1
|
Vera G, Nurgali K, Abalo R. Chemotherapy-Induced Neuropathy Affecting the Gastrointestinal Tract. Neurogastroenterol Motil 2024:e14976. [PMID: 39651634 DOI: 10.1111/nmo.14976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 10/11/2024] [Accepted: 11/19/2024] [Indexed: 12/11/2024]
Abstract
BACKGROUND Cancer is a major global cause of morbidity and mortality. Survivorship is increasing, bringing new challenges. Cancer treatment, including chemotherapeutic drugs, immunotherapy, and radiotherapy, can have severe and impactful gastrointestinal side effects occurring shortly after treatment (acute toxicity) or persisting for years after treatment ends (late/chronic toxicity). PURPOSE The aim of this article is to review the neurotoxic effects of chemotherapy on the enteric nervous system (ENS) and the gut extrinsic innervation. These effects could contribute to the development of long-term gastrointestinal dysfunctions. Research, primarily conducted in animal models, indicates that antitumoral drugs can lead to chemotherapy-induced enteric neuropathy (CIEN). Studies, mainly performed in the myenteric plexus, show that CIEN is characterized by a reduced density of nerve cells and fibers, as well as an imbalanced representation of neuronal subpopulations or their markers, with enteric glial cells also affected. These alterations underlie changes in neuronal activity and gastrointestinal motor function. Although research on the submucosal plexus remains limited, evidence suggests that CIEN affects the entire ENS. Furthermore, scarce studies show that CIEN also occurs in humans. Moreover, emerging experimental data on chemotherapy-induced alterations in visceral sensitivity suggest that the extrinsic innervation of the gut is also affected, but this has received little attention thus far. Nevertheless, this could contribute to the development of chemotherapy-induced brain-gut axis (BGA) disorders in the long term. Cancer chemotherapy (and probably also immunotherapy and radiotherapy) seems to cause neuropathic effects on the intrinsic and extrinsic innervation of the gastrointestinal tract, with an important impact on gastrointestinal and BGA functions. This is a relatively neglected area deserving further investigation.
Collapse
Affiliation(s)
- Gema Vera
- Department of Basic Health Sciences, University Rey Juan Carlos (URJC), Alcorcón, Spain
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut), University Rey Juan Carlos (URJC), Alcorcón, Spain
- Associated I+D+i Unit to the Institute of Medicinal Chemistry (IQM), Scientific Research Superior Council (CSIC), Madrid, Spain
| | - Kulmira Nurgali
- Institute for Health and Sport, Victoria University, Melbourne, Australia
- Department of Medicine Western Health, The University of Melbourne, Melbourne, Australia
- Regenerative Medicine and Stem Cell Program, Australian Institute for Musculoskeletal Science (AIMSS), Melbourne, Australia
| | - Raquel Abalo
- Department of Basic Health Sciences, University Rey Juan Carlos (URJC), Alcorcón, Spain
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut), University Rey Juan Carlos (URJC), Alcorcón, Spain
- Associated I+D+i Unit to the Institute of Medicinal Chemistry (IQM), Scientific Research Superior Council (CSIC), Madrid, Spain
- Working Group of Basic Sciences on Pain and Analgesia of the Spanish Pain Society, Madrid, Spain
- Working Group of Basic Sciences on Cannabinoids of the Spanish Pain Society, Madrid, Spain
| |
Collapse
|
2
|
Bornstein JC. Experimental West Nile virus infection provides lessons for recovery from enteric neuropathies. J Clin Invest 2024; 134:e185865. [PMID: 39484722 PMCID: PMC11527442 DOI: 10.1172/jci185865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024] Open
Abstract
Loss of enteric neurons leading to long-term gastrointestinal dysfunction is common to many diseases, and the path to functional recovery is unclear. In this issue of the JCI, Janova et al. report that West Nile virus killed enteric neurons and glia via CD4+ and CD8+ T cells acting through the perforin and Fas ligand pathways. Enteric glial cells contributed to neurogenesis and at least partial replacement of affected neurons. While neurogenesis is important for recovery, dysmotility and disruptions to the network structure persisted. Following enteric injury, the contribution of neurogenesis and the conditions that support restoration of enteric neural circuits for functional recovery remain for further investigation.
Collapse
|
3
|
Liu Q, Liu GP. Response to comment on: BGP-15 alleviates LPS-induced depression-like behavior by promoting mitophagy. Brain Behav Immun 2024; 120:543-544. [PMID: 38971205 DOI: 10.1016/j.bbi.2024.06.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 06/28/2024] [Indexed: 07/08/2024] Open
Affiliation(s)
- Qian Liu
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China; Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Gong-Ping Liu
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China; Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
4
|
Jamka JR, Gulbransen BD. Mechanisms of enteric neuropathy in diverse contexts of gastrointestinal dysfunction. Neurogastroenterol Motil 2024:e14870. [PMID: 39038157 DOI: 10.1111/nmo.14870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/11/2024] [Accepted: 07/10/2024] [Indexed: 07/24/2024]
Abstract
The enteric nervous system (ENS) commands moment-to-moment gut functions through integrative neurocircuitry housed in the gut wall. The functional continuity of ENS networks is disrupted in enteric neuropathies and contributes to major disturbances in normal gut activities including abnormal gut motility, secretions, pain, immune dysregulation, and disrupted signaling along the gut-brain axis. The conditions under which enteric neuropathy occurs are diverse and the mechanistic underpinnings are incompletely understood. The purpose of this brief review is to summarize the current understanding of the cell types involved, the conditions in which neuropathy occurs, and the mechanisms implicated in enteric neuropathy such as oxidative stress, toll like receptor signaling, purines, and pre-programmed cell death.
Collapse
Affiliation(s)
- Julia R Jamka
- Department of Physiology, Michigan State University, East Lansing, Michigan, USA
| | - Brian D Gulbransen
- Department of Physiology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
5
|
Szántó M, Yélamos J, Bai P. Specific and shared biological functions of PARP2 - is PARP2 really a lil' brother of PARP1? Expert Rev Mol Med 2024; 26:e13. [PMID: 38698556 PMCID: PMC11140550 DOI: 10.1017/erm.2024.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/07/2024] [Accepted: 03/20/2024] [Indexed: 05/05/2024]
Abstract
PARP2, that belongs to the family of ADP-ribosyl transferase enzymes (ART), is a discovery of the millennium, as it was identified in 1999. Although PARP2 was described initially as a DNA repair factor, it is now evident that PARP2 partakes in the regulation or execution of multiple biological processes as inflammation, carcinogenesis and cancer progression, metabolism or oxidative stress-related diseases. Hereby, we review the involvement of PARP2 in these processes with the aim of understanding which processes are specific for PARP2, but not for other members of the ART family. A better understanding of the specific functions of PARP2 in all of these biological processes is crucial for the development of new PARP-centred selective therapies.
Collapse
Affiliation(s)
- Magdolna Szántó
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - José Yélamos
- Hospital del Mar Research Institute, Barcelona, Spain
| | - Péter Bai
- HUN-REN-UD Cell Biology and Signaling Research Group, Debrecen, 4032, Hungary
- MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, 4032, Hungary
- Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen 4032, Hungary
| |
Collapse
|
6
|
Stavely R, Robinson AM, Fraser S, Filippone RT, Stojanovska V, Eri R, Apostolopoulos V, Sakkal S, Nurgali K. Bone marrow-derived mesenchymal stem cells mitigate chronic colitis and enteric neuropathy via anti-inflammatory and anti-oxidative mechanisms. Sci Rep 2024; 14:6649. [PMID: 38503815 PMCID: PMC10951223 DOI: 10.1038/s41598-024-57070-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 03/14/2024] [Indexed: 03/21/2024] Open
Abstract
Current treatments for inflammatory bowel disease (IBD) are often inadequate due to limited efficacy and toxicity, leading to surgical resection in refractory cases. IBD's broad and complex pathogenesis involving the immune system, enteric nervous system, microbiome, and oxidative stress requires more effective therapeutic strategies. In this study, we investigated the therapeutic potential of bone marrow-derived mesenchymal stem cell (BM-MSC) treatments in spontaneous chronic colitis using the Winnie mouse model which closely replicates the presentation and inflammatory profile of ulcerative colitis. The 14-day BM-MSC treatment regimen reduced the severity of colitis, leading to the attenuation of diarrheal symptoms and recovery in body mass. Morphological and histological abnormalities in the colon were also alleviated. Transcriptomic analysis demonstrated that BM-MSC treatment led to alterations in gene expression profiles primarily downregulating genes related to inflammation, including pro-inflammatory cytokines, chemokines and other biomarkers of inflammation. Further evaluation of immune cell populations using immunohistochemistry revealed a reduction in leukocyte infiltration upon BM-MSC treatment. Notably, enteric neuronal gene signatures were the most impacted by BM-MSC treatment, which correlated with the restoration of neuronal density in the myenteric ganglia. Moreover, BM-MSCs exhibited neuroprotective effects against oxidative stress-induced neuronal loss through antioxidant mechanisms, including the reduction of mitochondrial-derived superoxide and attenuation of oxidative stress-induced HMGB1 translocation, potentially relying on MSC-derived SOD1. These findings suggest that BM-MSCs hold promise as a therapeutic intervention to mitigate chronic colitis by exerting anti-inflammatory effects and protecting the enteric nervous system from oxidative stress-induced damage.
Collapse
Affiliation(s)
- Rhian Stavely
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Ainsley M Robinson
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| | - Sarah Fraser
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| | | | - Vanesa Stojanovska
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Rajaraman Eri
- School of Science, STEM College, RMIT University, Melbourne, VIC, Australia
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
- Immunology Program, Australian Institute of Musculoskeletal Science (AIMSS), Melbourne, VIC, Australia
| | - Samy Sakkal
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| | - Kulmira Nurgali
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia.
- Department of Medicine Western Health, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC, Australia.
- Regenerative Medicine and Stem Cells Program, Australian Institute of Musculoskeletal Science (AIMSS), Melbourne, VIC, Australia.
