1
|
Barcena ML, Christiansen-Mensch C, Aslam M, Haritonow N, Ladilov Y, Regitz-Zagrosek V. Upregulation of Mitochondrial Sirt3 and Alleviation of the Inflammatory Phenotype in Macrophages by Estrogen. Cells 2024; 13:1420. [PMID: 39272992 PMCID: PMC11393879 DOI: 10.3390/cells13171420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/16/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND Aging and comorbidities like type 2 diabetes and obesity contribute to the development of chronic systemic inflammation, which impacts the development of heart failure and vascular disease. Increasing evidence suggests a role of pro-inflammatory M1 macrophages in chronic inflammation. A shift of metabolism from mitochondrial oxidation to glycolysis is essential for the activation of the pro-inflammatory M1 phenotype. Thus, reprogramming the macrophage metabolism may alleviate the pro-inflammatory phenotype and protect against cardiovascular diseases. In the present study, we hypothesized that the activation of estrogen receptors leads to the elevation of the mitochondrial deacetylase Sirt3, which supports mitochondrial function and mitigates the pro-inflammatory phenotype in macrophages. MATERIALS AND METHODS Experiments were performed using the mouse macrophage cell line RAW264.7, as well as primary male or female murine bone marrow macrophages (BMMs). Macrophages were treated for 24 h with estradiol (E2) or vehicle (dextrin). The effect of E2 on Sirt3 expression was investigated in pro-inflammatory M1, anti-inflammatory/immunoregulatory M2, and naïve M0 macrophages. Mitochondrial respiration was measured by Seahorse assay, and protein expression and acetylation were determined by western blotting. RESULTS E2 treatment upregulated mitochondrial Sirt3, reduced mitochondrial protein acetylation, and increased basal mitochondrial respiration in naïve RAW264.7 macrophages. Similar effects on Sirt3 expression and mitochondrial protein acetylation were observed in primary female but not in male murine BMMs. Although E2 upregulated Sirt3 in naïve M0, pro-inflammatory M1, and anti-inflammatory/immunoregulatory M2 macrophages, it reduced superoxide dismutase 2 acetylation and suppressed mitochondrial reactive oxygen species formation only in pro-inflammatory M1 macrophages. E2 alleviated the pro-inflammatory phenotype in M1 RAW264.7 cells. CONCLUSIONS The study suggests that E2 treatment upregulates Sirt3 expression in macrophages. In primary BMMs, female-specific Sirt3 upregulation was observed. The Sirt3 upregulation was accompanied by mitochondrial protein deacetylation and the alleviation of the oxidative and pro-inflammatory phenotype in M1 macrophages. Thus, the E2-Sirt3 axis might be used in a therapeutic strategy to fight chronic systemic inflammation and prevent the development of inflammation-linked diseases.
Collapse
Affiliation(s)
- Maria Luisa Barcena
- Department of Urology, Eberhard Karl University of Tuebingen, 72076 Tuebingen, Germany
- German Center for Cardiovascular Research (DZHK), Berlin Partner Site, 10115 Berlin, Germany
| | | | - Muhammad Aslam
- Experimental Cardiology, Department of Internal Medicine I, Justus Liebig University, 35392 Giessen, Germany;
- German Center for Cardiovascular Research (DZHK), RheinMain Partner Site, 61231 Bad Nauheim, Germany
| | - Natalie Haritonow
- Department of Geriatrics and Medical Gerontology, Charité–Universitätsmedizin Berlin, 12203 Berlin, Germany;
| | - Yury Ladilov
- Department of Cardiovascular Surgery, Heart Center Brandenburg, Brandenburg Medical School, Bernau bei Berlin, 16321 Brandenburg, Germany;
| | - Vera Regitz-Zagrosek
- Institute for Gender in Medicine, Charité–Universitätsmedizin Berlin, 10115 Berlin, Germany; (C.C.-M.)
