1
|
Szewczyk A. Understanding mitochondrial potassium channels: 33 years after discovery. Acta Biochim Pol 2024; 71:13126. [PMID: 38863652 PMCID: PMC11165062 DOI: 10.3389/abp.2024.13126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 05/20/2024] [Indexed: 06/13/2024]
Abstract
Mitochondrial investigations have extended beyond their traditional functions, covering areas such as ATP synthesis and metabolism. Mitochondria are now implicated in new functional areas such as cytoprotection, cellular senescence, tumor function and inflammation. The basis of these new areas still relies on fundamental biochemical/biophysical mitochondrial functions such as synthesis of reactive oxygen species, mitochondrial membrane potential, and the integrity of the inner mitochondrial membrane i.e., the passage of various molecules through the mitochondrial membranes. In this view transport of potassium cations, known as the potassium cycle, plays an important role. It is believed that K+ influx is mediated by various potassium channels present in the inner mitochondrial membrane. In this article, we present an overview of the key findings and characteristics of mitochondrial potassium channels derived from research of many groups conducted over the past 33 years. We propose a list of six fundamental observations and most important ideas dealing with mitochondrial potassium channels. We also discuss the contemporary challenges and future prospects associated with research on mitochondrial potassium channels.
Collapse
Affiliation(s)
- Adam Szewczyk
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
2
|
Gómez Del Val A, Contreras C, Muñoz M, Sáenz-Medina J, Mohamed M, Rivera L, Sánchez A, Prieto D. Activation of mitoK ATP channels induces penile vasodilation and inhibits mitochondrial respiration and ROS production: Role of NO. Free Radic Biol Med 2024; 217:15-28. [PMID: 38522485 DOI: 10.1016/j.freeradbiomed.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/17/2024] [Accepted: 03/12/2024] [Indexed: 03/26/2024]
Abstract
OBJECTIVE Mitochondrial ATP-sensitive K+ (mitoKATP) channels are involved in neuronal and cardiac protection from ischemia and oxidative stress. Penile erection is a neurovascular event mediated by relaxation of the erectile tissue via nitric oxide (NO) released from nerves and endothelium. In the present study, we investigated whether mitoKATP channels play a role in the control of penile vascular tone and mitochondrial dynamics, and the involvement of NO. METHODS The effect of the selective mitoKATP activator BMS191095 was examined on vascular tone, on mitochondrial bioenergetics by real-time measurements with Agilent Seahorse and on ROS production by MitoSOX fluorescence in freshly isolated microarteries. RESULTS BMS191095 and diazoxide relaxed penile arteries, BMS191095 being one order of magnitude more potent. BMS191095-induced relaxations were reduced by mechanical endothelium removal and by inhibitors of the nitric oxide synthase (NOS) and PI3K enzymes. The NO-dependent component of the relaxation to BMS191095 was impaired in penile arteries from insulin resistant obese rats. The blockers of mitoKATP channel 5-HD, sarcolemma KATP (sarcKATP) channel glibenclamide, and large conductance Ca2+-activated K+ (BKCa) channel iberiotoxin, inhibited relaxations to BMS191095 and to the NO donor SNAP. BMS191095 reduced the mitochondrial bioenergetic profile of penile arteries and attenuated mitochondrial ROS production. Blockade of endogenous NO impaired and exogenous NO mimicked, respectively, the inhibitory effects of BMS191095 on basal respiration and oxygen consumed for ATP synthesis. Exogenous NO exhibited dual inhibitory/stimulatory effects on mitochondrial respiration. CONCLUSIONS These results demonstrate that selective activation of mitoKATP channels causes penile vasodilation, attenuates ROS production and inhibits mitochondrial respiration in part by releasing endothelial NO. These mechanisms couple blood flow and metabolism in penile arterial wall and suggest that activation of vascular mitoKATP channels may protect erectile tissue against ischemic injury.
Collapse
Affiliation(s)
- Alfonso Gómez Del Val
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Cristina Contreras
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Mercedes Muñoz
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Javier Sáenz-Medina
- Department of Urology, Puerta de Hierro-Majadahonda University Hospital, 28222, Majadahonda, Spain
| | - Mariam Mohamed
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Luis Rivera
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Ana Sánchez
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Dolores Prieto
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain.
| |
Collapse
|
3
|
Nikiforova AB, Baburina YL, Borisova MP, Surin AK, Kharechkina ES, Krestinina OV, Suvorina MY, Kruglova SA, Kruglov AG. Mitochondrial F-ATP Synthase Co-Migrating Proteins and Ca 2+-Dependent Formation of Large Channels. Cells 2023; 12:2414. [PMID: 37830628 PMCID: PMC10572550 DOI: 10.3390/cells12192414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/18/2023] [Accepted: 10/02/2023] [Indexed: 10/14/2023] Open
Abstract
Monomers, dimers, and individual FOF1-ATP synthase subunits are, presumably, involved in the formation of the mitochondrial permeability transition pore (PTP), whose molecular structure, however, is still unknown. We hypothesized that, during the Ca2+-dependent assembly of a PTP complex, the F-ATP synthase (subunits) recruits mitochondrial proteins that do not interact or weakly interact with the F-ATP synthase under normal conditions. Therefore, we examined whether the PTP opening in mitochondria before the separation of supercomplexes via BN-PAGE will increase the channel stability and channel-forming capacity of isolated F-ATP synthase dimers and monomers in planar lipid membranes. Additionally, we studied the specific activity and the protein composition of F-ATP synthase dimers and monomers from rat liver and heart mitochondria before and after PTP opening. Against our expectations, preliminary PTP opening dramatically suppressed the high-conductance channel activity of F-ATP synthase dimers and monomers and decreased their specific "in-gel" activity. The decline in the channel-forming activity correlated with the reduced levels of as few as two proteins in the bands: methylmalonate-semialdehyde dehydrogenase and prohibitin 2. These results indicate that proteins co-migrating with the F-ATP synthase may be important players in PTP formation and stabilization.
Collapse
Affiliation(s)
- Anna B. Nikiforova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia; (A.B.N.); (Y.L.B.); (M.P.B.); (E.S.K.); (O.V.K.)
| | - Yulia L. Baburina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia; (A.B.N.); (Y.L.B.); (M.P.B.); (E.S.K.); (O.V.K.)
| | - Marina P. Borisova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia; (A.B.N.); (Y.L.B.); (M.P.B.); (E.S.K.); (O.V.K.)
| | - Alexey K. Surin
- Branch of the Shemyakin—Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Prospekt Nauki 6, 142290 Pushchino, Russia;
- State Research Centre for Applied Microbiology and Biotechnology, 142279 Obolensk, Russia
- Institute of Protein Research, Russian Academy of Sciences, Institutskaya 4, 142290 Pushchino, Russia;
| | - Ekaterina S. Kharechkina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia; (A.B.N.); (Y.L.B.); (M.P.B.); (E.S.K.); (O.V.K.)
| | - Olga V. Krestinina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia; (A.B.N.); (Y.L.B.); (M.P.B.); (E.S.K.); (O.V.K.)
| | - Maria Y. Suvorina
- Institute of Protein Research, Russian Academy of Sciences, Institutskaya 4, 142290 Pushchino, Russia;
| | - Svetlana A. Kruglova
- Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya 2, 142290 Pushchino, Russia;
| | - Alexey G. Kruglov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia; (A.B.N.); (Y.L.B.); (M.P.B.); (E.S.K.); (O.V.K.)
| |
Collapse
|
4
|
Abstract
Mitochondria are involved in multiple cellular tasks, such as ATP synthesis, metabolism, metabolite and ion transport, regulation of apoptosis, inflammation, signaling, and inheritance of mitochondrial DNA. The majority of the correct functioning of mitochondria is based on the large electrochemical proton gradient, whose component, the inner mitochondrial membrane potential, is strictly controlled by ion transport through mitochondrial membranes. Consequently, mitochondrial function is critically dependent on ion homeostasis, the disturbance of which leads to abnormal cell functions. Therefore, the discovery of mitochondrial ion channels influencing ion permeability through the membrane has defined a new dimension of the function of ion channels in different cell types, mainly linked to the important tasks that mitochondrial ion channels perform in cell life and death. This review summarizes studies on animal mitochondrial ion channels with special focus on their biophysical properties, molecular identity, and regulation. Additionally, the potential of mitochondrial ion channels as therapeutic targets for several diseases is briefly discussed.
