1
|
Jing PB, Zhou YW, Zhang FM, Ge JY, Wu JN, Xu JH, Cao XH, Chang N, Zhou X, Luo L, Liu XJ. Autistic-like behaviors and impaired chronic inflammatory pain in primary nociceptive neuron-specific deletion of Mecp2 or Fmr1 knockout male mice. Behav Brain Res 2025; 486:115570. [PMID: 40174753 DOI: 10.1016/j.bbr.2025.115570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/07/2025] [Accepted: 03/29/2025] [Indexed: 04/04/2025]
Abstract
AIMS Recent studies have identified the roles of autism risk genes in primary sensory neurons and their connection to autism spectrum disorder (ASD) etiology. However, further research is needed to determine the specific impact of different sensory neuron populations. The aim of this study was to investigate the actions of Mecp2 or Fmr1 expression in primary nociceptive neurons on ASD and pain perception. METHODS Conditional knockout mice lacking Mecp2 or Fmr1, both known to be associated with ASD, were generated specifically in nociceptive neurons of dorsal root ganglion (DRG) and trigeminal ganglion. A series of behavioral tests were used to assess ASD-relevant and pain-related behaviors in normal and inflammatory pain states. Formalin and complete Freund's adjuvant (CFA) injection were used to evoke acute and chronic inflammatory pain. Immunofluorescent approach was employed to study neuroinflammation and calcitonin gene-related peptide (CGRP) expression. RESULTS Both lines exhibited autistic-like behaviors, with reduced social interactions in SNScre/Mecp2f/y mice and increased repetitive behaviors in SNScre/Fmr1f/y mice. Although SNScre/Mecp2f/y and SNScre/Fmr1f/y mice displayed normal baseline pain, formalin-evoked acute and subacute pain sensation, CFA-evoked persistent inflammatory pain was impaired, especially less thermal hyperalgesia. Consistently, neuroinflammation and neural CGRP expression in SNScre/Mecp2f/y and SNScre/Fmr1f/y mice was reduced in response to CFA-injection. CONCLUSIONS Absent Mecp2 or Fmr1 in primary nociceptive neurons plays role in the pathogenesis of ASD and that their expression in primary nociceptors is crucial for the maintenance of chronic inflammatory pain by reducing neuroinflammation and CGRP expression in the peripheral and central nervous systems.
Collapse
Affiliation(s)
- Peng-Bo Jing
- School of Pharmacy, Nantong University, Nantong, Jiangsu 226019, China
| | - Yin-Wei Zhou
- School of Pharmacy, Nantong University, Nantong, Jiangsu 226019, China
| | - Feng-Ming Zhang
- School of Pharmacy, Nantong University, Nantong, Jiangsu 226019, China
| | - Jia-Yi Ge
- School of Pharmacy, Nantong University, Nantong, Jiangsu 226019, China
| | - Jia-Ni Wu
- School of Pharmacy, Nantong University, Nantong, Jiangsu 226019, China
| | - Jia-Huan Xu
- School of Pharmacy, Nantong University, Nantong, Jiangsu 226019, China
| | - Xiao-Hua Cao
- School of Pharmacy, Nantong University, Nantong, Jiangsu 226019, China
| | - Na Chang
- School of Pharmacy, Nantong University, Nantong, Jiangsu 226019, China
| | - Xiang Zhou
- School of Pharmacy, Nantong University, Nantong, Jiangsu 226019, China
| | - Lin Luo
- School of Pharmacy, Nantong University, Nantong, Jiangsu 226019, China.
| | - Xing-Jun Liu
- School of Pharmacy, Nantong University, Nantong, Jiangsu 226019, China.
| |
Collapse
|
2
|
Dionisio AM, Milanez PDAO, Zarpelon-Schutz AC, Mizokami SS, Bertozzi MM, Yaekashi KM, Camilios-Neto D, Borghi SM, Casagrande R, Verri WA. Fructose-1,6-Bisphosphate Reduces Chronic Constriction Injury Neuropathic Pain in Mice by Targeting Dorsal Root Ganglia Nociceptive Neuron Activation. Pharmaceuticals (Basel) 2025; 18:660. [PMID: 40430479 PMCID: PMC12114996 DOI: 10.3390/ph18050660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 04/25/2025] [Accepted: 04/28/2025] [Indexed: 05/29/2025] Open
Abstract
Background/Objectives: Fructose-1,6-bisphosphate (FBP) is an intermediate product of the glycolytic pathway with analgesic effect in acute inflammatory pain model via the production of adenosine. However, whether FBP is active in neuropathic pain is unknown. Therefore, we reason that it would be suitable to investigate the analgesic effect and mechanism of action of FBP in a model of chronic constriction injury (CCI) of sciatic nerve-induced neuropathic pain in mice. Methods: After CCI induction, mice received FBP, adenosine, A1 and/or A2A receptor antagonists, and/or inhibitors of the nitric oxide (NO)/cyclic guanosine monophosphate (cGMP)/protein kinase G (PKG)/ATP sensitive K channels (KATP) signaling pathway. Results: FBP (up to 85%) and adenosine (up to 84%) inhibited the mechanical hyperalgesia (electronic aesthesiometer) induced by CCI with similar profiles. FBP analgesia was dependent on adenosine because adenosine A1 and A2A receptors antagonists diminished FPB activity (100% and 79%, respectively). FBP analgesia was also dependent on activating the NO/cGMP/PKG/KATP signaling pathway. Furthermore, FBP treatment increased the production of NO in cultured dorsal root ganglia (DRG) neurons (100% increase), whereas neuronal nitric oxide synthase (nNOS) inhibition decreased (up to 70%) the analgesic effect of FBP. We also observed that FBP reduced the calcium levels of transient receptor potential ankyrin 1 (TRPA1)+ DRG neurons (85%) and paw-flinching triggered by TRPA1 activation (38%). Conclusions: FBP reduced neuropathic pain by reducing DRG neuron activation. The mechanisms involved the activation of adenosine A1 and A2A receptors to trigger the analgesic NO/cGMP/PKG/KATP signaling pathway and reducing TRPA1+ DRG neuron activity.
Collapse
Affiliation(s)
- Amanda Martins Dionisio
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil
| | - Paula de Azevedo Oliveira Milanez
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil
| | - Ana Carla Zarpelon-Schutz
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil
| | - Sandra Satie Mizokami
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil
| | - Mariana Marques Bertozzi
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil
| | - Kelly Megumi Yaekashi
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil
| | - Doumit Camilios-Neto
- Department of Biochemistry and Biotechnology, Centre of Exact Sciences, Londrina State University, Londrina 86057-970, PR, Brazil
| | - Sergio Marques Borghi
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil
| | - Rubia Casagrande
- Department of Pharmaceutical Sciences, Center of Health Science, Londrina State University, Londrina 86038-440, PR, Brazil
| | - Waldiceu A. Verri
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil
| |
Collapse
|
3
|
Cortez GB, Bertozzi MM, Dionisio AM, Piva M, Morelli NR, Carvalho TT, Casagrande R, Verri WA, Borghi SM. Role of TRPV1 + and TRPA1 + nociceptive neurons in delayed-onset muscle soreness: inhibition by hesperidin methyl chalcone. Inflammopharmacology 2025:10.1007/s10787-025-01762-6. [PMID: 40285987 DOI: 10.1007/s10787-025-01762-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Accepted: 04/11/2025] [Indexed: 04/29/2025]
Abstract
OBJECTIVE Delayed-onset muscle soreness (DOMS) is a type of pain caused by muscle injury provoked by eccentric, high intensity, or long-duration exercise. Hesperidin methyl chalcone (HMC) is a flavonoid with analgesic and anti-inflammatory actions. We investigated the effects of HMC against DOMS. METHODS Mice received AMG9810 (100 nmol) or HC-030031 (10 μg) once intrathecally, or HMC twice (12 h plus 30 min before) intraperitoneally (1, 3, or 10 mg/kg) and were subjected to a single uninterrupted acute swimming session of 120 min to induce DOMS. Sham animals were subjected to swimming just for 30 s, and naïve mice were not exposed to water. Calcium imaging of dorsal root ganglia (DRG) neurons was used to assess nociceptive neuron activation. Muscle mechanical hyperalgesia was assessed 12-48 h later. Oxidative parameters (superoxide anion, lipid peroxidation, and antioxidant activity) and leukocyte recruitment (macrophages and neutrophils) were evaluated 2 and 24 h later, respectively. RESULTS DRG neurons from mice that underwent intense acute swimming showed higher levels of calcium at 24 h post-session relative to naïve mice. Capsaicin [transient receptor potential vanilloid 1 (TRPV1 agonist)] or AITC [transient receptor potential ankyrin 1 (TRPA1 agonist)] were used as agonists controls to identify the populations of responsive neurons positive for TRPV1/A1. KCl was used as a cell viability control. Counterproof pharmacologic functional tests targeting TRPV1 or TRPA1 with receptor antagonists reduce muscle mechanical hyperalgesia and DRG neuron increased activity. HMC (3 mg/kg) reduced muscle mechanical hyperalgesia, activation of DRG nociceptive neurons at 24 h post-swimming session and upon TRPV1 or TRPA1 agonists and inhibited oxidative stress and the recruitment of neutrophils and macrophages to muscle in DOMS mice. CONCLUSIONS Thus, HMC prevented DOMS in mice caused by unaccustomed exercise. The underlying mechanisms of HMC involve targeting oxidative stress, inflammation, and reduced activity of TRPV1+ and TRPA1+ nociceptive neurons.
Collapse
Affiliation(s)
- Giovana B Cortez
- Center of Health Science, Postgraduate Program in Health Sciences, State University of Londrina, Londrina, PR, 86038-350, Brazil
- Department of Immunology, Parasitology and General Pathology, Center for Biological Sciences, State University of Londrina, Rod. Celso Garcia Cid, Pr 445, KM 380, P.O. box: 10.011, Londrina, PR, 86057-970, Brazil
| | - Mariana M Bertozzi
- Department of Immunology, Parasitology and General Pathology, Center for Biological Sciences, State University of Londrina, Rod. Celso Garcia Cid, Pr 445, KM 380, P.O. box: 10.011, Londrina, PR, 86057-970, Brazil
| | - Amanda M Dionisio
- Center of Health Science, Postgraduate Program in Health Sciences, State University of Londrina, Londrina, PR, 86038-350, Brazil
- Department of Immunology, Parasitology and General Pathology, Center for Biological Sciences, State University of Londrina, Rod. Celso Garcia Cid, Pr 445, KM 380, P.O. box: 10.011, Londrina, PR, 86057-970, Brazil
| | - Maiara Piva
- Department of Immunology, Parasitology and General Pathology, Center for Biological Sciences, State University of Londrina, Rod. Celso Garcia Cid, Pr 445, KM 380, P.O. box: 10.011, Londrina, PR, 86057-970, Brazil
| | - Nayara R Morelli
- Department of Immunology, Parasitology and General Pathology, Center for Biological Sciences, State University of Londrina, Rod. Celso Garcia Cid, Pr 445, KM 380, P.O. box: 10.011, Londrina, PR, 86057-970, Brazil
| | - Thacyana T Carvalho
- Department of Immunology, Parasitology and General Pathology, Center for Biological Sciences, State University of Londrina, Rod. Celso Garcia Cid, Pr 445, KM 380, P.O. box: 10.011, Londrina, PR, 86057-970, Brazil
| | - Rubia Casagrande
- Center of Health Science, Postgraduate Program in Health Sciences, State University of Londrina, Londrina, PR, 86038-350, Brazil
| | - Waldiceu A Verri
- Center of Health Science, Postgraduate Program in Health Sciences, State University of Londrina, Londrina, PR, 86038-350, Brazil.
- Department of Immunology, Parasitology and General Pathology, Center for Biological Sciences, State University of Londrina, Rod. Celso Garcia Cid, Pr 445, KM 380, P.O. box: 10.011, Londrina, PR, 86057-970, Brazil.
| | - Sergio M Borghi
- Center of Health Science, Postgraduate Program in Health Sciences, State University of Londrina, Londrina, PR, 86038-350, Brazil.
- Department of Immunology, Parasitology and General Pathology, Center for Biological Sciences, State University of Londrina, Rod. Celso Garcia Cid, Pr 445, KM 380, P.O. box: 10.011, Londrina, PR, 86057-970, Brazil.
- Center for Research in Health Sciences, University of Northern Paraná, Londrina, PR, 86041-140, Brazil.
| |
Collapse
|
4
|
Leite CBG, Fricke HP, Tavares LP, Nshimiyimana R, Mekhail J, Kilgallen E, Killick F, Whalen JD, Lehoczky JA, Serhan CN, Charles JF, Lattermann C. Maresin 1-LGR6 axis mitigates inflammation and posttraumatic osteoarthritis after transection of the anterior cruciate ligament in mice. Osteoarthritis Cartilage 2025:S1063-4584(25)00869-6. [PMID: 40139646 DOI: 10.1016/j.joca.2025.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 03/10/2025] [Accepted: 03/16/2025] [Indexed: 03/29/2025]
Abstract
OBJECTIVE Anterior cruciate ligament (ACL) tears frequently cause chronic inflammation and posttraumatic osteoarthritis (PTOA), with therapies failing to resolve persistent post-injury inflammation. Specialized pro-resolving mediators (SPMs), including Maresin1 (MaR1), show promise in resolving inflammation and promoting tissue repair. However, their role in PTOA remains underexplored. This study investigated inflammatory markers and MaR1 dynamics post-ACL injury, the role of the MaR1 receptor Leucine-rich Repeat-containing G protein-coupled receptor 6 (LGR6) in PTOA, and MaR1's therapeutic potential in a mouse ACL transection (ACLT) model. DESIGN Eight-week-old C57BL6/J male mice underwent ACLT, and synovial fluid, periarticular tissue, and tibiofemoral joints were collected at various time points post-surgery for analysis. LGR6-deficient mice were utilized to investigate the role of MaR1 signaling in inflammation resolution. Additionally, the effect of intraarticular MaR1 administration on PTOA progression was assessed. RESULTS ACLT induced joint inflammation with leukocyte infiltration and elevated pro-inflammatory cytokines. MaR1 levels peaked early post-injury and were associated with a six-fold increase in LGR6 expression. LGR6 deficiency worsened inflammation and PTOA severity with higher histological Osteoarthritis Research Society International (OARSI) scores (mean difference 5.6[95%CI: 2.5-8.6], p<0.001) and microCT OA severity scores (mean difference 4.3[95%CI: 0.7-7.9], p=0.018). Intraarticular MaR1 treatment reduced leukocyte recruitment, suppressed pro-inflammatory gene expression, and ameliorated PTOA development, improving histological OARSI scores (mean difference -3.9[95%CI: -6.9 to -1.0], p=0.012) and microCT scores (mean difference -6.7[95%CI: -10.3 to -3.0], p=0.012). CONCLUSION This study suggests a critical role of MaR1 in resolving inflammation post-ACL injury and mitigating PTOA in mice. Targeting SPM pathways, particularly MaR1 and/or MaR1 mimetics, offers a promising strategy to prevent chronic joint inflammation and degeneration after ACL injury.
Collapse
Affiliation(s)
- Chilan B G Leite
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Hannah P Fricke
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Luciana P Tavares
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Robert Nshimiyimana
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| | - Julie Mekhail
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Elliott Kilgallen
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Felix Killick
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Janey D Whalen
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Jessica A Lehoczky
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| | - Julia F Charles
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Christian Lattermann
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
5
|
Oggero S, Voisin MB, Picco F, Huerta MÁ, Cecconello C, Burgoyne T, Perretti M, Malcangio M. Activation of proresolving macrophages in dorsal root ganglia attenuates persistent arthritis pain. Proc Natl Acad Sci U S A 2025; 122:e2416343122. [PMID: 40063821 PMCID: PMC11929478 DOI: 10.1073/pnas.2416343122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 01/31/2025] [Indexed: 03/25/2025] Open
Abstract
Pain independent of disease activity is frequently reported by rheumatoid arthritis patients and remains undertreated. Preclinical evidence suggests that imbalance of neuroimmune proresolving interactions within dorsal root ganglia (DRG) rather than at the site of inflammation plays mechanistic roles in persistent arthritis pain. Here, we inhibited production of proresolving lipid mediators by silencing 12/15-lipoxygenase expression in CX3CR1+ monocyte/macrophages conditional knockout (cKO) mice. In an arthritis model, hind paw mechanical hypersensitivity is exacerbated in male and female cKO mice in association with DRG infiltration of neutrophils, which migrate in response to leukotriene B4 released by macrophages through 5-lipoxygenase conversion of arachidonic acid provided by neuron-derived vesicles. Neutrophils apoptosis promotes primary macrophage efferocytosis which is defective in cKO macrophages. In wild-type (WT) and cKO mice, intrathecal injection of MerTK activating antibody, attenuates persistent hypersensitivity and polarizes DRG macrophages toward a proresolving phenotype with production of antinociceptive lipoxin A4. Thus, we delineate a neuron-macrophage-neutrophil bidirectional circuit that can be exploited to reduce persistent arthritis pain.
