained by 6-hydroxydopamine (6-OHDA) lesions. We predicted the differentially expressed genes and related mechanisms by microarray analysis. We measured the expression of tyrosine hydroxylase (TH) and proneural genes in the substantia nigra of lesioned mice before and after treatment with lentiviral oe-HPRT1, agomir-miR-301b-3p and inhibition of the Wnt/β-catenin pathway. We also evaluated the relationship among lncRNA H19, HPRT1 and miR-301b-3p as well as the Wnt/β-catenin signaling pathway in these mice. The obtained results predicted and further confirmed a low level of HPRT1 in lesioned mice. We found low expression of lncRNA H19 and showed that its forced overexpression regulated HPRT1 by binding to miR-301b-3p. The overexpression of HPRT1 increased TH expression and inhibited dopaminergic neuron loss via activating the Wnt/β-catenin pathway, as reflected by increased expressions of Nurr-1, Pitx-3, Ngn-2 and NeuroD1. Thus, overexpressed lncRNA H19 protects against dopaminergic neuron loss in this PD model through activating the Wnt/β-catenin pathway via impairing miR-301b-3p-targeted inhibition of HPRT1 expression.
Collapse
|
35
|
Lin QS, Chen P, Wang WX, Lin CC, Zhou Y, Yu LH, Lin YX, Xu YF, Kang DZ. RIP1/RIP3/MLKL mediates dopaminergic neuron necroptosis in a mouse model of Parkinson disease. J Transl Med 2020; 100:503-511. [PMID: 31506635 DOI: 10.1038/s41374-019-0319-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 08/02/2019] [Accepted: 08/08/2019] [Indexed: 11/09/2022] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder and is characterized by severe neuronal loss. Necroptosis, or programmed cell necrosis, is mediated by the receptor interacting protein kinase-1 and -3/mixed lineage kinase domain-like protein (RIP1/RIP3/MLKL) pathway, and is involved in several neurodegenerative diseases. Here we aimed to explore the involvement of necroptosis in 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine hydrochloride (MPTP)-induced PD and determine the potential mechanisms. We found that the protein levels of RIP1, RIP3, and MLKL increased significantly in a MPTP-induced mouse PD model. High expression of RIP1/RIP3/MLKL was associated with severe loss of dopaminergic neurons. Pretreatment with necrostatin-1 or the knockout of the RIP3/MLKL gene to block necroptosis pathway dramatically ameliorated PD by increasing dopamine levels and rescuing the loss of dopaminergic neurons, independent of the apoptotic pathway. Moreover, upregulation of inflammatory cytokines in MPTP-treated mice was partially inhibited by deletion of RIP3 or MLKL gene, indicating that a positive feedback loop exists between these genes and inflammatory cytokines. Our data indicate that RIP1/RIP3/MLKL-mediated necroptosis is involved in the pathogenesis of MPTP-induced PD. Downregulating the expression of RIP1, RIP3, or MLKL can significantly attenuate MPTP-induced PD. Future therapy targeting necroptosis may be a promising new option.
Collapse
Affiliation(s)
- Qing-Song Lin
- Department of Neurosurgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350005, China
| | - Ping Chen
- Department of Anesthesiology, the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350005, China
| | - Wei-Xiong Wang
- Department of Neurosurgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350005, China.,Department of Neurosurgery, Fuding Hospital, Ningde, Fujian, 355200, China
| | - Chen-Chao Lin
- Department of Neurosurgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350005, China
| | - Yao Zhou
- Department of Neurosurgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350005, China
| | - Liang-Hong Yu
- Department of Neurosurgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350005, China
| | - Yuan-Xiang Lin
- Department of Neurosurgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350005, China
| | - Yan-Fang Xu
- Department of Nephrology, the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350005, China
| | - De-Zhi Kang
- Department of Neurosurgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350005, China.
| |
Collapse
|
36
|
Zhao N, Cheng M, Lv W, Wu Y, Liu D, Zhang X. Peptides as Potential Biomarkers for Authentication of Mountain-Cultivated Ginseng and Cultivated Ginseng of Different Ages Using UPLC-HRMS. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:2263-2275. [PMID: 31986019 DOI: 10.1021/acs.jafc.9b05568] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The growth conditions and age of Panax ginseng are vital for determining the quality of the ginseng plant. However, the considerable difference in price according to the cultivation method and period of P. ginseng leads to its adulteration in the trade market. We herein focused on ginseng peptides and the possibility of these peptides to be used as biomarker(s) for discrimination of P. ginseng. We applied an ultraperformance liquid chromatography-high resolution mass spectrometry-based peptidomics approach to characterize ginseng peptides and discover novel peptide biomarkers for authentication of mountain-cultivated ginseng (MCG). We identified 52 high-confidence peptides and screened 20 characteristic peptides differentially expressed between MCG and cultivated ginseng (CG). Intriguingly, 6 differential peptides were expressed significantly in MCG and originated from dehydrins that accumulated during cold or drought conditions. In addition, 14 other differential peptides that were significantly expressed in CG derived from ginseng major protein, an essential protein for nitrogen storage. These biological associations confirmed the reliability and credibility of the differential peptides. Additionally, we determined several robust peptide biomarkers for discrimination of MCG through a precise selection process. These findings demonstrate the potential of peptide biomarkers for identification and quality control of P. ginseng in addition to ginsenoside analysis.