- Department of Cardiology, University Hospital Zürich, University of Zürich, 8091 Zürich, Switzerland
| |
Collapse
|
2
|
Fu Q, Wang Y, Yan C, Xiang YK. Phosphodiesterase in heart and vessels: from physiology to diseases. Physiol Rev 2024; 104:765-834. [PMID: 37971403 PMCID: PMC11281825 DOI: 10.1152/physrev.00015.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 10/17/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023] Open
Abstract
Phosphodiesterases (PDEs) are a superfamily of enzymes that hydrolyze cyclic nucleotides, including cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP). Both cyclic nucleotides are critical secondary messengers in the neurohormonal regulation in the cardiovascular system. PDEs precisely control spatiotemporal subcellular distribution of cyclic nucleotides in a cell- and tissue-specific manner, playing critical roles in physiological responses to hormone stimulation in the heart and vessels. Dysregulation of PDEs has been linked to the development of several cardiovascular diseases, such as hypertension, aneurysm, atherosclerosis, arrhythmia, and heart failure. Targeting these enzymes has been proven effective in treating cardiovascular diseases and is an attractive and promising strategy for the development of new drugs. In this review, we discuss the current understanding of the complex regulation of PDE isoforms in cardiovascular function, highlighting the divergent and even opposing roles of PDE isoforms in different pathogenesis.
Collapse
Affiliation(s)
- Qin Fu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- The Key Laboratory for Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China
| | - Ying Wang
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Chen Yan
- Aab Cardiovascular Research Institute, University of Rochester Medical Center, Rochester, New York, United States
| | - Yang K Xiang
- Department of Pharmacology, University of California at Davis, Davis, California, United States
- Department of Veterans Affairs Northern California Healthcare System, Mather, California, United States
| |
Collapse
|
3
|
Bian C, Ji S, Zeng C, Sun J, Kaneko G, Ji H. Docosahexaenoic acid (DHA) alleviates hepatic lipid accumulation by regulating mitochondrial quality control through ERK signaling pathway in grass carp (Ctenopharyngodon idellus). AQUACULTURE 2024; 579:740209. [DOI: 10.1016/j.aquaculture.2023.740209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
4
|
Regulation of Mitochondrial Homeostasis by sAC-Derived cAMP Pool: Basic and Translational Aspects. Cells 2021; 10:cells10020473. [PMID: 33671810 PMCID: PMC7926680 DOI: 10.3390/cells10020473] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/17/2021] [Accepted: 02/19/2021] [Indexed: 01/21/2023] Open
Abstract
In contrast to the traditional view of mitochondria being solely a source of cellular energy, e.g., the "powerhouse" of the cell, mitochondria are now known to be key regulators of numerous cellular processes. Accordingly, disturbance of mitochondrial homeostasis is a basic mechanism in several pathologies. Emerging data demonstrate that 3'-5'-cyclic adenosine monophosphate (cAMP) signalling plays a key role in mitochondrial biology and homeostasis. Mitochondria are equipped with an endogenous cAMP synthesis system involving soluble adenylyl cyclase (sAC), which localizes in the mitochondrial matrix and regulates mitochondrial function. Furthermore, sAC localized at the outer mitochondrial membrane contributes significantly to mitochondrial biology. Disturbance of the sAC-dependent cAMP pools within mitochondria leads to mitochondrial dysfunction and pathology. In this review, we discuss the available data concerning the role of sAC in regulating mitochondrial biology in relation to diseases.