- Enteric Neuropathy Lab, Western Centre for Health, Research and Education, St Albans, VIC, 3021, Australia.
| |
Collapse
|
7
|
Manuweera T, Wagenknecht A, Kleckner AS, Dorsey SG, Zhu S, Tivarus ME, Kesler SR, Ciner A, Kleckner IR. Preliminary evaluation of novel Bodily Attention Task to assess the role of the brain in chemotherapy-induced peripheral neurotoxicity (CIPN). Behav Brain Res 2024; 460:114803. [PMID: 38070689 PMCID: PMC10860373 DOI: 10.1016/j.bbr.2023.114803] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/22/2023] [Accepted: 12/05/2023] [Indexed: 12/21/2023]
Abstract
Chemotherapy-induced peripheral neurotoxicity (CIPN) is a common, sometimes dose-limiting side effect of neurotoxic chemotherapy. Treatment is limited because its pathophysiology is poorly understood. Compared to research on peripheral mechanisms, the role of the brain in CIPN is understudied and it may be important to develop better treatments. We propose a novel task that assesses brain activation associated with attention to bodily sensations (interoception), without the use of painful stimulation, to understand how CIPN symptoms may be processed in the brain. The goals of this preliminary study were to assess, 1) feasibility of the task, 2) sensitivity to changes in brain activity, and 3) suitability for assessing relationships between brain activation and CIPN severity. Eleven participants with varying types of cancer completed a brain fMRI scan and rated CIPN severity (CIPN-20) before and/or 12 weeks after starting neurotoxic chemotherapy. The Bodily Attention Task is a 7.5-min long fMRI task involving attentional focus on the left fingertips, the heart, or a flashing word "target" for visual attention (reference condition). Feasibility was confirmed, as 73% of all data collected were usable and participants reported feeling or focus during 75% of the trials. Regarding brain activity, finger attention increased activation in somatosensory regions (primary sensory cortex, insula) and sensory integration regions (precuneus, dorsolateral prefrontal cortex). Exploratory analyses suggested that brain activation may be associated with CIPN severity. A larger sample size and accounting of confounding factors is needed to test for replication and to identify brain and interoceptive biomarkers to help improve the prediction, prevention, and treatment of CIPN.
Collapse
Affiliation(s)
- Thushini Manuweera
- Department of Pain and Translational Symptom Science, University of Maryland School of Nursing, Baltimore, MD, USA.
| | - Amelia Wagenknecht
- Department of Pain and Translational Symptom Science, University of Maryland School of Nursing, Baltimore, MD, USA
| | - Amber S Kleckner
- Department of Pain and Translational Symptom Science, University of Maryland School of Nursing, Baltimore, MD, USA
| | - Susan G Dorsey
- Department of Pain and Translational Symptom Science, University of Maryland School of Nursing, Baltimore, MD, USA
| | - Shijun Zhu
- Department of Pain and Translational Symptom Science, University of Maryland School of Nursing, Baltimore, MD, USA
| | - Madalina E Tivarus
- Department of Imaging Sciences and Department of Neuroscience University of Rochester Medical Center, Rochester, NY, USA
| | - Shelli R Kesler
- Department of Adult Health, School of Nursing, University of Texas at Austin, Austin, TX, USA
| | - Aaron Ciner
- University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ian R Kleckner
- Department of Pain and Translational Symptom Science, University of Maryland School of Nursing, Baltimore, MD, USA
| |
Collapse
|
8
|
Hosie S, Abo-Shaban T, Mou K, Balasuriya GK, Mohsenipour M, Alamoudi MU, Filippone RT, Belz GT, Franks AE, Bornstein JC, Nurgali K, Hill-Yardin EL. Faster Gastrointestinal Transit, Reduced Small Intestinal Smooth Muscle Tone and Dysmotility in the Nlgn3R451C Mouse Model of Autism. Int J Mol Sci 2024; 25:832. [PMID: 38255906 PMCID: PMC10815490 DOI: 10.3390/ijms25020832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/18/2023] [Accepted: 12/12/2023] [Indexed: 01/24/2024] Open
Abstract
Individuals with autism often experience gastrointestinal issues but the cause is unknown. Many gene mutations that modify neuronal synapse function are associated with autism and therefore may impact the enteric nervous system that regulates gastrointestinal function. A missense mutation in the Nlgn3 gene encoding the cell adhesion protein Neuroligin-3 was identified in two brothers with autism who both experienced severe gastrointestinal dysfunction. Mice expressing this mutation (Nlgn3R451C mice) are a well-studied preclinical model of autism and show autism-relevant characteristics, including impaired social interaction and communication, as well as repetitive behaviour. We previously showed colonic dysmotility in response to GABAergic inhibition and increased myenteric neuronal numbers in the small intestine in Nlgn3R451C mice bred on a mixed genetic background. Here, we show that gut dysfunction is a persistent phenotype of the Nlgn3 R451C mutation in mice backcrossed onto a C57BL/6 background. We report that Nlgn3R451C mice show a 30.9% faster gastrointestinal transit (p = 0.0004) in vivo and have 6% longer small intestines (p = 0.04) compared to wild-types due to a reduction in smooth muscle tone. In Nlgn3R451C mice, we observed a decrease in resting jejunal diameter (proximal jejunum: 10.6% decrease, p = 0.02; mid: 9.8%, p = 0.04; distal: 11.5%, p = 0.009) and neurally regulated dysmotility as well as shorter durations of contractile complexes (mid: 25.6% reduction in duration, p = 0.009; distal: 30.5%, p = 0.004) in the ileum. In Nlgn3R451C mouse colons, short contractions were inhibited to a greater extent (57.2% by the GABAA antagonist, gabazine, compared to 40.6% in wild-type mice (p = 0.007). The inhibition of nitric oxide synthesis decreased the frequency of contractile complexes in the jejunum (WT p = 0.0006, Nlgn3R451C p = 0.002), but not the ileum, in both wild-type and Nlgn3R451C mice. These findings demonstrate that changes in enteric nervous system function contribute to gastrointestinal dysmotility in mice expressing the autism-associated R451C missense mutation in the Neuroligin-3 protein.
Collapse
Affiliation(s)
- Suzanne Hosie
- School of Health and Biomedical Sciences, STEM College, RMIT University, Melbourne, VIC 3083, Australia (T.A.-S.)
| | - Tanya Abo-Shaban
- School of Health and Biomedical Sciences, STEM College, RMIT University, Melbourne, VIC 3083, Australia (T.A.-S.)
| | - Kevin Mou
- School of Health and Biomedical Sciences, STEM College, RMIT University, Melbourne, VIC 3083, Australia (T.A.-S.)
| | - Gayathri K. Balasuriya
- School of Health and Biomedical Sciences, STEM College, RMIT University, Melbourne, VIC 3083, Australia (T.A.-S.)
- Graduate School of Medicine, Kobe University, Kobe 657-8501, Japan
| | - Mitra Mohsenipour
- School of Health and Biomedical Sciences, STEM College, RMIT University, Melbourne, VIC 3083, Australia (T.A.-S.)
| | - Mohammed U. Alamoudi
- School of Health and Biomedical Sciences, STEM College, RMIT University, Melbourne, VIC 3083, Australia (T.A.-S.)
- Medical Laboratory Technology Department, Faculty of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | | | - Gabrielle T. Belz
- Frazer Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Ashley E. Franks
- Department of Microbiology, Anatomy, Physiology and Pharmacology, School of Life Sciences, La Trobe University, Melbourne, VIC 3083, Australia
| | - Joel C. Bornstein
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Kulmira Nurgali
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3021, Australia
- Department of Medicine Western Health, University of Melbourne, Melbourne, VIC 3010, Australia
- Regenerative Medicine and Stem Cells Program, Australian Institute for Musculoskeletal Science (AIMSS), Melbourne, VIC 3021, Australia
| | - Elisa L. Hill-Yardin
- School of Health and Biomedical Sciences, STEM College, RMIT University, Melbourne, VIC 3083, Australia (T.A.-S.)
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC 3010, Australia
| |
Collapse
|
9
|
Li L, Liu H, Yu J, Sun Z, Jiang M, Yu H, Wang C. Intestinal Microbiota and Metabolomics Reveal the Role of Auricularia delicate in Regulating Colitis-Associated Colorectal Cancer. Nutrients 2023; 15:5011. [PMID: 38068869 PMCID: PMC10708550 DOI: 10.3390/nu15235011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/01/2023] [Accepted: 12/02/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND The edible fungus Auricularia delicate (ADe) is commonly employed in traditional medicine for intestinal disorders; however, its inhibitory effect on colitis-associated colorectal cancer (CAC) and the underlying mechanisms remain unexplored. (2) Methods: The inhibitory effect of ADe on CAC was investigated using a mouse model induced by azoxymethane/dextran sulfate sodium. RESULTS ADe effectively suppressed the growth and number of intestinal tumors in mice. Intestinal microbiota analyses revealed that ADe treatment increased Akkermansia and Parabacteroides while it decreased Clostridium, Turicibacter, Oscillospira, and Desulfovibrio. ADe regulated the levels of 2'-deoxyridine, creatinine, 1-palmitoyl lysophosphatidylcholine, and choline in serum. Furthermore, the levels of these metabolites were associated with the abundance of Oscillospira and Paraacteroides. ADe up-regulated the free fatty acid receptor 2 and β-Arrestin 2, inhibited the nuclear factor kappa B (NF-κB) pathway, and significantly attenuated the levels of inflammatory cytokines, thereby mitigating the inflammatory in CAC mice. CONCLUSIONS The protective effect of ADe in CAC mice is associated with the regulation of intestinal microbiota, which leads to the inhibition of NF-kB pathway and regulation of inflammation.
Collapse
Affiliation(s)
- Lanzhou Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; (L.L.); (J.Y.); (Z.S.)
- School of Life Sciences, Jilin University, Changchun 130012, China;
| | - Honghan Liu
- School of Life Sciences, Jilin University, Changchun 130012, China;
| | - Jinqi Yu
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; (L.L.); (J.Y.); (Z.S.)
| | - Zhen Sun
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; (L.L.); (J.Y.); (Z.S.)
- School of Life Sciences, Jilin University, Changchun 130012, China;
| | - Ming Jiang
- College of Life Science and Technology, Mudanjiang Normal University, Mudanjiang 157011, China;
| | - Han Yu
- College of Agriculture, Jilin Agricultural University, Changchun 130118, China
| | - Chunyue Wang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; (L.L.); (J.Y.); (Z.S.)