Collapse
Affiliation(s)
- Silvia Oggero
- Sensory, Pain and Regeneration Centre, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, Guys’ Campus, LondonSE1 1UL, United Kingdom
| | - Mathieu-Benoit Voisin
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, LondonEC1M 6BQ, United Kingdom
| | - Francesca Picco
- Sensory, Pain and Regeneration Centre, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, Guys’ Campus, LondonSE1 1UL, United Kingdom
| | - Miguel Á. Huerta
- Sensory, Pain and Regeneration Centre, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, Guys’ Campus, LondonSE1 1UL, United Kingdom
- Department of Pharmacology, University of Granada, Granada18016, Spain
| | - Chiara Cecconello
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, LondonEC1M 6BQ, United Kingdom
| | - Thomas Burgoyne
- Institute of Ophthalmology, Faculty of Brain Sciences, University College London, LondonEC1V 9EL, United Kingdom
- Pediatric Respiratory Medicine, Royal Brompton Hospital, Guy’s and St Thomas’ National Health System Foundation Trust, LondonSW3 6NP, United Kingdom
| | - Mauro Perretti
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, LondonEC1M 6BQ, United Kingdom
| | - Marzia Malcangio
- Sensory, Pain and Regeneration Centre, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, Guys’ Campus, LondonSE1 1UL, United Kingdom
| |
Collapse
|
6
|
Leite CBG, Bumberger A, Franco D, Di Stefano MT, Lattermann C. Effect of specialized pro-resolving mediators on knee joint inflammation. Knee 2025; 53:257-263. [PMID: 39908708 DOI: 10.1016/j.knee.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 01/13/2025] [Indexed: 02/07/2025]
Abstract
BACKGROUND Chronic inflammation following knee injuries often results in persistent knee pain and post-traumatic osteoarthritis (PTOA). Understanding the inflammatory processes that follow a joint injury is crucial to effectively mitigate PTOA progression. While inflammation is an integral part of any healing response, unresolved, long-lasting inflammation can be detrimental to the joint. The resolution of inflammation is an active process coordinated by pro-resolving molecules, including specialized pro-resolving mediators (SPMs). While SPMs have been primarily studied in chronic inflammatory diseases, their role in degenerative knee conditions such as PTOA remains underexplored. METHODS This review examines the process of inflammation and its resolution following knee joint injuries and subsequent PTOA, with a focus on the impact of SPMs. CONCLUSIONS SPMs play a key role in the resolution of inflammation and may offer potential benefits in the management of knee injuries to improve pain and prevent PTOA.
Collapse
Affiliation(s)
- Chilan Bou Ghosson Leite
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Alexander Bumberger
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
| | - Domenico Franco
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Operative Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Marco Tulio Di Stefano
- Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Christian Lattermann
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
7
|
Ferreira MV, Jesus CHA, Bonfim da Costa JP, Oliveira G, Liebl B, Verri Junior W, Zanoveli JM, Cunha JMD. Aspirin-triggered lipoxin A4 reduces neuropathic pain and anxiety-like behaviours in male diabetic rats: antinociceptive enhancement by cannabinoid receptor agonists. Eur J Pharmacol 2025; 989:177254. [PMID: 39788405 DOI: 10.1016/j.ejphar.2025.177254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/06/2024] [Accepted: 01/07/2025] [Indexed: 01/12/2025]
Abstract
Neuropathy is the most common complication of diabetes, leading to painful symptoms like hyperalgesia. Current treatments for diabetic painful neuropathy often prove inadequate, necessitating the exploration of new pharmacological approaches. Therefore, this study aimed to investigate the potential antinociceptive effect of aspirin-triggered lipoxin A4 (ATL), a specialized pro-resolving lipid mediator, when administered alone or in combination with cannabinoid agonists, to alleviate diabetic neuropathic pain. Mechanical hyperalgesia in the hindpaws of streptozotocin (STZ)-induced diabetic (DBT) rats was assessed using the electronic Von Frey test (VFT), before diabetes induction and for up to 32 days after STZ administration and intraperitoneal ATL (0.3, 1, 3, 10, or 30 ng/rat) treatment, alone or in combination with intrathecal CB1 or CB2 receptor agonists (ACEA or JWH-133, respectively; 10 or 30 μg/rat). The effect of ATL treatment on locomotor activity and anxious or depressive-like behaviors was also evaluated. In comparison to control normoglycemic rats, control DBT rats developed: 1) mechanical hyperalgesia; 2) increase in anxious and depressive-like behaviors. ATL treatment attenuated mechanical hyperalgesia in DBT rats both acutely (at 30 ng) and cumulatively (at doses of 1, 3, 10, or 30 ng), without compromising locomotor activity. The antinociceptive effect of ATL (at 1 or 3 ng) was augmented when combined with ACEA or JWH-133 treatments (only at a dose of 30 μg/rat). While ATL treatment alone reduced anxious-like behavior in DBT rats, it did not affect depressive-like behavior. These findings underscore the therapeutic potential of ATL, in diabetic complications, suggesting a possible interaction with the endocannabinoid system.
Collapse
Affiliation(s)
- Matheus Vinícius Ferreira
- Laboratory of Pharmacology of Pain, Department of Pharmacology, Federal University of Paraná, Curitiba, PR, Brazil.
| | | | | | - Gabrielle Oliveira
- Laboratory of Pharmacology of Pain, Department of Pharmacology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Bruno Liebl
- Laboratory of Pharmacology of Pain, Department of Pharmacology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Waldiceu Verri Junior
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Paraná, Brazil
| | - Janaína Menezes Zanoveli
- Laboratory of Pharmacology of Pain, Department of Pharmacology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Joice Maria da Cunha
- Laboratory of Pharmacology of Pain, Department of Pharmacology, Federal University of Paraná, Curitiba, PR, Brazil
| |
Collapse
|
8
|
Peh HY, Chen J. Pro-resolving lipid mediators and therapeutic innovations in resolution of inflammation. Pharmacol Ther 2025; 265:108753. [PMID: 39566561 DOI: 10.1016/j.pharmthera.2024.108753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 11/07/2024] [Accepted: 11/13/2024] [Indexed: 11/22/2024]
Abstract
This review summarizes findings presented at the 19th World Congress of Basic & Clinical Pharmacology 2023 (Glasgow, Scotland, July 3rd to 7th, 2023) from 8 speakers in the field of resolution of inflammation, resolution pharmacology and resolution biology. It is now accepted that the acute inflammatory response is protective to defend the host against infection or tissue injury. Acute inflammation is self-limited and programmed to be limited in space and time: this is achieved through endogenous resolution processes that ensure return to homeostasis. Resolution is brought about by agonist mediators that include specialized pro-resolving lipid mediators (SPMs) and pro-resolving proteins and peptides such as annexin A1 and angiotensin-(1-7), all acting to initiate anti-inflammatory and pro-resolving processes. If the inflammatory reaction remains unchecked through dysfunctional resolution mechanism, it can become chronic and contribute to a plethora of human diseases, including respiratory, cardiovascular, metabolic, allergic diseases, and arthritis. Herein, we discuss how non-resolving inflammation plays a role in the pathogenesis of these diseases. In addition to SPMs, we highlight the discovery, biosynthesis, biofunctions, and latest research updates on innovative therapeutics (including annexin-A1 peptide-mimetic RTP-026, small molecule FPR2 agonist BM-986235/LAR-1219, biased agonist for FPR1/FPR2 Cmpd17b, lipoxin mimetics AT-01-KG and AT-02-CT, melanocortin receptor agonist AP1189, gold nanoparticles, angiotensin-(1-7), and CD300a) that can promote resolution of inflammation directly or through modulation of SPMs production. Drug development strategies based on the biology of the resolution of inflammation can offer novel therapeutic means and/or add-on therapies for the treatment of chronic diseases.
Collapse
Affiliation(s)
- Hong Yong Peh
- Immunology Translational Research Programme, Yong Loo Lin School of Medicine, Department of Pharmacology, Singapore; Immunology Programme and Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore, Singapore; Pulmonary and Critical Care Medicine Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | - Jianmin Chen
- William Harvey Research Institute, Queen Mary University of London, London, United Kingdom; Centre for inflammation and Therapeutic Innovation, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
9
|
Deng Y, Wang F, Wang T, Zhang X, Chen D, Wang Y, Chen C, Pan G. Research progress in the mechanisms and functions of specialized pro-resolving mediators in neurological diseases. Prostaglandins Other Lipid Mediat 2024; 175:106905. [PMID: 39265777 DOI: 10.1016/j.prostaglandins.2024.106905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/30/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
The nervous system interacts with the immune system through a variety of cellular regulators, signaling pathways, and molecular mechanisms. Disruptions in these interactions lead to the development of multiple neurological diseases. Recent studies have identified that specialized pro-resolving mediators (SPMs) play a regulatory role in the neuroimmune system. This study reviews recent research on the function of SPMs in the inflammatory process and their association with the nervous system. The review aims to provide new perspectives for studying the pathogenesis of neurological diseases and identify novel targets for clinical therapy.
Collapse
Affiliation(s)
- Yu Deng
- Guangzhou Hospital of Integrated Chinese and Western Medicine Affiliated to Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510800, China
| | - Fei Wang
- Yancheng TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Yancheng, Jiangsu 224000, China; Yancheng TCM Hospital, Yancheng, Jiangsu 224000, China
| | - Tianle Wang
- Guangzhou Hospital of Integrated Chinese and Western Medicine Affiliated to Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510800, China
| | - Xu Zhang
- Guangzhou Hospital of Integrated Chinese and Western Medicine Affiliated to Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510800, China
| | - Du Chen
- Guangzhou Hospital of Integrated Chinese and Western Medicine Affiliated to Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510800, China
| | - Yuhan Wang
- Hubei University of Chinese Medicine, Wuhan, Hubei 430065, China
| | - Chaojun Chen
- Guangzhou Hospital of Integrated Chinese and Western Medicine Affiliated to Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510800, China.
| | - Guangtao Pan
- Yancheng TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Yancheng, Jiangsu 224000, China; Yancheng TCM Hospital, Yancheng, Jiangsu 224000, China.
| |
Collapse
|
10
|
Khodir SA, Sweed EM, Faried MA, Abo Elkhair DM, Khalil MM, Afifi KH, El Agamy DF. Neuroprotective Effect of Maresin-1 in Rotenone-Induced Parkinson's Disease in Rats: The Putative Role of the JAK/STAT Pathway. Neurochem Res 2024; 50:30. [PMID: 39576344 PMCID: PMC11584474 DOI: 10.1007/s11064-024-04282-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/31/2024] [Accepted: 11/05/2024] [Indexed: 11/24/2024]
Abstract
Exposure to rotenone results in similar pathophysiological features as Parkinson's disease. Inflammation and oxidative stress are essential to PD pathogenesis. Maresin-1 has potent anti-inflammatory properties and promotes the regression of inflammation function. The current study aimed to evaluate the protective effects of Maresin-1 (MaR1) in rotenone (ROT)-induced PD and whether this protective role is associated with the initiation of the Janus kinase (JAK)-signal transducers and activator of transcription (STAT) signaling pathway. Thirty male Wister rats were classified into control, ROT-treated, and ROT + MaR1-treated groups. Rats underwent rotarod, open field, grip strength, and stepping tests as part of their motor behavioral evaluation. Serum glial cell-derived neurotrophic factor (GDNF) and striatal dopamine, acetylcholine, malondialdehyde (MDA), reduced glutathione (GSH), TNF-α, IL-6, and IL-1β were evaluated. Expression of JAK1 and STAT3 genes was assessed in striatum. Then, the tissue was subjected to histological and immunohistochemical evaluation for caspase-3, GFAP, and NF-kB. The administrated group with rotenone showed significant motor behavioral impairment. This was accompanied by reduced levels of GDNF and dopamine and increased levels of acetylcholine, as well as augmented oxidative stress and inflammatory biomarkers and reduced antioxidant activity. Inflammatory pathways (JAK1/STAT3, caspase-3, and NF-kB) were upregulated. Histopathological changes and upregulation in GFAP immunopositive reaction were observed. Remarkably, MaR1 treatment effectively alleviated behavior, histopathological changes, and biochemical alterations induced by ROT. MaR1 exerts protective effects against ROT-induced PD by its anti-inflammatory, antiapoptotic, and antioxidant properties. MaR1 mechanisms of action may involve modulation of pathways such as JAK/STAT.
Collapse
Affiliation(s)
- Suzan A Khodir
- Medical Physiology Department, Faculty of Medicine, Menoufia University, Menoufia, 32511, Egypt
- Medical Physiology Department, Menoufia National University, Menoufia, Egypt
| | - Eman M Sweed
- Clinical Pharmacology Department, Faculty of Medicine, Menoufia University, Menoufia, 32511, Egypt.
- Quality Assurance Center, Menoufia National University, Menoufia, Egypt.
| | - Manar A Faried
- Anatomy and Embryology Department, Faculty of Medicine, Menoufia University, Menoufia, 32511, Egypt
| | - Doaa M Abo Elkhair
- Anatomy and Embryology Department, Faculty of Medicine, Menoufia University, Menoufia, 32511, Egypt
| | - Marwa M Khalil
- Medical biochemistry and molecular biology Department, Faculty of Medicine, Menoufia University, Menoufia, 32511, Egypt
- Medical biochemistry and molecular biology Department, Menoufia National University, Menoufia, Egypt
| | - Khaled Hatem Afifi
- Neurology Department, Faculty of Medicine, Menoufia University, Menoufia, 32511, Egypt
| | - Dalia Fathy El Agamy
- Medical Physiology Department, Faculty of Medicine, Menoufia University, Menoufia, 32511, Egypt
- Medical Physiology Department, Menoufia National University, Menoufia, Egypt
| |
Collapse
|
11
|
Fattori V, Zaninelli TH, Rasquel-Oliveira FS, Heintz OK, Jain A, Sun L, Seshan ML, Peterse D, Lindholm AE, Anchan RM, Verri WA, Rogers MS. Nociceptor-to-macrophage communication through CGRP/RAMP1 signaling drives endometriosis-associated pain and lesion growth in mice. Sci Transl Med 2024; 16:eadk8230. [PMID: 39504351 DOI: 10.1126/scitranslmed.adk8230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 06/18/2024] [Accepted: 10/16/2024] [Indexed: 11/08/2024]
Abstract
Endometriosis is a debilitating and painful gynecological inflammatory disease affecting up to 15% of women and transgender men. Current treatments are ineffective for a substantial proportion of patients, underscoring the need for additional therapies with long-term benefits. Nociceptors release neuropeptides, such as calcitonin gene-related peptide (CGRP), which are known to shape immunity through neuroimmune communication. Given the comorbidity between endometriosis and migraine and the integral role of immune cells and inflammation in endometriosis, we investigated the role of CGRP-mediated neuroimmune communication in endometriosis. Using samples from eight patients with endometriosis and a nonsurgical mouse model of the disease, we found that mouse and human endometriosis lesions contain both CGRP and its coreceptor, receptor activity modifying protein 1 (RAMP1). In mice, nociceptor ablation reduced pain, monocyte recruitment, and lesion size, suggesting that nociceptor activation and neuropeptide release contribute to endometriosis lesion growth and pain. Mechanistically, CGRP changed the phenotype of macrophages to a pro-endometriosis phenotype. CGRP-stimulated macrophages demonstrated impaired efferocytosis and supported increased endometrial cell growth in a RAMP1-dependent manner. Treatment of lesion-bearing mice with US Food and Drug Administration-approved drugs that block CGRP-RAMP1 signaling reduced mechanical hyperalgesia, spontaneous pain, and lesion size. Together, our data demonstrated the effectiveness and underlying cellular mechanisms of nonhormonal and nonopioid CGRP/RAMP1 blockade in a mouse model of endometriosis, suggesting that targeting this axis may lead to clinical benefit for patients with endometriosis.