Collapse
Affiliation(s)
- Ildiko Szabo
- Department of Biology, University of Padova, Italy;
| | - Adam Szewczyk
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland;
| |
Collapse
|
5
|
Effect of Quercetin on mitoBK Ca Channel and Mitochondrial Function in Human Bronchial Epithelial Cells Exposed to Particulate Matter. Int J Mol Sci 2022; 24:ijms24010638. [PMID: 36614079 PMCID: PMC9820441 DOI: 10.3390/ijms24010638] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022] Open
Abstract
Particulate matter (PM) exposure increases reactive oxygen species (ROS) levels. It can lead to inflammatory responses and damage of the mitochondria thus inducing cell death. Recently, it has been shown that potassium channels (mitoK) located in the inner mitochondrial membrane are involved in cytoprotection, and one of the mechanisms involves ROS. To verify the cytoprotective role of mitoBKCa, we performed a series of experiments using a patch-clamp, transepithelial electrical resistance assessment (TEER), mitochondrial respiration measurements, fluorescence methods for the ROS level and mitochondrial membrane potential assessment, and cell viability measurements. In the human bronchial epithelial cell model (16HBE14σ), PM < 4 μm in diameter (SRM-PM4.0) was used. We observed that PM decreased TEER of HBE cell monolayers. The effect was partially abolished by quercetin, a mitoBKCa opener. Consequently, quercetin decreased the mitochondrial membrane potential and increased mitochondrial respiration. The reduction of PM-induced ROS level occurs both on cellular and mitochondrial level. Additionally, quercetin restores HBE cell viability after PM administration. The incubation of cells with PM substantially reduced the mitochondrial function. Isorhamnetin had no effect on TEER, the mitoBKCa activity, respiratory rate, or mitochondrial membrane potential. Obtained results indicate that PM has an adverse effect on HBE cells at the cellular and mitochondrial level. Quercetin is able to limit the deleterious effect of PM on barrier function of airway epithelial cells. We show that the effect in HBE cells involves mitoBKCa channel-activation. However, quercetin’s mechanism of action is not exclusively determined by modulation of the channel activity.
Collapse
|
6
|
Lupane Triterpene Derivatives Improve Antiproliferative Effect on Leukemia Cells through Apoptosis Induction. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238263. [PMID: 36500355 PMCID: PMC9738192 DOI: 10.3390/molecules27238263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022]
Abstract
Leukemia is one of the most frequent types of cancer. No effective treatment currently exists, driving a search for new compounds. Simple structural modifications were made to novel triterpenes isolated from Phoradendron wattii. Of the three resulting derivatives, 3α-methoxy-24-hydroxylup-20(29)-en-28-oic acid (T1m) caused a decrease in the median inhibitory concentration (IC50) on the K562 cell line. Its mode of action was apparently apoptosis, ROS generation, and loss of mitochondrial membrane potential (MMP). Molecular docking analysis showed T1m to produce lower binding energies than its precursor for the Bcl-2 and EGFR proteins. Small, simple, and viable modifications to triterpenes can improve their activity against leukemia cell lines. T1m is a potentially promising element for future research. Clarifying the targets in its mode of action will improve its applicability.
Collapse
|
7
|
Dubinin MV, Starinets VS, Belosludtseva NV, Mikheeva IB, Chelyadnikova YA, Igoshkina AD, Vafina AB, Vedernikov AA, Belosludtsev KN. BK Ca Activator NS1619 Improves the Structure and Function of Skeletal Muscle Mitochondria in Duchenne Dystrophy. Pharmaceutics 2022; 14:2336. [PMID: 36365155 PMCID: PMC9696041 DOI: 10.3390/pharmaceutics14112336] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/20/2022] [Accepted: 10/26/2022] [Indexed: 08/27/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a progressive hereditary disease caused by the absence of the dystrophin protein. This is secondarily accompanied by a dysregulation of ion homeostasis, in which mitochondria play an important role. In the present work, we show that mitochondrial dysfunction in the skeletal muscles of dystrophin-deficient mdx mice is accompanied by a reduction in K+ transport and a decrease in its content in the matrix. This is associated with a decrease in the expression of the mitochondrial large-conductance calcium-activated potassium channel (mitoBKCa) in the muscles of mdx mice, which play an important role in cytoprotection. We observed that the BKCa activator NS1619 caused a normalization of mitoBKCa expression and potassium homeostasis in the muscle mitochondria of these animals, which was accompanied by an increase in the calcium retention capacity, mitigation of oxidative stress, and improvement in mitochondrial ultrastructure. This effect of NS1619 contributed to the reduction of degeneration/regeneration cycles and fibrosis in the skeletal muscles of mdx mice as well as a normalization of sarcomere size, but had no effect on the leakage of muscle enzymes and muscle strength loss. In the case of wild-type mice, we noted the negative effect of NS1619 manifested in the inhibition of the functional activity of mitochondria and disruption of their structure, which, however, did not significantly affect the state of the skeletal muscles of the animals. This article discusses the role of mitoBKCa in the development of DMD and the prospects of the approach associated with the correction of its function in treatments of this secondary channelopathy.
Collapse
Affiliation(s)
- Mikhail V. Dubinin
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, 424001 Yoshkar-Ola, Russia
| | - Vlada S. Starinets
- Laboratory of Mitochondrial Transport, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia
| | - Natalia V. Belosludtseva
- Laboratory of Mitochondrial Transport, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia
| | - Irina B. Mikheeva
- Laboratory of Mitochondrial Transport, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia
| | - Yuliya A. Chelyadnikova
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, 424001 Yoshkar-Ola, Russia
| | - Anastasia D. Igoshkina
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, 424001 Yoshkar-Ola, Russia
| | - Aliya B. Vafina
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, 424001 Yoshkar-Ola, Russia
| | - Alexander A. Vedernikov
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, 424001 Yoshkar-Ola, Russia
| | - Konstantin N. Belosludtsev
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, 424001 Yoshkar-Ola, Russia
- Laboratory of Mitochondrial Transport, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia
| |
Collapse
|
8
|
Kulawiak B, Szewczyk A. Current Challenges of Mitochondrial Potassium Channel Research. Front Physiol 2022; 13:907015. [PMID: 35711307 PMCID: PMC9193220 DOI: 10.3389/fphys.2022.907015] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
In this paper, the current challenges of mitochondrial potassium channels research were critically reviewed. Even though recent progress in understanding K+ traffic in mitochondria has been substantial, some basic issues of this process remain unresolved. Here, we focused on the critical discussion of the molecular identity of various mitochondrial potassium channels. This point helps to clarify why there are different potassium channels in specific mitochondria. We also described interactions of mitochondrial potassium channel subunits with other mitochondrial proteins. Posttranslational modifications of mitochondrial potassium channels and their import are essential but unexplored research areas. Additionally, problems with the pharmacological targeting of mitochondrial potassium channel were illustrated. Finally, the limitation of the techniques used to measure mitochondrial potassium channels was explained. We believe that recognizing these problems may be interesting for readers but will also help to progress the field of mitochondrial potassium channels.