Collapse
|
5
|
Lynch S, Boyett JE, Smith MR, Giordano-Mooga S. Sex Hormone Regulation of Proteins Modulating Mitochondrial Metabolism, Dynamics and Inter-Organellar Cross Talk in Cardiovascular Disease. Front Cell Dev Biol 2021; 8:610516. [PMID: 33644031 PMCID: PMC7905018 DOI: 10.3389/fcell.2020.610516] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 11/30/2020] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death in the U.S. and worldwide. Sex-related disparities have been identified in the presentation and incidence rate of CVD. Mitochondrial dysfunction plays a role in both the etiology and pathology of CVD. Recent work has suggested that the sex hormones play a role in regulating mitochondrial dynamics, metabolism, and cross talk with other organelles. Specifically, the female sex hormone, estrogen, has both a direct and an indirect role in regulating mitochondrial biogenesis via PGC-1α, dynamics through Opa1, Mfn1, Mfn2, and Drp1, as well as metabolism and redox signaling through the antioxidant response element. Furthermore, data suggests that testosterone is cardioprotective in males and may regulate mitochondrial biogenesis through PGC-1α and dynamics via Mfn1 and Drp1. These cell-signaling hubs are essential in maintaining mitochondrial integrity and cell viability, ultimately impacting CVD survival. PGC-1α also plays a crucial role in inter-organellar cross talk between the mitochondria and other organelles such as the peroxisome. This inter-organellar signaling is an avenue for ameliorating rampant ROS produced by dysregulated mitochondria and for regulating intrinsic apoptosis by modulating intracellular Ca2+ levels through interactions with the endoplasmic reticulum. There is a need for future research on the regulatory role of the sex hormones, particularly testosterone, and their cardioprotective effects. This review hopes to highlight the regulatory role of sex hormones on mitochondrial signaling and their function in the underlying disparities between men and women in CVD.
Collapse
Affiliation(s)
- Shannon Lynch
- Biomedical Sciences Program, Graduate School, University of Alabama at Birmingham, Birmingham, AL, United States
| | - James E Boyett
- Biomedical Sciences Program, Department of Clinical and Diagnostic Science, University of Alabama at Birmingham, Birmingham, AL, United States
| | - M Ryan Smith
- Division of Pulmonary, Allergy and Critical Care Medicine, Emory University, Atlanta, GA, United States
| | - Samantha Giordano-Mooga
- Biomedical Sciences Program, Department of Clinical and Diagnostic Science, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
6
|
Di Benedetto G, Lefkimmiatis K, Pozzan T. The basics of mitochondrial cAMP signalling: Where, when, why. Cell Calcium 2020; 93:102320. [PMID: 33296837 DOI: 10.1016/j.ceca.2020.102320] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/16/2020] [Accepted: 11/16/2020] [Indexed: 12/15/2022]
Abstract
Cytosolic cAMP signalling in live cells has been extensively investigated in the past, while only in the last decade the existence of an intramitochondrial autonomous cAMP homeostatic system began to emerge. Thanks to the development of novel tools to investigate cAMP dynamics and cAMP/PKA-dependent phosphorylation within the matrix and in other mitochondrial compartments, it is now possible to address directly and in intact living cells a series of questions that until now could be addressed only by indirect approaches, in isolated organelles or through subcellular fractionation studies. In this contribution we discuss the mechanisms that regulate cAMP dynamics at the surface and inside mitochondria, and its crosstalk with organelle Ca2+ handling. We then address a series of still unsolved questions, such as the intramitochondrial localization of key elements of the cAMP signaling toolkit, e.g., adenylate cyclases, phosphodiesterases, protein kinase A (PKA) and Epac. Finally, we discuss the evidence for and against the existence of an intramitochondrial PKA pool and the functional role of cAMP increases within the organelle matrix.
Collapse
Affiliation(s)
- Giulietta Di Benedetto
- Neuroscience Institute, National Research Council of Italy (CNR), 35121 Padova, Italy; Veneto Institute of Molecular Medicine, Foundation for Advanced Biomedical Research, 35129 Padova, Italy.