Collapse
Affiliation(s)
- Nan Zhao
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Zhongshan Road 457 , Dalian 116023 , China
- University of Chinese Academy of Sciences , Yuquan Road 19 , Beijing 100049 , China
| | - Mengchun Cheng
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Zhongshan Road 457 , Dalian 116023 , China
| | - Wei Lv
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Zhongshan Road 457 , Dalian 116023 , China
- School of Chemistry and Chemical Engineering , North Minzu University , Yinchuan 750021 , China
| | - Yulin Wu
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Zhongshan Road 457 , Dalian 116023 , China
- Henan University of Chinese Medicine , Jinshui East Road 156 , Zhengzhou 450046 , China
| | - Dan Liu
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Zhongshan Road 457 , Dalian 116023 , China
| | - Xiaozhe Zhang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Zhongshan Road 457 , Dalian 116023 , China
| |
Collapse
|
37
|
Ma D, Li Y, Xiao W, Peng L, Wang L, Liao Z, Hu L. Achyranthes bidentata extract protects chondrocytes functions through suppressing glycolysis and apoptosis via MAPK/AKT signaling axis. Am J Transl Res 2020; 12:142-152. [PMID: 32051743 PMCID: PMC7013231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 12/06/2019] [Indexed: 06/10/2023]
Abstract
Osteoarthritis (OA) is considered to be a joint-associated disorder and one of leading reasons for disability, however, potential mechanism has never been clarified. The purpose of this research was to evaluate protective-effects of Achyranthes Bidentata extracts (ABE) on chondrocytes function in osteoarthritis. We performed a systematic investigation of transcriptional and proteomic landscapes to identify the underlying mechanisms behind effects of ABE on chondrocytic functions. OA animal models were generated in the present research. Chondrocytes were isolated and cultured, and then prepared for GeneChip analysis. Two-dimensional gel electrophoresis and LC-MS/MS analysis were conducted to analyze samples. Quantitative real-time PCR (qRT-PCR) and western blotting were used to evaluate expression of protein kinase B (AKT), β-tubulin and β-action. Apoptosis and glycolysis pathway were significantly compromised in chondrocytes with ABE stimulation as revealed by both transcriptional and proteomic data. Consistently, ABE suppressed chondrocytes apoptosis and glycolytic activity in vitro through modulating multiple genes, such as Plk2, Casp1/12 and Cers1 as well as Pkm2, Eno1/3 and Pgk2. Mechanically, ABE activated MAPK signaling pathway and suppressed AKT signaling pathway, therefore, reducing the glycolysis to provide survival benefits. We extended our analysis by verifying insulin-like growth factor 1 (IGF-1) and MAP kinase 1 (MEK1) in chondrocytes function. Depletion of either IGF-1 or MEK1 impaired AKT expression and phosphorylation, leading to the enhanced chondrocyte apoptosis and reduced cell proliferation. In conclusion, our study provided systematic view and molecular basis for ABE to serve as potential intervention of OA via suppressing AKT signaling.