- School of Life Sciences, Jilin University, Changchun 130012, China;
| |
Collapse
|
10
|
Stavely R, Ott LC, Rashidi N, Sakkal S, Nurgali K. The Oxidative Stress and Nervous Distress Connection in Gastrointestinal Disorders. Biomolecules 2023; 13:1586. [PMID: 38002268 PMCID: PMC10669114 DOI: 10.3390/biom13111586] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
Oxidative stress is increasingly recognized as a central player in a range of gastrointestinal (GI) disorders, as well as complications stemming from therapeutic interventions. This article presents an overview of the mechanisms of oxidative stress in GI conditions and highlights a link between oxidative insult and disruption to the enteric nervous system (ENS), which controls GI functions. The dysfunction of the ENS is characteristic of a spectrum of disorders, including neurointestinal diseases and conditions such as inflammatory bowel disease (IBD), diabetic gastroparesis, and chemotherapy-induced GI side effects. Neurons in the ENS, while essential for normal gut function, appear particularly vulnerable to oxidative damage. Mechanistically, oxidative stress in enteric neurons can result from intrinsic nitrosative injury, mitochondrial dysfunction, or inflammation-related pathways. Although antioxidant-based therapies have shown limited efficacy, recognizing the multifaceted role of oxidative stress in GI diseases offers a promising avenue for future interventions. This comprehensive review summarizes the literature to date implicating oxidative stress as a critical player in the pathophysiology of GI disorders, with a focus on its role in ENS injury and dysfunction, and highlights opportunities for the development of targeted therapeutics for these diseases.
Collapse
Affiliation(s)
- Rhian Stavely
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Leah C. Ott
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Niloufar Rashidi
- Institute for Health and Sport, Victoria University, St Albans, VIC 3021, Australia
| | - Samy Sakkal
- Institute for Health and Sport, Victoria University, St Albans, VIC 3021, Australia
| | - Kulmira Nurgali
- Institute for Health and Sport, Victoria University, St Albans, VIC 3021, Australia
- Department of Medicine Western Health, The University of Melbourne, St Albans, VIC 3021, Australia
- Regenerative Medicine and Stem Cell Program, Australian Institute for Musculoskeletal Science (AIMSS), St Albans, VIC 3021, Australia
| |
Collapse
|
11
|
He Y, Zheng J, Ye B, Dai Y, Nie K. Chemotherapy-induced gastrointestinal toxicity: Pathogenesis and current management. Biochem Pharmacol 2023; 216:115787. [PMID: 37666434 DOI: 10.1016/j.bcp.2023.115787] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/06/2023]
Abstract
Chemotherapy is the most common treatment for malignant tumors. However, chemotherapy-induced gastrointestinal toxicity (CIGT) has been a major concern for cancer patients, which reduces their quality of life and leads to treatment intolerance and even cessation. Nevertheless, prevention and treatment for CIGT are challenging, due to the prevalence and complexity of the condition. Chemotherapeutic drugs directly damage gastrointestinal mucosa to induce CIGT, including nausea, vomiting, anorexia, gastrointestinal mucositis, and diarrhea, etc. The pathogenesis of CIGT involves multiple factors, such as gut microbiota disorders, inflammatory responses and abnormal neurotransmitter levels, that synergistically contribute to its occurrence and development. In particular, the dysbiosis of gut microbiota is usually linked to abnormal immune responses that increases inflammatory cytokines' expression, which is a common characteristic of many types of CIGT. Chemotherapy-induced intestinal neurotoxicity is also a vital concern in CIGT. Currently, modern medicine is the dominant treatment of CIGT, however, traditional Chinese medicine (TCM) has attracted interest as a complementary and alternative therapy that can greatly alleviate CIGT. Accordingly, this review aimed to comprehensively summarize the pathogenesis and current management of CIGT using PubMed and Google Scholar databases, and proposed that future research for CIGT should focus on the gut microbiota, intestinal neurotoxicity, and promising TCM therapies, which may help to develop more effective interventions and optimize managements of CIGT.
Collapse
Affiliation(s)
- Yunjing He
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jingrui Zheng
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Binbin Ye
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yongzhao Dai
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Ke Nie
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
12
|
Dong M, Liu H, Cao T, Li L, Sun Z, Qiu Y, Wang D. Huoxiang Zhengqi alleviates azoxymethane/dextran sulfate sodium-induced colitis-associated cancer by regulating Nrf2/NF-κB/NLRP3 signaling. Front Pharmacol 2022; 13:1002269. [PMID: 36339623 PMCID: PMC9634060 DOI: 10.3389/fphar.2022.1002269] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/10/2022] [Indexed: 11/20/2022] Open
Abstract
Colitis-associated cancer (CAC) is a subtype of inflammatory bowel disease (IBD)-associated colorectal cancer. Huoxiang Zhengqi (HXZQ) is a classical Chinese herbal medicine and has been used to treat intestinal disorders, however, anti-CAC effects and underlying mechanisms of HXZQ have not been reported. An azoxymethane/dextran sulfate sodium-induced CAC mice model was used to investigate the anti-CAC effect of HXZQ. HXZQ significantly reduced colonic inflammation, suppressed the size and number of tumors, and reduced the levels of pro-inflammatory cytokines (interleukin [IL]-1α, IL-1β, IL-6, IL-17A, IL-21, IL-23, granulocyte macrophage-colony stimulating factor, and tumor necrosis factor-α) and oxidative stress markers (reactive oxygen species and malondialdehyde), and increased the levels of anti-inflammatory cytokines (IL-10 and IL-27) in CAC mice. Intestinal microbiota and serum metabolomics analyses indicated that HXZQ altered the gut microbial composition and the abundance of 29 serum metabolites in CAC mice. Additionally, HXZQ activated the nuclear factor-erythroid factor 2-related factor 2 (Nrf2) signaling pathway and increased the levels of antioxidants such as catalase (CAT), heme oxygenase-1 (HO-1), NAD(P)H quinone oxidoreductases-1 (NQO-1), and superoxide dismutase-1 (SOD-1). HXZQ inhibited the activation of the nuclear factor kappa-B (NF-κB) signaling pathway and decreased the expression of NLR family pyrin domain containing 3 (NLRP3) by inhibiting the phosphorylation of inhibitor of nuclear factor kappa-B (IκB), inhibitor of nuclear factor kappa-B kinase (IKK), and NF-κB. In conclusion, HXZQ alleviated CAC in mice by modulating the intestinal microbiota and metabolism, activating Nrf2-mediated antioxidant response, and inhibiting NF-κB-mediated NLRP3 inflammasome activation against inflammation. The present data provide a reference for the use of HXZQ as a therapeutic or combination agent for clinical CAC treatment.
Collapse
Affiliation(s)
- Mingyuan Dong
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
- School of Life Sciences, Jilin University, Changchun, China
| | - Honghan Liu
- School of Life Sciences, Jilin University, Changchun, China
| | - Tianjiao Cao
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Lanzhou Li
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
- School of Life Sciences, Jilin University, Changchun, China
- Engineering Research Center of Chinese Ministry of Education ford Eible and Medicinal Fungi, Jilin Agricultural University, Changchun, China
| | - Zhen Sun
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
- School of Life Sciences, Jilin University, Changchun, China
| | - Ye Qiu
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Di Wang
- School of Life Sciences, Jilin University, Changchun, China
- Engineering Research Center of Chinese Ministry of Education ford Eible and Medicinal Fungi, Jilin Agricultural University, Changchun, China
| |
Collapse
|
13
|
Richter MN, Fattahi F. Stem Cell-Based Models for Studying the Effects of Cancer and Cancer Therapies on the Peripheral Nervous System. Adv Biol (Weinh) 2022; 6:e2200009. [PMID: 35666079 DOI: 10.1002/adbi.202200009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 05/06/2022] [Indexed: 01/28/2023]
Abstract
In recent years, the complexity of cancer and cancer therapies and their interactions with the peripheral nervous system have come into focus, but limitations in experimental models have remained a significant challenge in the field. As evidence, there are currently no therapies approved that target cancer-peripheral nervous system or cancer therapy-peripheral nervous system interactions as an anti-neoplastic or anti-neurotoxic agent, respectively. Human pluripotent stem cells offer an appealing model system that, unlike rodent models, is compatible with high throughput, high content applications; techniques that reflect modern drug discovery methodologies. Thus, utilizing the key advantages of stem cell-based models in tandem with the strengths of traditional animal models offers a complementary and interdisciplinary strategy to advance cancer and cancer therapy-peripheral nervous system research and drug discovery. In this review, the current status of the cancer-peripheral nervous system and cancer therapy-peripheral nervous system research is discussed, examples where stem cell-based models have been implemented are described, and avenues where stem cell-based models may further advance the field are proposed.
Collapse
Affiliation(s)
- Mikayla N Richter
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, 94158, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, 94143, USA
| | - Faranak Fattahi
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, 94158, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, 94143, USA
- Program in Craniofacial Biology, University of California, San Francisco, CA, 94110, USA
| |
Collapse
|
14
|
Bekiari C, Tekos F, Skaperda Z, Argyropoulou A, Skaltsounis AL, Kouretas D, Tsingotjidou A. Antioxidant and Neuroprotective Effect of a Grape Pomace Extract on Oxaliplatin-Induced Peripheral Neuropathy in Rats: Biochemical, Behavioral and Histopathological Evaluation. Antioxidants (Basel) 2022; 11:antiox11061062. [PMID: 35739960 PMCID: PMC9219719 DOI: 10.3390/antiox11061062] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/14/2022] [Accepted: 05/25/2022] [Indexed: 12/10/2022] Open
Abstract
Oxaliplatin is a widely used chemotherapeutic agent. Despite its many beneficial aspects in fighting many malignancies, it shares an aversive effect of neuropathy. Many substances have been used to limit this oxaliplatin-driven neuropathy in patients. This study evaluates the neuroprotective role of a grape pomace extract (GPE) into an oxaliplatin induced neuropathy in rats. For this reason, following the delivery of the substance into the animals prior to or simultaneously with oxaliplatin, their performance was evaluated by behavioral tests. Blood tests were also performed for the antioxidant activity of the extract, along with a histological and pathological evaluation of dorsal root ganglion (DRG) cells as the major components of the neuropathy. All behavioral tests were corrected following the use of the grape pomace. Oxidative stressors were also limited with the use of the extract. Additionally, the morphometrical analysis of the DRG cells and their immunohistochemical phenotype revealed the fidelity of the animal model and the changes into the parvalbumin and GFAP concentration indicative of the neuroprotective role of the pomace. In conclusion, the grape pomace extract with its antioxidant properties alleviates the harmful effects of the oxaliplatin induced chronic neuropathy in rats.