| | - Konstantinos Lefkimmiatis
- Veneto Institute of Molecular Medicine, Foundation for Advanced Biomedical Research, 35129 Padova, Italy; Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Tullio Pozzan
- Neuroscience Institute, National Research Council of Italy (CNR), 35121 Padova, Italy; Veneto Institute of Molecular Medicine, Foundation for Advanced Biomedical Research, 35129 Padova, Italy; Department of Biomedical Sciences, University of Padova, 35121 Padova, Italy
| |
Collapse
|
7
|
Sadek MS, Cachorro E, El-Armouche A, Kämmerer S. Therapeutic Implications for PDE2 and cGMP/cAMP Mediated Crosstalk in Cardiovascular Diseases. Int J Mol Sci 2020; 21:E7462. [PMID: 33050419 PMCID: PMC7590001 DOI: 10.3390/ijms21207462] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 12/11/2022] Open
Abstract
Phosphodiesterases (PDEs) are the principal superfamily of enzymes responsible for degrading the secondary messengers 3',5'-cyclic nucleotides cAMP and cGMP. Their refined subcellular localization and substrate specificity contribute to finely regulate cAMP/cGMP gradients in various cellular microdomains. Redistribution of multiple signal compartmentalization components is often perceived under pathological conditions. Thereby PDEs have long been pursued as therapeutic targets in diverse disease conditions including neurological, metabolic, cancer and autoimmune disorders in addition to numerous cardiovascular diseases (CVDs). PDE2 is a unique member of the broad family of PDEs. In addition to its capability to hydrolyze both cAMP and cGMP, PDE2 is the sole isoform that may be allosterically activated by cGMP increasing its cAMP hydrolyzing activity. Within the cardiovascular system, PDE2 serves as an integral regulator for the crosstalk between cAMP/cGMP pathways and thereby may couple chronically adverse augmented cAMP signaling with cardioprotective cGMP signaling. This review provides a comprehensive overview of PDE2 regulatory functions in multiple cellular components within the cardiovascular system and also within various subcellular microdomains. Implications for PDE2- mediated crosstalk mechanisms in diverse cardiovascular pathologies are discussed highlighting the prospective use of PDE2 as a potential therapeutic target in cardiovascular disorders.
Collapse
Affiliation(s)
| | | | - Ali El-Armouche
- Department of Pharmacology and Toxicology, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany; (M.S.S.); (E.C.)
| | - Susanne Kämmerer
- Department of Pharmacology and Toxicology, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany; (M.S.S.); (E.C.)
| |
Collapse
|
8
|
Jayarajan V, Appukuttan A, Aslam M, Reusch P, Regitz-Zagrosek V, Ladilov Y. Regulation of AMPK activity by type 10 adenylyl cyclase: contribution to the mitochondrial biology, cellular redox and energy homeostasis. Cell Mol Life Sci 2019; 76:4945-4959. [PMID: 31172217 PMCID: PMC11105217 DOI: 10.1007/s00018-019-03152-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 05/06/2019] [Accepted: 05/13/2019] [Indexed: 01/28/2023]
Abstract
The downregulation of AMP-activated protein kinase (AMPK) activity contributes to numerous pathologies. Recent reports suggest that the elevation of cellular cAMP promotes AMPK activity. However, the source of the cAMP pool that controls AMPK activity remains unknown. Mammalian cells possess two cAMP sources: membrane-bound adenylyl cyclase (tmAC) and intracellularly localized, type 10 soluble adenylyl cyclase (sAC). Due to the localization of sAC and AMPK in similar intracellular compartments, we hypothesized that sAC may control AMPK activity. In this study, sAC expression and activity were manipulated in H9C2 cells, adult rat cardiomyocytes or endothelial cells. sAC knockdown depleted the cellular cAMP content and decreased AMPK activity in an EPAC-dependent manner. Functionally, sAC knockdown reduced cellular ATP content, increased mitochondrial ROS formation and led to mitochondrial depolarization. Furthermore, sAC downregulation led to EPAC-dependent mitophagy disturbance, indicated by an increased mitochondrial mass and unaffected mitochondrial biogenesis. Consistently, sAC overexpression or stimulation with bicarbonate significantly increased AMPK activity and cellular ATP content. In contrast, tmAC inhibition or stimulation produced no effect on AMPK activity. Therefore, the sAC-EPAC axis may regulate basal and induced AMPK activity and support mitophagy, cellular energy and redox homeostasis. The study argues for sAC as a potential target in treating pathologies associated with AMPK downregulation.