Collapse
Affiliation(s)
- Dujun Ma
- Shenzhen Traditional Chinese Medicine HospitalShenzhen 518033, China
| | - Yuan Li
- The Second People’s Hospital of Futian District ShenzhenShenzhen 518000, China
| | - Wei Xiao
- Shenzhen Traditional Chinese Medicine HospitalShenzhen 518033, China
| | - Liping Peng
- Shenzhen Traditional Chinese Medicine HospitalShenzhen 518033, China
| | - Lixin Wang
- Shenzhen Traditional Chinese Medicine HospitalShenzhen 518033, China
| | - Zhouwei Liao
- Shenzhen Traditional Chinese Medicine HospitalShenzhen 518033, China
| | - Liekui Hu
- The Fourth Clinical Medical College of Guangzhou University of Chinese MedicineShenzhen 518033, China
| |
Collapse
|
38
|
Li ZH, Li XH, Ling LZ, Ai HL, Zhang SD. The complete chloroplast genome sequence of a traditional Chinese medicine: Achyranthes bidentata (Amaranthaceae). Mitochondrial DNA B Resour 2020; 5:158-159. [PMID: 33366466 PMCID: PMC7721043 DOI: 10.1080/23802359.2019.1698362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Affiliation(s)
- Zheng-Hui Li
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, Hubei, China
| | - Xiao-Hua Li
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, Hubei, China
| | - Li-Zhen Ling
- School of Biological Sciences and Technology, Liupanshui Normal University, Liupanshui, Guizhou, China
| | - Hong-Lian Ai
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, Hubei, China
| | - Shu-Dong Zhang
- School of Biological Sciences and Technology, Liupanshui Normal University, Liupanshui, Guizhou, China
| |
Collapse
|
39
|
Cheng Q, Shen Y, Cheng Z, Shao Q, Wang C, Sun H, Zhang Q. Achyranthes bidentata polypeptide k suppresses neuroinflammation in BV2 microglia through Nrf2-dependent mechanism. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:575. [PMID: 31807556 DOI: 10.21037/atm.2019.09.07] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background Activated microglia play a critical role in regulating neuroinflammatory responses in central nervous system. Previous studies have shown that Achyranthes bidentata polypeptide k's (ABPPk's) neuroprotective effects are partly due to its anti-inflammatory effect, but the mechanism remains unknown. This study is aimed to investigate the anti-inflammatory effect of ABPPk on lipopolysaccharide (LPS)-activated neuroinflammation in BV2 microglia. Methods We pretreated BV2 microglia with different concentrations of ABPPk (0.04-5 µg/mL) for 30 minutes, and then stimulated microglia with LPS for 24 hours. Pro-inflammatory mediators including tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), nitric oxide (NO) and prostaglandin E2 (PGE2) production were measured by enzyme-linked immunosorbent assay (ELISA) kits. Inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), phosphorylated nuclear factor kappa B (NF-κB), heme oxygenase-1 (HO-1) and nuclear factor erythroid 2-related factor 2 (Nrf2) expression levels were detected by western blot. Glutathione (GSH) level was measured by GSH-Glo™ Glutathione assay. Immunofluorescent staining was used to detect the nuclear translocation of NF-κB and Nrf2. BV2 microglia transfected with Nrf2 siRNA were used to investigate the effect of Nrf2 on the anti-inflammatory activity of ABPPk. Results ABPPk (0.2-5 µg/mL) reduced the iNOS mediated NO and COX-2 mediated PGE2 production significantly in LPS-activated BV2 microglia. ABPPk (1 and 5 µg/mL) also suppressed the production of TNF-α and IL-6 significantly. NF-κB is phosphorylated and translocated into nuclear in LPS-activated BV2 microglia, but ABPPk is shown to inhibit the phosphorylation and translocation of NF-κB in a concentration-dependent way. ABPPk increased the protein expression levels of HO-1 and Nrf2, as well as the GSH content in BV2 microglia. Immunofluorescent staining showed that ABPPk also promoted nuclear translocation of Nrf2. After knocking down Nrf2 in BV2 cells with siRNA interference, ABPPk's inhibitory effect on pro-inflammatory mediators also disappeared. Conclusions The present study suggests that ABPPk inhibits neuroinflammation in BV2 microglia through Nrf2-dependent mechanism. This provides some strong evidence for the potential of this neuroprotective natural compound to treat neurodegenerative diseases such as ischemic stroke and Parkinson's disease.