Collapse
Affiliation(s)
- Chryssa Bekiari
- Laboratory of Anatomy, Histology and Embryology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Fotios Tekos
- Laboratory of Animal Physiology, Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece; (F.T.); (Z.S.); (D.K.)
| | - Zoi Skaperda
- Laboratory of Animal Physiology, Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece; (F.T.); (Z.S.); (D.K.)
| | - Aikaterini Argyropoulou
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National Kapodistrian University of Athens, Panepistimioupoli, Zografou, 15771 Athens, Greece; (A.A.); (A.-L.S.)
| | - Alexios-Leandros Skaltsounis
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National Kapodistrian University of Athens, Panepistimioupoli, Zografou, 15771 Athens, Greece; (A.A.); (A.-L.S.)
| | - Demetrios Kouretas
- Laboratory of Animal Physiology, Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece; (F.T.); (Z.S.); (D.K.)
| | - Anastasia Tsingotjidou
- Laboratory of Anatomy, Histology and Embryology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
- Correspondence: ; Tel.: +30-2310999941
| |
Collapse
|
15
|
Was H, Borkowska A, Bagues A, Tu L, Liu JYH, Lu Z, Rudd JA, Nurgali K, Abalo R. Mechanisms of Chemotherapy-Induced Neurotoxicity. Front Pharmacol 2022; 13:750507. [PMID: 35418856 PMCID: PMC8996259 DOI: 10.3389/fphar.2022.750507] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 03/02/2022] [Indexed: 12/15/2022] Open
Abstract
Since the first clinical trials conducted after World War II, chemotherapeutic drugs have been extensively used in the clinic as the main cancer treatment either alone or as an adjuvant therapy before and after surgery. Although the use of chemotherapeutic drugs improved the survival of cancer patients, these drugs are notorious for causing many severe side effects that significantly reduce the efficacy of anti-cancer treatment and patients’ quality of life. Many widely used chemotherapy drugs including platinum-based agents, taxanes, vinca alkaloids, proteasome inhibitors, and thalidomide analogs may cause direct and indirect neurotoxicity. In this review we discuss the main effects of chemotherapy on the peripheral and central nervous systems, including neuropathic pain, chemobrain, enteric neuropathy, as well as nausea and emesis. Understanding mechanisms involved in chemotherapy-induced neurotoxicity is crucial for the development of drugs that can protect the nervous system, reduce symptoms experienced by millions of patients, and improve the outcome of the treatment and patients’ quality of life.
Collapse
Affiliation(s)
- Halina Was
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, Warsaw, Poland
| | - Agata Borkowska
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, Warsaw, Poland.,Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Ana Bagues
- Área de Farmacología y Nutrición, Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan Carlos (URJC), Alcorcón, Spain.,High Performance Research Group in Experimental Pharmacology (PHARMAKOM-URJC), URJC, Alcorcón, Spain.,Unidad Asociada I+D+i del Instituto de Química Médica (IQM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Longlong Tu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Julia Y H Liu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Zengbing Lu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - John A Rudd
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.,The Laboratory Animal Services Centre, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Kulmira Nurgali
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia.,Department of Medicine Western Health, University of Melbourne, Melbourne, VIC, Australia.,Regenerative Medicine and Stem Cells Program, Australian Institute for Musculoskeletal Science (AIMSS), Melbourne, VIC, Australia
| | - Raquel Abalo
- Área de Farmacología y Nutrición, Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan Carlos (URJC), Alcorcón, Spain.,Unidad Asociada I+D+i del Instituto de Química Médica (IQM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.,High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut-URJC), URJC, Alcorcón, Spain.,Grupo de Trabajo de Ciencias Básicas en Dolor y Analgesia de la Sociedad Española del Dolor, Madrid, Spain
| |
Collapse
|
16
|
Feng J, Hibberd TJ, Luo J, Yang P, Xie Z, Travis L, Spencer NJ, Hu H. Modification of Neurogenic Colonic Motor Behaviours by Chemogenetic Ablation of Calretinin Neurons. Front Cell Neurosci 2022; 16:799717. [PMID: 35317196 PMCID: PMC8934436 DOI: 10.3389/fncel.2022.799717] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/31/2022] [Indexed: 12/31/2022] Open
Abstract
How the enteric nervous system determines the pacing and propagation direction of neurogenic contractions along the colon remains largely unknown. We used a chemogenetic strategy to ablate enteric neurons expressing calretinin (CAL). Mice expressing human diphtheria toxin receptor (DTR) in CAL neurons were generated by crossing CAL-ires-Cre mice with Cre-dependent ROSA26-DTR mice. Immunohistochemical analysis revealed treatment with diphtheria toxin incurred a 42% reduction in counts of Hu-expressing colonic myenteric neurons (P = 0.036), and 57% loss of CAL neurons (comprising ∼25% of all Hu neurons; P = 0.004) compared to control. As proportions of Hu-expressing neurons, CAL neurons that contained nitric oxide synthase (NOS) were relatively spared (control: 15 ± 2%, CAL-DTR: 13 ± 1%; P = 0.145), while calretinin neurons lacking NOS were significantly reduced (control: 26 ± 2%, CAL-DTR: 18 ± 5%; P = 0.010). Colonic length and pellet sizes were significantly reduced without overt inflammation or changes in ganglionic density. Interestingly, colonic motor complexes (CMCs) persisted with increased frequency (mid-colon interval 111 ± 19 vs. 189 ± 24 s, CAL-DTR vs. control, respectively, P < 0.001), decreased contraction size (mid-colon AUC 26 ± 24 vs. 59 ± 13 gram/seconds, CAL-DTR vs. control, respectively, P < 0.001), and lacked preferential anterograde migration (P < 0.001). The functional effects of modest calretinin neuron ablation, particularly increased neurogenic motor activity frequencies, differ from models that incur general enteric neuron loss, and suggest calretinin neurons may contribute to pacing, force, and polarity of CMCs in the large bowel.
Collapse
Affiliation(s)
- Jing Feng
- Center for the Study of Itch and Sensory Disorders, Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, United States
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Tim J. Hibberd
- College of Medicine and Public Health, Centre for Neuroscience, Flinders University, Adelaide, SA, Australia
| | - Jialie Luo
- Center for the Study of Itch and Sensory Disorders, Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Pu Yang
- Center for the Study of Itch and Sensory Disorders, Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Zili Xie
- Center for the Study of Itch and Sensory Disorders, Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Lee Travis
- College of Medicine and Public Health, Centre for Neuroscience, Flinders University, Adelaide, SA, Australia
| | - Nick J. Spencer
- College of Medicine and Public Health, Centre for Neuroscience, Flinders University, Adelaide, SA, Australia
- *Correspondence: Nick J. Spencer,
| | - Hongzhen Hu
- Center for the Study of Itch and Sensory Disorders, Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, United States
- Hongzhen Hu,
| |
Collapse
|
17
|
Derby SJ, Chalmers AJ, Carruthers RD. Radiotherapy-Poly(ADP-ribose) Polymerase Inhibitor Combinations: Progress to Date. Semin Radiat Oncol 2022; 32:15-28. [PMID: 34861992 DOI: 10.1016/j.semradonc.2021.09.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Radiation resistance remains a huge clinical problem for cancer patients and oncologists in the 21st century. In recent years, the mammalian DNA damage response (DDR) has been extensively characterized and shown to play a key role in determining cellular survival following ionizing radiation exposure. Genomic instability due to altered DDR is a hallmark of cancer, with many tumors exhibiting abnormal DNA repair or lack of redundancy in DDR. Targeting the abnormal DDR phenotype of tumor cells could lead to substantial gains in radiotherapy efficacy, improving local control and survival for patients with cancers that are refractory to current therapies. Poly(ADP-ribose) polymerase inhibitors (PARPi) are the most clinically advanced DDR inhibitors under investigation as radiosensitisers. Preclinical evidence suggests that PARPi may provide tumor specific radiosensitisation in certain contexts. In addition to inhibition of DNA single strand break repair, PARPi may offer other benefits in combination treatment including radiosensitisation of hypoxic cells and targeting of alternative repair pathways such as microhomology mediated end joining which are increasingly recognized to be upregulated in cancer. Several early phase clinical trials of PARPi with radiation have completed or are in progress. Early reports have highlighted tumor specific challenges, with tolerability dependent upon anatomical location and use of concomitant systemic therapies; these challenges were largely predicted by preclinical data. This review discusses the role of PARP in the cellular response to ionizing radiation, summarizes preclinical studies of PARPi in combination with radiotherapy and explores current early phase clinical trials that are evaluating these combinations.
Collapse
Affiliation(s)
- Sarah J Derby
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland.
| | - Anthony J Chalmers
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland
| | - Ross D Carruthers
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland
| |
Collapse
|
18
|
Impact of chemotherapy-induced enteric nervous system toxicity on gastrointestinal mucositis. Curr Opin Support Palliat Care 2021; 14:293-300. [PMID: 32769620 DOI: 10.1097/spc.0000000000000515] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE OF REVIEW Chemotherapy is a first-line treatment for many cancers; however, its use is hampered by a long list of side-effects. Gastrointestinal mucositis is a common and debilitating side-effect of anticancer therapy contributing to dose reductions, delays and cessation of treatment, greatly impacting clinical outcomes. The underlying pathophysiology of gastrointestinal mucositis is complex and likely involves several overlapping inflammatory, secretory and neural mechanisms, yet research investigating the role of innervation in gastrointestinal mucositis is scarce. This review provides an overview of the current literature surrounding chemotherapy-induced enteric neurotoxicity and discusses its implications on gastrointestinal mucositis. RECENT FINDINGS Damage to the intrinsic nervous system of the gastrointestinal tract, the enteric nervous system (ENS), occurs following chemotherapeutic administration, leading to altered gastrointestinal functions. Chemotherapeutic drugs have various mechanisms of actions on the ENS. Oxidative stress, direct toxicity and inflammation have been identified as mechanisms involved in chemotherapy-induced ENS damage. Enteric neuroprotection has proven to be beneficial to reduce gastrointestinal dysfunction in animal models of oxaliplatin-induced enteric neuropathy. SUMMARY Understanding of the ENS role in chemotherapy-induced mucositis requires further investigation and might lead to the development of more effective therapeutic interventions for prevention and treatment of chemotherapy-induced gastrointestinal side-effects.