Collapse
Affiliation(s)
- Bogusz Kulawiak
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Adam Szewczyk
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
9
|
Methods of Measuring Mitochondrial Potassium Channels: A Critical Assessment. Int J Mol Sci 2022; 23:ijms23031210. [PMID: 35163132 PMCID: PMC8835872 DOI: 10.3390/ijms23031210] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 12/22/2022] Open
Abstract
In this paper, the techniques used to study the function of mitochondrial potassium channels are critically reviewed. The majority of these techniques have been known for many years as a result of research on plasma membrane ion channels. Hence, in this review, we focus on the critical evaluation of techniques used in the studies of mitochondrial potassium channels, describing their advantages and limitations. Functional analysis of mitochondrial potassium channels in comparison to that of plasmalemmal channels presents additional experimental challenges. The reliability of functional studies of mitochondrial potassium channels is often affected by the need to isolate mitochondria and by functional properties of mitochondria such as respiration, metabolic activity, swelling capacity, or high electrical potential. Three types of techniques are critically evaluated: electrophysiological techniques, potassium flux measurements, and biochemical techniques related to potassium flux measurements. Finally, new possible approaches to the study of the function of mitochondrial potassium channels are presented. We hope that this review will assist researchers in selecting reliable methods for studying, e.g., the effects of drugs on mitochondrial potassium channel function. Additionally, this review should aid in the critical evaluation of the results reported in various articles on mitochondrial potassium channels.
Collapse
|
10
|
Wrzosek A, Gałecka S, Żochowska M, Olszewska A, Kulawiak B. Alternative Targets for Modulators of Mitochondrial Potassium Channels. Molecules 2022; 27:299. [PMID: 35011530 PMCID: PMC8746388 DOI: 10.3390/molecules27010299] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 12/17/2022] Open
Abstract
Mitochondrial potassium channels control potassium influx into the mitochondrial matrix and thus regulate mitochondrial membrane potential, volume, respiration, and synthesis of reactive oxygen species (ROS). It has been found that pharmacological activation of mitochondrial potassium channels during ischemia/reperfusion (I/R) injury activates cytoprotective mechanisms resulting in increased cell survival. In cancer cells, the inhibition of these channels leads to increased cell death. Therefore, mitochondrial potassium channels are intriguing targets for the development of new pharmacological strategies. In most cases, however, the substances that modulate the mitochondrial potassium channels have a few alternative targets in the cell. This may result in unexpected or unwanted effects induced by these compounds. In our review, we briefly present the various classes of mitochondrial potassium (mitoK) channels and describe the chemical compounds that modulate their activity. We also describe examples of the multidirectional activity of the activators and inhibitors of mitochondrial potassium channels.
Collapse
Affiliation(s)
- Antoni Wrzosek
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland; (A.W.); (S.G.); (M.Ż.)
| | - Shur Gałecka
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland; (A.W.); (S.G.); (M.Ż.)
| | - Monika Żochowska
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland; (A.W.); (S.G.); (M.Ż.)
| | - Anna Olszewska
- Department of Histology, Medical University of Gdansk, 1a Debinki, 80-211 Gdansk, Poland;
| | - Bogusz Kulawiak
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland; (A.W.); (S.G.); (M.Ż.)
| |
Collapse
|
11
|
González-Sanabria N, Echeverría F, Segura I, Alvarado-Sánchez R, Latorre R. BK in Double-Membrane Organelles: A Biophysical, Pharmacological, and Functional Survey. Front Physiol 2021; 12:761474. [PMID: 34764886 PMCID: PMC8577798 DOI: 10.3389/fphys.2021.761474] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/29/2021] [Indexed: 12/04/2022] Open
Abstract
In the 1970s, calcium-activated potassium currents were recorded for the first time. In 10years, this Ca2+-activated potassium channel was identified in rat skeletal muscle, chromaffin cells and characterized in skeletal muscle membranes reconstituted in lipid bilayers. This calcium- and voltage-activated potassium channel, dubbed BK for “Big K” due to its large ionic conductance between 130 and 300 pS in symmetric K+. The BK channel is a tetramer where the pore-forming α subunit contains seven transmembrane segments. It has a modular architecture containing a pore domain with a highly potassium-selective filter, a voltage-sensor domain and two intracellular Ca2+ binding sites in the C-terminus. BK is found in the plasma membrane of different cell types, the inner mitochondrial membrane (mitoBK) and the nuclear envelope’s outer membrane (nBK). Like BK channels in the plasma membrane (pmBK), the open probability of mitoBK and nBK channels are regulated by Ca2+ and voltage and modulated by auxiliary subunits. BK channels share common pharmacology to toxins such as iberiotoxin, charybdotoxin, paxilline, and agonists of the benzimidazole family. However, the precise role of mitoBK and nBK remains largely unknown. To date, mitoBK has been reported to play a role in protecting the heart from ischemic injury. At the same time, pharmacology suggests that nBK has a role in regulating nuclear Ca2+, membrane potential and expression of eNOS. Here, we will discuss at the biophysical level the properties and differences of mitoBK and nBK compared to those of pmBK and their pharmacology and function.
Collapse
Affiliation(s)
- Naileth González-Sanabria
- Facultad de Ciencias, Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Felipe Echeverría
- Facultad de Ciencias, Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Ignacio Segura
- Facultad de Ciencias, Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Rosangelina Alvarado-Sánchez
- Facultad de Ciencias, Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Ramon Latorre
- Facultad de Ciencias, Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
12
|
Khan A, Kuriachan G, Mahalakshmi R. Cellular Interactome of Mitochondrial Voltage-Dependent Anion Channels: Oligomerization and Channel (Mis)Regulation. ACS Chem Neurosci 2021; 12:3497-3515. [PMID: 34503333 DOI: 10.1021/acschemneuro.1c00429] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Voltage-dependent anion channels (VDACs) of the outer mitochondrial membrane are known conventionally as metabolite flux proteins. However, research findings in the past decade have revealed the multifaceted regulatory roles of VDACs, from governing cellular physiology and mitochondria-mediated apoptosis to directly regulating debilitating cancers and neurodegenerative diseases. VDACs achieve these diverse functions by establishing isoform-dependent stereospecific interactomes in the cell with the cytosolic constituents and endoplasmic reticulum complexes, and the machinery of the mitochondrial compartments. VDACs are now increasingly recognized as regulatory hubs of the cell. Not surprisingly, even the transient misregulation of VDACs results directly in mitochondrial dysfunction. Additionally, human VDACs are now implicated in interaction with aggregation-prone cytosolic proteins, including Aβ, tau, and α-synuclein, contributing directly to the onset of Alzheimer's and Parkinson's diseases. Deducing the interaction dynamics and mechanisms can lead to VDAC-targeted peptide-based therapeutics that can alleviate neurodegenerative states. This review succinctly presents the latest findings of the VDAC interactome, and the mode(s) of VDAC-dependent regulation of biochemical physiology. We also discuss the relevance of VDACs in pathophysiological states and aggregation-associated diseases and address how VDACs will facilitate the development of next-generation precision medicines.
Collapse
Affiliation(s)
- Altmash Khan
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal 462066, India
| | - Gifty Kuriachan
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal 462066, India
| | - Radhakrishnan Mahalakshmi
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal 462066, India
| |
Collapse
|
13
|
K Ca channel blockers increase effectiveness of the EGF receptor TK inhibitor erlotinib in non-small cell lung cancer cells (A549). Sci Rep 2021; 11:18330. [PMID: 34526525 PMCID: PMC8443639 DOI: 10.1038/s41598-021-97406-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 08/18/2021] [Indexed: 11/08/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) has a poor prognosis with a 5 year survival rate of only ~ 10%. Important driver mutations underlying NSCLC affect the epidermal growth factor receptor (EGFR) causing the constitutive activation of its tyrosine kinase domain. There are efficient EGFR tyrosine kinase inhibitors (TKIs), but patients develop inevitably a resistance against these drugs. On the other hand, KCa3.1 channels contribute to NSCLC progression so that elevated KCa3.1 expression is a strong predictor of poor NSCLC patient prognosis. The present study tests whether blocking KCa3.1 channels increases the sensitivity of NSCLC cells towards the EGFR TKI erlotinib and overcomes drug resistance. mRNA expression of KCa3.1 channels in erlotinib-sensitive and -resistant NSCLC cells was analysed in datasets from Gene expression omnibus (GEO) and ArrayExpress. We assessed proliferation and migration of NSCLC cells. These (live cell-imaging) experiments were complemented by patch clamp experiments and Western blot analyses. We identified three out of four datasets comparing erlotinib-sensitive and -resistant NSCLC cells which revealed an altered expression of KCa3.1 mRNA in erlotinib-resistant NSCLC cells. Therefore, we evaluated the combined effect of erlotinib and the KCa3.1 channel inhibition with sencapoc. Erlotinib elicits a dose-dependent inhibition of migration and proliferation of NSCLC cells. The simultaneous application of the KCa3.1 channel blocker senicapoc increases the sensitivity towards a low dose of erlotinib (300 nmol/L) which by itself has no effect on migration and proliferation. Partial erlotinib resistance can be overcome by KCa3.1 channel blockade. The sensitivity towards erlotinib as well as the potentiating effect of KCa3.1 blockade is further increased by mimicking hypoxia. Our results suggest that KCa3.1 channel blockade may constitute a therapeutic concept for treating NSCLC and overcome EGFR TKI resistance. We propose that this is due to complementary mechanisms of action of both blockers.