Collapse
Affiliation(s)
- Qiong Cheng
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China.,Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong 226001, China
| | - Yuntian Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Zhenghui Cheng
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Qian Shao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Caiping Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China.,Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong 226001, China
| | - Qi Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| |
Collapse
|
40
|
Lin LW, Tsai FH, Lan WC, Cheng YD, Lee SC, Wu CR. Steroid-Enriched Fraction of Achyranthes bidentata Protects Amyloid β Peptide 1-40-Induced Cognitive Dysfunction and Neuroinflammation in Rats. Mol Neurobiol 2019; 56:5671-5688. [PMID: 30666561 DOI: 10.1007/s12035-018-1436-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 11/20/2018] [Indexed: 01/24/2023]
Abstract
The roots of Achyranthes bidentata Blume (AB) is commonly used in the treatment of osteoporosis and dementia in traditional Chinese medicine. Pharmacological reports evidenced that AB possessed anti-osteoarthritis effects. However, there is little literature about the anti-dementia activities of AB. The present study was designed to prepare steroid-enriched fraction of AB (ABS) and investigate whether ABS can protect from cognitive dysfunction and neuroinflammation against Aβ 1-40-induced Alzheimer's disease (AD) model in rats. ABS only contained 135.11 ± 4.28 mg of ecdysterone per gram. ABS (50 mg/kg) reversed the dysfunction of exploratory activity and memory function on plus-maze and Morris water maze caused by Aβ 1-40 in rats. ABS (50 mg/kg) also decreased amyloid deposition, neurofibrillary tangle, neural damage, activated astrocyte, and microglial caused by Aβ 1-40. Furthermore, ABS reversed the phenomenon of neural oxidative damage and neuroinflammation, including the higher levels of MDA and cytokines, and the lower activities of antioxidant enzymes and GSH levels caused by Aβ 1-40 in rat cortex and hippocampus. Finally, ABS restored the activation of ERK pathway and decreased NF-κB phosphorylation and translocation altered by Aβ 1-40. ABS alone (50 mg/kg) promoted cognitive function, activated brain antioxidant defense system, and decreased brain TNF-α levels in sham group. Therefore, ABS has the cognition-promoting and antidementia potential. Steroids especial ecdysterone are major active components of AB. The action mechanism is due to decreasing oxidative stress and neuroinflammation through modulating ERK pathway, NF-κB phosphorylation, and translocation in Aβ 1-40-induced AD rat model.
Collapse
Affiliation(s)
- Li-Wei Lin
- School of Chinese Medicines for Post-Baccalaureate, I-Shou University, Kaohsiung, 82445, Taiwan
| | - Fan-Hsuan Tsai
- School of Chinese Medicines for Post-Baccalaureate, I-Shou University, Kaohsiung, 82445, Taiwan
| | - Wan-Cheng Lan
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung, 40402, Taiwan
| | - Yih-Dih Cheng
- Department of Pharmacy, China Medical University Hospital, Taichung, 40402, Taiwan
| | - Sheng-Chi Lee
- Pintung Branch, Kaohsiung Veterans General Hospital, Pitung, 91245, Taiwan.
| | - Chi-Rei Wu
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung, 40402, Taiwan.
| |
Collapse
|
41
|
Youssef K, Tandon A, Rezai P. Studying Parkinson’s disease using Caenorhabditis elegans models in microfluidic devices. Integr Biol (Camb) 2019; 11:186-207. [DOI: 10.1093/intbio/zyz017] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 04/30/2019] [Accepted: 05/16/2019] [Indexed: 12/21/2022]
Abstract
Abstract
Parkinson’s disease (PD) is a progressive neurological disorder associated with the loss of dopaminergic neurons (DNs) in the substantia nigra and the widespread accumulation of α-synuclein (α-syn) protein, leading to motor impairments and eventual cognitive dysfunction. In-vitro cell cultures and in-vivo animal models have provided the opportunity to investigate the PD pathological hallmarks and identify different therapeutic compounds. However, PD pathogenesis and causes are still not well understood, and effective inhibitory drugs for PD are yet to be discovered. Biologically simple but pathologically relevant disease models and advanced screening technologies are needed to reveal the mechanisms underpinning protein aggregation and PD progression. For instance, Caenorhabditis elegans (C. elegans) offers many advantages for fundamental PD neurobehavioral studies including a simple, well-mapped, and accessible neuronal system, genetic homology to humans, body transparency and amenability to genetic manipulation. Several transgenic worm strains that exhibit multiple PD-related phenotypes have been developed to perform neuronal and behavioral assays and drug screening. However, in conventional worm-based assays, the commonly used techniques are equipment-intensive, slow and low in throughput. Over the past two decades, microfluidics technology has contributed significantly to automation and control of C. elegans assays. In this review, we focus on C. elegans PD models and the recent advancements in microfluidic platforms used for manipulation, handling and neurobehavioral screening of these models. Moreover, we highlight the potential of C. elegans to elucidate the in-vivo mechanisms of neuron-to-neuron protein transfer that may underlie spreading Lewy pathology in PD, and its suitability for in-vitro studies. Given the advantages of C. elegans and microfluidics technology, their integration has the potential to facilitate the investigation of disease pathology and discovery of potential chemical leads for PD.