Collapse
|
19
|
Pro S, Vinti L, Boni A, Mastronuzzi A, Scilipoti M, Velardi M, Caroleo AM, Farina E, Badolato F, Alessi I, Di Nardo G, Carai A, Valeriani M, Reale A, Parisi P, Raucci U. Peripheral Nervous System Involvement in Non-Primary Pediatric Cancer: From Neurotoxicity to Possible Etiologies. J Clin Med 2021; 10:3016. [PMID: 34300182 PMCID: PMC8303855 DOI: 10.3390/jcm10143016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 06/28/2021] [Accepted: 06/28/2021] [Indexed: 01/21/2023] Open
Abstract
Peripheral neuropathy is a well described complication in children with cancer. Oncologists are generally well aware of the toxicity of the main agents, but fear the side effects of new drugs. As chemotherapeutic agents have been correlated with the activation of the immune system such as in Chemotherapy Induced Peripheral Neuropathy (CIPN), an abnormal response can lead to Autoimmune Peripheral Neuropathy (APN). Although less frequent but more severe, Radiation Induced Peripheral Neuropathy may be related to irreversible peripheral nervous system (PNS). Pediatric cancer patients also have a higher risk of entering a Pediatric Intensive Care Unit for complications related to therapy and disease. Injury to peripheral nerves is cumulative, and frequently, the additional stress of a malignancy and its therapy can unmask a subclinical neuropathy. Emerging risk factors for CIPN include treatment factors such as dose, duration and concurrent medication along with patient factors, namely age and inherited susceptibilities. The recent identification of individual genetic variations has advanced the understanding of physiopathological mechanisms and may direct future treatment approaches. More research is needed on pharmacological agents for the prevention or treatment of the condition as well as rehabilitation interventions, in order to allow for the simultaneous delivery of optimal cancer therapy and the mitigation of toxicity associated with pain and functional impairment. The aim of this paper is to review literature data regarding PNS complications in non-primary pediatric cancer.
Collapse
Affiliation(s)
- Stefano Pro
- Child Neurology Unit, Department of Neuroscience, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (S.P.); (M.V.)
| | - Luciana Vinti
- Department of Hematology/Oncology, Gene Therapy and Hematopoietic Transplantation, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (L.V.); (A.M.); (A.M.C.); (I.A.)
| | - Alessandra Boni
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00161 Rome, Italy; (A.B.); (E.F.)
| | - Angela Mastronuzzi
- Department of Hematology/Oncology, Gene Therapy and Hematopoietic Transplantation, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (L.V.); (A.M.); (A.M.C.); (I.A.)
| | - Martina Scilipoti
- Department of Emergency, Acceptance and General Pediatrics, Bambino Gesù Children Hospital, IRCCS, 00165 Rome, Italy; (M.S.); (A.R.)
| | - Margherita Velardi
- Child Neurology, NESMOS Department, Faculty of Medicine and Psychology, Sant’Andrea Hospital, Sapienza University of Rome, 00189 Rome, Italy; (M.V.); (F.B.); (G.D.N.); (P.P.)
| | - Anna Maria Caroleo
- Department of Hematology/Oncology, Gene Therapy and Hematopoietic Transplantation, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (L.V.); (A.M.); (A.M.C.); (I.A.)
| | - Elisa Farina
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00161 Rome, Italy; (A.B.); (E.F.)
| | - Fausto Badolato
- Child Neurology, NESMOS Department, Faculty of Medicine and Psychology, Sant’Andrea Hospital, Sapienza University of Rome, 00189 Rome, Italy; (M.V.); (F.B.); (G.D.N.); (P.P.)
| | - Iside Alessi
- Department of Hematology/Oncology, Gene Therapy and Hematopoietic Transplantation, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (L.V.); (A.M.); (A.M.C.); (I.A.)
| | - Giovanni Di Nardo
- Child Neurology, NESMOS Department, Faculty of Medicine and Psychology, Sant’Andrea Hospital, Sapienza University of Rome, 00189 Rome, Italy; (M.V.); (F.B.); (G.D.N.); (P.P.)
| | - Andrea Carai
- Neurosurgery Unit, Department of Neuroscience, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy;
| | - Massimiliano Valeriani
- Child Neurology Unit, Department of Neuroscience, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (S.P.); (M.V.)
| | - Antonino Reale
- Department of Emergency, Acceptance and General Pediatrics, Bambino Gesù Children Hospital, IRCCS, 00165 Rome, Italy; (M.S.); (A.R.)
| | - Pasquale Parisi
- Child Neurology, NESMOS Department, Faculty of Medicine and Psychology, Sant’Andrea Hospital, Sapienza University of Rome, 00189 Rome, Italy; (M.V.); (F.B.); (G.D.N.); (P.P.)
| | - Umberto Raucci
- Department of Emergency, Acceptance and General Pediatrics, Bambino Gesù Children Hospital, IRCCS, 00165 Rome, Italy; (M.S.); (A.R.)
| |
Collapse
|
20
|
Branca JJV, Carrino D, Gulisano M, Ghelardini C, Di Cesare Mannelli L, Pacini A. Oxaliplatin-Induced Neuropathy: Genetic and Epigenetic Profile to Better Understand How to Ameliorate This Side Effect. Front Mol Biosci 2021; 8:643824. [PMID: 34026827 PMCID: PMC8138476 DOI: 10.3389/fmolb.2021.643824] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/24/2021] [Indexed: 12/22/2022] Open
Abstract
In the most recent decades, oxaliplatin has been used as a chemotherapeutic agent for colorectal cancer and other malignancies as well. Oxaliplatin interferes with tumor growth predominantly exerting its action in DNA synthesis inhibition by the formation of DNA-platinum adducts that, in turn, leads to cancer cell death. On the other hand, unfortunately, this interaction leads to a plethora of systemic side effects, including those affecting the peripheral and central nervous system. Oxaliplatin therapy has been associated with acute and chronic neuropathic pain that induces physicians to reduce the dose of medication or discontinue treatment. Recently, the capability of oxaliplatin to alter the genetic and epigenetic profiles of the nervous cells has been documented, and the understanding of gene expression and transcriptional changes may help to find new putative treatments for neuropathy. The present article is aimed to review the effects of oxaliplatin on genetic and epigenetic mechanisms to better understand how to ameliorate neuropathic pain in order to enhance the anti-cancer potential and improve patients’ quality of life.
Collapse
Affiliation(s)
- Jacopo Junio Valerio Branca
- Histology and Anatomy Section, Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | - Donatello Carrino
- Histology and Anatomy Section, Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | - Massimo Gulisano
- Histology and Anatomy Section, Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | - Carla Ghelardini
- Pharmacology and Toxicology Section, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Firenze, Firenze, Italy
| | - Lorenzo Di Cesare Mannelli
- Pharmacology and Toxicology Section, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Firenze, Firenze, Italy
| | - Alessandra Pacini
- Histology and Anatomy Section, Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| |
Collapse
|
21
|
López-Tofiño Y, Vera G, López-Gómez L, Girón R, Nurgali K, Uranga JA, Abalo R. Effects of the food additive monosodium glutamate on cisplatin-induced gastrointestinal dysmotility and peripheral neuropathy in the rat. Neurogastroenterol Motil 2021; 33:e14020. [PMID: 33112027 DOI: 10.1111/nmo.14020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 08/30/2020] [Accepted: 10/01/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Cisplatin is an antineoplastic drug known to produce intense vomiting, gastric dysmotility, and peripheral neuropathy. Monosodium glutamate (MSG) is a flavor enhancer with prokinetic properties potentially useful for cancer patients under chemotherapy. Our aim was to test whether MSG may improve gastrointestinal motor dysfunction and other adverse effects induced by repeated cisplatin in rats. METHODS Male Wistar rats were exposed or not to MSG (4 g L-1 ) in drinking water from week 0 to 1 week after treatment. On the first day of weeks 1-5, rats were treated with saline or cisplatin (2 mg kg-1 week-1 , ip). Gastrointestinal motility was measured by radiological methods after first and fifth administrations, as well as 1 week after treatment finalization. One week after treatment, the threshold for mechanical somatic sensitivity was recorded. Finally, samples of stomach, terminal ileum and kidneys were evaluated in sections using conventional histology. The myenteric plexus was immunohistochemically evaluated on distal colon whole-mount preparations. KEY RESULTS Monosodium glutamate prevented the development of cisplatin-induced neuropathy and partially improved intestinal transit after the fifth cisplatin administration with little impact on gastric dysmotility. MSG did not improve the histological damage of gut wall, but prevented the changes induced by cisplatin in the colonic myenteric plexus. CONCLUSION AND INFERENCES Our results suggest that MSG can improve some dysfunctions caused by anticancer chemotherapy in the gut and other systems, associated, at least partially, with neuroprotectant effects. The potentially useful adjuvant role of this food additive to reduce chemotherapy-induced sequelae warrants further evaluation.
Collapse
Affiliation(s)
- Yolanda López-Tofiño
- Department of Basic Health Sciences, University Rey Juan Carlos (URJC), Alcorcón, Spain.,High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut), University Rey Juan Carlos (URJC), Alcorcón, Spain
| | - Gema Vera
- Department of Basic Health Sciences, University Rey Juan Carlos (URJC), Alcorcón, Spain.,High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut), University Rey Juan Carlos (URJC), Alcorcón, Spain.,Unidad Asociada aI+D+i al Instituto de Química Médica, IQM (CSIC), Madrid, Spain
| | - Laura López-Gómez
- Department of Basic Health Sciences, University Rey Juan Carlos (URJC), Alcorcón, Spain.,High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut), University Rey Juan Carlos (URJC), Alcorcón, Spain
| | - Rocío Girón
- Department of Basic Health Sciences, University Rey Juan Carlos (URJC), Alcorcón, Spain.,Unidad Asociada aI+D+i al Instituto de Química Médica, IQM (CSIC), Madrid, Spain.,High Performance Research Group in Experimental Pharmacology (PHARMAKOM), University Rey Juan Carlos (URJC), Alcorcón, Spain
| | - Kulmira Nurgali
- Institute for Health and Sport, Victoria University, Melbourne, Vic., Australia.,Australian Institute for Musculoskeletal Science (AIMSS), Melbourne, Vic., Australia.,Department of Medicine Western Health, The University of Melbourne, Vic., Australia
| | - Jose A Uranga
- Department of Basic Health Sciences, University Rey Juan Carlos (URJC), Alcorcón, Spain.,High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut), University Rey Juan Carlos (URJC), Alcorcón, Spain
| | - Raquel Abalo
- Department of Basic Health Sciences, University Rey Juan Carlos (URJC), Alcorcón, Spain.,High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut), University Rey Juan Carlos (URJC), Alcorcón, Spain.,Unidad Asociada aI+D+i al Instituto de Química Médica, IQM (CSIC), Madrid, Spain
| |
Collapse
|
22
|
Paniagua N, Sánchez-Robles EM, Bagues A, Martín-Fontelles MI, Goicoechea C, Girón R. Behavior and electrophysiology studies of the peripheral neuropathy induced by individual and co-administration of paclitaxel and oxaliplatin in rat. Life Sci 2021; 277:119397. [PMID: 33794249 DOI: 10.1016/j.lfs.2021.119397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/17/2021] [Accepted: 03/21/2021] [Indexed: 11/26/2022]
Abstract
AIMS Antitumor agents, as taxanes and platinum compounds, induce peripheral neuropathies which can hamper their use for cancer treatment. The study of chemotherapy-induced neuropathies in humans is difficult because of ethical reasons, differences among administration protocols and intrinsic characteristics of patients. The aim of the present study is to compare the neuropathic signs induced by individual or combined administration of paclitaxel and oxaliplatin. MAIN METHODS Oxaliplatin and paclitaxel were administered individually and combined to induce peripheral neuropathy in rats, sensory neuropathic signs were assessed in the hind limbs and orofacial area. The in vitro skin-saphenous nerve preparation was used to record the axonal activity of Aδ sensory neurons. KEY FINDINGS Animals treated with the combination developed mechanical allodynia in the paws and muscular hyperalgesia in the orofacial area, which was similar to that in animals treated with monotherapy, the latter also developed cold allodynia in the paws. Aδ-fibers of the rats treated with the combination were hyperexcited and presented hypersensitivity to pressure stimulation of the innervated skin, also similar to that recorded in the fibers of the animals treated with monotherapy. SIGNIFICANCE Our work objectively demonstrates that the combination of a platinum compound with a taxane does not worsen the development of sensorial neuropathies in rats, which is an interesting data to take into account when the combination of antitumor drugs is necessary. Co-administration of antitumor drugs is more effective in cancer treatment without increasing the risk of the disabling neuropathic side effects.