Collapse
|
14
|
Hoogerheide DP, Rostovtseva TK, Bezrukov SM. Exploring lipid-dependent conformations of membrane-bound α-synuclein with the VDAC nanopore. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2021; 1863:183643. [PMID: 33971161 PMCID: PMC8255272 DOI: 10.1016/j.bbamem.2021.183643] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/21/2021] [Accepted: 04/26/2021] [Indexed: 02/07/2023]
Abstract
Regulation of VDAC by α-synuclein (αSyn) is a rich and instructive example of protein-protein interactions catalyzed by a lipid membrane surface. αSyn, a peripheral membrane protein involved in Parkinson's disease pathology, is known to bind to membranes in a transient manner. αSyn's negatively charged C-terminal domain is then available to be electromechanically trapped by the VDAC β-barrel, a process that is observed in vitro as the reversible reduction of ion flow through a single voltage-biased VDAC nanopore. Binding of αSyn to the lipid bilayer is a prerequisite of the channel-protein interaction; surprisingly, however, we find that the strength of αSyn binding to the membrane does not correlate in any simple way with its efficiency of blocking VDAC, suggesting that the lipid-dependent conformations of the membrane-bound αSyn control the interaction. Quantitative models of the free energy landscape governing the capture and release processes allow us to discriminate between several αSyn (sub-) conformations on the membrane surface. These results, combined with known structural features of αSyn on anionic lipid membranes, point to a model in which the lipid composition determines the fraction of αSyn molecules for which the charged C terminal domain is constrained to be close, but not tightly bound, to the membrane surface and thus readily captured by the VDAC nanopore. We speculate that changes in the mitochondrial membrane lipid composition may be key regulators of the αSyn-VDAC interaction and consequently of VDAC-facilitated transport of ions and metabolites in and out of mitochondria and, i.e. mitochondrial metabolism.
Collapse
Affiliation(s)
- David P Hoogerheide
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Tatiana K Rostovtseva
- Section on Molecular Transport, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Sergey M Bezrukov
- Section on Molecular Transport, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
15
|
Rostovtseva TK, Bezrukov SM, Hoogerheide DP. Regulation of Mitochondrial Respiration by VDAC Is Enhanced by Membrane-Bound Inhibitors with Disordered Polyanionic C-Terminal Domains. Int J Mol Sci 2021; 22:7358. [PMID: 34298976 PMCID: PMC8306229 DOI: 10.3390/ijms22147358] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 12/18/2022] Open
Abstract
The voltage-dependent anion channel (VDAC) is the primary regulating pathway of water-soluble metabolites and ions across the mitochondrial outer membrane. When reconstituted into lipid membranes, VDAC responds to sufficiently large transmembrane potentials by transitioning to gated states in which ATP/ADP flux is reduced and calcium flux is increased. Two otherwise unrelated cytosolic proteins, tubulin, and α-synuclein (αSyn), dock with VDAC by a novel mechanism in which the transmembrane potential draws their disordered, polyanionic C-terminal domains into and through the VDAC channel, thus physically blocking the pore. For both tubulin and αSyn, the blocked state is observed at much lower transmembrane potentials than VDAC gated states, such that in the presence of these cytosolic docking proteins, VDAC's sensitivity to transmembrane potential is dramatically increased. Remarkably, the features of the VDAC gated states relevant for bioenergetics-reduced metabolite flux and increased calcium flux-are preserved in the blocked state induced by either docking protein. The ability of tubulin and αSyn to modulate mitochondrial potential and ATP production in vivo is now supported by many studies. The common physical origin of the interactions of both tubulin and αSyn with VDAC leads to a general model of a VDAC inhibitor, facilitates predictions of the effect of post-translational modifications of known inhibitors, and points the way toward the development of novel therapeutics targeting VDAC.
Collapse
Affiliation(s)
- Tatiana K. Rostovtseva
- Program in Physical Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Sergey M. Bezrukov
- Program in Physical Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA;
| | - David P. Hoogerheide
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA;
| |
Collapse
|
16
|
Szabo I, Zoratti M, Biasutto L. Targeting mitochondrial ion channels for cancer therapy. Redox Biol 2021; 42:101846. [PMID: 33419703 PMCID: PMC8113036 DOI: 10.1016/j.redox.2020.101846] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/19/2020] [Accepted: 12/21/2020] [Indexed: 12/12/2022] Open
Abstract
Pharmacological targeting of mitochondrial ion channels is emerging as a promising approach to eliminate cancer cells; as most of these channels are differentially expressed and/or regulated in cancer cells in comparison to healthy ones, this strategy may selectively eliminate the former. Perturbation of ion fluxes across the outer and inner membranes is linked to alterations of redox state, membrane potential and bioenergetic efficiency. This leads to indirect modulation of oxidative phosphorylation, which is/may be fundamental for both cancer and cancer stem cell survival. Furthermore, given the crucial contribution of mitochondria to intrinsic apoptosis, modulation of their ion channels leading to cytochrome c release may be of great advantage in case of resistance to drugs triggering apoptotic events upstream of the mitochondrial phase. In the present review, we give an overview of the known mitochondrial ion channels and of their modulators capable of killing cancer cells. In addition, we discuss state-of-the-art strategies using mitochondriotropic drugs or peptide-based approaches allowing a more efficient and selective targeting of mitochondrial ion channel-linked events.
Collapse
Affiliation(s)
- Ildiko Szabo
- Department of Biology, University of Padova, Italy; CNR Institute of Neurosciences, Padova, Italy.
| | | | - Lucia Biasutto
- CNR Institute of Neurosciences, Padova, Italy; Department of Biomedical Sciences, University of Padova, Italy
| |
Collapse
|
17
|
Belosludtsev KN, Sharipov RR, Boyarkin DP, Belosludtseva NV, Dubinin MV, Krasilnikova IA, Bakaeva ZV, Zgodova AE, Pinelis VG, Surin AM. The effect of DS16570511, a new inhibitor of mitochondrial calcium uniporter, on calcium homeostasis, metabolism, and functional state of cultured cortical neurons and isolated brain mitochondria. Biochim Biophys Acta Gen Subj 2021; 1865:129847. [PMID: 33453305 DOI: 10.1016/j.bbagen.2021.129847] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/20/2020] [Accepted: 01/11/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Disorders of mitochondrial Ca2+ homeostasis play a key role in the glutamate excitotoxicity of brain neurons. DS16570511 (DS) is a new penetrating inhibitor of mitochondrial Ca2+ uniporter complex (MCUC). The paper examines the effects of DS on the cultivated cortical neurons and isolated mitochondria of the rat brain. METHODS The functions of neurons and mitochondria were examined using fluorescence microscopy, XF24 microplate-based сell respirometry, ion-selective microelectrodes, spectrophotometry, and polarographic technique. RESULTS At the doses of 30 and 45 μM, DS reliably slowed down the onset of glutamate-induced delayed calcium deregulation of neurons and suppressed their death. 30 μM DS caused hyperpolarization of mitochondria of resting neurons, and 45 μM DS temporarily depolarized neuronal mitochondria. It was also demonstrated that 30-60 μM DS stimulated cellular respiration. DS was shown to suppress Ca2+ uptake by isolated brain mitochondria. In addition, DS inhibited ADP-stimulated mitochondrial respiration and ADP-induced decrease in the mitochondrial membrane potential. It was found that DS inhibited the activity of complex II of the respiratory chain. In the presence of Ca2+, high DS concentrations caused a collapse of the mitochondrial membrane potential. CONCLUSIONS The data obtained indicate that, in addition to the inhibition of MCUC, DS affects the main energy-transducing functions of mitochondria. GENERAL SIGNIFICANCE The using DS as a tool for studying MCUC and its functional role in neuronal cells should be done with care, bearing in mind multiple effects of DS, a proper evaluation of which would require multivariate analysis.