Collapse
Affiliation(s)
- Vignesh Jayarajan
- Charité, Universitätsmedizin Berlin, Institute of Gender in Medicine, Center for Cardiovascular Research, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Berlin Partner Site, Berlin, Germany
- Department of Clinical Pharmacology, Ruhr-University Bochum, Bochum, Germany
| | - Avinash Appukuttan
- Department of Clinical Pharmacology, Ruhr-University Bochum, Bochum, Germany
| | - Muhammad Aslam
- Internal Medicine I/Cardiology and Angiology, University Hospital of Giessen and Marburg, Giessen, Germany
- Experimental Cardiology, Justus Liebig University Giessen, Giessen, Germany
| | - Peter Reusch
- Department of Clinical Pharmacology, Ruhr-University Bochum, Bochum, Germany
| | - Vera Regitz-Zagrosek
- Charité, Universitätsmedizin Berlin, Institute of Gender in Medicine, Center for Cardiovascular Research, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Berlin Partner Site, Berlin, Germany
| | - Yury Ladilov
- Charité, Universitätsmedizin Berlin, Institute of Gender in Medicine, Center for Cardiovascular Research, Berlin, Germany.
- DZHK (German Center for Cardiovascular Research), Berlin Partner Site, Berlin, Germany.
| |
Collapse
|
9
|
González-Casacuberta I, Juárez-Flores DL, Morén C, Garrabou G. Bioenergetics and Autophagic Imbalance in Patients-Derived Cell Models of Parkinson Disease Supports Systemic Dysfunction in Neurodegeneration. Front Neurosci 2019; 13:894. [PMID: 31551675 PMCID: PMC6748355 DOI: 10.3389/fnins.2019.00894] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 08/09/2019] [Indexed: 12/14/2022] Open
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder worldwide affecting 2-3% of the population over 65 years. This prevalence is expected to rise as life expectancy increases and diagnostic and therapeutic protocols improve. PD encompasses a multitude of clinical, genetic, and molecular forms of the disease. Even though the mechanistic of the events leading to neurodegeneration remain largely unknown, some molecular hallmarks have been repeatedly reported in most patients and models of the disease. Neuroinflammation, protein misfolding, disrupted endoplasmic reticulum-mitochondria crosstalk, mitochondrial dysfunction and consequent bioenergetic failure, oxidative stress and autophagy deregulation, are amongst the most commonly described. Supporting these findings, numerous familial forms of PD are caused by mutations in genes that are crucial for mitochondrial and autophagy proper functioning. For instance, late and early onset PD associated to mutations in Leucine-rich repeat kinase 2 (LRRK2) and Parkin (PRKN) genes, responsible for the most frequent dominant and recessive inherited forms of PD, respectively, have emerged as promising examples of disease due to their established role in commanding bioenergetic and autophagic balance. Concomitantly, the development of animal and cell models to investigate the etiology of the disease, potential biomarkers and therapeutic approaches are being explored. One of the emerging approaches in this context is the use of patient's derived cells models, such as skin-derived fibroblasts that preserve the genetic background and some environmental cues of the patients. An increasing number of reports in these PD cell models postulate that deficient mitochondrial function and impaired autophagic flux may be determinant in PD accelerated nigral cell death in terms of limitation of cell energy supply and accumulation of obsolete and/or unfolded proteins or dysfunctional organelles. The reliance of neurons on mitochondrial oxidative metabolism and their post-mitotic nature, may explain their increased vulnerability to undergo degeneration upon mitochondrial challenges or autophagic insults. In this scenario, proper mitochondrial function and turnover through mitophagy, are gaining in strength as protective targets to prevent neurodegeneration, together with the use of patient-derived fibroblasts to further explore these events. These findings point out the presence of molecular damage beyond the central nervous system (CNS) and proffer patient-derived cell platforms to the clinical and scientific community, which enable the study of disease etiopathogenesis and therapeutic approaches focused on modifying the natural history of PD through, among others, the enhancement of mitochondrial function and autophagy.