Collapse
Affiliation(s)
- N Paniagua
- Área de Farmacología, Nutrición y Bromatología, Dpto. C.C. Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Unidad Asociada CSIC-IQM, High Performance Research Group in Experimental Pharmacology (PHARMAKOM), Alcorcón, Spain
| | - E M Sánchez-Robles
- Área de Farmacología, Nutrición y Bromatología, Dpto. C.C. Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Unidad Asociada CSIC-IQM, High Performance Research Group in Experimental Pharmacology (PHARMAKOM), Alcorcón, Spain
| | - A Bagues
- Área de Farmacología, Nutrición y Bromatología, Dpto. C.C. Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Unidad Asociada CSIC-IQM, High Performance Research Group in Experimental Pharmacology (PHARMAKOM), Alcorcón, Spain.
| | - M I Martín-Fontelles
- Área de Farmacología, Nutrición y Bromatología, Dpto. C.C. Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Unidad Asociada CSIC-IQM, High Performance Research Group in Experimental Pharmacology (PHARMAKOM), Alcorcón, Spain
| | - C Goicoechea
- Área de Farmacología, Nutrición y Bromatología, Dpto. C.C. Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Unidad Asociada CSIC-IQM, High Performance Research Group in Experimental Pharmacology (PHARMAKOM), Alcorcón, Spain
| | - R Girón
- Área de Farmacología, Nutrición y Bromatología, Dpto. C.C. Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Unidad Asociada CSIC-IQM, High Performance Research Group in Experimental Pharmacology (PHARMAKOM), Alcorcón, Spain
| |
Collapse
|
23
|
Ebselen prevents cigarette smoke-induced gastrointestinal dysfunction in mice. Clin Sci (Lond) 2021; 134:2943-2957. [PMID: 33125061 PMCID: PMC7676466 DOI: 10.1042/cs20200886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/16/2020] [Accepted: 10/30/2020] [Indexed: 11/30/2022]
Abstract
Gastrointestinal (GI) dysfunction is a common comorbidity of chronic obstructive
pulmonary disease (COPD) for which a major cause is cigarette smoking (CS). The
underlying mechanisms and precise effects of CS on gut contractility, however,
are not fully characterised. Therefore, the aim of the present study was to
investigate whether CS impacts GI function and structure in a mouse model of
CS-induced COPD. We also aimed to investigate GI function in the presence of
ebselen, an antioxidant that has shown beneficial effects on lung inflammation
resulting from CS exposure. Mice were exposed to CS for 2 or 6 months. GI
structure was analysed by histology and immunofluorescence. After 2 months of CS
exposure, ex vivo gut motility was analysed using video-imaging
techniques to examine changes in colonic migrating motor complexes (CMMCs). CS
decreased colon length in mice. Mice exposed to CS for 2 months had a higher
frequency of CMMCs and a reduced resting colonic diameter but no change in
enteric neuron numbers. Ten days cessation after 2 months CS reversed CMMC
frequency changes but not the reduced colonic diameter phenotype. Ebselen
treatment reversed the CS-induced reduction in colonic diameter. After 6 months
CS, the number of myenteric nitric-oxide producing neurons was significantly
reduced. This is the first evidence of colonic dysmotility in a mouse model of
CS-induced COPD. Dysmotility after 2 months CS is not due to altered neuron
numbers; however, prolonged CS-exposure significantly reduced enteric neuron
numbers in mice. Further research is needed to assess potential therapeutic
applications of ebselen in GI dysfunction in COPD.
Collapse
|
24
|
Sodium nitrate co-supplementation does not exacerbate low dose metronomic doxorubicin-induced cachexia in healthy mice. Sci Rep 2020; 10:15044. [PMID: 32973229 PMCID: PMC7518269 DOI: 10.1038/s41598-020-71974-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 08/17/2020] [Indexed: 12/18/2022] Open
Abstract
The purpose of this study was to determine whether (1) sodium nitrate (SN) treatment progressed or alleviated doxorubicin (DOX)-induced cachexia and muscle wasting; and (2) if a more-clinically relevant low-dose metronomic (LDM) DOX treatment regimen compared to the high dosage bolus commonly used in animal research, was sufficient to induce cachexia in mice. Six-week old male Balb/C mice (n = 16) were treated with three intraperitoneal injections of either vehicle (0.9% NaCl; VEH) or DOX (4 mg/kg) over one week. To test the hypothesis that sodium nitrate treatment could protect against DOX-induced symptomology, a group of mice (n = 8) were treated with 1 mM NaNO3 in drinking water during DOX (4 mg/kg) treatment (DOX + SN). Body composition indices were assessed using echoMRI scanning, whilst physical and metabolic activity were assessed via indirect calorimetry, before and after the treatment regimen. Skeletal and cardiac muscles were excised to investigate histological and molecular parameters. LDM DOX treatment induced cachexia with significant impacts on both body and lean mass, and fatigue/malaise (i.e. it reduced voluntary wheel running and energy expenditure) that was associated with oxidative/nitrostative stress sufficient to induce the molecular cytotoxic stress regulator, nuclear factor erythroid-2-related factor 2 (NRF-2). SN co-treatment afforded no therapeutic potential, nor did it promote the wasting of lean tissue. Our data re-affirm a cardioprotective effect for SN against DOX-induced collagen deposition. In our mouse model, SN protected against LDM DOX-induced cardiac fibrosis but had no effect on cachexia at the conclusion of the regimen.
Collapse
|
25
|
Lee J, Jeong MI, Kim HR, Park H, Moon WK, Kim B. Plant Extracts as Possible Agents for Sequela of Cancer Therapies and Cachexia. Antioxidants (Basel) 2020; 9:E836. [PMID: 32906727 PMCID: PMC7555300 DOI: 10.3390/antiox9090836] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/04/2020] [Accepted: 09/04/2020] [Indexed: 02/07/2023] Open
Abstract
Cancer is a leading cause of the death worldwide. Since the National Cancer Act in 1971, various cancer treatments were developed including chemotherapy, surgery, radiation therapy and so forth. However, sequela of such cancer therapies and cachexia are problem to the patients. The primary mechanism of cancer sequela and cachexia is closely related to reactive oxygen species (ROS) and inflammation. As antioxidant properties of numerous plant extracts have been widely reported, plant-derived drugs may have efficacy on managing the sequela and cachexia. In this study, recent seventy-four studies regarding plant extracts showing ability to manage the sequela and cachexia were reviewed. Some plant-derived antioxidants inhibited cancer proliferation and inflammation after surgery and others prevented chemotherapy-induced normal cell apoptosis. Also, there are plant extracts that suppressed radiation-induced oxidative stress and cell damage by elevation of glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and regulation of B-cell lymphoma 2 (BcL-2) and Bcl-2-associated X protein (Bax). Cachexia was also alleviated by inhibition of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6) and monocyte chemoattractant protein-1 (MCP-1) by plant extracts. This review focuses on the potential of plant extracts as great therapeutic agents by controlling oxidative stress and inflammation.
Collapse
Affiliation(s)
- Jinjoo Lee
- College of Korean Medicine, Kyung Hee University, Hoegi-dong Dongdaemun-gu, Seoul 05253, Korea; (J.L.); (M.I.J.); (H.-R.K.); (H.P.); (W.-K.M.)
| | - Myung In Jeong
- College of Korean Medicine, Kyung Hee University, Hoegi-dong Dongdaemun-gu, Seoul 05253, Korea; (J.L.); (M.I.J.); (H.-R.K.); (H.P.); (W.-K.M.)
| | - Hyo-Rim Kim
- College of Korean Medicine, Kyung Hee University, Hoegi-dong Dongdaemun-gu, Seoul 05253, Korea; (J.L.); (M.I.J.); (H.-R.K.); (H.P.); (W.-K.M.)
| | - Hyejin Park
- College of Korean Medicine, Kyung Hee University, Hoegi-dong Dongdaemun-gu, Seoul 05253, Korea; (J.L.); (M.I.J.); (H.-R.K.); (H.P.); (W.-K.M.)
| | - Won-Kyoung Moon
- College of Korean Medicine, Kyung Hee University, Hoegi-dong Dongdaemun-gu, Seoul 05253, Korea; (J.L.); (M.I.J.); (H.-R.K.); (H.P.); (W.-K.M.)
| | - Bonglee Kim
- College of Korean Medicine, Kyung Hee University, Hoegi-dong Dongdaemun-gu, Seoul 05253, Korea; (J.L.); (M.I.J.); (H.-R.K.); (H.P.); (W.-K.M.)