Collapse
Affiliation(s)
- Konstantin N Belosludtsev
- Mari State University, pl. Lenina 1, Yoshkar-Ola, 424001, Russia; Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, Pushchino, 142290, Russia.
| | - Rinat R Sharipov
- Institute of General Pathology and Pathophysiology, Baltiyskaya st. 8, Moscow, 125315, Russia
| | - Dmitry P Boyarkin
- National Medical Research Center for Children's Health, Lomonosovsky pr. 2, Moscow, 119296, Russia
| | - Natalia V Belosludtseva
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, Pushchino, 142290, Russia
| | | | - Irina A Krasilnikova
- National Medical Research Center for Children's Health, Lomonosovsky pr. 2, Moscow, 119296, Russia
| | - Zanda V Bakaeva
- National Medical Research Center for Children's Health, Lomonosovsky pr. 2, Moscow, 119296, Russia
| | - Arina E Zgodova
- National Medical Research Center for Children's Health, Lomonosovsky pr. 2, Moscow, 119296, Russia
| | - Vsevolod G Pinelis
- National Medical Research Center for Children's Health, Lomonosovsky pr. 2, Moscow, 119296, Russia
| | - Alexander M Surin
- Institute of General Pathology and Pathophysiology, Baltiyskaya st. 8, Moscow, 125315, Russia; National Medical Research Center for Children's Health, Lomonosovsky pr. 2, Moscow, 119296, Russia
| |
Collapse
|
18
|
Genovese I, Carinci M, Modesti L, Aguiari G, Pinton P, Giorgi C. Mitochondria: Insights into Crucial Features to Overcome Cancer Chemoresistance. Int J Mol Sci 2021; 22:ijms22094770. [PMID: 33946271 PMCID: PMC8124268 DOI: 10.3390/ijms22094770] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/22/2021] [Accepted: 04/27/2021] [Indexed: 02/06/2023] Open
Abstract
Mitochondria are key regulators of cell survival and are involved in a plethora of mechanisms, such as metabolism, Ca2+ signaling, reactive oxygen species (ROS) production, mitophagy and mitochondrial transfer, fusion, and fission (known as mitochondrial dynamics). The tuning of these processes in pathophysiological conditions is fundamental to the balance between cell death and survival. Indeed, ROS overproduction and mitochondrial Ca2+ overload are linked to the induction of apoptosis, while the impairment of mitochondrial dynamics and metabolism can have a double-faceted role in the decision between cell survival and death. Tumorigenesis involves an intricate series of cellular impairments not yet completely clarified, and a further level of complexity is added by the onset of apoptosis resistance mechanisms in cancer cells. In the majority of cases, cancer relapse or lack of responsiveness is related to the emergence of chemoresistance, which may be due to the cooperation of several cellular protection mechanisms, often mitochondria-related. With this review, we aim to critically report the current evidence on the relationship between mitochondria and cancer chemoresistance with a particular focus on the involvement of mitochondrial dynamics, mitochondrial Ca2+ signaling, oxidative stress, and metabolism to possibly identify new approaches or targets for overcoming cancer resistance.
Collapse
Affiliation(s)
- Ilaria Genovese
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (I.G.); (M.C.); (L.M.); (P.P.)
| | - Marianna Carinci
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (I.G.); (M.C.); (L.M.); (P.P.)
| | - Lorenzo Modesti
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (I.G.); (M.C.); (L.M.); (P.P.)
| | - Gianluca Aguiari
- Department of Neuroscience and Rehabilitation, Section of Biochemistry, Molecular Biology and Genetics, University of Ferrara, 44121 Ferrara, Italy;
| | - Paolo Pinton
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (I.G.); (M.C.); (L.M.); (P.P.)
| | - Carlotta Giorgi
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (I.G.); (M.C.); (L.M.); (P.P.)
- Correspondence:
| |
Collapse
|
19
|
Checchetto V, Leanza L, De Stefani D, Rizzuto R, Gulbins E, Szabo I. Mitochondrial K + channels and their implications for disease mechanisms. Pharmacol Ther 2021; 227:107874. [PMID: 33930454 DOI: 10.1016/j.pharmthera.2021.107874] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/12/2021] [Indexed: 02/06/2023]
Abstract
The field of mitochondrial ion channels underwent a rapid development during the last decade, thanks to the molecular identification of some of the nuclear-encoded organelle channels and to advances in strategies allowing specific pharmacological targeting of these proteins. Thereby, genetic tools and specific drugs aided definition of the relevance of several mitochondrial channels both in physiological as well as pathological conditions. Unfortunately, in the case of mitochondrial K+ channels, efforts of genetic manipulation provided only limited results, due to their dual localization to mitochondria and to plasma membrane in most cases. Although the impact of mitochondrial K+ channels on human diseases is still far from being genuinely understood, pre-clinical data strongly argue for their substantial role in the context of several pathologies, including cardiovascular and neurodegenerative diseases as well as cancer. Importantly, these channels are druggable targets, and their in-depth investigation could thus pave the way to the development of innovative small molecules with huge therapeutic potential. In the present review we summarize the available experimental evidence that mechanistically link mitochondrial potassium channels to the above pathologies and underline the possibility of exploiting them for therapy.
Collapse
Affiliation(s)
| | - Luigi Leanza
- Department of Biology, University of Padova, Italy
| | | | - Rosario Rizzuto
- Department of Biomedical Sciences, University of Padova, Italy
| | - Erich Gulbins
- Department of Molecular Biology, University of Duisburg-Essen, Germany
| | - Ildiko Szabo
- Department of Biology, University of Padova, Italy; CNR Institute of Neurosciences, Italy.
| |
Collapse
|
20
|
Urbani A, Prosdocimi E, Carrer A, Checchetto V, Szabò I. Mitochondrial Ion Channels of the Inner Membrane and Their Regulation in Cell Death Signaling. Front Cell Dev Biol 2021; 8:620081. [PMID: 33585458 PMCID: PMC7874202 DOI: 10.3389/fcell.2020.620081] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/07/2020] [Indexed: 12/11/2022] Open
Abstract
Mitochondria are bioenergetic organelles with a plethora of fundamental functions ranging from metabolism and ATP production to modulation of signaling events leading to cell survival or cell death. Ion channels located in the outer and inner mitochondrial membranes critically control mitochondrial function and, as a consequence, also cell fate. Opening or closure of mitochondrial ion channels allow the fine-tuning of mitochondrial membrane potential, ROS production, and function of the respiratory chain complexes. In this review, we critically discuss the intracellular regulatory factors that affect channel activity in the inner membrane of mitochondria and, indirectly, contribute to cell death. These factors include various ligands, kinases, second messengers, and lipids. Comprehension of mitochondrial ion channels regulation in cell death pathways might reveal new therapeutic targets in mitochondria-linked pathologies like cancer, ischemia, reperfusion injury, and neurological disorders.