Collapse
Affiliation(s)
- Ingrid González-Casacuberta
- Muscle Research and Mitochondrial Function Laboratory, Cellex-IDIBAPS, Faculty of Medicine and Health Sciences-University of Barcelona, Internal Medicine Service-Hospital Clínic of Barcelona, Barcelona, Spain.,CIBERER-U722, Madrid, Spain
| | - Diana Luz Juárez-Flores
- Muscle Research and Mitochondrial Function Laboratory, Cellex-IDIBAPS, Faculty of Medicine and Health Sciences-University of Barcelona, Internal Medicine Service-Hospital Clínic of Barcelona, Barcelona, Spain.,CIBERER-U722, Madrid, Spain
| | - Constanza Morén
- Muscle Research and Mitochondrial Function Laboratory, Cellex-IDIBAPS, Faculty of Medicine and Health Sciences-University of Barcelona, Internal Medicine Service-Hospital Clínic of Barcelona, Barcelona, Spain.,CIBERER-U722, Madrid, Spain
| | - Gloria Garrabou
- Muscle Research and Mitochondrial Function Laboratory, Cellex-IDIBAPS, Faculty of Medicine and Health Sciences-University of Barcelona, Internal Medicine Service-Hospital Clínic of Barcelona, Barcelona, Spain.,CIBERER-U722, Madrid, Spain
| |
Collapse
|
10
|
In situ decomposition of deep eutectic solvent as a novel approach in liquid-liquid microextraction. Anal Chim Acta 2019; 1065:49-55. [DOI: 10.1016/j.aca.2019.03.038] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 03/11/2019] [Accepted: 03/17/2019] [Indexed: 12/13/2022]
|
11
|
Stefano GB, Esch T, Kream RM. Augmentation of Whole-Body Metabolic Status by Mind-Body Training: Synchronous Integration of Tissue- and Organ-Specific Mitochondrial Function. Med Sci Monit Basic Res 2019; 25:8-14. [PMID: 30631032 PMCID: PMC6505060 DOI: 10.12659/msmbr.913264] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The objective of our concise review is to elaborate an evidence-based integrative medicine model that incorporates functional linkages of key aspects of cortically-driven mind-body training procedures to biochemical and molecular processes driving enhanced cellular bioenergetics and whole-body metabolic advantage. This entails the adoption of a unified biological systems approach to selectively elucidate basic biochemical and molecular events responsible for achieving physiological relaxation of complex cellular structures. We provide accumulated evidence in support of the potential synergy of voluntary breathing exercises in combination with meditation and/or complementary cognitive tasks to promote medically beneficial enhancements in whole-body relaxation, anti-stress mechanisms, and restorative sleep. Accordingly, we propose that the widespread metabolic and physiological advantages emanating from a sustained series of complementary mind-body exercises will ultimately engender enhanced functional integration of cortical and limbic areas controlling voluntary respiratory processes with autonomic brainstem neural pattern generators. Finally, a unified mechanism is proposed that links behaviorally-mediated enhancements of whole-body metabolic advantage to optimization of synchronous regulation of mitochondrial oxygen utilization via recycling of nitrite and nitric oxide by iron-sulfur centers of coupled respiratory complexes and nitrite reductases.