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegi-dong Dongdaemun-gu, Seoul 05253, Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Hoegi-dong Dongdaemun-gu, Seoul 05253, Korea
| |
Collapse
|
26
|
Animal models of mucositis: critical tools for advancing pathobiological understanding and identifying therapeutic targets. Curr Opin Support Palliat Care 2020; 13:119-133. [PMID: 30925531 DOI: 10.1097/spc.0000000000000421] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Mucositis remains a prevalent, yet poorly managed side effect of anticancer therapies. Mucositis affecting both the oral cavity and gastrointestinal tract predispose to infection and require extensive supportive management, contributing to the growing economic burden associated with cancer care. Animal models remain a critical aspect of mucositis research, providing novel insights into its pathogenesis and revealing therapeutic targets. The current review aims to provide a comprehensive overview of the current animal models used in mucositis research. RECENT FINDINGS A wide variety of animal models of mucositis exist highlighting the highly heterogenous landscape of supportive oncology and the unique cytotoxic mechanisms of different anticancer agents. Golden Syrian hamsters remain the gold-standard species for investigation of oral mucositis induced by single dose and fractionated radiation as well as chemoradiation. There is no universally accepted gold-standard model for the study of gastrointestinal mucositis, with rats, mice, pigs and dogs all offering unique perspectives on its pathobiology. SUMMARY Animal models are a critical aspect of mucositis research, providing unprecedent insight into the pathobiology of mucositis. Introduction of tumour-bearing models, cyclic dosing scheduled, concomitant agents and genetically modified animals have been integral in refining our understanding of mucositis.
Collapse
|
27
|
Wachal Z, Bombicz M, Priksz D, Hegedűs C, Kovács D, Szabó AM, Kiss R, Németh J, Juhász B, Szilvássy Z, Varga B. Retinoprotection by BGP-15, a Hydroximic Acid Derivative, in a Type II Diabetic Rat Model Compared to Glibenclamide, Metformin, and Pioglitazone. Int J Mol Sci 2020; 21:ijms21062124. [PMID: 32204537 PMCID: PMC7139510 DOI: 10.3390/ijms21062124] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/18/2020] [Accepted: 03/18/2020] [Indexed: 01/20/2023] Open
Abstract
High blood glucose and the consequential ischemia-reperfusion (I/R) injury damage vessels of the retina, deteriorating its function, which can be clearly visualized by electroretinography (ERG). The aim of the present study was to evaluate the possible retinoprotective effects of systemic BGP-15, an emerging drug candidate, in an insulin resistant animal model, the Goto-Kakizaki rat, and compare these results with well-known anti-diabetics such as glibenclamide, metformin, and pioglitazone, which even led to some novel conclusions about these well-known agents. Experiments were carried out on diseased animal model (Goto-Kakizaki rats). The used methods include weight measurement, glucose-related measurements—like fasting blood sugar analysis, oral glucose tolerance test, hyperinsulinemic euglycemic glucose clamp (HEGC), and calculations of different indices from HEGC results—electroretinography and Western Blot. Beside its apparent insulin sensitization, BGP-15 was also able to counteract the retina-damaging effect of Type II diabetes comparable to the aforementioned anti-diabetics. The mechanism of retinoprotective action may include sirtuin 1 (SIRT1) and matrix metalloproteinase 9 (MMP9) enzymes, as BGP-15 was able to elevate SIRT1 and decrease MMP9 expression in the eye. Based on our results, this emerging hydroximic acid derivative might be a future target of pharmacological developments as a potential drug against the harmful consequences of diabetes, such as diabetic retinopathy.
Collapse
|
28
|
Pharmacological Overview of the BGP-15 Chemical Agent as a New Drug Candidate for the Treatment of Symptoms of Metabolic Syndrome. Molecules 2020; 25:molecules25020429. [PMID: 31968693 PMCID: PMC7024383 DOI: 10.3390/molecules25020429] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/08/2020] [Accepted: 01/15/2020] [Indexed: 02/06/2023] Open
Abstract
BGP-15 is a new insulin sensitizer drug candidate, which was developed by Hungarian researchers. In recent years, numerous research groups have studied its beneficial effects. It is effective in the treatment of insulin resistance and it has protective effects in Duchenne muscular dystrophy, diastolic dysfunction, tachycardia, heart failure, and atrial fibrillation, and it can alleviate cardiotoxicity. BGP-15 exhibits chemoprotective properties in different cytostatic therapies, and has also proven to be photoprotective. It can additionally have advantageous effects in mitochondrial-stress-related diseases. Although the precise mechanism of the effect is still unknown to us, we know that the molecule is a PARP inhibitor, chaperone co-inducer, reduces ROS production, and is able to remodel the organization of cholesterol-rich membrane domains. In the following review, our aim was to summarize the investigated molecular mechanisms and pharmacological effects of this potential API. The main objective was to present the wide pharmacological potentials of this chemical agent.
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW This paper seeks to highlight GI motility disorders that are frequently present in patients with a malignancy. GI dysmotility can occur due to the cancer itself or as a consequence of medical and surgical treatments. Often, symptoms are nonspecific and the diagnosis requires a high index of suspicion. The goal of the paper is to review the common motility problems seen in patients with cancer, their clinical manifestations, and options for management. RECENT FINDINGS Studies show that newer endoscopy techniques such as endoscopic mucosal dissection can cause esophageal dysmotility. Opioid-induced constipation is frequently encountered in patients with cancer. Motility disorders in cancer patient can lead to clinical morbidity, poor quality of life, and malnutrition. Newer diagnostic tests and medical and surgical treatments may be helpful in improving the diagnosis and management of these disorders.
Collapse
Affiliation(s)
- Mehnaz A Shafi
- University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 1466, Houston, TX, 77030, USA.
| |
Collapse
|
30
|
McQuade RM, Al Thaalibi M, Petersen AC, Abalo R, Bornstein JC, Rybalka E, Nurgali K. Co-treatment With BGP-15 Exacerbates 5-Fluorouracil-Induced Gastrointestinal Dysfunction. Front Neurosci 2019; 13:449. [PMID: 31139044 PMCID: PMC6518025 DOI: 10.3389/fnins.2019.00449] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 04/18/2019] [Indexed: 01/01/2023] Open
Abstract
Gastrointestinal (GI) side-effects of chemotherapy present a constant impediment to efficient and tolerable treatment of cancer. GI symptoms often lead to dose reduction, delays and cessation of treatment. Chemotherapy-induced nausea, bloating, vomiting, constipation, and/or diarrhea can persist up to 10 years post-treatment. We have previously reported that long-term 5-fluorouracil (5-FU) administration results in enteric neuronal loss, acute inflammation and intestinal dysfunction. In this study, we investigated whether the cytoprotectant, BGP-15, has a neuroprotective effect during 5-FU treatment. Balb/c mice received tri-weekly intraperitoneal 5-FU (23 mg/kg/d) administration with and without BGP-15 (15 mg/kg/d) for up to 14 days. GI transit was analyzed via in vivo serial X-ray imaging prior to and following 3, 7, and 14 days of treatment. On day 14, colons were collected for assessment of ex vivo colonic motility, neuronal mitochondrial superoxide, and cytochrome c levels as well as immunohistochemical analysis of myenteric neurons. BGP-15 did not inhibit 5-FU-induced neuronal loss, but significantly increased the number and proportion of choline acetyltransferase (ChAT)-immunoreactive (IR) and neuronal nitric oxide synthase (nNOS)-IR neurons in the myenteric plexus. BGP-15 co-administration significantly increased mitochondrial superoxide production, mitochondrial depolarization and cytochrome c release in myenteric plexus and exacerbated 5-FU-induced colonic inflammation. BGP-15 exacerbated 5-FU-induced colonic dysmotility by reducing the number and proportion of colonic migrating motor complexes and increasing the number and proportion of fragmented contractions and increased fecal water content indicative of diarrhea. Taken together, BGP-15 co-treatment aggravates 5-FU-induced GI side-effects, in contrast with our previous findings that BGP-15 alleviates GI side-effects of oxaliplatin.
Collapse
Affiliation(s)
- Rachel M McQuade
- College of Health & Biomedicine, Victoria University, Melbourne, VIC, Australia
| | - Maryam Al Thaalibi
- College of Health & Biomedicine, Victoria University, Melbourne, VIC, Australia
| | - Aaron C Petersen
- Institute for Health & Sport, Victoria University, Melbourne, VIC, Australia.,Australian Institute for Musculoskeletal Science, Melbourne, VIC, Australia
| | - Raquel Abalo
- Área de Farmacología y Nutrición y Unidad Asociada al Instituto de Química Médica del Consejo Superior de Investigaciones Científicas, Universidad Rey Juan Carlos, Alcorcón, Spain
| | - Joel C Bornstein
- Department of Physiology, The University of Melbourne, Melbourne, VIC, Australia
| | - Emma Rybalka
- Institute for Health & Sport, Victoria University, Melbourne, VIC, Australia.,Australian Institute for Musculoskeletal Science, Melbourne, VIC, Australia
| | - Kulmira Nurgali
- College of Health & Biomedicine, Victoria University, Melbourne, VIC, Australia.,Institute for Health & Sport, Victoria University, Melbourne, VIC, Australia.,Australian Institute for Musculoskeletal Science, Melbourne, VIC, Australia.,Department of Medicine Western Health, The University of Melbourne, Melbourne, VIC, Australia.,Head of Enteric Neuropathy Lab, Western Centre for Health Research and Education, Sunshine Hospital, Melbourne, VIC, Australia
| |
Collapse
|
31
|
Xia T, Zhang J, Han L, Jin Z, Wang J, Li X, Man S, Liu C, Gao W. Protective effect of magnolol on oxaliplatin-induced intestinal injury in mice. Phytother Res 2019; 33:1161-1172. [PMID: 30868668 DOI: 10.1002/ptr.6311] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 01/01/2019] [Accepted: 01/19/2019] [Indexed: 02/06/2023]
Abstract
Oxaliplatin (OXL) is the first line treatment therapy for gastrointestinal (GI) cancers and often combines with other chemotherapy. However, few reports have studied on its GI toxicity. Magnolol (MG), one of the mainly active constituents in Magnolia, has been reported to treat digestive diseases. Therefore, the purpose of this study is to evaluate the intestinal protective effect of MG in OXL treatment group. OXL administration mice showed body weight loss, diarrhea, and intestinal damage characterized by the shortening of villi and destruction of intestinal crypts, as well as the colon length change. MG significantly reduced body weight loss, alleviated diarrhea, reversed histopathological changes, and prevented colon length reduction. Oxidative stress and inflammation were activated after OXL, and these responses were repressed by MG through increasing the activities of superoxide dismutase, glutathione peroxidase, and glutathione, decreasing level of nuclear factor of kappa b and downregulating the following pro-inflammatory cytokines. Although the expression of tight junction protein occludin and numbers of proliferative crypt cells were reduced on ileum and colon after OXL, MG administration promoted these expressions. The fecal gut microbiota composition disturbed by OXL was significantly reversed by MG. Thus, MG could prevent the development and progression of mucositis induced by oxaliplatin through multipathway.