Collapse
Affiliation(s)
- Andrea Urbani
- Department of Biomedical Sciences, University of Padova, Padua, Italy
- Department of Biology, University of Padova, Padua, Italy
| | | | - Andrea Carrer
- Department of Biomedical Sciences, University of Padova, Padua, Italy
- Department of Biology, University of Padova, Padua, Italy
| | | | - Ildikò Szabò
- Department of Biology, University of Padova, Padua, Italy
| |
Collapse
|
21
|
Belosludtsev KN, Belosludtseva NV, Dubinin MV. Diabetes Mellitus, Mitochondrial Dysfunction and Ca 2+-Dependent Permeability Transition Pore. Int J Mol Sci 2020; 21:6559. [PMID: 32911736 PMCID: PMC7555889 DOI: 10.3390/ijms21186559] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 12/14/2022] Open
Abstract
Diabetes mellitus is one of the most common metabolic diseases in the developed world, and is associated either with the impaired secretion of insulin or with the resistance of cells to the actions of this hormone (type I and type II diabetes, respectively). In both cases, a common pathological change is an increase in blood glucose-hyperglycemia, which eventually can lead to serious damage to the organs and tissues of the organism. Mitochondria are one of the main targets of diabetes at the intracellular level. This review is dedicated to the analysis of recent data regarding the role of mitochondrial dysfunction in the development of diabetes mellitus. Specific areas of focus include the involvement of mitochondrial calcium transport systems and a pathophysiological phenomenon called the permeability transition pore in the pathogenesis of diabetes mellitus. The important contribution of these systems and their potential relevance as therapeutic targets in the pathology are discussed.
Collapse
Affiliation(s)
- Konstantin N. Belosludtsev
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, 424001 Yoshkar-Ola, Mari El, Russia; (N.V.B.); (M.V.D.)
- Laboratory of Mitochondrial Transport, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Moscow Region, Russia
| | - Natalia V. Belosludtseva
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, 424001 Yoshkar-Ola, Mari El, Russia; (N.V.B.); (M.V.D.)
- Laboratory of Mitochondrial Transport, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Moscow Region, Russia
| | - Mikhail V. Dubinin
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, 424001 Yoshkar-Ola, Mari El, Russia; (N.V.B.); (M.V.D.)
| |
Collapse
|
22
|
Srivastava SR, Mahalakshmi R. Evolutionary selection of a 19-stranded mitochondrial β-barrel scaffold bears structural and functional significance. J Biol Chem 2020; 295:14653-14665. [PMID: 32817169 PMCID: PMC7586230 DOI: 10.1074/jbc.ra120.014366] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/15/2020] [Indexed: 12/12/2022] Open
Abstract
Transmembrane β-barrels of eukaryotic outer mitochondrial membranes (OMMs) are major channels of communication between the cytosol and mitochondria and are indispensable for cellular homeostasis. A structurally intriguing exception to all known transmembrane β-barrels is the unique odd-stranded, i.e. 19-stranded, structures found solely in the OMM. The molecular origins of this 19-stranded structure and its associated functional significance are unclear. In humans, the most abundant OMM transporter is the voltage-dependent anion channel. Here, using the human voltage-dependent anion channel as our template scaffold, we designed and engineered odd- and even-stranded structures of smaller (V216, V217, V218) and larger (V220, V221) barrel diameters. Determination of the structure, dynamics, and energetics of these engineered structures in bilayer membranes reveals that the 19-stranded barrel surprisingly holds modest to low stability in a lipid-dependent manner. However, we demonstrate that this structurally metastable protein possesses superior voltage-gated channel regulation, efficient mitochondrial targeting, and in vivo cell survival, with lipid-modulated stability, all of which supersede the occurrence of a metastable 19-stranded scaffold. We propose that the unique structural adaptation of these transmembrane transporters exclusively in mitochondria bears strong evolutionary basis and is functionally significant for homeostasis.
Collapse
Affiliation(s)
- Shashank Ranjan Srivastava
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
| | - Radhakrishnan Mahalakshmi
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India.
| |
Collapse
|
23
|
Wrzosek A, Augustynek B, Żochowska M, Szewczyk A. Mitochondrial Potassium Channels as Druggable Targets. Biomolecules 2020; 10:E1200. [PMID: 32824877 PMCID: PMC7466137 DOI: 10.3390/biom10081200] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/03/2020] [Accepted: 08/13/2020] [Indexed: 12/16/2022] Open
Abstract
Mitochondrial potassium channels have been described as important factors in cell pro-life and death phenomena. The activation of mitochondrial potassium channels, such as ATP-regulated or calcium-activated large conductance potassium channels, may have cytoprotective effects in cardiac or neuronal tissue. It has also been shown that inhibition of the mitochondrial Kv1.3 channel may lead to cancer cell death. Hence, in this paper, we examine the concept of the druggability of mitochondrial potassium channels. To what extent are mitochondrial potassium channels an important, novel, and promising drug target in various organs and tissues? The druggability of mitochondrial potassium channels will be discussed within the context of channel molecular identity, the specificity of potassium channel openers and inhibitors, and the unique regulatory properties of mitochondrial potassium channels. Future prospects of the druggability concept of mitochondrial potassium channels will be evaluated in this paper.
Collapse
Affiliation(s)
| | | | | | - Adam Szewczyk
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland; (A.W.); (B.A.); (M.Ż.)
| |
Collapse
|
24
|
Novel Therapeutic Approaches of Ion Channels and Transporters in Cancer. Rev Physiol Biochem Pharmacol 2020; 183:45-101. [PMID: 32715321 DOI: 10.1007/112_2020_28] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The expression and function of many ion channels and transporters in cancer cells display major differences in comparison to those from healthy cells. These differences provide the cancer cells with advantages for tumor development. Accordingly, targeting ion channels and transporters have beneficial anticancer effects including inhibition of cancer cell proliferation, migration, invasion, metastasis, tumor vascularization, and chemotherapy resistance, as well as promoting apoptosis. Some of the molecular mechanisms associating ion channels and transporters with cancer include the participation of oxidative stress, immune response, metabolic pathways, drug synergism, as well as noncanonical functions of ion channels. This diversity of mechanisms offers an exciting possibility to suggest novel and more effective therapeutic approaches to fight cancer. Here, we review and discuss most of the current knowledge suggesting novel therapeutic approaches for cancer therapy targeting ion channels and transporters. The role and regulation of ion channels and transporters in cancer provide a plethora of exceptional opportunities in drug design, as well as novel and promising therapeutic approaches that may be used for the benefit of cancer patients.
Collapse
|
25
|
Rostovtseva TK, Queralt-Martín M, Rosencrans WM, Bezrukov SM. Targeting the Multiple Physiologic Roles of VDAC With Steroids and Hydrophobic Drugs. Front Physiol 2020; 11:446. [PMID: 32457654 PMCID: PMC7221028 DOI: 10.3389/fphys.2020.00446] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/09/2020] [Indexed: 12/12/2022] Open
Abstract
There is accumulating evidence that endogenous steroids and non-polar drugs are involved in the regulation of mitochondrial physiology. Many of these hydrophobic compounds interact with the Voltage Dependent Anion Channel (VDAC). This major metabolite channel in the mitochondrial outer membrane (MOM) regulates the exchange of ions and water-soluble metabolites, such as ATP and ADP, across the MOM, thus governing mitochondrial respiration. Proteomics and biochemical approaches together with molecular dynamics simulations have identified an impressively large number of non-polar compounds, including endogenous, able to bind to VDAC. These findings have sparked speculation that both natural steroids and synthetic hydrophobic drugs regulate mitochondrial physiology by directly affecting VDAC ion channel properties and modulating its metabolite permeability. Here we evaluate recent studies investigating the effect of identified VDAC-binding natural steroids and non-polar drugs on VDAC channel functioning. We argue that while many compounds are found to bind to the VDAC protein, they do not necessarily affect its channel functions in vitro. However, they may modify other aspects of VDAC physiology such as interaction with its cytosolic partner proteins or complex formation with other mitochondrial membrane proteins, thus altering mitochondrial function.