Collapse
Affiliation(s)
- Victor Fattori
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Tiago H Zaninelli
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Immunology, Parasitology, and General Pathology, Center of Biological Sciences, Londrina State University, Londrina, PR 86057-970, Brazil
| | - Fernanda S Rasquel-Oliveira
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Immunology, Parasitology, and General Pathology, Center of Biological Sciences, Londrina State University, Londrina, PR 86057-970, Brazil
| | - Olivia K Heintz
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Ashish Jain
- Research Computing, Information Technology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Liang Sun
- Research Computing, Information Technology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Maya L Seshan
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Daniëlle Peterse
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Anne E Lindholm
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Raymond M Anchan
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Waldiceu A Verri
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Immunology, Parasitology, and General Pathology, Center of Biological Sciences, Londrina State University, Londrina, PR 86057-970, Brazil
| | - Michael S Rogers
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
12
|
Qin F, Wang Q, Wang Y, Li Z, Liu A, Liu Q, Lin W, Mu X, Liu X, Wang Q, Lu Z. Exoticin as a selective agonist of 6TM μ opioid receptors identifies endogenous chaperones essential for its activity. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 133:155898. [PMID: 39154526 DOI: 10.1016/j.phymed.2024.155898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/11/2024] [Accepted: 07/16/2024] [Indexed: 08/20/2024]
Abstract
BACKGROUND Classical opioids are effective analgesics but carry various side effects, necessitating safer alternatives. Truncated six-transmembrane mu opioid receptors (6TM-μORs) mediate potent analgesia with fewer side effects and are a promising therapeutic target. However, few ligands known selectively target 6TM-μORs. Moreover, endogenous chaperones are believed essential for 6TM-μOR ligand binding and function. PURPOSE To identify a 6TM-μOR selective agonist and elucidate requisite endogenous chaperones. METHODS Virtual screening was used to identify promising selective 6TM-μOR agonists from traditional Chinese medicines. The role of 6TM-μOR in Exoticin analgesia was validated in loss- and gain-of-function models. APEX2 proteomics profiled proximal proteins under Exoticin or IBNtxA. Interactions were further characterized in vivo and in vitro. RESULTS Exoticin was shortlisted for its selective binding to 6TM-μOR and ability to induce 6TM-μOR-dependent signal transduction. Exoticin analgesia was sensitive to β-FNA and absent in E11 KO mice, but restored in mice infected with AAV-μOR1G. Slc3a2, Lrrc59, and Ppp1cb co-interacted with 6TM-μOR1G and were equally essential for Exoticin binding and 6TM-μOR1G activity. CONCLUSION Exoticin is a promising selective agonist of 6TM μ opioid receptors with broad-spectrum analgesic efficacy but few side effects. Slc3a2, Lrrc59, Ppp1cb are endogenous chaperones essential for 6TM-μOR ligand binding and function.
Collapse
Affiliation(s)
- Fenfen Qin
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Qisheng Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yuxuan Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhonghao Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Anlong Liu
- Nanjing Hospital of Traditional Chinese Medicine Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210008, China
| | - Qingyang Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Weixin Lin
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xinru Mu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xingjun Liu
- School of Pharmacy, Nantong University, Nantong 226001, China.
| | - Qian Wang
- International Education college, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Zhigang Lu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, China; School of Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
13
|
da Silva MDV, da Silva Bonassa L, Piva M, Basso CR, Zaninelli TH, Machado CCA, de Andrade FG, Miqueloto CA, Sant Ana DDMG, Aktar R, Peiris M, Aziz Q, Blackshaw LA, Verri WA, de Almeida Araújo EJ. Perineuronal net in the extrinsic innervation of the distal colon of mice and its remodeling in ulcerative colitis. J Neurochem 2024; 168:1937-1955. [PMID: 38426587 DOI: 10.1111/jnc.16080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 03/02/2024]
Abstract
The perineuronal net (PNN) is a well-described highly specialized extracellular matrix structure found in the central nervous system. Thus far, no reports of its presence or connection to pathological processes have been described in the peripheral nervous system. Our study demonstrates the presence of a PNN in the spinal afferent innervation of the distal colon of mice and characterizes structural and morphological alterations induced in an ulcerative colitis (UC) model. C57Bl/6 mice were given 3% dextran sulfate sodium (DSS) to induce acute or chronic UC. L6/S1 dorsal root ganglia (DRG) were collected. PNNs were labeled using fluorescein-conjugated Wisteria Floribunda (WFA) l lectin, and calcitonin gene-related peptide (CGRP) immunofluorescence was used to detect DRG neurons. Most DRG cell bodies and their extensions toward peripheral nerves were found surrounded by the PNN-like structure (WFA+), labeling neurons' cytoplasm and the pericellular surfaces. The amount of WFA+ neuronal cell bodies was increased in both acute and chronic UC, and the PNN-like structure around cell bodies was thicker in UC groups. In conclusion, a PNN-like structure around DRG neuronal cell bodies was described and found modulated by UC, as changes in quantity, morphology, and expression profile of the PNN were detected, suggesting a potential role in sensory neuron peripheral sensitization, possibly modulating the pain profile of ulcerative colitis.
Collapse
Affiliation(s)
- Matheus Deroco Veloso da Silva
- Laboratory of Neurogastroenterology, Department of Histology, State University of Londrina, Londrina, Paraná, Brazil
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Pathology, State University of Londrina, Londrina, Paraná, Brazil
| | - Larissa da Silva Bonassa
- Laboratory of Neurogastroenterology, Department of Histology, State University of Londrina, Londrina, Paraná, Brazil
| | - Maiara Piva
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Pathology, State University of Londrina, Londrina, Paraná, Brazil
| | - Camila Regina Basso
- Laboratory of Neurogastroenterology, Department of Histology, State University of Londrina, Londrina, Paraná, Brazil
| | - Tiago Henrique Zaninelli
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Pathology, State University of Londrina, Londrina, Paraná, Brazil
| | - Camila Cristina Alves Machado
- Laboratory of Neurogastroenterology, Department of Histology, State University of Londrina, Londrina, Paraná, Brazil
| | - Fábio Goulart de Andrade
- Laboratory of Histopathological Analysis, Department of Histology, State University of Londrina, Londrina, Paraná, Brazil
| | - Carlos Alberto Miqueloto
- Laboratory of Neurogastroenterology, Department of Histology, State University of Londrina, Londrina, Paraná, Brazil
| | | | - Rubina Aktar
- Wingate Institute for Neurogastroenterology, Queen Mary University of London, London, UK
| | - Madusha Peiris
- Wingate Institute for Neurogastroenterology, Queen Mary University of London, London, UK
| | - Qasim Aziz
- Wingate Institute for Neurogastroenterology, Queen Mary University of London, London, UK
| | - L Ashley Blackshaw
- Wingate Institute for Neurogastroenterology, Queen Mary University of London, London, UK
| | - Waldiceu A Verri
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Pathology, State University of Londrina, Londrina, Paraná, Brazil
| | | |
Collapse
|
14
|
Liu Y, Zhang G, Zhu C, Yao X, Wang W, Shen L, Wang H, Lin N. The analgesic effects of Yu-Xue-Bi tablet (YXB) on mice with inflammatory pain by regulating LXA4-FPR2-TRPA1 pathway. Chin Med 2024; 19:104. [PMID: 39107849 PMCID: PMC11302111 DOI: 10.1186/s13020-024-00975-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Oxylipins including lipoxin A4 (LXA4) facilitate the resolution of inflammation and possess analgesic properties by inhibiting macrophage infiltration and transient receptor potential (TRP) protein expression. Yu-Xue-Bi Tablet (YXB) is a traditional Chinese patent medicine used to relieve inflammatory pain. Our previous research has shown that the analgesic effect of YXB is related to inhibiting peripheral inflammation and regulating macrophage infiltration, but the mechanism is not yet clear. The purpose of this study is to explore the mechanisms of YXB on mice models with Complete Freund's Adjuvant (CFA)-induced inflammatory pain from the perspective at the resolution of inflammation. METHODS Mechanical allodynia thresholds and heat hypersensitivity were measured using the Von Frey test and the hot plate test respectively. The open field test and the tail suspension test were employed to measure anxiety and depressive behaviors respectively. The expression of CD68+ and the proportion of F4/80+CD11b+ cells were measured by immunofluorescence staining and flow cytometry. The expression of transient receptor potential ankyrin 1(TRPA1) was measured by immunofluorescence staining and western blotting. Oxylipins omics analysis provided quantitative data on oxylipins in the paws, and enzyme linked immunosorbent assay (ELISA) was used to measure the levels of LXA4 there. Immunofluorescence staining was used to perform the expression of Leukotriene A4 hydroxylase (LTA4H) in the paws of mice. The impact of injecting the formyl peptide receptor 2(FPR2) antagonist WRW4 and the TRPA1 agonist AITC into the left paws was observed, focusing on the expression of mechanical allodynia thresholds, the expression of CD68+, TRPA1 in the paws, and Calcitonin gene-related peptide (CGRP) in the L5 spinal dorsal horn. RESULTS YXB elevated mechanical allodynia thresholds, alleviated heat hypersensitivity and anxiety and depressive behaviors in CFA mice. It significantly reduced the number of CD68+ and proportion of F4/80+CD11b+ within the paws, thereby decreasing macrophage infiltration. Additionally, it diminished the expression of TRPA1 in the paws and TRPV1 in the DRG, leading to an inhibition of peripheral sensitization. Through quantitative analysis, it was found that YXB could modulate DHA-derived oxylipins and LXA4. ELISA results indicated that YXB elevated the levels of LXA4 and inhibited the expression of LAT4H in the paws. Furthermore, the pro-resolution and analgesic effects of YXB were hindered after administration of the FPR2 antagonist. Compared with the AITC group, YXB showed no significant improvement in anti-inflammatory and analgesic effects. CONCLUSIONS YXB can regulate the oxylipins of paws in CFA mice to promote the resolution of inflammation. The LXA4-FPR2-TRPA1 pathway is a key mechanism for the resolution of inflammation and analgesic effects.
Collapse
Affiliation(s)
- Ying Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Guoxin Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Chunyan Zhu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Xuemin Yao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Wenli Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Li Shen
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Haiping Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Na Lin
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
15
|
Waltrick APF, Radulski DR, de Oliveira KM, Acco A, Verri WA, da Cunha JM, Zanoveli JM. Early evidence of beneficial and protective effects of Protectin DX treatment on behavior responses and type-1 diabetes mellitus related-parameters: A non-clinical approach. Prog Neuropsychopharmacol Biol Psychiatry 2024; 133:111028. [PMID: 38754696 DOI: 10.1016/j.pnpbp.2024.111028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/24/2024] [Accepted: 05/12/2024] [Indexed: 05/18/2024]
Abstract
Protectin DX (PDX), a specialized pro-resolving lipid mediator, presents potential therapeutic applications across various medical conditions due to its anti-inflammatory and antioxidant properties. Since type-1 diabetes mellitus (T1DM) is a disease with an inflammatory and oxidative profile, exploring the use of PDX in addressing T1DM and its associated comorbidities, including diabetic neuropathic pain, depression, and anxiety becomes urgent. Thus, in the current study, after 2 weeks of T1DM induction with streptozotocin (60 mg/kg) in Wistar rats, PDX (1, 3, and 10 ng/animal; i.p. injection of 200 μl/animal) was administered specifically on days 14, 15, 18, 21, 24, and 27 after T1DM induction. We investigated the PDX's effectiveness in alleviating neuropathic pain (mechanical allodynia; experiment 1), anxiety-like and depressive-like behaviors (experiment 2). Also, we studied whether the PDX treatment would induce antioxidant effects in the blood plasma, hippocampus, and prefrontal cortex (experiment 3), brain areas involved in the modulation of emotions. For evaluating mechanical allodynia, animals were repeatedly submitted to the Von Frey test; while for studying anxiety-like responses, animals were submitted to the elevated plus maze (day 26) and open field (day 28) tests. To analyze depressive-like behaviors, the animals were tested in the modified forced swimming test (day 28) immediately after the open field test. Our data demonstrated that PDX consistently increased the mechanical threshold throughout the study at the two highest doses, indicative of antinociceptive effect. Concerning depressive-like and anxiety-like behavior, all PDX doses effectively prevented these behaviors when compared to vehicle-treated T1DM rats. The PDX treatment significantly protected against the increased oxidative stress parameters in blood plasma and in hippocampus and prefrontal cortex. Interestingly, treated animals presented improvement on diabetes-related parameters by promoting weight gain and reducing hyperglycemia in T1DM rats. These findings suggest that PDX improved diabetic neuropathic pain, and induced antidepressant-like and anxiolytic-like effects, in addition to improving parameters related to the diabetic condition. It is worth noting that PDX also presented a protective action demonstrated by its antioxidant effects. To conclude, our findings suggest PDX treatment may be a promising candidate for improving the diabetic condition per se along with highly disabling comorbidities such as diabetic neuropathic pain and emotional disturbances associated with T1DM.
Collapse
Affiliation(s)
- Ana Paula Farias Waltrick
- Department of Pharmacology, Biological Sciences Building, Federal University of Paraná, Street Coronel Francisco H dos Santos S/N, P.O. Box 19031, Curitiba, PR 81540-990, Brazil
| | - Débora Rasec Radulski
- Department of Pharmacology, Biological Sciences Building, Federal University of Paraná, Street Coronel Francisco H dos Santos S/N, P.O. Box 19031, Curitiba, PR 81540-990, Brazil
| | - Kauê Marcel de Oliveira
- Department of Pharmacology, Biological Sciences Building, Federal University of Paraná, Street Coronel Francisco H dos Santos S/N, P.O. Box 19031, Curitiba, PR 81540-990, Brazil
| | - Alexandra Acco
- Department of Pharmacology, Biological Sciences Building, Federal University of Paraná, Street Coronel Francisco H dos Santos S/N, P.O. Box 19031, Curitiba, PR 81540-990, Brazil
| | | | - Joice Maria da Cunha
- Department of Pharmacology, Biological Sciences Building, Federal University of Paraná, Street Coronel Francisco H dos Santos S/N, P.O. Box 19031, Curitiba, PR 81540-990, Brazil
| | - Janaina Menezes Zanoveli
- Department of Pharmacology, Biological Sciences Building, Federal University of Paraná, Street Coronel Francisco H dos Santos S/N, P.O. Box 19031, Curitiba, PR 81540-990, Brazil.
| |
Collapse
|
16
|
Yu L, Zhu X, Peng K, Qin H, Yang K, Cai F, Hu J, Zhang Y. Propofol Alleviates Anxiety-Like Behaviors Associated with Pain by Inhibiting the Hyperactivity of PVN CRH Neurons via GABA A Receptor β3 Subunits. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309059. [PMID: 38639389 PMCID: PMC11267288 DOI: 10.1002/advs.202309059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/21/2024] [Indexed: 04/20/2024]
Abstract
Pain, a comorbidity of anxiety disorders, causes substantial clinical, social, and economic burdens. Emerging evidence suggests that propofol, the most commonly used general anesthetic, may regulate psychological disorders; however, its role in pain-associated anxiety is not yet described. This study investigates the therapeutic potential of a single dose of propofol (100 mg kg-1) in alleviating pain-associated anxiety and examines the underlying neural mechanisms. In acute and chronic pain models, propofol decreased anxiety-like behaviors in the elevated plus maze (EPM) and open field (OF) tests. Propofol also reduced the serum levels of stress-related hormones including corticosterone, corticotropin-releasing hormone (CRH), and norepinephrine. Fiber photometry recordings indicated that the calcium signaling activity of CRH neurons in the paraventricular nucleus (PVNCRH) is reduced after propofol treatment. Interestingly, artificially activating PVNCRH neurons through chemogenetics interfered with the anxiety-reducing effects of propofol. Electrophysiological recordings indicated that propofol decreases the activity of PVNCRH neurons by increasing spontaneous inhibitory postsynaptic currents (sIPSCs). Further, reducing the levels of γ-aminobutyric acid type A receptor β3 (GABAAβ3) subunits in PVNCRH neurons diminished the anxiety-relieving effects of propofol. In conclusion, this study provides a mechanistic and preclinical rationale to treat pain-associated anxiety-like behaviors using a single dose of propofol.