Collapse
Affiliation(s)
- Khaled Youssef
- Department of Mechanical Engineering, York University, Toronto, ON, Canada
| | - Anurag Tandon
- Tanz Centre for Research in Neurodegenerative Diseases, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Pouya Rezai
- Department of Mechanical Engineering, York University, Toronto, ON, Canada
| |
Collapse
|
42
|
Silibinin Alleviates the Learning and Memory Defects in Overtrained Rats Accompanying Reduced Neuronal Apoptosis and Senescence. Neurochem Res 2019; 44:1818-1829. [PMID: 31102026 DOI: 10.1007/s11064-019-02816-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/22/2019] [Accepted: 05/10/2019] [Indexed: 12/21/2022]
Abstract
Excessive physical exercise (overtraining; OT) increases oxidative stress and induces damage in multiple organs including the brain, especially the hippocampus that plays an important role in learning and memory. Silibinin, a natural flavonoid derived from milk thistle of Silybum marianum, has been reported to exert neuroprotective effect. In this study, rats were subjected to overtraining exercise, and the protective effects of silibinin were investigated in these models. Morris water maze and novel object recognition tests showed that silibinin significantly attenuated memory defects in overtrained rats. At the same time, the results of Nissl, TUNEL and SA-β-gal staining showed that silibinin reversed neuronal loss caused by apoptosis, and delayed cell senescence of the hippocampus in the overtrained rats, respectively. In addition, silibinin decreased malondialdehyde (MDA) levels which is associated with reactive oxygen species (ROS) generation. Silibinin prevented impairment of learning and memory caused by excessive physical exercise in rats, accompanied by reduced apoptosis and senescence in hippocampus cells.
Collapse
|
43
|
Zhu G, Liu Y, Zhi Y, Jin Y, Li J, Shi W, Liu Y, Han Y, Yu S, Jiang J, Zhao X. PKA- and Ca 2+-dependent p38 MAPK/CREB activation protects against manganese-mediated neuronal apoptosis. Toxicol Lett 2019; 309:10-19. [PMID: 30951808 DOI: 10.1016/j.toxlet.2019.04.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/24/2019] [Accepted: 04/01/2019] [Indexed: 11/27/2022]
Abstract
Although manganese (Mn) is an essential trace element, its excessive consumption may lead to neuronal death and neurodegenerative disorders. Human cells launch adaptive responses to attenuate Mn-induced neurotoxicity. However, the regulation of the responsive proteins and their function during Mn-stimulated neurotoxicity remain largely unknown. We report the role of cyclic adenosine monophosphate (cAMP) response element-binding protein (CREB) in Mn-induced neuronal apoptosis. Mn increased CREB phosphorylation and cellular apoptosis in both PC12 cells and mouse brain tissue. Furthermore, downregulation of CREB with shRNA plasmid transfection significantly worsened the PC12 cell apoptosis by decreasing mRNA and protein expression of brain-derived neurotrophic factor (BDNF). Moreover, Mn enhanced protein kinase A (PKA) activation and activation of the p38 MAPK and JNK pathways. Inhibition of p38 MAPK rather than JNK effectively reduced the CREB phosphorylation. Subsequent analysis showed that a PKA inhibitor blocked p38 MAPK and CREB phosphorylation. Moreover, the intracellular Ca2+ chelator BAPTA-AM decreased the phosphorylation of p38 MAPK and CREB but failed to reduce PKA activation. In summary, p38 MAPK/CREB activation via PKA activation and increased cellular Ca2+ helped to alleviate Mn-induced neuronal apoptosis via BDNF regulation. These findings improve our understanding of Mn-induced neurotoxicity and the molecular targets to antagonise it.
Collapse
Affiliation(s)
- Ganlin Zhu
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Yiming Liu
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Ye Zhi
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Yang Jin
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Jinlong Li
- School of Pharmacy, Nangtong University, Nantong 226001, China.
| | - Weiwei Shi
- Nantong Hospital of Traditional Chinese Medicine, Nantong 226001, China
| | - Yuting Liu
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Yu Han
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Shali Yu
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Junkang Jiang
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China.
| | - Xinyuan Zhao
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China.
| |
Collapse
|
44
|
He X, Yang S, Zhang R, Hou L, Xu J, Hu Y, Xu R, Wang H, Zhang Y. Smilagenin Protects Dopaminergic Neurons in Chronic MPTP/Probenecid-Lesioned Parkinson's Disease Models. Front Cell Neurosci 2019; 13:18. [PMID: 30804756 PMCID: PMC6371654 DOI: 10.3389/fncel.2019.00018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 01/16/2019] [Indexed: 01/22/2023] Open
Abstract
Current therapies for Parkinson’s disease (PD) only offer limited symptomatic alleviation but fail to hamper the progress of the disease. Thus, it is imperative to establish new approaches aiming at protecting or reversing neurodegeneration in PD. Recent work elucidates whether smilagenin (abbreviated SMI), a steroidal sapogenin from traditional Chinese medicinal herbs, can take neuroprotective effect on dopaminergic neurons in a chronic model of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) conjuncted with probenecid mice. We reported for the first time that SMI significantly improved the locomotor ability of chronic MPTP/probenecid–lesioned mice. SMI increased the tyrosine hydroxylase (TH) positive and Nissl positive neuron number in the substantia nigra pars compacta (SNpc), augmented striatal DA and its metabolites concentration and elevated striatal dopamine transporter density (DAT). In addition, dopamine receptor D2R not D1R was down-regulated by MPTP/probenecid and slightly raised by SMI prevention. What’s more, we discovered that SMI markedly elevated striatal glial cell line-derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor (BDNF) protein levels in SMI prevented mice. And we found that SMI increased GDNF and BDNF mRNA level by promoting CREB phosphorylation in 1-methyl-4-phenylpyridimium (MPP+) treated SH-SY5Y cells. The results illustrated that SMI could prevent the impairment of dopaminergic neurons in chronic MPTP/probenecid-induced mouse model.