Collapse
Affiliation(s)
- Tatiana K Rostovtseva
- Section on Molecular Transport, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - María Queralt-Martín
- Section on Molecular Transport, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - William M Rosencrans
- Section on Molecular Transport, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Sergey M Bezrukov
- Section on Molecular Transport, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
26
|
Mota-Martorell N, Jove M, Pradas I, Sanchez I, Gómez J, Naudi A, Barja G, Pamplona R. Low abundance of NDUFV2 and NDUFS4 subunits of the hydrophilic complex I domain and VDAC1 predicts mammalian longevity. Redox Biol 2020; 34:101539. [PMID: 32353747 PMCID: PMC7191849 DOI: 10.1016/j.redox.2020.101539] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/30/2020] [Accepted: 04/07/2020] [Indexed: 01/14/2023] Open
Abstract
Mitochondrial reactive oxygen species (ROS) production, specifically at complex I (Cx I), has been widely suggested to be one of the determinants of species longevity. The present study follows a comparative approach to analyse complex I in heart tissue from 8 mammalian species with a longevity ranging from 3.5 to 46 years. Gene expression and protein content of selected Cx I subunits were analysed using droplet digital PCR (ddPCR) and western blot, respectively. Our results demonstrate: 1) the existence of species-specific differences in gene expression and protein content of Cx I in relation to longevity; 2) the achievement of a longevity phenotype is associated with low protein abundance of subunits NDUFV2 and NDUFS4 from the matrix hydrophilic domain of Cx I; and 3) long-lived mammals show also lower levels of VDAC (voltage-dependent anion channel) amount. These differences could be associated with the lower mitochondrial ROS production and slower aging rate of long-lived animals and, unexpectedly, with a low content of the mitochondrial permeability transition pore in these species. There are species-specific differences in gene expression and protein content of Cx I. The achievement of a longevity phenotype is associated with low protein abundance of subunits NDUFV2 and NDUFS4 from the matrix hydrophilic domain of Cx I. Long-lived mammals show also lower levels of VDAC (voltage-dependent anion channel) amount. These differences can be causally associated with the aging rate of long-lived animals.
Collapse
Affiliation(s)
- Natalia Mota-Martorell
- Department of Experimental Medicine, University of Lleida-Lleida Biomedical Research Institute (UdL-IRBLleida), Lleida, Catalonia, Spain.
| | - Mariona Jove
- Department of Experimental Medicine, University of Lleida-Lleida Biomedical Research Institute (UdL-IRBLleida), Lleida, Catalonia, Spain.
| | - Irene Pradas
- Department of Experimental Medicine, University of Lleida-Lleida Biomedical Research Institute (UdL-IRBLleida), Lleida, Catalonia, Spain.
| | - Isabel Sanchez
- Proteomics and Genomics Unit, University of Lleida, Lleida, Catalonia, Spain.
| | - José Gómez
- Department of Biology and Geology, Physics and Inorganic Chemistry, University Rey Juan Carlos I, ESCET-Campus de Móstoles, Móstoles, Madrid, Spain.
| | - Alba Naudi
- Department of Experimental Medicine, University of Lleida-Lleida Biomedical Research Institute (UdL-IRBLleida), Lleida, Catalonia, Spain.
| | - Gustavo Barja
- Department of Genetics, Physiology and Microbiology, Complutense University of Madrid, Madrid, Spain.
| | - Reinald Pamplona
- Department of Experimental Medicine, University of Lleida-Lleida Biomedical Research Institute (UdL-IRBLleida), Lleida, Catalonia, Spain.
| |
Collapse
|
27
|
Ponnalagu D, Singh H. Insights Into the Role of Mitochondrial Ion Channels in Inflammatory Response. Front Physiol 2020; 11:258. [PMID: 32327997 PMCID: PMC7160495 DOI: 10.3389/fphys.2020.00258] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/05/2020] [Indexed: 12/14/2022] Open
Abstract
Mitochondria are the source of many pro-inflammatory signals that cause the activation of the immune system and generate inflammatory responses. They are also potential targets of pro-inflammatory mediators, thus triggering a severe inflammatory response cycle. As mitochondria are a central hub for immune system activation, their dysfunction leads to many inflammatory disorders. Thus, strategies aiming at regulating mitochondrial dysfunction can be utilized as a therapeutic tool to cure inflammatory disorders. Two key factors that determine the structural and functional integrity of mitochondria are mitochondrial ion channels and transporters. They are not only important for maintaining the ionic homeostasis of the cell, but also play a role in regulating reactive oxygen species generation, ATP production, calcium homeostasis and apoptosis, which are common pro-inflammatory signals. The significance of the mitochondrial ion channels in inflammatory response is still not clearly understood and will need further investigation. In this article, we review the different mechanisms by which mitochondria can generate the inflammatory response as well as highlight how mitochondrial ion channels modulate these mechanisms and impact the inflammatory processes.
Collapse
Affiliation(s)
- Devasena Ponnalagu
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Wexner Medical Center, Columbus, OH, United States
| | - Harpreet Singh
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
28
|
De Marchi U, Fernandez-Martinez S, de la Fuente S, Wiederkehr A, Santo-Domingo J. Mitochondrial ion channels in pancreatic β-cells: Novel pharmacological targets for the treatment of Type 2 diabetes. Br J Pharmacol 2020; 178:2077-2095. [PMID: 32056196 PMCID: PMC8246559 DOI: 10.1111/bph.15018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/29/2020] [Accepted: 01/31/2020] [Indexed: 12/18/2022] Open
Abstract
Pancreatic beta‐cells are central regulators of glucose homeostasis. By tightly coupling nutrient sensing and granule exocytosis, beta‐cells adjust the secretion of insulin to the circulating blood glucose levels. Failure of beta‐cells to augment insulin secretion in insulin‐resistant individuals leads progressively to impaired glucose tolerance, Type 2 diabetes, and diabetes‐related diseases. Mitochondria play a crucial role in β‐cells during nutrient stimulation, linking the metabolism of glucose and other secretagogues to the generation of signals that promote insulin secretion. Mitochondria are double‐membrane organelles containing numerous channels allowing the transport of ions across both membranes. These channels regulate mitochondrial energy production, signalling, and cell death. The mitochondria of β‐cells express ion channels whose physio/pathological role is underappreciated. Here, we describe the mitochondrial ion channels identified in pancreatic β‐cells, we further discuss the possibility of targeting specific β‐cell mitochondrial channels for the treatment of Type 2 diabetes, and we finally highlight the evidence from clinical studies. LINKED ARTICLES This article is part of a themed issue on Cellular metabolism and diseases. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.10/issuetoc
Collapse
Affiliation(s)
| | - Silvia Fernandez-Martinez
- Division of Clinical Pharmacology and Toxicology, Centre de Recherche Clinique, HUG, Genève, Switzerland
| | - Sergio de la Fuente
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| | | | | |
Collapse
|
29
|
Abstract
Significance: Mitochondria undergo constant morphological changes through fusion, fission, and mitophagy. As the key organelle in cells, mitochondria are responsible for numerous essential cellular functions such as metabolism, regulation of calcium (Ca2+), generation of reactive oxygen species, and initiation of apoptosis. Unsurprisingly, mitochondrial dysfunctions underlie many pathologies including cancer. Recent Advances: Currently, the gold standard for cancer treatment is chemotherapy, radiation, and surgery. However, the efficacy of these treatments varies across different cancer cells. It has been suggested that mitochondria may be at the center of these diverse responses. In the past decade, significant advances have been made in understanding distinct types of mitochondrial dysfunctions in cancer. Through investigations of underlying mechanisms, more effective treatment options are developed. Critical Issues: We summarize various mitochondria dysfunctions in cancer progression that have led to the development of therapeutic options. Current mitochondrial-targeted therapies and challenges are discussed. Future Directions: To address the "root" of cancer, utilization of mitochondrial-targeted therapy to target cancer stem cells may be valuable. Investigation of other areas such as mitochondrial trafficking may offer new insights into cancer therapy. Moreover, common antibiotics could be explored as mitocans, and synthetic lethality screens can be utilized to overcome the plasticity of cancer cells.