Collapse
Affiliation(s)
- Le Yu
- Department of AnesthesiologyThe Second Affiliated Hospital of Anhui Medical UniversityHefei230601China
- Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education InstitutesAnhui Medical UniversityHefei230032China
| | - Xiaona Zhu
- School of Life Science and TechnologyShanghaiTech UniversityShanghai201210China
| | - Kang Peng
- Department of AnesthesiologyThe Second Affiliated Hospital of Anhui Medical UniversityHefei230601China
- Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education InstitutesAnhui Medical UniversityHefei230032China
| | - Huimin Qin
- School of Life Science and TechnologyShanghaiTech UniversityShanghai201210China
| | - Kexin Yang
- School of Life Science and TechnologyShanghaiTech UniversityShanghai201210China
| | - Fang Cai
- School of Life Science and TechnologyShanghaiTech UniversityShanghai201210China
| | - Ji Hu
- School of Life Science and TechnologyShanghaiTech UniversityShanghai201210China
| | - Ye Zhang
- Department of AnesthesiologyThe Second Affiliated Hospital of Anhui Medical UniversityHefei230601China
- Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education InstitutesAnhui Medical UniversityHefei230032China
| |
Collapse
|
17
|
Peng X, Tao H, Xia F, Zhu M, Yang M, Liu K, Hou B, Li X, Li S, He Y, Huan W, Gao F. Molecular design, construction and analgesic mechanism insights into the novel transdermal fusion peptide ANTP-BgNPB. Bioorg Chem 2024; 148:107482. [PMID: 38795582 DOI: 10.1016/j.bioorg.2024.107482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/14/2024] [Accepted: 05/19/2024] [Indexed: 05/28/2024]
Abstract
Toad venom, a traditional Chinese medicine, exhibits remarkable medicinal properties of significant therapeutic value. The peptides present within toad venom possess a wide range of biological functions, yet the neuropeptide B (NPB) and it modification requires further exploration to comprehensively understand its mechanisms of action and potential applications. In this study, a fusion peptide, ANTP-BgNPB, was designed to possess better analgesic properties through the transdermal modification of BgNPB. After optimizing the conditions, the expression of ANTP-BgNPB was successfully induced. The molecular dynamics simulations suggested that the modified protein exhibited improved stability and receptor binding affinity compared to its unmodified form. The analysis of the active site of ANTP-BgNPB and the verification of mutants revealed that GLN3, SER38, and ARG42 were crucial for the protein's recognition and binding with G protein-coupled receptor 7 (GPR7). Moreover, experiments conducted on mice using the hot plate and acetic acid twist body models demonstrated that ANTP-BgNPB was effective in transdermal analgesia. These findings represent significant progress in the development of transdermal delivery medications and could have a significant impact on pain management.
Collapse
Affiliation(s)
- Xinmeng Peng
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Han Tao
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Fengyan Xia
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 313000, China
| | - Mingwei Zhu
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Meiyun Yang
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Kexin Liu
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Bowen Hou
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Xintong Li
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Suwan Li
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Yanling He
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Weiwei Huan
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, College of Chemistry and Materials Engineering, Zhejiang A & F University, Hangzhou, Zhejiang 311300, China.
| | - Fei Gao
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China.
| |
Collapse
|
18
|
Maximiano TKE, Carneiro JA, Fattori V, Verri WA. TRPV1: Receptor structure, activation, modulation and role in neuro-immune interactions and pain. Cell Calcium 2024; 119:102870. [PMID: 38531262 DOI: 10.1016/j.ceca.2024.102870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 03/28/2024]
Abstract
In the 1990s, the identification of a non-selective ion channel, especially responsive to capsaicin, revolutionized the studies of somatosensation and pain that were to follow. The TRPV1 channel is expressed mainly in neuronal cells, more specifically, in sensory neurons responsible for the perception of noxious stimuli. However, its presence has also been detected in other non-neuronal cells, such as immune cells, β- pancreatic cells, muscle cells and adipocytes. Activation of the channel occurs in response to a wide range of stimuli, such as noxious heat, low pH, gasses, toxins, endocannabinoids, lipid-derived endovanilloid, and chemical agents, such as capsaicin and resiniferatoxin. This activation results in an influx of cations through the channel pore, especially calcium. Intracellular calcium triggers different responses in sensory neurons. Dephosphorylation of the TRPV1 channel leads to its desensitization, which disrupts its function, while its phosphorylation increases the channel's sensitization and contributes to the channel's rehabilitation after desensitization. Kinases, phosphoinositides, and calmodulin are the main signaling pathways responsible for the channel's regulation. Thus, in this review we provide an overview of TRPV1 discovery, its tissue expression as well as on the mechanisms by which TRPV1 activation (directly or indirectly) induces pain in different disease models.
Collapse
Affiliation(s)
- Thaila Kawane Euflazio Maximiano
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina, Paraná, Brazil
| | - Jessica Aparecida Carneiro
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina, Paraná, Brazil
| | - Victor Fattori
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital-Harvard Medical School, Karp Research Building, 300 Longwood Ave, 02115, Boston, Massachusetts, United States.
| | - Waldiceu A Verri
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina, Paraná, Brazil.
| |
Collapse
|
19
|
Nakhleh-Francis Y, Awad-Igbaria Y, Sakas R, Bang S, Abu-Ata S, Palzur E, Lowenstein L, Bornstein J. Exploring Localized Provoked Vulvodynia: Insights from Animal Model Research. Int J Mol Sci 2024; 25:4261. [PMID: 38673846 PMCID: PMC11050705 DOI: 10.3390/ijms25084261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/07/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Provoked vulvodynia represents a challenging chronic pain condition, characterized by its multifactorial origins. The inherent complexities of human-based studies have necessitated the use of animal models to enrich our understanding of vulvodynia's pathophysiology. This review aims to provide an exhaustive examination of the various animal models employed in this research domain. A comprehensive search was conducted on PubMed, utilizing keywords such as "vulvodynia", "chronic vulvar pain", "vulvodynia induction", and "animal models of vulvodynia" to identify pertinent studies. The search yielded three primary animal models for vulvodynia: inflammation-induced, allergy-induced, and hormone-induced. Additionally, six agents capable of triggering the condition through diverse pathways were identified, including factors contributing to hyperinnervation, mast cell proliferation, involvement of other immune cells, inflammatory cytokines, and neurotransmitters. This review systematically outlines the various animal models developed to study the pathogenesis of provoked vulvodynia. Understanding these models is crucial for the exploration of preventative measures, the development of novel treatments, and the overall advancement of research within the field.
Collapse
Affiliation(s)
- Yara Nakhleh-Francis
- Department of Obstetrics and Gynecology, Galilee Medical Center, Nahariya 2210001, Israel; (S.B.); (L.L.); (J.B.)
- Research Institute of Galilee Medical Center, Nahariya 2210001, Israel; (Y.A.-I.); (R.S.); (S.A.-A.); (E.P.)
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Yaseen Awad-Igbaria
- Research Institute of Galilee Medical Center, Nahariya 2210001, Israel; (Y.A.-I.); (R.S.); (S.A.-A.); (E.P.)
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Reem Sakas
- Research Institute of Galilee Medical Center, Nahariya 2210001, Israel; (Y.A.-I.); (R.S.); (S.A.-A.); (E.P.)
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Sarina Bang
- Department of Obstetrics and Gynecology, Galilee Medical Center, Nahariya 2210001, Israel; (S.B.); (L.L.); (J.B.)
- Research Institute of Galilee Medical Center, Nahariya 2210001, Israel; (Y.A.-I.); (R.S.); (S.A.-A.); (E.P.)
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Saher Abu-Ata
- Research Institute of Galilee Medical Center, Nahariya 2210001, Israel; (Y.A.-I.); (R.S.); (S.A.-A.); (E.P.)
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Eilam Palzur
- Research Institute of Galilee Medical Center, Nahariya 2210001, Israel; (Y.A.-I.); (R.S.); (S.A.-A.); (E.P.)
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Lior Lowenstein
- Department of Obstetrics and Gynecology, Galilee Medical Center, Nahariya 2210001, Israel; (S.B.); (L.L.); (J.B.)
- Research Institute of Galilee Medical Center, Nahariya 2210001, Israel; (Y.A.-I.); (R.S.); (S.A.-A.); (E.P.)
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Jacob Bornstein
- Department of Obstetrics and Gynecology, Galilee Medical Center, Nahariya 2210001, Israel; (S.B.); (L.L.); (J.B.)
- Research Institute of Galilee Medical Center, Nahariya 2210001, Israel; (Y.A.-I.); (R.S.); (S.A.-A.); (E.P.)
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| |
Collapse
|
20
|
Bekauri T, Fischer S, Honn KV, Maddipati KR, Love T, Little C, Wood RW, Bonham AD, Linder MA, Yule DI, Emanuelle C, Falsetta ML. Inflammation, lipid dysregulation, and transient receptor potential cation channel subfamily V member 4 signaling perpetuate chronic vulvar pain. Pain 2024; 165:820-837. [PMID: 37889581 PMCID: PMC10949218 DOI: 10.1097/j.pain.0000000000003088] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/19/2023] [Accepted: 08/23/2023] [Indexed: 10/29/2023]
Abstract
ABSTRACT Localized provoked vulvodynia is characterized by chronic vulvar pain that disrupts every aspect of the patient's life. Pain is localized to the vulvar vestibule, a specialized ring of tissue immediately surrounding the vaginal opening involved in immune defense. In this article, we show inflammation is the critical first step necessary for the generation of pain signals in the vulva. Inflammatory stimuli alone or combined with the transient receptor potential cation channel subfamily V member 4 (TRPV4) agonist 4α-phorbol 12,13-didecanoate stimulate calcium flux into vulvar fibroblast cells. Activity is blocked by the TRPV4 antagonist HC067047, denoting specificity to TRPV4. Using lipidomics, we found pro-resolving lipids in the vulvar vestibule were dysregulated, characterized by a reduction in pro-resolving mediators and heightened production of inflammatory mediators. We demonstrate specialized pro-resolving mediators represent a potential new therapy for vulvar pain, acting on 2 key parts of the disease mechanism by limiting inflammation and acutely inhibiting TRPV4 signaling.
Collapse
Affiliation(s)
- Tamari Bekauri
- OB/GYN Research Division, University of Rochester, Rochester, NY, United States
| | - Sarah Fischer
- OB/GYN Research Division, University of Rochester, Rochester, NY, United States
| | - Kenneth V. Honn
- Pathology Department, Wayne State University, Detroit, MI, United States
- Lipidomics Core Facility and Bioactive Lipids Research Program, Wayne State University, Detroit, MI, United States
| | - Krishna Rao Maddipati
- Pathology Department, Wayne State University, Detroit, MI, United States
- Lipidomics Core Facility and Bioactive Lipids Research Program, Wayne State University, Detroit, MI, United States
| | - Tanzy Love
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, NY, United States
| | - Chantelle Little
- OB/GYN Research Division, University of Rochester, Rochester, NY, United States
| | - Ronald W. Wood
- OB/GYN Research Division, University of Rochester, Rochester, NY, United States
| | - Adrienne D. Bonham
- OB/GYN Department, Oregon Health Sciences University, Portland, OR, United States
| | - Mitchell A. Linder
- OB/GYN Research Division, University of Rochester, Rochester, NY, United States
| | - David I. Yule
- Pharmacology and Physiology Department, University of Rochester, Rochester, NY, United States
| | - Chrysilla Emanuelle
- Pharmacology and Physiology Department, University of Rochester, Rochester, NY, United States
| | - Megan L. Falsetta
- OB/GYN Research Division, University of Rochester, Rochester, NY, United States
- Pharmacology and Physiology Department, University of Rochester, Rochester, NY, United States
| |
Collapse
|
21
|
Weng HR. Emerging Molecular and Synaptic Targets for the Management of Chronic Pain Caused by Systemic Lupus Erythematosus. Int J Mol Sci 2024; 25:3602. [PMID: 38612414 PMCID: PMC11011483 DOI: 10.3390/ijms25073602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/13/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
Patients with systemic lupus erythematosus (SLE) frequently experience chronic pain due to the limited effectiveness and safety profiles of current analgesics. Understanding the molecular and synaptic mechanisms underlying abnormal neuronal activation along the pain signaling pathway is essential for developing new analgesics to address SLE-induced chronic pain. Recent studies, including those conducted by our team and others using the SLE animal model (MRL/lpr lupus-prone mice), have unveiled heightened excitability in nociceptive primary sensory neurons within the dorsal root ganglia and increased glutamatergic synaptic activity in spinal dorsal horn neurons, contributing to the development of chronic pain in mice with SLE. Nociceptive primary sensory neurons in lupus animals exhibit elevated resting membrane potentials, and reduced thresholds and rheobases of action potentials. These changes coincide with the elevated production of TNFα and IL-1β, as well as increased ERK activity in the dorsal root ganglion, coupled with decreased AMPK activity in the same region. Dysregulated AMPK activity is linked to heightened excitability in nociceptive sensory neurons in lupus animals. Additionally, the increased glutamatergic synaptic activity in the spinal dorsal horn in lupus mice with chronic pain is characterized by enhanced presynaptic glutamate release and postsynaptic AMPA receptor activation, alongside the reduced activity of glial glutamate transporters. These alterations are caused by the elevated activities of IL-1β, IL-18, CSF-1, and thrombin, and reduced AMPK activities in the dorsal horn. Furthermore, the pharmacological activation of spinal GPR109A receptors in microglia in lupus mice suppresses chronic pain by inhibiting p38 MAPK activity and the production of both IL-1β and IL-18, as well as reducing glutamatergic synaptic activity in the spinal dorsal horn. These findings collectively unveil crucial signaling molecular and synaptic targets for modulating abnormal neuronal activation in both the periphery and spinal dorsal horn, offering insights into the development of analgesics for managing SLE-induced chronic pain.
Collapse
Affiliation(s)
- Han-Rong Weng
- Department of Basic Sciences, California Northstate University College of Medicine, Elk Grove, CA 95757, USA
| |
Collapse
|
22
|
Yin Z, Zhang J, Zhao M, Peng S, Ye J, Liu J, Xu Y, Xu S, Pan W, Wei C, Qin J, Wan J, Wang M. Maresin-1 ameliorates hypertensive vascular remodeling through its receptor LGR6. MedComm (Beijing) 2024; 5:e491. [PMID: 38463394 PMCID: PMC10924638 DOI: 10.1002/mco2.491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 12/30/2023] [Accepted: 01/11/2024] [Indexed: 03/12/2024] Open
Abstract
Hypertensive vascular remodeling is defined as the changes in vascular function and structure induced by persistent hypertension. Maresin-1 (MaR1), one of metabolites from Omega-3 fatty acids, has been reported to promote inflammation resolution in several inflammatory diseases. This study aims to investigate the effect of MaR1 on hypertensive vascular remodeling. Here, we found serum MaR1 levels were reduced in hypertensive patients and was negatively correlated with systolic blood pressure (SBP). The treatment of MaR1 reduced the elevation of blood pressure and alleviated vascular remodeling in the angiotensin II (AngII)-infused mouse model. In addition, MaR1-treated vascular smooth muscle cells (VSMCs) exhibited reduced excessive proliferation, migration, and phenotype switching, as well as impaired pyroptosis. However, the knockout of the receptor of MaR1, leucine-rich repeat-containing G protein-coupled receptor 6 (LGR6), was seen to aggravate pathological vascular remodeling, which could not be reversed by additional MaR1 treatment. The mechanisms by which MaR1 regulates vascular remodeling through LGR6 involves the Ca2+/calmodulin-dependent protein kinase II/nuclear factor erythroid 2-related factor 2/heme oxygenase-1 signaling pathway. Overall, supplementing MaR1 may be a novel therapeutic strategy for the prevention and treatment of hypertension.