Collapse
Affiliation(s)
- Xuan He
- Department of Pharmacology, Institute of Medical Sciences, Shanghai JiaoTong University School of Medicine (SJTUSM), Shanghai, China
| | - Shuangshuang Yang
- Department of Pharmacology, Institute of Medical Sciences, Shanghai JiaoTong University School of Medicine (SJTUSM), Shanghai, China
| | - Rui Zhang
- Department of Pharmacology, Institute of Medical Sciences, Shanghai JiaoTong University School of Medicine (SJTUSM), Shanghai, China
| | - Lina Hou
- Department of Pharmacology, Institute of Medical Sciences, Shanghai JiaoTong University School of Medicine (SJTUSM), Shanghai, China
| | - Jianrong Xu
- Department of Pharmacology, Institute of Medical Sciences, Shanghai JiaoTong University School of Medicine (SJTUSM), Shanghai, China
| | - Yaer Hu
- Department of Pharmacology, Institute of Medical Sciences, Shanghai JiaoTong University School of Medicine (SJTUSM), Shanghai, China
| | - Rang Xu
- Scientific Research Center, Xinhua Hospital, Shanghai JiaoTong University School of Medicine (SJTUSM), Shanghai, China
| | - Hao Wang
- Department of Pharmacology, Institute of Medical Sciences, Shanghai JiaoTong University School of Medicine (SJTUSM), Shanghai, China
| | - Yongfang Zhang
- Department of Pharmacology, Institute of Medical Sciences, Shanghai JiaoTong University School of Medicine (SJTUSM), Shanghai, China
| |
Collapse
|
45
|
Tao Y, Yan J, Cai B. A liquid chromatography-tandem mass spectrometry approach for study the tissue distributions of five components of crude and salt-processed Radix Achyranthes in rats. Biomed Chromatogr 2019; 33:e4483. [PMID: 30632626 DOI: 10.1002/bmc.4483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/24/2018] [Accepted: 01/03/2019] [Indexed: 11/09/2022]
Abstract
This study developed a robust and reliable approach using liquid chromatography- tandem mass spectrometry for the simultaneous determination of five saponins in rat tissues: β-ecdysterone, chikusetsusaponin IV, ginsenoside Ro, 25S-inokosterone and chikusetsusaponin IVa. This is the first report on a comparative tissue distribution study of crude and salt-processed Radix Achyranthes in rats. After one-step protein precipitation by acetonitrile, the tissue samples were sent to LC-MS/MS for multiple reaction monitoring. The retention times of the five saponins and internal standard were 1.77, 3.14, 3.01, 1.83, 3.26 and 4.77 min. The standard curves showed good linear regression (r2 > 0.9991) in the range of 10.3-1562.5 ng/mL. The intra- and inter-day accuracy and precision were within 15% of the nominal concentration. The recoveries of the five saponins were 92.0-99.9%. Finally, this approach was successfully applied to tissue distribution analysis of the five saponins after oral administration of crude and salt-processed Radix Achyranthes in rats. The largest concentration of the five saponins was observed in kidney after salt-processing, which indicated that processing could enhance the bioavailability.