Collapse
Affiliation(s)
- Ting Xia
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Jingze Zhang
- Department of Pharmacy, Logistics University of Chinese People's Armed Police Forces, Tianjin, China
| | - Liying Han
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Zhaoxiang Jin
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Juan Wang
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Xia Li
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Shuli Man
- State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Changxiao Liu
- The State Key Laboratories of Pharmacodynamics and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
32
|
Martín-Ruíz M, Uranga JA, Mosinska P, Fichna J, Nurgali K, Martín-Fontelles MI, Abalo R. Alterations of colonic sensitivity and gastric dysmotility after acute cisplatin and granisetron. Neurogastroenterol Motil 2019; 31:e13499. [PMID: 30402956 DOI: 10.1111/nmo.13499] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 09/15/2018] [Accepted: 10/01/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND Cisplatin is a highly emetogenic antineoplastic drug and induces peripheral neuropathy when given in cycles. Granisetron, a 5-HT3 antagonist, is clinically used to prevent chemotherapy-induced nausea/emesis and abdominal pain in irritable bowel syndrome. The effects of cisplatin on visceral sensitivity and those of granisetron in the context of cancer chemotherapy are not well known. METHODS Adult male Wistar rats received two intraperitoneal injections 30 minutes apart: granisetron (1 mg kg-1 )/vehicle and cisplatin (6 mg kg-1 )/vehicle. Thereafter, nausea-like behavior was measured as bedding intake for 4 hours, and gastric dysmotility was measured radiographically for 8 hours. Gastric weight and size were determined ex vivo and samples of the forestomach, corpus, ileum, and colon were obtained for histological analysis at 4 and 30 hours after cisplatin/vehicle. Visceral sensitivity was measured as abdominal contractions in response to mechanical intracolonic stimulation 2 hours after cisplatin/vehicle. KEY RESULTS Cisplatin-induced bedding intake and gastric dysmotility, and granisetron blocked these effects, which occurred in the absence of frank mucositis. Visceral sensitivity was reduced to a similar extent by both drugs alone or in combination. CONCLUSIONS AND INFERENCES Cisplatin-induced bedding intake and gastric dysmotility were blocked by granisetron, confirming the involvement of serotonin acting on 5-HT3 receptors. Unexpectedly, visceral sensitivity to colonic distension was reduced, to the same extent, by cisplatin, granisetron, and their combination, suggesting important mechanistic differences with nausea and gastric dysmotility that warrant further investigation.
Collapse
Affiliation(s)
- Marta Martín-Ruíz
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - José A Uranga
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Madrid, Spain.,Unidad Asociada I+D+i al Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC), Madrid, Spain.,Grupo de Excelencia Investigadora URJC-Banco de Santander-Grupo Multidisciplinar de Investigación y Tratamiento del Dolor (i+DOL), Madrid, Spain
| | - Paula Mosinska
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Jakub Fichna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Kulmira Nurgali
- College of Health and Biomedicine, Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia.,Australian Institute for Musculoskeletal Science (AIMSS), Melbourne, Victoria, Australia.,Department of Medicine Western Health, The University of Melbourne, Victoria, Australia
| | - Mª Isabel Martín-Fontelles
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Madrid, Spain.,Unidad Asociada I+D+i al Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC), Madrid, Spain.,Grupo de Excelencia Investigadora URJC-Banco de Santander-Grupo Multidisciplinar de Investigación y Tratamiento del Dolor (i+DOL), Madrid, Spain.,Unidad Asociada I+D+i al Instituto de Química Médica, IQM (CSIC), Madrid, Spain
| | - Raquel Abalo
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Madrid, Spain.,Unidad Asociada I+D+i al Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC), Madrid, Spain.,Grupo de Excelencia Investigadora URJC-Banco de Santander-Grupo Multidisciplinar de Investigación y Tratamiento del Dolor (i+DOL), Madrid, Spain.,Unidad Asociada I+D+i al Instituto de Química Médica, IQM (CSIC), Madrid, Spain
| |
Collapse
|
33
|
PARP inhibition in platinum-based chemotherapy: Chemopotentiation and neuroprotection. Pharmacol Res 2018; 137:104-113. [PMID: 30278221 DOI: 10.1016/j.phrs.2018.09.031] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 09/25/2018] [Accepted: 09/28/2018] [Indexed: 01/01/2023]
Abstract
Cisplatin, carboplatin and oxaliplatin represent the backbone of platinum therapy for several malignancies including head and neck, lung, colorectal, ovarian, breast, and genitourinary cancer. However, the efficacy of platinum-based drugs is often compromised by a plethora of severe toxicities including sensory and enteric neuropathy. Acute and chronic neurotoxicity following platinum chemotherapy is a major constraint, contributing to dose-reductions, treatment delays, and cessation of treatment. Identifying drugs that effectively prevent these toxic complications is imperative to improve the efficacy of anti-cancer treatment and patient quality of life. Oxidative stress and mitochondrial dysfunction have been highlighted as key players in the pathophysiology of platinum chemotherapy-induced neuropathy. Inhibition of poly(ADP-ribose) polymerase (PARP), a nuclear enzyme activated upon DNA damage, has demonstrated substantial sensory and enteric neuroprotective capacity when administered in combination with platinum chemotherapeutics. Furthermore, administration of PARP inhibitors alongside platinum chemotherapy has been found to significantly improve progression-free survival in patients with breast and ovarian cancer when compared to those receiving chemotherapy alone. This review summarises the current knowledge surrounding mitochondrial damage and oxidative stress in platinum chemotherapy-induced neuropathy and highlights a potential role for PARP in chemopotentiation and neuroprotection.
Collapse
|
34
|
McQuade RM, Stojanovska V, Stavely R, Timpani C, Petersen AC, Abalo R, Bornstein JC, Rybalka E, Nurgali K. Oxaliplatin-induced enteric neuronal loss and intestinal dysfunction is prevented by co-treatment with BGP-15. Br J Pharmacol 2018; 175:656-677. [PMID: 29194564 DOI: 10.1111/bph.14114] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 11/21/2017] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND AND PURPOSE Gastrointestinal side effects of chemotherapy are an under-recognized clinical problem, leading to dose reduction, delays and cessation of treatment, presenting a constant challenge for efficient and tolerated anti-cancer treatment. We have found that oxaliplatin treatment results in intestinal dysfunction, oxidative stress and loss of enteric neurons. BGP-15 is a novel cytoprotective compound with potential HSP72 co-inducing and PARP inhibiting properties. In this study, we investigated the potential of BGP-15 to alleviate oxaliplatin-induced enteric neuropathy and intestinal dysfunction. EXPERIMENTAL APPROACH Balb/c mice received oxaliplatin (3 mg·kg-1 ·day-1 ) with and without BGP-15 (15 mg·kg-1 ·day-1 : i.p.) tri-weekly for 14 days. Gastrointestinal transit was analysed via in vivo X-ray imaging, before and after treatment. Colons were collected to assess ex vivo motility, neuronal mitochondrial superoxide and cytochrome c levels and for immunohistochemical analysis of myenteric neurons. KEY RESULTS Oxaliplatin-induced neuronal loss increased the proportion of neuronal NO synthase-immunoreactive neurons and increased levels of mitochondrial superoxide and cytochrome c in the myenteric plexus. These changes were correlated with an increase in PARP-2 immunoreactivity in the colonic mucosa and were attenuated by BGP-15 co-treatment. Significant delays in gastrointestinal transit, intestinal emptying and pellet formation, impaired colonic motor activity, reduced faecal water content and lack of weight gain associated with oxaliplatin treatment were restored to sham levels in mice co-treated with BGP-15. CONCLUSION AND IMPLICATIONS Our results showed that BGP-15 ameliorated oxidative stress, increased enteric neuronal survival and alleviated oxaliplatin-induced intestinal dysfunction, suggesting that BGP-15 may relieve the gastrointestinal side effects of chemotherapy.
Collapse
Affiliation(s)
- Rachel M McQuade
- College of Health and Biomedicine, Victoria University, Melbourne, VIC, Australia
| | - Vanesa Stojanovska
- College of Health and Biomedicine, Victoria University, Melbourne, VIC, Australia
| | - Rhian Stavely
- College of Health and Biomedicine, Victoria University, Melbourne, VIC, Australia.,Department of Medicine, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Regenerative Medicine and Stem Cells Program, Australian Institute for Musculoskeletal Science (AIMSS), Western Health, Melbourne, VIC, Australia
| | - Cara Timpani
- College of Health and Biomedicine, Victoria University, Melbourne, VIC, Australia.,Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, Melbourne, VIC, Australia.,Department of Medicine, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Regenerative Medicine and Stem Cells Program, Australian Institute for Musculoskeletal Science (AIMSS), Western Health, Melbourne, VIC, Australia
| | - Aaron C Petersen
- Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, Melbourne, VIC, Australia.,Department of Medicine, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Regenerative Medicine and Stem Cells Program, Australian Institute for Musculoskeletal Science (AIMSS), Western Health, Melbourne, VIC, Australia
| | - Raquel Abalo
- Área de Farmacología y Nutrición y Unidad Asociada al Instituto de Química Médica (IQM) y al Instituto de Investigación en Ciencias de la Alimentación (CIAL) del Consejo Superior de Investigaciones Científicas (CSIC); Grupo de Excelencia Investigadora URJC-Banco de Santander-Grupo Multidisciplinar de Investigación y Tratamiento del Dolor (i+DOL), Universidad Rey Juan Carlos, Alcorcón, Spain
| | - Joel C Bornstein
- Department of Physiology, Melbourne University, Melbourne, VIC, Australia
| | - Emma Rybalka
- College of Health and Biomedicine, Victoria University, Melbourne, VIC, Australia.,Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, Melbourne, VIC, Australia.,Department of Medicine, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Regenerative Medicine and Stem Cells Program, Australian Institute for Musculoskeletal Science (AIMSS), Western Health, Melbourne, VIC, Australia
| | - Kulmira Nurgali
- College of Health and Biomedicine, Victoria University, Melbourne, VIC, Australia.,Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, Melbourne, VIC, Australia.,Department of Medicine, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Regenerative Medicine and Stem Cells Program, Australian Institute for Musculoskeletal Science (AIMSS), Western Health, Melbourne, VIC, Australia
| |
Collapse
|