Collapse
Affiliation(s)
- Zheng Yin
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan UniversityWuhan UniversityWuhanChina
- Cardiovascular Research InstituteWuhan UniversityWuhanChina
- Hubei Key Laboratory of CardiologyWuhanChina
| | - Jishou Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan UniversityWuhan UniversityWuhanChina
- Cardiovascular Research InstituteWuhan UniversityWuhanChina
- Hubei Key Laboratory of CardiologyWuhanChina
| | - Mengmeng Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan UniversityWuhan UniversityWuhanChina
- Cardiovascular Research InstituteWuhan UniversityWuhanChina
- Hubei Key Laboratory of CardiologyWuhanChina
| | - Shanshan Peng
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan UniversityWuhan UniversityWuhanChina
- Cardiovascular Research InstituteWuhan UniversityWuhanChina
- Hubei Key Laboratory of CardiologyWuhanChina
| | - Jing Ye
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan UniversityWuhan UniversityWuhanChina
- Cardiovascular Research InstituteWuhan UniversityWuhanChina
- Hubei Key Laboratory of CardiologyWuhanChina
| | - Jianfang Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan UniversityWuhan UniversityWuhanChina
- Cardiovascular Research InstituteWuhan UniversityWuhanChina
- Hubei Key Laboratory of CardiologyWuhanChina
| | - Yao Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan UniversityWuhan UniversityWuhanChina
- Cardiovascular Research InstituteWuhan UniversityWuhanChina
- Hubei Key Laboratory of CardiologyWuhanChina
| | - Shuwan Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan UniversityWuhan UniversityWuhanChina
- Cardiovascular Research InstituteWuhan UniversityWuhanChina
- Hubei Key Laboratory of CardiologyWuhanChina
| | - Wei Pan
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan UniversityWuhan UniversityWuhanChina
- Cardiovascular Research InstituteWuhan UniversityWuhanChina
- Hubei Key Laboratory of CardiologyWuhanChina
| | - Cheng Wei
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan UniversityWuhan UniversityWuhanChina
- Cardiovascular Research InstituteWuhan UniversityWuhanChina
- Hubei Key Laboratory of CardiologyWuhanChina
| | - Juan‐Juan Qin
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan UniversityWuhan UniversityWuhanChina
- Center for Healthy AgingWuhan University School of NursingWuhanChina
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan UniversityWuhan UniversityWuhanChina
- Cardiovascular Research InstituteWuhan UniversityWuhanChina
- Hubei Key Laboratory of CardiologyWuhanChina
| | - Menglong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan UniversityWuhan UniversityWuhanChina
- Cardiovascular Research InstituteWuhan UniversityWuhanChina
- Hubei Key Laboratory of CardiologyWuhanChina
| |
Collapse
|
23
|
da Silva MDV, Piva M, Martelossi-Cebinelli G, Stinglin Rosa Ribas M, Hoffmann Salles Bianchini B, K Heintz O, Casagrande R, Verri WA. Stem cells and pain. World J Stem Cells 2023; 15:1035-1062. [PMID: 38179216 PMCID: PMC10762525 DOI: 10.4252/wjsc.v15.i12.1035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/06/2023] [Accepted: 11/30/2023] [Indexed: 12/26/2023] Open
Abstract
Pain can be defined as an unpleasant sensory and emotional experience caused by either actual or potential tissue damage or even resemble that unpleasant experience. For years, science has sought to find treatment alternatives, with minimal side effects, to relieve pain. However, the currently available pharmacological options on the market show significant adverse events. Therefore, the search for a safer and highly efficient analgesic treatment has become a priority. Stem cells (SCs) are non-specialized cells with a high capacity for replication, self-renewal, and a wide range of differentiation possibilities. In this review, we provide evidence that the immune and neuromodulatory properties of SCs can be a valuable tool in the search for ideal treatment strategies for different types of pain. With the advantage of multiple administration routes and dosages, therapies based on SCs for pain relief have demonstrated meaningful results with few downsides. Nonetheless, there are still more questions than answers when it comes to the mechanisms and pathways of pain targeted by SCs. Thus, this is an evolving field that merits further investigation towards the development of SC-based analgesic therapies, and this review will approach all of these aspects.
Collapse
Affiliation(s)
- Matheus Deroco Veloso da Silva
- Department of Pathology, Laboratory of Pain, Inflammation, Neuropathy and Cancer, State University of Londrina, Londrina 86057-970, Paraná, Brazil
| | - Maiara Piva
- Department of Pathology, Laboratory of Pain, Inflammation, Neuropathy and Cancer, State University of Londrina, Londrina 86057-970, Paraná, Brazil
| | - Geovana Martelossi-Cebinelli
- Department of Pathology, Laboratory of Pain, Inflammation, Neuropathy and Cancer, State University of Londrina, Londrina 86057-970, Paraná, Brazil
| | - Mariana Stinglin Rosa Ribas
- Department of Pathology, Laboratory of Pain, Inflammation, Neuropathy and Cancer, State University of Londrina, Londrina 86057-970, Paraná, Brazil
| | - Beatriz Hoffmann Salles Bianchini
- Department of Pathology, Laboratory of Pain, Inflammation, Neuropathy and Cancer, State University of Londrina, Londrina 86057-970, Paraná, Brazil
| | - Olivia K Heintz
- Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA 01655, United States
| | - Rubia Casagrande
- Department of Pharmaceutical Sciences, Center of Health Science, State University of Londrina, Londrina 86038-440, Paraná, Brazil
| | - Waldiceu A Verri
- Department of Pathology, Laboratory of Pain, Inflammation, Neuropathy and Cancer, Center of Biological Sciences, State University of Londrina, Londrina 86057-970, Paraná, Brazil.
| |
Collapse
|
24
|
Leite CBG, Merkely G, Charles JF, Lattermann C. From Inflammation to Resolution: Specialized Pro-resolving Mediators in Posttraumatic Osteoarthritis. Curr Osteoporos Rep 2023; 21:758-770. [PMID: 37615856 DOI: 10.1007/s11914-023-00817-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/26/2023] [Indexed: 08/25/2023]
Abstract
PURPOSE OF REVIEW To provide a comprehensive overview of the inflammatory response following anterior cruciate ligament (ACL) injury and to highlight the relationship between specialized pro-resolving mediators (SPMs) and inflammatory joint conditions, emphasizing the therapeutic potential of modulating the post-injury resolution of inflammation to prevent posttraumatic osteoarthritis (PTOA). RECENT FINDINGS The inflammatory response triggered after joint injuries such as ACL tear plays a critical role in posttraumatic osteoarthritis development. Inflammation is a necessary process for tissue healing, but unresolved or overactivated inflammation can lead to chronic diseases. SPMs, a family of lipid molecules derived from essential fatty acids, have emerged as active players in the resolution of inflammation and tissue repair. While their role in other inflammatory conditions has been studied, their relationship with PTOA remains underexplored. Proinflammatory mediators contribute to cartilage degradation and PTOA pathogenesis, while anti-inflammatory and pro-resolving mediators may have chondroprotective effects. Therapies aimed at suppressing inflammation in PTOA have limitations, as inflammation is crucial for tissue healing. SPMs offer a pro-resolving response without causing immunosuppression, making them a promising therapeutic option. The known onset date of PTOA makes it amenable to early interventions, and activating pro-resolving pathways may provide new possibilities for preventing PTOA progression. Harnessing the pro-resolving potential of SPMs may hold promise for preventing PTOA and restoring tissue homeostasis and function after joint injuries.
Collapse
Affiliation(s)
- Chilan B G Leite
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, 20 Patriot Place Foxboro, Boston, MA, 02035, USA
| | - Gergo Merkely
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, 20 Patriot Place Foxboro, Boston, MA, 02035, USA
| | - Julia F Charles
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, 20 Patriot Place Foxboro, Boston, MA, 02035, USA
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Christian Lattermann
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, 20 Patriot Place Foxboro, Boston, MA, 02035, USA.
| |
Collapse
|
25
|
Jia X, Li Z, Shen X, Zhang Y, Zhang L, Zhang L. High-intensity swimming alleviates nociception and neuroinflammation in a mouse model of chronic post-ischemia pain by activating the resolvin E1-chemerin receptor 23 axis in the spinal cord. Neural Regen Res 2023; 18:2535-2544. [PMID: 37282487 PMCID: PMC10360102 DOI: 10.4103/1673-5374.371373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023] Open
Abstract
Physical exercise effectively alleviates chronic pain associated with complex regional pain syndrome type-I. However, the mechanism of exercise-induced analgesia has not been clarified. Recent studies have shown that the specialized pro-resolving lipid mediator resolvin E1 promotes relief of pathologic pain by binding to chemerin receptor 23 in the nervous system. However, whether the resolvin E1-chemerin receptor 23 axis is involved in exercise-induced analgesia in complex regional pain syndrome type-I has not been demonstrated. In the present study, a mouse model of chronic post-ischemia pain was established to mimic complex regional pain syndrome type-I and subjected to an intervention involving swimming at different intensities. Chronic pain was reduced only in mice that engaged in high-intensity swimming. The resolvin E1-chemerin receptor 23 axis was clearly downregulated in the spinal cord of mice with chronic pain, while high-intensity swimming restored expression of resolvin E1 and chemerin receptor 23. Finally, shRNA-mediated silencing of chemerin receptor 23 in the spinal cord reversed the analgesic effect of high-intensity swimming exercise on chronic post-ischemic pain and the anti-inflammatory polarization of microglia in the dorsal horn of the spinal cord. These findings suggest that high-intensity swimming can decrease chronic pain via the endogenous resolvin E1-chemerin receptor 23 axis in the spinal cord.
Collapse
Affiliation(s)
- Xin Jia
- Department of Neurology and Neurological Rehabilitation, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - Ziyang Li
- Department of Neurology and Neurological Rehabilitation, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - Xiafeng Shen
- Department of Rehabilitation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Yu Zhang
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Li Zhang
- Key Laboratory of Central CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong Province, China
| | - Ling Zhang
- Department of Neurology and Neurological Rehabilitation, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
26
|
Qu Y, Fu Y, Liu Y, Liu C, Xu B, Zhang Q, Jiang P. The role of TRPV1 in RA pathogenesis: worthy of attention. Front Immunol 2023; 14:1232013. [PMID: 37744324 PMCID: PMC10514908 DOI: 10.3389/fimmu.2023.1232013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/28/2023] [Indexed: 09/26/2023] Open
Abstract
Transient receptor potential cation channel subfamily V member 1 (TRPV1) is a Ca2+permeable, non-selective cation channel that is found primarily in sensory nerve fibres. Previous studies focused on pain transmission. However, recent studies have found that the TRPV1 channel, in addition to being associated with pain, also plays a role in immune regulation and their dysregulation frequently affects the development of rheumatoid arthritis (RA). A thorough understanding of the mechanism will facilitate the design of new TRPV1-targeted drugs and improve the clinical efficacy of RA. Here, we provide an updated and comprehensive overview of how the TRPV1 channel intrinsically regulates neuronal and immune cells, and how alterations in the TRPV1 channel in synoviocytes or chondrocytes extrinsically affect angiogenesis and bone destruction. Rapid progress has been made in research targeting TRPV1 for the treatment of inflammatory arthritis, but there is still much-uncharted territory regarding the therapeutic role of RA. We present a strategy for targeting the TRPV1 channel in RA therapy, summarising the difficulties and promising advances in current research, with the aim of better understanding the role of the TRPV1 channel in RA pathology, which could accelerate the development of TRPV1-targeted modulators for the design and development of more effective RA therapies.
Collapse
Affiliation(s)
- Yuan Qu
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yang Fu
- Institute of Chinese Orthopedics and Traumatology, Shandong Wendeng Osteopathic Hospital, Weihai, China
| | - Yuan Liu
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chuanguo Liu
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Bing Xu
- Department of Rheumatology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qian Zhang
- Science and Technology Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ping Jiang
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
27
|
Sanders AE, Wallace ED, Ehrmann BM, Soma PS, Shaikh SR, Preisser JS, Ohrbach R, Fillingim RB, Slade GD. Non-esterified erythrocyte linoleic acid, arachidonic acid, and subjective sleep outcomes. Prostaglandins Leukot Essent Fatty Acids 2023; 195:102580. [PMID: 37451068 PMCID: PMC10529142 DOI: 10.1016/j.plefa.2023.102580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/03/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023]
Abstract
OBJECTIVE This study investigated whether non-esterified erythrocyte omega-6 PUFAs were associated with subjective assessment of sleep quality and duration, and risk for obstructive sleep apnea. METHODS In this secondary analysis of the cross-sectional OPPERA-II study, 538 adults completed the Pittsburgh Sleep Quality Index (PSQI), reported their usual hours of sleep, and answered STOP screening questions for obstructive sleep apnea. Circulating non-esterified erythrocyte concentrations of omega-6 PUFA linoleic acid and arachidonic acid were quantified by liquid chromatography tandem mass spectroscopy. Sleep outcomes were dichotomized as poor (PSQI ≤5) vs good (PSQI ≥6) sleep quality, insufficient or excessive (≤6 or >9 h) vs good (7-9 h) sleep duration, and high (≥2 affirmative responses) vs low (<2 affirmative responses) risk for obstructive sleep apnea. Non-esterified omega-6 PUFAs and the continuous covariates of body mass index, Short Form (SF) 12 Health Survey Physical and Mental Component scores and resting measures of systolic and diastolic blood pressure were standardized for multivariable analysis. Categorical covariates were study site, age, sex, and race/ethnicity. Multivariable-adjusted logistic regression first estimated odds ratios (OR) and 95% confidence limits (CL) for sleep outcomes using linoleic acid as the main exposure. Analysis was then repeated using arachidonic acid as the main exposure. RESULTS In the multivariable-adjusted model, each standard deviation increase in non-esterified erythrocyte linoleic acid was associated with higher odds of poor sleep quality (OR=1.2, 95% CL: 1.1, 1.5), insufficient or excessive sleep (OR= 1.3, 95% CL: 1.1, 1.6) and high-risk for obstructive sleep apnea (OR=1.3, 95% CL: 1.1, 1.6). Likewise, for each standard deviation increase in non-esterified erythrocyte arachidonic acid, odds increased of poor sleep quality (OR=1.2, 95% CL: 1.1, 1.5), and insufficient or excessive sleep (OR=1.2, 95% CL: 1.1, 1.5). Odds of being high risk for obstructive sleep apnea increased with greater circulating arachidonic acid, but the association did not reach statistical significance (OR=1.1, 95% CL: 0.9, 1.4). CONCLUSION Non-esterified erythrocyte linoleic acid and arachidonic acid were associated with poor sleep quality and insufficient or excessive sleep duration. Linoleic acid, but not arachidonic acid, was also associated with high risk for obstructive sleep apnea.
Collapse
Affiliation(s)
- Anne E Sanders
- Division of Pediatric and Public Health, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - E Diane Wallace
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Brandie M Ehrmann
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Paul S Soma
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Saame R Shaikh
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - John S Preisser
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Richard Ohrbach
- Department of Oral Diagnostic Sciences, University at Buffalo, Buffalo, NY 14260, USA
| | - Roger B Fillingim
- Department of Community Dentistry and Behavioral Science, University of Florida, Gainesville, FL 32611, USA; Pain Research and Intervention Center of Excellence, Department of Community Dentistry and Behavioral Science, College of Dentistry, University of Florida, Gainesville, FL 32611, USA
| | - Gary D Slade
- Division of Pediatric and Public Health, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
28
|
Liu WC, Yang YH, Wang YC, Chang WM, Wang CW. Maresin: Macrophage Mediator for Resolving Inflammation and Bridging Tissue Regeneration-A System-Based Preclinical Systematic Review. Int J Mol Sci 2023; 24:11012. [PMID: 37446190 DOI: 10.3390/ijms241311012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/23/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Maresins are lipid mediators derived from omega-3 fatty acids with anti-inflammatory and pro-resolving properties, capable of promoting tissue regeneration and potentially serving as a therapeutic agent for chronic inflammatory diseases. The aim of this review was to systematically investigate preclinical and clinical studies on maresin to inform translational research. Two independent reviewers performed comprehensive searches with the term "Maresin (NOT) Review" on PubMed. A total of 137 studies were included and categorized into 11 human organ systems. Data pertinent to clinical translation were specifically extracted, including delivery methods, optimal dose response, and specific functional efficacy. Maresins generally exhibit efficacy in treating inflammatory diseases, attenuating inflammation, protecting organs, and promoting tissue regeneration, mostly in rodent preclinical models. The nervous system has the highest number of original studies (n = 25), followed by the cardiovascular system, digestive system, and respiratory system, each having the second highest number of studies (n = 18) in the field. Most studies considered systemic delivery with an optimal dose response for mouse animal models ranging from 4 to 25 μg/kg or 2 to 200 ng via intraperitoneal or intravenous injection respectively, whereas human in vitro studies ranged between 1 and 10 nM. Although there has been no human interventional clinical trial yet, the levels of MaR1 in human tissue fluid can potentially serve as biomarkers, including salivary samples for predicting the occurrence of cardiovascular diseases and periodontal diseases; plasma and synovial fluid levels of MaR1 can be associated with treatment response and defining pathotypes of rheumatoid arthritis. Maresins exhibit great potency in resolving disease inflammation and bridging tissue regeneration in preclinical models, and future translational development is warranted.