Collapse
Affiliation(s)
- Yi Tao
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Jizhong Yan
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Baochang Cai
- Jiangsu Key Laboratory of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing, PR China
| |
Collapse
|
46
|
Li M, Zhu Y, Peng W, Wang H, Yuan Y, Gu X. Achyranthes bidentata Polypeptide Protects Schwann Cells From Apoptosis in Hydrogen Peroxide-Induced Oxidative Stress. Front Neurosci 2018; 12:868. [PMID: 30555292 PMCID: PMC6284036 DOI: 10.3389/fnins.2018.00868] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 11/06/2018] [Indexed: 11/13/2022] Open
Abstract
ABPPk, the active ingredient separated from Achyranthes bidentata polypeptides, is a traditional Chinese medicine with multiple pharmaceutical properties. In this study, we investigated the molecular mechanisms of ABPPk in protecting Schwann cells (SCs) from H2O2-induced cell apoptosis. The viability of SCs pretreated with ABPPk was elevated significantly by MTT assay estimation. Meanwhile, the apoptosis of SCs was reduced which was showed in flow cytometry and transferase-mediated dUTP nick end labeling analysis. Furthermore, the addition of ABPPk also increased the activities of SOD and GSH accompanied with a decrease in MDA and LDH activities. According to Western blot analysis, the upregulation of Bcl-2, also downregulation of Bax and cleaved caspase-3 were demonstrated in SCs which was ABPPk pretreated. Further research showed that PI3K/AKT and ERK1/2 pathways in SCs have been activated after pretreatment of ABPPk. Collectively, results in our study suggested that ABPPk protected SCs from H2O2-induced oxidative damage by reducing the expression of apoptotic molecules and enhancing the activities of antioxidant enzymes, which inhibited the apoptosis of SCs modulated by PI3K/AKT and ERK1/2 signaling pathways. In our perspectives, ABPPk as an active factor with its antioxidative activities has potential and promising therapeutic effects in the prevention of neurologic disorders.
Collapse
Affiliation(s)
- Meiyuan Li
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China.,Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovatioin Center of Neuroregeneration, Nantong University, Nantong, China
| | - Ye Zhu
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovatioin Center of Neuroregeneration, Nantong University, Nantong, China
| | - Wenqiang Peng
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovatioin Center of Neuroregeneration, Nantong University, Nantong, China
| | - Hongkui Wang
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovatioin Center of Neuroregeneration, Nantong University, Nantong, China
| | - Ying Yuan
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovatioin Center of Neuroregeneration, Nantong University, Nantong, China
| | - Xiaosong Gu
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China.,Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovatioin Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
47
|
Cheng Q, Tong F, Shen Y, He C, Wang C, Ding F. Achyranthes bidentata polypeptide k improves long-term neurological outcomes through reducing downstream microvascular thrombosis in experimental ischemic stroke. Brain Res 2018; 1706:166-176. [PMID: 30414726 DOI: 10.1016/j.brainres.2018.11.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 11/04/2018] [Accepted: 11/08/2018] [Indexed: 01/07/2023]
Abstract
Achyranthes bidentata Bl. (A. bidentata) occupies an important position in traditional Chinese medicine owing to the property of promoting the circulation of blood and removing stasis. Achyranthes bidentata polypeptide k (ABPPk) is one of the active components isolated from A. bidentata. We previously demonstrated that ABPPk has potent neuroprotective effects against neuronal apoptosis both in vitro and in vivo, but the roles and mechanisms of ABPPk on long-term functional recovery after ischemic stroke remain unknown. In the current study, we investigated the neuroprotective effects of ABPPk on filament transient middle cerebral artery occlusion (tMCAO) rats and found that ABPPk reduced the infarct volume and maintained the neuronal integrity in the ischemic penumbra. Moreover, we found that ABPPk might reduce the formation of downstream microthrombus through preventing ischemic-induced oxidative damage of brain endothelial cells and activation of tissue factor (TF), plasminogen activator inhibitor-1 (PAI-1), and NF-κB. ABPPk also inhibited polymorphonuclear leukocytes (PMNs) infiltration and matrix metalloproteinase-2/-9 (MMP-2/-9) activation in the ischemic penumbra. Morris water maze, foot fault test, and modified neurological severity score were assessed for a period of 6 weeks following tMCAO. ABPPk improved long-term recognition abilities and neurological outcomes after stroke compared with saline-treated rats. Taken together, these results suggested that ABPPk is beneficial to the improvement of long-term outcomes after transient cerebral ischemia injury and can be used as a potential neuroprotective agent.