Collapse
Affiliation(s)
- Hsin Yao Chiu
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Emmy Xue Yun Tay
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Derrick Sek Tong Ong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Reshma Taneja
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
30
|
Afzal A, Figueroa EE, Kharade SV, Bittman K, Matlock BK, Flaherty DK, Denton JS. The LRRC8 volume-regulated anion channel inhibitor, DCPIB, inhibits mitochondrial respiration independently of the channel. Physiol Rep 2019; 7:e14303. [PMID: 31814333 PMCID: PMC6900491 DOI: 10.14814/phy2.14303] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
There has been a resurgence of interest in the volume-regulated anion channel (VRAC) since the recent cloning of the LRRC8A-E gene family that encodes VRAC. The channel is a heteromer comprised of LRRC8A and at least one other family member; disruption of LRRC8A expression abolishes VRAC activity. The best-in-class VRAC inhibitor, DCPIB, suffers from off-target activity toward several different channels and transporters. Considering that some anion channel inhibitors also suppress mitochondrial respiration, we systematically explored whether DCPIB inhibits respiration in wild type (WT) and LRRC8A-knockout HAP-1 and HEK-293 cells. Knockout of LRRC8A had no apparent effects on cell morphology, proliferation rate, mitochondrial content, or expression of several mitochondrial genes in HAP-1 cells. Addition of 10 µM DCPIB, a concentration typically used to inhibit VRAC, suppressed basal and ATP-linked respiration in part through uncoupling the inner mitochondrial membrane (IMM) proton gradient and membrane potential. Additionally, DCPIB inhibits the activity of complex I, II, and III of the electron transport chain (ETC). Surprisingly, the effects of DCPIB on mitochondrial function are also observed in HAP-1 and HEK-293 cells which lack LRRC8A expression. Finally, we demonstrate that DCPIB activates ATP-inhibitable potassium channels comprised of heterologously expressed Kir6.2 and SUR1 subunits. These data indicate that DCPIB suppresses mitochondrial respiration and ATP production by dissipating the mitochondrial membrane potential and inhibiting complexes I-III of the ETC. They further justify the need for the development of sharper pharmacological tools for evaluating the integrative physiology and therapeutic potential of VRAC in human diseases.
Collapse
Affiliation(s)
- Aqeela Afzal
- Department of Neurological SurgeryVanderbilt UniversityNashvilleTennessee
- Department of MedicineVanderbilt UniversityNashvilleTennessee
| | - Eric E. Figueroa
- Department of PharmacologyVanderbilt UniversityNashvilleTennessee
| | - Sujay V. Kharade
- Department of AnesthesiologyVanderbilt University Medical CenterNashvilleTennessee
| | | | - Brittany K. Matlock
- Vanderbilt Vaccine CenterVanderbilt University Medical CenterNashvilleTennessee
| | - David K. Flaherty
- Vanderbilt Vaccine CenterVanderbilt University Medical CenterNashvilleTennessee
| | - Jerod S. Denton
- Department of PharmacologyVanderbilt UniversityNashvilleTennessee
- Department of AnesthesiologyVanderbilt University Medical CenterNashvilleTennessee
| |
Collapse
|
31
|
Wang X, Galli G, Campanella M. Mitochondrial pharmacology: featured mechanisms and approaches for therapy translation. Br J Pharmacol 2019; 176:4245-4246. [PMID: 31793696 PMCID: PMC6887662 DOI: 10.1111/bph.14820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
LINKED ARTICLES This article is part of a themed section on Mitochondrial Pharmacology: Featured Mechanisms and Approaches for Therapy Translation. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.22/issuetoc.
Collapse
Affiliation(s)
- Xin Wang
- Faculty of Biology, Medicine and HealthThe University of ManchesterManchesterUK
| | - Gina Galli
- Faculty of Biology, Medicine and HealthThe University of ManchesterManchesterUK
| | - Michelangelo Campanella
- Department of Comparative Biomedical SciencesRoyal Veterinary CollegeLondonUK
- University College London Consortium for Mitochondrial ResearchUniversity College LondonLondonUK
| |
Collapse
|
32
|
Contribution of Mitochondrial Ion Channels to Chemo-Resistance in Cancer Cells. Cancers (Basel) 2019; 11:cancers11060761. [PMID: 31159324 PMCID: PMC6627730 DOI: 10.3390/cancers11060761] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 05/16/2019] [Accepted: 05/23/2019] [Indexed: 12/21/2022] Open
Abstract
Mitochondrial ion channels are emerging oncological targets, as modulation of these ion-transporting proteins may impact on mitochondrial membrane potential, efficiency of oxidative phosphorylation and reactive oxygen production. In turn, these factors affect the release of cytochrome c, which is the point of no return during mitochondrial apoptosis. Many of the currently used chemotherapeutics induce programmed cell death causing damage to DNA and subsequent activation of p53-dependent pathways that finally leads to cytochrome c release from the mitochondrial inter-membrane space. The view is emerging, as summarized in the present review, that ion channels located in this organelle may account in several cases for the resistance that cancer cells can develop against classical chemotherapeutics, by preventing drug-induced apoptosis. Thus, pharmacological modulation of these channel activities might be beneficial to fight chemo-resistance of different types of cancer cells.
Collapse
|
33
|
Leanza L, Checchetto V, Biasutto L, Rossa A, Costa R, Bachmann M, Zoratti M, Szabo I. Pharmacological modulation of mitochondrial ion channels. Br J Pharmacol 2019; 176:4258-4283. [PMID: 30440086 DOI: 10.1111/bph.14544] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 10/15/2018] [Accepted: 10/22/2018] [Indexed: 12/17/2022] Open
Abstract
The field of mitochondrial ion channels has undergone a rapid development during the last three decades, due to the molecular identification of some of the channels residing in the outer and inner membranes. Relevant information about the function of these channels in physiological and pathological settings was gained thanks to genetic models for a few, mitochondria-specific channels. However, many ion channels have multiple localizations within the cell, hampering a clear-cut determination of their function by pharmacological means. The present review summarizes our current knowledge about the ins and outs of mitochondrial ion channels, with special focus on the channels that have received much attention in recent years, namely, the voltage-dependent anion channels, the permeability transition pore (also called mitochondrial megachannel), the mitochondrial calcium uniporter and some of the inner membrane-located potassium channels. In addition, possible strategies to overcome the difficulties of specifically targeting mitochondrial channels versus their counterparts active in other membranes are discussed, as well as the possibilities of modulating channel function by small peptides that compete for binding with protein interacting partners. Altogether, these promising tools along with large-scale chemical screenings set up to identify new, specific channel modulators will hopefully allow us to pinpoint the actual function of most mitochondrial ion channels in the near future and to pharmacologically affect important pathologies in which they are involved, such as neurodegeneration, ischaemic damage and cancer. LINKED ARTICLES: This article is part of a themed section on Mitochondrial Pharmacology: Featured Mechanisms and Approaches for Therapy Translation. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.22/issuetoc.
Collapse
Affiliation(s)
- Luigi Leanza
- Department of Biology, University of Padova, Padova, Italy
| | | | - Lucia Biasutto
- CNR Institute of Neurosciences, Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Andrea Rossa
- Department of Chemical Sciences, University of Padova, Padova, Italy
| | - Roberto Costa
- Department of Biology, University of Padova, Padova, Italy
| | | | - Mario Zoratti
- CNR Institute of Neurosciences, Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Ildiko Szabo
- Department of Biology, University of Padova, Padova, Italy.,CNR Institute of Neurosciences, Department of Biomedical Sciences, University of Padova, Padova, Italy
| |
Collapse
|