Collapse
Affiliation(s)
- Wen-Chun Liu
- School of Dentistry, College of Oral Medicine, Taipei Medical University, No. 250, Wuxing St., Taipei 110310, Taiwan
| | - Yu-Hsin Yang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, No. 250, Wuxing St., Taipei 110310, Taiwan
| | - Yu-Chin Wang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, No. 250, Wuxing St., Taipei 110310, Taiwan
| | - Wei-Ming Chang
- School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Chin-Wei Wang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, No. 250, Wuxing St., Taipei 110310, Taiwan
- Division of Periodontics, Department of Dentistry, Taipei Medical University Hospital, Taipei 110301, Taiwan
| |
Collapse
|
29
|
Möller I, Rodas G, Villalón JM, Rodas JA, Angulo F, Martínez N, Vergés J. Randomized, double-blind, placebo-controlled study to evaluate the effect of treatment with an SPMs-enriched oil on chronic pain and inflammation, functionality, and quality of life in patients with symptomatic knee osteoarthritis: GAUDI study. J Transl Med 2023; 21:423. [PMID: 37386594 PMCID: PMC10308764 DOI: 10.1186/s12967-023-04283-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 06/17/2023] [Indexed: 07/01/2023] Open
Abstract
BACKGROUND Specialized pro-resolving mediators (SPMs), including 18-HEPE, 17-HDHA, and 14-HDHA are recognized as potentially therapeutic in inflammatory diseases because SPMs regulate the inflammation process, which leads to, for example; swelling and the sensation of pain. In osteoarthritis (OA), chronic pain is described as the symptom that reduces patients´ quality of life (QoL). The GAUDI study evaluated the efficacy of SPMs supplementation in reducing pain in the symptomatic knee of OA patients. METHODS This randomized, multicenter, double-blind, and placebo-controlled parallel-group pilot study was performed in Spain and conducted on adults 18-68 years old diagnosed with symptomatic knee OA. Patients were enrolled in the study for up to 24 weeks, which included a 12-week intervention period and a follow-up visit on week 24. The primary endpoint was pain change measured through a Visual Analog Scale (VAS). Secondary endpoints included: Pain change evaluation, stiffness, and function according to the WOMAC index; assessment of constant, intermittent, and total pain according to the OMERACT-OARSI score; evaluation of changes in health-related QoL parameters; the use or not of concomitant, rescue, and anti-inflammatory medication; and safety and tolerability assessments. RESULTS Patients were enrolled in the study from May 2018 to September 2021. VAS pain score was evaluated in the per protocol population (n = 51 patients), in which we observed a statistically significant reduction after 8 weeks (p = 0.039) and 12 weeks (p = 0.031) of treatment in patients consuming SPMs (n = 23 subjects) vs. placebo (n = 28 subjects). In line with the OMERACT-OARSI score, intermittent pain was reduced after 12 weeks with statistical significance (p = 0.019) in patients treated with SPMs (n = 23 subjects) vs. placebo (n = 28 subjects). Functional status as WOMAC score did not significantly change after SPMs or placebo consumption. Notably, patients consuming SPMs showed improvements in all five aspects of the EUROQoL-5, including a significant improvement in the usual-activities dimension. None of the patients required rescue medication, nor were any adverse events reported. CONCLUSIONS These findings suggest that sustained SPMs consumption reduces pain in OA patients while also improving their Quality of Life. These results also support the safety profile of SPMs supplementation. Trial registration NCT05633849. Registered 1 December 1 2022. Retrospectively registered, https://clinicaltrials.gov/ct2/show/study/NCT05633849.
Collapse
Affiliation(s)
| | | | | | | | | | - Nina Martínez
- Osteoarthritis Foundation International (OAFI), Barcelona, Spain
| | - Josep Vergés
- Osteoarthritis Foundation International (OAFI), Barcelona, Spain.
| |
Collapse
|
30
|
Teixeira-Santos L, Martins S, Sousa T, Albino-Teixeira A, Pinho D. The pro-resolving lipid mediator Maresin 1 ameliorates pain responses and neuroinflammation in the spared nerve injury-induced neuropathic pain: A study in male and female mice. PLoS One 2023; 18:e0287392. [PMID: 37347750 PMCID: PMC10286986 DOI: 10.1371/journal.pone.0287392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 06/05/2023] [Indexed: 06/24/2023] Open
Abstract
Specialized pro-resolving mediators (SPMs) have recently emerged as promising therapeutic approaches for neuropathic pain (NP). We evaluated the effects of oral treatment with the SPM Maresin 1 (MaR1) on behavioral pain responses and spinal neuroinflammation in male and female C57BL/6J mice with spared nerve injury (SNI)-induced NP. MaR1, or vehicle, was administered once daily, on post-surgical days 3 to 5, by voluntary oral intake. Sensory-discriminative and affective-motivational components of pain were evaluated with von Frey and place escape/avoidance paradigm (PEAP) tests, respectively. Spinal microglial and astrocytic activation were assessed by immunofluorescence, and the spinal concentration of cytokines IL-1β, IL-6, IL-10, and macrophage colony-stimulating factor (M-CSF) were evaluated by multiplex immunoassay. MaR1 treatment reduced SNI-induced mechanical hypersensitivity on days 7 and 11 in both male and female mice, and appeared to ameliorate the affective component of pain in males on day 11. No definitive conclusions could be drawn about the impact of MaR1 on the affective-motivational aspects of pain in female mice, since repeated suprathreshold mechanical stimulation of the affected paw in the dark compartment did not increase the preference of vehicle-treated SNI females for the light side, during the PEAP test session (a fundamental assumption for PAEP's validity). MaR1 treatment also reduced ipsilateral spinal microglial and astrocytic activation in both sexes and marginally increased M-CSF in males, while not affecting cytokines IL-1β, IL-6 and IL-10 in either sex. In summary, our study has shown that oral treatment with MaR1 (i) produces antinociception even in an already installed peripheral NP mouse model, and (ii) this antinociception may extend for several days beyond the treatment time-frame. These therapeutic effects are associated with attenuated microglial and astrocytic activation in both sexes, and possibly involve modulation of M-CSF action in males.
Collapse
Affiliation(s)
- Luísa Teixeira-Santos
- Departamento de Biomedicina–Unidade de Farmacologia e Terapêutica, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
- Centro de Investigação Farmacológica e Inovação Medicamentosa (MedInUP), Universidade do Porto, Porto, Portugal
| | - Sandra Martins
- Serviço de Patologia Clínica, Centro Hospitalar e Universitário São João (CHUSJ), Porto, Portugal
- EPIUnit, Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
| | - Teresa Sousa
- Departamento de Biomedicina–Unidade de Farmacologia e Terapêutica, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
- Centro de Investigação Farmacológica e Inovação Medicamentosa (MedInUP), Universidade do Porto, Porto, Portugal
| | - António Albino-Teixeira
- Departamento de Biomedicina–Unidade de Farmacologia e Terapêutica, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
- Centro de Investigação Farmacológica e Inovação Medicamentosa (MedInUP), Universidade do Porto, Porto, Portugal
| | - Dora Pinho
- Departamento de Biomedicina–Unidade de Farmacologia e Terapêutica, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
- Centro de Investigação Farmacológica e Inovação Medicamentosa (MedInUP), Universidade do Porto, Porto, Portugal
| |
Collapse
|
31
|
Leite-Panissi CRA, De Paula BB, Neubert JK, Caudle RM. Influence of TRPV1 on Thermal Nociception in Rats with Temporomandibular Joint Persistent Inflammation Evaluated by the Operant Orofacial Pain Assessment Device (OPAD). J Pain Res 2023; 16:2047-2062. [PMID: 37342611 PMCID: PMC10278653 DOI: 10.2147/jpr.s405258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/05/2023] [Indexed: 06/23/2023] Open
Abstract
Background Temporomandibular joint (TMJ)-associated inflammation contributes to the pain reported by patients with temporomandibular disorders (TMD). It is common for patients diagnosed with TMD to report pain in the masticatory muscles and temporomandibular joints, headache, and jaw movement disturbances. Although TMD can have different origins, including trauma and malocclusion disorder, anxiety/depression substantially impacts the development and maintenance of TMD. In general, rodent studies on orofacial pain mechanisms involve the use of tests originally developed for other body regions, which were adapted to the orofacial area. To overcome limitations and expand knowledge in orofacial pain, our group validated and characterized an operant assessment paradigm in rats with both hot and cold stimuli as well mechanical stimuli. Nevertheless, persistent inflammation of the TMJ has not been evaluated with this operant orofacial pain assessment device (OPAD). Methods We characterized the thermal orofacial sensitivity for cold, neutral, and hot stimuli during the development of TMD using the OPAD behavior test. In addition, we evaluated the role of transient receptor potential vanilloid 1 (TRPV1) expressing nociceptors in rats with persistent TMJ inflammation. The experiments were performed in male and female rats with TMJ inflammation induced by carrageenan (CARR). Additionally, resiniferatoxin (RTX) was administered into the TMJs prior CARR to lesion TRPV1-expressing neurons to evaluate the role of TRPV1-expressing neurons. Results We evidenced an increase in the number of facial contacts and changes in the number of reward licks per stimulus on neutral (37°C) and cold (21°C) temperatures. However, at the hot temperature (42°C), the inflammation did not induce changes in the OPAD test. The prior administration of RTX in the TMJ prevented the allodynia and thermal hyperalgesia induced by CARR. Conclusion We showed that TRPV-expressing neurons are involved in the sensitivity to carrageenan-induced pain in male and female rats evaluated in the OPAD.
Collapse
Affiliation(s)
- Christie R A Leite-Panissi
- Department of Psychology, School of Philosophy, Science and Literature of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Bruna B De Paula
- Department of Oral and Maxillofacial Surgery, University of Florida, Gainesville, FL, USA
| | - John K Neubert
- Department of Orthodontics, University of Florida, Gainesville, FL, USA
| | - Robert M Caudle
- Department of Oral and Maxillofacial Surgery, University of Florida, Gainesville, FL, USA
| |
Collapse
|
32
|
Saraiva-Santos T, Zaninelli TH, Manchope MF, Andrade KC, Ferraz CR, Bertozzi MM, Artero NA, Franciosi A, Badaro-Garcia S, Staurengo-Ferrari L, Borghi SM, Ceravolo GS, Andrello AC, Zanoveli JM, Rogers MS, Casagrande R, Pinho-Ribeiro FA, Verri WA. Therapeutic activity of lipoxin A 4 in TiO 2-induced arthritis in mice: NF-κB and Nrf2 in synovial fluid leukocytes and neuronal TRPV1 mechanisms. Front Immunol 2023; 14:949407. [PMID: 37388729 PMCID: PMC10304281 DOI: 10.3389/fimmu.2023.949407] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 05/25/2023] [Indexed: 07/01/2023] Open
Abstract
Background Lipoxin A4 (LXA4) has anti-inflammatory and pro-resolutive roles in inflammation. We evaluated the effects and mechanisms of action of LXA4 in titanium dioxide (TiO2) arthritis, a model of prosthesis-induced joint inflammation and pain. Methods Mice were stimulated with TiO2 (3mg) in the knee joint followed by LXA4 (0.1, 1, or 10ng/animal) or vehicle (ethanol 3.2% in saline) administration. Pain-like behavior, inflammation, and dosages were performed to assess the effects of LXA4 in vivo. Results LXA4 reduced mechanical and thermal hyperalgesia, histopathological damage, edema, and recruitment of leukocytes without liver, kidney, or stomach toxicity. LXA4 reduced leukocyte migration and modulated cytokine production. These effects were explained by reduced nuclear factor kappa B (NFκB) activation in recruited macrophages. LXA4 improved antioxidant parameters [reduced glutathione (GSH) and 2,2-azino-bis 3-ethylbenzothiazoline-6-sulfonate (ABTS) levels, nuclear factor erythroid 2-related factor 2 (Nrf2) mRNA and Nrf2 protein expression], reducing reactive oxygen species (ROS) fluorescent detection induced by TiO2 in synovial fluid leukocytes. We observed an increase of lipoxin receptor (ALX/FPR2) in transient receptor potential cation channel subfamily V member 1 (TRPV1)+ DRG nociceptive neurons upon TiO2 inflammation. LXA4 reduced TiO2-induced TRPV1 mRNA expression and protein detection, as well TRPV1 co-staining with p-NFκB, indicating reduction of neuronal activation. LXA4 down-modulated neuronal activation and response to capsaicin (a TRPV1 agonist) and AITC [a transient receptor potential ankyrin 1 (TRPA1) agonist] of DRG neurons. Conclusion LXA4 might target recruited leukocytes and primary afferent nociceptive neurons to exert analgesic and anti-inflammatory activities in a model resembling what is observed in patients with prosthesis inflammation.
Collapse
Affiliation(s)
- Telma Saraiva-Santos
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Paraná, Brazil
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Tiago H. Zaninelli
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Paraná, Brazil
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital-Harvard Medical School, Boston, MA, United States
| | - Marília F. Manchope
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Paraná, Brazil
| | - Ketlem C. Andrade
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Paraná, Brazil
| | - Camila R. Ferraz
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Paraná, Brazil
| | - Mariana M. Bertozzi
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Paraná, Brazil
| | - Nayara A. Artero
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Paraná, Brazil
| | - Anelise Franciosi
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Paraná, Brazil
| | - Stephanie Badaro-Garcia
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Paraná, Brazil
| | - Larissa Staurengo-Ferrari
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Paraná, Brazil
| | - Sergio M. Borghi
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Paraná, Brazil
- Center for Research in Health Sciences, University of Northern Paraná, Londrina, Paraná, Brazil
| | - Graziela S. Ceravolo
- Department of Physiological Sciences, Center for Biological Sciences, Londrina State University, Londrina, Paraná, Brazil
| | | | - Janaína Menezes Zanoveli
- Department of Pharmacology, Biological Sciences Sector, Federal University of Parana, Curitiba, Parana, Brazil
| | - Michael S. Rogers
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital-Harvard Medical School, Boston, MA, United States
| | - Rubia Casagrande
- Department of Pharmaceutical Sciences, Centre of Health Sciences, Londrina State University, Londrina, Paraná, Brazil
| | - Felipe A. Pinho-Ribeiro
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Waldiceu A. Verri
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Paraná, Brazil
| |
Collapse
|
33
|
Lopes RV, Baggio DF, Ferraz CR, Bertozzi MM, Saraiva-Santos T, Verri Junior WA, Chichorro JG. Maresin-2 inhibits inflammatory and neuropathic trigeminal pain and reduces neuronal activation in the trigeminal ganglion. CURRENT RESEARCH IN NEUROBIOLOGY 2023; 4:100093. [PMID: 37397816 PMCID: PMC10313899 DOI: 10.1016/j.crneur.2023.100093] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/23/2023] [Accepted: 05/30/2023] [Indexed: 07/04/2023] Open
Abstract
Pain is a common symptom associated with disorders involving the orofacial structures. Most acute orofacial painful conditions are easily recognized, but the pharmacological treatment may be limited by the adverse events of current available drugs and/or patients' characteristics. In addition, chronic orofacial pain conditions represent clinical challenges both, in terms of diagnostic and treatment. There is growing evidence that specialized pro-resolution lipid mediators (SPMs) present potent analgesic effects, in addition to their well characterized role in the resolution of inflammation. Maresins (MaR-1 and MaR-2) were the last described members of this family, and MaR-2 analgesic action has not yet been reported. Herein the effect of MaR-2 in different orofacial pain models was investigated. MaR-2 (1 or 10 ng) was always delivered via medullary subarachnoid injection, which corresponds to the intrathecal treatment. A single injection of MaR-2 caused a significant reduction of phases I and II of the orofacial formalin test in rats. Repeated injections of MaR-2 prevented the development of facial heat and mechanical hyperalgesia in a model of post-operative pain in rats. In a model of trigeminal neuropathic pain (CCI-ION), repeated MaR-2 injections reversed facial heat and mechanical hyperalgesia in rats and mice. CCI-ION increased c-Fos positive neurons and CGRP+ activated (nuclear pNFkB) neurons in the trigeminal ganglion (TG), which were restored to sham levels by MaR-2 repeated treatment. In conclusion, MaR-2 showed potent and long-lasting analgesic effects in inflammatory and neuropathic pain of orofacial origin and the inhibition of CGRP-positive neurons in the TG may account for MaR-2 action.
Collapse
Affiliation(s)
- Raphael Vieira Lopes
- Department of Pharmacology, Biological Sciences Sector, Federal University of Parana, Curitiba, Parana, Brazil
| | - Darciane Favero Baggio
- Department of Pharmacology, Biological Sciences Sector, Federal University of Parana, Curitiba, Parana, Brazil
| | - Camila Rodrigues Ferraz
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Pathology, State University of Londrina, Londrina, PR, Brazil
| | - Mariana Marques Bertozzi
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Pathology, State University of Londrina, Londrina, PR, Brazil
| | - Telma Saraiva-Santos
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Pathology, State University of Londrina, Londrina, PR, Brazil
| | - Waldiceu Aparecido Verri Junior
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Pathology, State University of Londrina, Londrina, PR, Brazil
| | - Juliana Geremias Chichorro
- Department of Pharmacology, Biological Sciences Sector, Federal University of Parana, Curitiba, Parana, Brazil
| |
Collapse
|
34
|
Zhang Z, Ji C, Wang D, Wang M, She X, Song D, Xu X, Zhang D. Maresin1: A multifunctional regulator in inflammatory bone diseases. Int Immunopharmacol 2023; 120:110308. [PMID: 37192551 DOI: 10.1016/j.intimp.2023.110308] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/26/2023] [Accepted: 05/05/2023] [Indexed: 05/18/2023]
Abstract
Inflammation plays a crucial role in the physical response to danger signals, the elimination of toxic stimuli, and the restoration of homeostasis. However, dysregulated inflammatory responses lead to tissue damage, and chronic inflammation can disrupt osteogenic-osteoclastic homeostasis, ultimately leading to bone loss. Maresin1 (MaR1), a member of the specialized pro-resolving mediators (SPMs) family, has been found to possess significant anti-inflammatory, anti-allergic, pro-hemolytic, pro-healing, and pain-relieving properties. MaR1 is synthesized by macrophages (Mφs) and omega-3 fatty acids, and it may have the potential to promote bone homeostasis and treat inflammatory bone diseases. MaR1 has been found to stimulate osteoblast proliferation through leucine-rich repeat G protein-coupled receptor 6 (LGR6). It also activates Mφ phagocytosis and M2-type polarization, which helps to control the immune system. MaR1 can regulate T cells to exert anti-inflammatory effects and inhibit neutrophil infiltration and recruitment. In addition, MaR1 is involved in antioxidant signaling, including nuclear factor erythroid 2-related factor 2 (NRF2). It has also been found to promote the autophagic behavior of periodontal ligament stem cells, stimulate Mφs against pathogenic bacteria, and regulate tissue regeneration and repair. In summary, this review provides new information and a comprehensive overview of the critical roles of MaR1 in inflammatory bone diseases, indicating its potential as a therapeutic approach for managing skeletal metabolism and inflammatory bone diseases.