Collapse
Affiliation(s)
- Qiong Cheng
- School of Biology and Basic Medical Science, Soochow University, Suzhou, China; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Fang Tong
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yuntian Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Chunjiao He
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Caiping Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Fei Ding
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.
| |
Collapse
|
48
|
Chen LC, Tseng HJ, Liu CY, Huang YY, Yen CC, Weng JR, Lu YL, Hou WC, Lin TE, Pan IH, Huang KK, Huang WJ, Hsu KC. Design of Diarylheptanoid Derivatives as Dual Inhibitors Against Class IIa Histone Deacetylase and β-amyloid Aggregation. Front Pharmacol 2018; 9:708. [PMID: 30018556 PMCID: PMC6037852 DOI: 10.3389/fphar.2018.00708] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 06/12/2018] [Indexed: 01/11/2023] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder with multiple etiologies. Beta-amyloid (Aβ) self-aggregation and overexpression of class IIa histone deacetylases (HDACs) are strongly implicated with AD pathogenesis. In this study, a series of novel diarylheptanoid derivatives were designed, synthesized and evaluated for use as dual Aβ self-aggregation and class IIa HDAC inhibitors. Among these compounds, 4j, 5c, and 5e displayed effective inhibitions for Aβ self-aggregation, HDAC5 activity and HDAC7 activity with IC50 values of <10 μM. The compounds contain three common features: (1) a catechol or pyrogallol moiety, (2) a carbonyl linker and (3) an aromatic ring that can function as an HDAC cap and create hydrophobic interactions with Aβ1-42. Furthermore, compounds 4j, 5c, and 5e showed no significant cytotoxicity to human neuroblastoma SH-SY5Y cells and also exhibited neuroprotective effect against H2O2-induced toxicity. Overall, these promising in vitro data highlighted compounds 4j, 5c, and 5e as lead compounds that are worthy for further investigation.
Collapse
Affiliation(s)
- Liang-Chieh Chen
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan.,School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Hui-Ju Tseng
- Ph.D. Program in Biotechnology Research and Development, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Chang-Yi Liu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Yun-Yi Huang
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Cheng-Chung Yen
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Jing-Ru Weng
- Department of Marine Technology and Resources, College of Marine Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Yeh-Lin Lu
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan.,School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Wen-Chi Hou
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Tony E Lin
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - I-Horng Pan
- Herbal Medicinal Product Division, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Kuo-Kuei Huang
- Herbal Medicinal Product Division, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Wei-Jan Huang
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan.,Ph.D. Program in Biotechnology Research and Development, College of Pharmacy, Taipei Medical University, Taipei, Taiwan.,Ph.D. Program for the Clinical Drug Discovery from Botanical Herbs, College of Pharmacy, Taipei Medical University, Taipei, Taiwan.,School of Pharmacy, National Defense Medical Center, Taipei, Taiwan
| | - Kai-Cheng Hsu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
49
|
Peng S, Wang C, Ma J, Jiang K, Jiang Y, Gu X, Sun C. Achyranthes bidentata polypeptide protects dopaminergic neurons from apoptosis in Parkinson's disease models both in vitro and in vivo. Br J Pharmacol 2018; 175:631-643. [PMID: 29181847 DOI: 10.1111/bph.14110] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 11/14/2017] [Accepted: 11/19/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND AND PURPOSE Parkinson's disease (PD) is a neurodegenerative disorder closely associated with dopaminergic neuron loss. It is well documented that Achyranthes bidentata polypeptides (ABPP) are potent neuroprotective agents in several kinds of neurons. Therefore, we proposed that ABPP might play a beneficial role against PD by protecting dopaminergic neurons from apoptosis. EXPERIMENTAL APPROACH SH-SY5Y cells and primary rat dopaminergic neurons were pretreated with ABPP fraction k (ABPPk), a purified fraction of ABPP, and then the cells were exposed to 1-methyl-4-phenylpyridinium iodide (MPP+ ) to induce apoptosis. Cell viability, LDH activity, a Tunel assay and protein levels of Bcl-2 and Bax were analysed. In an in vivo PD model induced by MPTP, ABPPk was intranasally delivered to mice. Behavioural tests, immunohistochemistry, immunostaining, Nissl staining, qRT-PCR and Western blot were employed to evaluate the potential effects of ABPPk on PD in mice. KEY RESULTS The application of ABPPk markedly enhanced the viability of SH-SY5Y cells and primary dopaminergic neurons treated with neurotoxic agent MPP+ . In an in vivo MPTP-induced PD model, ABPPk significantly improved behavioural performances and prevented tyrosine hydroxylase loss in the substantia nigra pars compacta and striatum. Furthermore, we showed that MPTP-induced astrocyte and microglia activation were largely attenuated by ABPPk, leading to low levels of neuroinflammation and a downregulation of the apoptotic signalling pathway. CONCLUSION AND IMPLICATIONS Taken together, our data show that ABPPk protects dopaminergic neurons from apoptosis, suggesting that ABPPk might be an effective intervention for treating the neuron loss associated with disorders such as PD.
Collapse
Affiliation(s)
- Su Peng
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Caiping Wang
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Jinyu Ma
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Ketao Jiang
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Yuhui Jiang
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Xiaosong Gu
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Cheng Sun
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| |
Collapse
|