Collapse
Affiliation(s)
- George B Stefano
- Department of Psychiatry, First Faculty of Medicine Charles University in Prague and General University Hospital in Prague, Center for Cognitive and Molecular Neuroscience, Prague, Czech Republic
| | - Tobias Esch
- School of Medicine, Faculty of Health, Witten/Herdecke University, Institute for Integrative Health Care, Witten, Germany
| | - Richard M Kream
- Department of Psychiatry, First Faculty of Medicine Charles University in Prague and General University Hospital in Prague, Center for Cognitive and Molecular Neuroscience, Prague, Czech Republic
| |
Collapse
|
12
|
Pozdniakova S, Guitart-Mampel M, Garrabou G, Di Benedetto G, Ladilov Y, Regitz-Zagrosek V. 17β-Estradiol reduces mitochondrial cAMP content and cytochrome oxidase activity in a phosphodiesterase 2-dependent manner. Br J Pharmacol 2018; 175:3876-3890. [PMID: 30051530 DOI: 10.1111/bph.14455] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 07/10/2018] [Accepted: 07/11/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE Mitochondria possess their own source of cAMP, that is, soluble adenylyl cyclase (sAC). Activation or expression of mitochondrial sAC promotes mitochondrial function. Oestrogen receptor signalling plays an essential role in the regulation of mitochondrial function. Here we aimed to determine whether 17β-estradiol may affect mitochondrial cAMP signalling. EXPERIMENTAL APPROACH Expression of the intra-mitochondrial proteins (Western blot), mitochondrial cAMP content (FRET-based live imaging and MS assay), mitochondrial membrane potential and cytochrome oxidase activity were analysed in H9C2 and C2C12 cells. KEY RESULTS A 24 h treatment with 17β-estradiol significantly reduced the basal level of mitochondrial cAMP, without affecting the intra-mitochondrial content of sAC, phosphodiesterase 2 (PDE2) or PKA and the activity of the intra-mitochondrial sAC. The effect of 17β-estradiol on mitochondrial cAMP was prevented by inhibition of a cGMP-activated PDE2 or soluble guanylyl cyclase (sGC), suggesting a role of NO signalling. Indeed, 17β-estradiol raised cellular levels of cGMP and the intra-mitochondrial expression of the catalytic subunit β of sGC was found. The 17β-estradiol-induced reduction of the mitochondrial cAMP level was accompanied by decreased cytochrome oxidase activity and mitochondrial membrane potential in a PDE2-dependent manner. CONCLUSIONS AND IMPLICATIONS 17β-estradiol reduced the basal level of mitochondrial cAMP content and cytochrome oxidase activity in a sAC-independent but in a PDE2-dependent manner. The results suggest a role of 17β-estradiol-induced activation of NO signalling in the regulation of mitochondrial cAMP content. Our study adds a new aspect to the complex action of oestrogens on mitochondrial biology, that is relevant to hormone replacement therapy.
Collapse
Affiliation(s)
- Sofya Pozdniakova
- Charité - Universitätsmedizin Berlin, Institute of Gender in Medicine, Center for Cardiovascular Research, Berlin, Germany.,DZHK (German Center for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Mariona Guitart-Mampel
- Muscle Research and Mitochondrial Function Laboratory, Cellex - IDIBAPS, Faculty of Medicine and Health Science, University of Barcelona, Internal Medicine Service - Hospital Clínic of Barcelona, Barcelona, Spain.,CIBERER, Madrid, Spain
| | - Gloria Garrabou
- Muscle Research and Mitochondrial Function Laboratory, Cellex - IDIBAPS, Faculty of Medicine and Health Science, University of Barcelona, Internal Medicine Service - Hospital Clínic of Barcelona, Barcelona, Spain.,CIBERER, Madrid, Spain
| | - Giulietta Di Benedetto
- Neuroscience Institute, Italian National Research Council, Venetian Institute of Molecular Medicine, Padova, Italy
| | - Yury Ladilov
- Charité - Universitätsmedizin Berlin, Institute of Gender in Medicine, Center for Cardiovascular Research, Berlin, Germany.,DZHK (German Center for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Vera Regitz-Zagrosek
- Charité - Universitätsmedizin Berlin, Institute of Gender in Medicine, Center for Cardiovascular Research, Berlin, Germany.,DZHK (German Center for Cardiovascular Research), partner site Berlin, Berlin, Germany
| |
Collapse
|