Collapse
Affiliation(s)
- Zhanwei Zhang
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China; Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China; Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China; Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China
| | - Chonghao Ji
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China; Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China; Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China; Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China
| | | | - Maoshan Wang
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China; Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China; Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China; Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China
| | - Xiao She
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China; Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China; Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China; Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China
| | - Dawei Song
- School of Stomatology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Xin Xu
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China; Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China; Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China; Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China.
| | - Dongjiao Zhang
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China; Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China; Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China; Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China.
| |
Collapse
|
35
|
Yang M, Huan W, Zhang G, Li J, Xia F, Durrani R, Zhao W, Lu J, Peng X, Gao F. Identification of Protein Quality Markers in Toad Venom from Bufo gargarizans. Molecules 2023; 28:molecules28083628. [PMID: 37110862 PMCID: PMC10141085 DOI: 10.3390/molecules28083628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/05/2023] [Accepted: 04/09/2023] [Indexed: 04/29/2023] Open
Abstract
Toad venom is a traditional Chinese medicine with high medicinal value. The existing quality evaluation standards of toad venom have obvious limitations because of the lack of research on proteins. Thus, it is necessary to screen suitable quality markers and establish appropriate quality evaluation methods for toad venom proteins to guarantee their safety and efficacy in clinical applications. SDS-PAGE, HPLC, and cytotoxicity assays were used to analyze differences in protein components of toad venom from different areas. Functional proteins were screened as potential quality markers by proteomic and bioinformatic analyses. The protein components and small molecular components of toad venom were not correlated in content. Additionally, the protein component had strong cytotoxicity. Proteomics analysis showed that 13 antimicrobial proteins, four anti-inflammatory and analgesic proteins, and 20 antitumor proteins were differentially expressed extracellular proteins. A candidate list of functional proteins was coded as potential quality markers. Moreover, Lysozyme C-1, which has antimicrobial activity, and Neuropeptide B (NPB), which has anti-inflammatory and analgesic activity, were identified as potential quality markers for toad venom proteins. Quality markers can be used as the basis of quality studies of toad venom proteins and help to construct and improve safe, scientific, and comprehensive quality evaluation methods.
Collapse
Affiliation(s)
- Meiyun Yang
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Weiwei Huan
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, China
| | - Guobing Zhang
- Department of Pharmacy, Zhejiang Province People's Hospital, Hangzhou 310014, China
| | - Jie Li
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, China
| | - Fengyan Xia
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 313000, China
| | - Rabia Durrani
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Wei Zhao
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Jidong Lu
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Xinmeng Peng
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Fei Gao
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
36
|
Amani H, Soltani Khaboushan A, Terwindt GM, Tafakhori A. Glia Signaling and Brain Microenvironment in Migraine. Mol Neurobiol 2023; 60:3911-3934. [PMID: 36995514 DOI: 10.1007/s12035-023-03300-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/27/2023] [Indexed: 03/31/2023]
Abstract
Migraine is a complicated neurological disorder affecting 6% of men and 18% of women worldwide. Various mechanisms, including neuroinflammation, oxidative stress, altered mitochondrial function, neurotransmitter disturbances, cortical hyperexcitability, genetic factors, and endocrine system problems, are responsible for migraine. However, these mechanisms have not completely delineated the pathophysiology behind migraine, and they should be further studied. The brain microenvironment comprises neurons, glial cells, and vascular structures with complex interactions. Disruption of the brain microenvironment is the main culprit behind various neurological disorders. Neuron-glia crosstalk contributes to hyperalgesia in migraine. In the brain, microenvironment and related peripheral regulatory circuits, microglia, astrocytes, and satellite cells are necessary for proper function. These are the most important cells that could induce migraine headaches by disturbing the balance of the neurotransmitters in the nervous system. Neuroinflammation and oxidative stress are the prominent reactions glial cells drive during migraine. Understanding the role of cellular and molecular components of the brain microenvironment on the major neurotransmitters engaged in migraine pathophysiology facilitates the development of new therapeutic approaches with higher effectiveness for migraine headaches. Investigating the role of the brain microenvironment and neuroinflammation in migraine may help decipher its pathophysiology and provide an opportunity to develop novel therapeutic approaches for its management. This review aims to discuss the neuron-glia interactions in the brain microenvironment during migraine and their potential role as a therapeutic target for the treatment of migraine.
Collapse
Affiliation(s)
- Hanieh Amani
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Soltani Khaboushan
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran.
- Iranian Center of Neurological Research, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Gisela M Terwindt
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Abbas Tafakhori
- Iranian Center of Neurological Research, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Neurology, Imam Khomeini Hospital, Keshavarz Blvd., Tehran, Iran.
| |
Collapse
|
37
|
Wang X, Botchway BOA, Zhang Y, Huang M, Liu X. Maresin1 can be a potential therapeutic target for nerve injury. Biomed Pharmacother 2023; 161:114466. [PMID: 36870281 DOI: 10.1016/j.biopha.2023.114466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/26/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Nerve injury significantly affects human motor and sensory function due to destruction of the integrity of nerve structure. In the wake of nerve injury, glial cells are activated, and synaptic integrity is destroyed, causing inflammation and pain hypersensitivity. Maresin1, an omega-3 fatty acid, is a derivative of docosahexaenoic acid. It has showed beneficial effects in several animal models of central and peripheral nerve injuries. In this review, we summarize the anti-inflammatory, neuroprotective and pain hypersensitivity effects of maresin1 in nerve injury and provide a theoretical basis for the clinical treatment of nerve injury using maresin1.
Collapse
Affiliation(s)
- Xichen Wang
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Zhejiang, China
| | - Benson O A Botchway
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China; Bupa Cromwell Hospital, London, UK
| | - Yong Zhang
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Zhejiang, China
| | - Min Huang
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Zhejiang, China
| | - Xuehong Liu
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Zhejiang, China.
| |
Collapse
|
38
|
Abstract
Interactions between the immune and nervous systems are of central importance in neuropathic pain, a common and debilitating form of chronic pain caused by a lesion or disease affecting the somatosensory system. Our understanding of neuroimmune interactions in pain research has advanced considerably. Initially considered as passive bystanders, then as culprits in the pathogenesis of neuropathic pain, immune responses in the nervous system are now established to underpin not only the initiation and progression of pain but also its resolution. Indeed, immune cells and their mediators are well-established promoters of neuroinflammation at each level of the neural pain pathway that contributes to pain hypersensitivity. However, emerging evidence indicates that specific subtypes of immune cells (including antinociceptive macrophages, pain-resolving microglia and T regulatory cells) as well as immunoresolvent molecules and modulators of the gut microbiota-immune system axis can reduce the pain experience and contribute to the resolution of neuropathic pain. This Review provides an overview of the immune mechanisms responsible for the resolution of neuropathic pain, including those involved in innate, adaptive and meningeal immunity as well as interactions with the gut microbiome. Specialized pro-resolving mediators and therapeutic approaches that target these neuroimmune mechanisms are also discussed.
Collapse
|
39
|
Guo J, Shang X, Chen P, Huang X. How does carrageenan cause colitis? A review. Carbohydr Polym 2023; 302:120374. [PMID: 36604052 DOI: 10.1016/j.carbpol.2022.120374] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022]
Abstract
Carrageenan is a common additive, but mounting studies have reported that it may cause or aggravate inflammation in the intestines. The safety of carrageenan remains controversial and its inflammatory mechanisms are unclear. In this review, the pathogenesis of colitis by carrageenans was discussed. We analyzed the pathogenesis of inflammatory bowel disease, followed that line of thought, the existing evidence of carrageenans causing colitis in cellular and animal models was summarized to draw its colitis pathogenesis. Two pathways were described including: 1) carrageenan changed the composition of intestinal microbiota, especially Akkermansia muciniphila, which destroyed the mucosal barrier and triggered the inflammatory immune response; and 2) carrageenan directly contacted with receptors on epithelial cells and activated the NF-κB inflammatory pathway. This review aim to provide guidance for exploring the treatment of colitis caused by carrageenan, and safe processing and utilization of carrageenan in food industry, which is worthy of study in the future.
Collapse
Affiliation(s)
- Juanjuan Guo
- College of Oceanology and Food Sciences, Quanzhou Normal University, Quanzhou, Fujian 362000, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| | - Xuke Shang
- College of Oceanology and Food Sciences, Quanzhou Normal University, Quanzhou, Fujian 362000, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Peilin Chen
- College of Oceanology and Food Sciences, Quanzhou Normal University, Quanzhou, Fujian 362000, China
| | - Xiaozhou Huang
- College of Oceanology and Food Sciences, Quanzhou Normal University, Quanzhou, Fujian 362000, China
| |
Collapse
|
40
|
Chikungunya Virus and Its Envelope Protein E2 Induce Hyperalgesia in Mice: Inhibition by Anti-E2 Monoclonal Antibodies and by Targeting TRPV1. Cells 2023; 12:cells12040556. [PMID: 36831223 PMCID: PMC9954636 DOI: 10.3390/cells12040556] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/20/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
Chikungunya virus is an arthropod-borne infectious agent that causes Chikungunya fever disease. About 90% of the infected patients experience intense polyarthralgia, affecting mainly the extremities but also the large joints such as the knees. Chronic disease symptoms persist for months, even after clearance of the virus from the blood. Envelope proteins stimulate the immune response against the Chikungunya virus, becoming an important therapeutic target. We inactivated the Chikungunya virus (iCHIKV) and produced recombinant E2 (rE2) protein and three different types of anti-rE2 monoclonal antibodies. Using these tools, we observed that iCHIKV and rE2 protein induced mechanical hyperalgesia (electronic aesthesiometer test) and thermal hyperalgesia (Hargreaves test) in mice. These behavioral results were accompanied by the activation of dorsal root ganglia (DRG) neurons in mice, as observed by calcium influx. Treatment with three different types of anti-rE2 monoclonal antibodies and absence or blockade (AMG-9810 treatment) of transient receptor potential vanilloid 1 (TRPV1) channel diminished mechanical and thermal hyperalgesia in mice. iCHIKV and rE2 activated TRPV1+ mouse DRG neurons in vitro, demonstrating their ability to activate nociceptor sensory neurons directly. Therefore, our mouse data demonstrate that targeting E2 CHIKV protein with monoclonal antibodies and inhibiting TRPV1 channels are reasonable strategies to control CHIKV pain.
Collapse
|
41
|
Artero NA, Manchope MF, Carvalho TT, Saraiva-Santos T, Bertozzi MM, Carneiro JA, Franciosi A, Dionisio AM, Zaninelli TH, Fattori V, Ferraz CR, Piva M, Mizokami SS, Camilios-Neto D, Casagrande R, Verri WA. Hesperidin Methyl Chalcone Reduces the Arthritis Caused by TiO 2 in Mice: Targeting Inflammation, Oxidative Stress, Cytokine Production, and Nociceptor Sensory Neuron Activation. Molecules 2023; 28:molecules28020872. [PMID: 36677929 PMCID: PMC9864652 DOI: 10.3390/molecules28020872] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/27/2022] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Arthroplasty is an orthopedic surgical procedure that replaces a dysfunctional joint by an orthopedic prosthesis, thereby restoring joint function. Upon the use of the joint prosthesis, a wearing process begins, which releases components such as titanium dioxide (TiO2) that trigger an immune response in the periprosthetic tissue, leading to arthritis, arthroplasty failure, and the need for revision. Flavonoids belong to a class of natural polyphenolic compounds that possess antioxidant and anti-inflammatory activities. Hesperidin methyl chalcone's (HMC) analgesic, anti-inflammatory, and antioxidant effects have been investigated in some models, but its activity against the arthritis caused by prosthesis-wearing molecules, such as TiO2, has not been investigated. Mice were treated with HMC (100 mg/kg, intraperitoneally (i.p.)) 24 h after intra-articular injection of 3 mg/joint of TiO2, which was used to induce chronic arthritis. HMC inhibited mechanical hyperalgesia, thermal hyperalgesia, joint edema, leukocyte recruitment, and oxidative stress in the knee joint (alterations in gp91phox, GSH, superoxide anion, and lipid peroxidation) and in recruited leukocytes (total reactive oxygen species and GSH); reduced patellar proteoglycan degradation; and decreased pro-inflammatory cytokine production. HMC also reduced the activation of nociceptor-sensory TRPV1+ and TRPA1+ neurons. These effects occurred without renal, hepatic, or gastric damage. Thus, HMC reduces arthritis triggered by TiO2, a component released upon wearing of prosthesis.
Collapse
Affiliation(s)
- Nayara A. Artero
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil
| | - Marília F. Manchope
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil
| | - Thacyana T. Carvalho
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil
| | - Telma Saraiva-Santos
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil
| | - Mariana M. Bertozzi
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil
| | - Jessica A. Carneiro
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil
| | - Anelise Franciosi
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil
| | - Amanda M. Dionisio
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil
| | - Tiago H. Zaninelli
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil
| | - Victor Fattori
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil
| | - Camila R. Ferraz
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil
| | - Maiara Piva
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil
| | - Sandra S. Mizokami
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil
| | - Doumit Camilios-Neto
- Department of Biochemistry and Biotechnology, Centre of Exact Sciences, Londrina State University, Londrina 86057-970, PR, Brazil
| | - Rubia Casagrande
- Department of Pharmaceutical Sciences, Centre of Health Science, Londrina State University, Londrina 86039-440, PR, Brazil
| | - Waldiceu A. Verri
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil
- Correspondence: ; Tel.: +55-43-3371-4979
| |
Collapse
|
42
|
Fang XX, Zhai MN, Zhu M, He C, Wang H, Wang J, Zhang ZJ. Inflammation in pathogenesis of chronic pain: Foe and friend. Mol Pain 2023; 19:17448069231178176. [PMID: 37220667 DOI: 10.1177/17448069231178176] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023] Open
Abstract
Chronic pain is a refractory health disease worldwide causing an enormous economic burden on individuals and society. Accumulating evidence suggests that inflammation in the peripheral nervous system (PNS) and central nervous system (CNS) is the major factor in the pathogenesis of chronic pain. The inflammation in the early- and late phase may have distinctive effects on the initiation and resolution of pain, which can be viewed as friend or foe. On the one hand, painful injuries lead to the activation of glial cells and immune cells in the PNS, releasing pro-inflammatory mediators, which contribute to the sensitization of nociceptors, leading to chronic pain; neuroinflammation in the CNS drives central sensitization and promotes the development of chronic pain. On the other hand, macrophages and glial cells of PNS and CNS promote pain resolution via anti-inflammatory mediators and specialized pro-resolving mediators (SPMs). In this review, we provide an overview of the current understanding of inflammation in the deterioration and resolution of pain. Further, we summarize a number of novel strategies that can be used to prevent and treat chronic pain by controlling inflammation. This comprehensive view of the relationship between inflammation and chronic pain and its specific mechanism will provide novel targets for the treatment of chronic pain.
Collapse
Affiliation(s)
- Xiao-Xia Fang
- Department of Human Anatomy, School of Medicine, Nantong University, Nantong, China
| | - Meng-Nan Zhai
- Department of Human Anatomy, School of Medicine, Nantong University, Nantong, China
| | - Meixuan Zhu
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Cheng He
- Department of Human Anatomy, School of Medicine, Nantong University, Nantong, China
| | - Heng Wang
- Department of Human Anatomy, School of Medicine, Nantong University, Nantong, China
| | - Juan Wang
- Department of Human Anatomy, School of Medicine, Nantong University, Nantong, China
| | - Zhi-Jun Zhang
- Department of Human Anatomy, School of Medicine, Nantong University, Nantong, China
| |
Collapse
|
43
|
Li X, Deng YF, Xiang P, Du JY, Liang JF. Intrathecal liproxstatin-1 delivery inhibits ferroptosis and attenuates mechanical and thermal hypersensitivities in rats with complete Freund’s adjuvant-induced inflammatory pain. Neural Regen Res 2023; 18:456-462. [PMID: 35900446 PMCID: PMC9396519 DOI: 10.4103/1673-5374.346547] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Previous studies have confirmed the relationship between iron-dependent ferroptosis and a peripheral nerve injury-induced neuropathic pain model. However, the role of ferroptosis in inflammatory pain remains inconclusive. Therefore, we aimed to explore whether ferroptosis in the spinal cord and dorsal root ganglion contributes to complete Freund’s adjuvant (CFA)-induced painful behaviors in rats. Our results revealed that various biochemical and morphological changes were associated with ferroptosis in the spinal cord and dorsal root ganglion tissues of CFA rats. These changes included iron overload, enhanced lipid peroxidation, disorders of anti-acyl-coenzyme A synthetase long-chain family member 4 and glutathione peroxidase 4 levels, and abnormal morphological changes in mitochondria. Intrathecal treatment of liproxstatin-1 (a ferroptosis inhibitor) reversed these ferroptosis-related changes and alleviated mechanical and thermal hypersensitivities in CFA rats. Our study demonstrated the occurrence of ferroptosis in the spinal cord and dorsal root ganglion tissues in a rodent model of inflammatory pain and indicated that intrathecal administration of ferroptosis inhibitors, such as liproxstatin-1, is a potential therapeutic strategy for treating inflammatory pain.
Collapse
|
44
|
Niu M, Zhao F, Chen R, Li P, Bi L. The transient receptor potential channels in rheumatoid arthritis: Need to pay more attention. Front Immunol 2023; 14:1127277. [PMID: 36926330 PMCID: PMC10013686 DOI: 10.3389/fimmu.2023.1127277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/06/2023] [Indexed: 03/06/2023] Open
Abstract
Rheumatoid arthritis (RA) is characterized by the augment of vascular permeability, increased inflammatory cells infiltration, dysregulated immune cells activation, pannus formation and unbearable pain hyperalgesia. Ca2+ affect almost every aspect of cellular functions, involving cell migration, signal transduction, proliferation, and apoptosis. Transient receptor potential channels (TRPs) as a type of non-selective permeable cation channels, can regulate Ca2+ entry and intracellular Ca2+ signal in cells including immune cells and neurons. Researches have demonstrated that TRPs in the mechanisms of inflammatory diseases have achieved rapid progress, while the roles of TRPs in RA pathogenesis and pain hyperalgesia are still not well understood. To solve this problem, this review presents the evidence of TRPs on vascular endothelial cells in joint swelling, neutrophils activation and their trans-endothelial migration, as well as their bridging role in the reactive oxygen species/TRPs/Ca2+/peptidyl arginine deiminases networks in accelerating citrullinated proteins formation. It also points out the distinct functions of TRPs subfamilies expressed in the nervous systems of joints in cold hyperalgesia and neuro-inflammation mutually influenced inflammatory pain in RA. Thus, more attention could be paid on the impact of TRPs in RA and TRPs are useful in researches on the molecular mechanisms of anti-inflammation and analgesic therapeutic strategies.
Collapse
Affiliation(s)
- Mengwen Niu
- Department of Rheumatology and Immunology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Feng Zhao
- Department of Rheumatology and Immunology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Rui Chen
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Ping Li
- Department of Rheumatology and Immunology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Liqi Bi
- Department of Rheumatology and Immunology, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
45
|
Olivares-González L, Velasco S, Gallego I, Esteban-Medina M, Puras G, Loucera C, Martínez-Romero A, Peña-Chilet M, Pedraz JL, Rodrigo R. An SPM-Enriched Marine Oil Supplement Shifted Microglia Polarization toward M2, Ameliorating Retinal Degeneration in rd10 Mice. Antioxidants (Basel) 2022; 12:antiox12010098. [PMID: 36670960 PMCID: PMC9855087 DOI: 10.3390/antiox12010098] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/03/2022] [Accepted: 12/13/2022] [Indexed: 01/04/2023] Open
Abstract
Retinitis pigmentosa (RP) is the most common inherited retinal dystrophy causing progressive vision loss. It is accompanied by chronic and sustained inflammation, including M1 microglia activation. This study evaluated the effect of an essential fatty acid (EFA) supplement containing specialized pro-resolving mediators (SPMs), on retinal degeneration and microglia activation in rd10 mice, a model of RP, as well as on LPS-stimulated BV2 cells. The EFA supplement was orally administered to mice from postnatal day (P)9 to P18. At P18, the electrical activity of the retina was examined by electroretinography (ERG) and innate behavior in response to light were measured. Retinal degeneration was studied via histology including the TUNEL assay and microglia immunolabeling. Microglia polarization (M1/M2) was assessed by flow cytometry, qPCR, ELISA and histology. Redox status was analyzed by measuring antioxidant enzymes and markers of oxidative damage. Interestingly, the EFA supplement ameliorated retinal dysfunction and degeneration by improving ERG recording and sensitivity to light, and reducing photoreceptor cell loss. The EFA supplement reduced inflammation and microglia activation attenuating M1 markers as well as inducing a shift to the M2 phenotype in rd10 mouse retinas and LPS-stimulated BV2 cells. It also reduced oxidative stress markers of lipid peroxidation and carbonylation. These findings could open up new therapeutic opportunities based on resolving inflammation with oral supplementation with SPMs such as the EFA supplement.
Collapse
Affiliation(s)
- Lorena Olivares-González
- Group of Pathophysiology and Therapies for Vision Disorders, Príncipe Felipe Research Center (CIPF), 46012 Valencia, Spain
| | - Sheyla Velasco
- Group of Pathophysiology and Therapies for Vision Disorders, Príncipe Felipe Research Center (CIPF), 46012 Valencia, Spain
| | - Idoia Gallego
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Health Institute Carlos III, 01006 Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Research Group, 01006 Vitoria-Gasteiz, Spain
| | - Marina Esteban-Medina
- Computational Medicine Platform, Andalusian Public Foundation Progress and Health-FPS Hospital Virgen del Rocío, 41013 Seville, Spain
- Systems and Computational Medicine Group, Institute of Biomedicine of Seville, IBiS, University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain
| | - Gustavo Puras
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Health Institute Carlos III, 01006 Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Research Group, 01006 Vitoria-Gasteiz, Spain
| | - Carlos Loucera
- Computational Medicine Platform, Andalusian Public Foundation Progress and Health-FPS Hospital Virgen del Rocío, 41013 Seville, Spain
- Systems and Computational Medicine Group, Institute of Biomedicine of Seville, IBiS, University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain
| | | | - María Peña-Chilet
- Computational Medicine Platform, Andalusian Public Foundation Progress and Health-FPS Hospital Virgen del Rocío, 41013 Seville, Spain
- Systems and Computational Medicine Group, Institute of Biomedicine of Seville, IBiS, University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain
- Bioinformatics in Rare Diseases (BiER), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), FPS, Hospital Virgen del Rocio, 41013 Seville, Spain
| | - José Luis Pedraz
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Health Institute Carlos III, 01006 Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Research Group, 01006 Vitoria-Gasteiz, Spain
| | - Regina Rodrigo
- Group of Pathophysiology and Therapies for Vision Disorders, Príncipe Felipe Research Center (CIPF), 46012 Valencia, Spain
- Biomedical Research Networking Center in Rare Diseases (CIBERER), Health Institute Carlos III, 28029 Madrid, Spain
- Department of Physiology, University of Valencia (UV), 46100 Burjassot, Spain
- Department of Anatomy and Physiology, Catholic University of Valencia San Vicente Mártir, 46001 Valencia, Spain
- Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics UV-IIS La Fe, 46026 Valencia, Spain
- Correspondence: ; Tel.: +34-96-328-96-80
| |
Collapse
|
46
|
Pan G, Zhang P, Yang J, Wu Y. The regulatory effect of specialized pro-resolving mediators on immune cells. Biomed Pharmacother 2022; 156:113980. [DOI: 10.1016/j.biopha.2022.113980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/22/2022] [Accepted: 11/04/2022] [Indexed: 11/08/2022] Open
|
47
|
Malange KF, Navia-Pelaez JM, Dias EV, Lemes JBP, Choi SH, Dos Santos GG, Yaksh TL, Corr M. Macrophages and glial cells: Innate immune drivers of inflammatory arthritic pain perception from peripheral joints to the central nervous system. FRONTIERS IN PAIN RESEARCH 2022; 3:1018800. [PMID: 36387416 PMCID: PMC9644179 DOI: 10.3389/fpain.2022.1018800] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 10/03/2022] [Indexed: 07/22/2023] Open
Abstract
Millions of people suffer from arthritis worldwide, consistently struggling with daily activities due to debilitating pain evoked by this disease. Perhaps the most intensively investigated type of inflammatory arthritis is rheumatoid arthritis (RA), where, despite considerable advances in research and clinical management, gaps regarding the neuroimmune interactions that guide inflammation and chronic pain in this disease remain to be clarified. The pain and inflammation associated with arthritis are not isolated to the joints, and inflammatory mechanisms induced by different immune and glial cells in other tissues may affect the development of chronic pain that results from the disease. This review aims to provide an overview of the state-of-the-art research on the roles that innate immune, and glial cells play in the onset and maintenance of arthritis-associated pain, reviewing nociceptive pathways from the joint through the dorsal root ganglion, spinal circuits, and different structures in the brain. We will focus on the cellular mechanisms related to neuroinflammation and pain, and treatments targeting these mechanisms from the periphery and the CNS. A comprehensive understanding of the role these cells play in peripheral inflammation and initiation of pain and the central pathways in the spinal cord and brain will facilitate identifying new targets and pathways to aide in developing therapeutic strategies to treat joint pain associated with RA.
Collapse
Affiliation(s)
- Kaue Franco Malange
- Department of Anesthesiology, University of California, San Diego, CA, United States
| | | | - Elayne Vieira Dias
- Department of Neurology, University of California, San Francisco, CA, United States
| | | | - Soo-Ho Choi
- Department of Medicine, University of California, San Diego, CA, United States
| | | | - Tony L. Yaksh
- Department of Anesthesiology, University of California, San Diego, CA, United States
| | - Maripat Corr
- Department of Medicine, University of California, San Diego, CA, United States
| |
Collapse
|
48
|
Bertozzi MM, Saraiva-Santos T, Zaninelli TH, Pinho-Ribeiro FA, Fattori V, Staurengo-Ferrari L, Ferraz CR, Domiciano TP, Calixto-Campos C, Borghi SM, Zarpelon AC, Cunha TM, Casagrande R, Verri WA. Ehrlich Tumor Induces TRPV1-Dependent Evoked and Non-Evoked Pain-like Behavior in Mice. Brain Sci 2022; 12:brainsci12091247. [PMID: 36138983 PMCID: PMC9496717 DOI: 10.3390/brainsci12091247] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/09/2022] [Accepted: 09/11/2022] [Indexed: 11/16/2022] Open
Abstract
We standardized a model by injecting Ehrlich tumor cells into the paw to evaluate cancer pain mechanisms and pharmacological treatments. Opioid treatment, but not cyclooxygenase inhibitor or tricyclic antidepressant treatments reduces Ehrlich tumor pain. To best use this model for drug screening it is essential to understand its pathophysiological mechanisms. Herein, we investigated the contribution of the transient receptor potential cation channel subfamily V member 1 (TRPV1) in the Ehrlich tumor-induced pain model. Dorsal root ganglia (DRG) neurons from the Ehrlich tumor mice presented higher activity (calcium levels using fluo-4 fluorescent probe) and an increased response to capsaicin (TRPV1 agonist) than the saline-injected animals (p < 0.05). We also observed diminished mechanical (electronic von Frey) and thermal (hot plate) hyperalgesia, paw flinching, and normalization of weight distribution imbalance in TRPV1 deficient mice (p < 0.05). On the other hand, TRPV1 deficiency did not alter paw volume or weight, indicating no significant alteration in tumor growth. Intrathecal injection of AMG9810 (TRPV1 antagonist) reduced ongoing Ehrlich tumor-triggered mechanical and thermal hyperalgesia (p < 0.05). Therefore, the contribution of TRPV1 to Ehrlich tumor pain behavior was revealed by genetic and pharmacological approaches, thus, supporting the use of this model to investigate TRPV1-targeting therapies for the treatment of cancer pain.
Collapse
Affiliation(s)
- Mariana M. Bertozzi
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil
| | - Telma Saraiva-Santos
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil
| | - Tiago H. Zaninelli
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil
| | - Felipe A. Pinho-Ribeiro
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Victor Fattori
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil
| | - Larissa Staurengo-Ferrari
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil
| | - Camila R. Ferraz
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil
| | - Talita P. Domiciano
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil
| | - Cassia Calixto-Campos
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil
| | - Sergio M. Borghi
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil
- Center for Research in Health Sciences, University of Northern Londrina, Londrina 86041-120, PR, Brazil
| | - Ana C. Zarpelon
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil
| | - Thiago M. Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes, Ribeirão Preto 14049-900, SP, Brazil
| | - Rubia Casagrande
- Department of Pharmaceutical Sciences, Center of Health Science, Londrina State University, Londrina 86038-440, PR, Brazil
| | - Waldiceu A. Verri
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil
- Correspondence: or ; Tel.: +55-43-3371-4979; Fax: +55-43-3371-4387
| |
Collapse
|
49
|
Maresin 2 is an analgesic specialized pro-resolution lipid mediator in mice by inhibiting neutrophil and monocyte recruitment, nociceptor neuron TRPV1 and TRPA1 activation, and CGRP release. Neuropharmacology 2022; 216:109189. [PMID: 35820471 DOI: 10.1016/j.neuropharm.2022.109189] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 12/15/2022]
Abstract
Maresin-2 (MaR2) is a specialized pro-resolution lipid mediator (SPM) that reduces neutrophil recruitment in zymosan peritonitis. Here, we investigated the analgesic effect of MaR2 and its mechanisms in different mouse models of pain. For that, we used the lipopolysaccharide (LPS)-induced mechanical hyperalgesia (electronic version of the von Frey filaments), thermal hyperalgesia (hot plate test) and weight distribution (static weight bearing), as well as the spontaneous pain models induced by capsaicin (TRPV1 agonist) or AITC (TRPA1 agonist). Immune cell recruitment was determined by immunofluorescence and flow cytometry while changes in the pro-inflammatory mediator landscape were determined using a proteome profiler kit and ELISA after LPS injection. MaR2 treatment was also performed in cultured DRG neurons stimulated with capsaicin or AITC in the presence or absence of LPS. The effect of MaR2 on TRVP1- and TRPA1-dependent CGRP release by cultured DRG neurons was determined by EIA. MaR2 inhibited LPS-induced inflammatory pain and changes in the cytokine landscape as per cytokine array assay. MaR2 also inhibited TRPV1 and TRPA1 activation as observed by a reduction in calcium influx in cultured DRG neurons, and the number of flinches and time spent licking the paw induced by capsaicin or AITC. In corroboration, MaR2 reduced capsaicin- and AITC-induced CGRP release by cultured DRG neurons and immune cell recruitment to the paw skin close the CGRP+ fibers. In conclusion, we show that MaR2 is an analgesic SPM that acts by targeting leukocyte recruitment, nociceptor TRPV1 and TRPA1 activation, and CGRP release in mice.
Collapse
|
50
|
A 2022 Systematic Review and Meta-Analysis of Enriched Therapeutic Diets and Nutraceuticals in Canine and Feline Osteoarthritis. Int J Mol Sci 2022; 23:ijms231810384. [PMID: 36142319 PMCID: PMC9499673 DOI: 10.3390/ijms231810384] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/04/2022] [Accepted: 09/04/2022] [Indexed: 11/17/2022] Open
Abstract
With osteoarthritis being the most common degenerative disease in pet animals, a very broad panel of natural health products is available on the market for its management. The aim of this systematic review and meta-analysis, registered on PROSPERO (CRD42021279368), was to test for the evidence of clinical analgesia efficacy of fortified foods and nutraceuticals administered in dogs and cats affected by osteoarthritis. In four electronic bibliographic databases, 1578 publications were retrieved plus 20 additional publications from internal sources. Fifty-seven articles were included, comprising 72 trials divided into nine different categories of natural health compound. The efficacy assessment, associated to the level of quality of each trial, presented an evident clinical analgesic efficacy for omega-3-enriched diets, omega-3 supplements and cannabidiol (to a lesser degree). Our analyses showed a weak efficacy of collagen and a very marked non-effect of chondroitin-glucosamine nutraceuticals, which leads us to recommend that the latter products should no longer be recommended for pain management in canine and feline osteoarthritis.
Collapse
|