1
|
Li W, Zhu J, Zhou T, Jin Z. Exploring the mechanisms of Yinchenhao decoction against ANIT-induced cholestatic liver injury by lipidomics, metabolomics and network pharmacology. J Pharm Biomed Anal 2025; 258:116736. [PMID: 39914330 DOI: 10.1016/j.jpba.2025.116736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/21/2025] [Accepted: 02/03/2025] [Indexed: 03/10/2025]
Abstract
Yinchenhao decoction (YCHD) has been used for the treatment of cholestasis for more than 1000 years with clear clinical efficacy. However, its active compounds and pharmacological mechanism against cholestasis are unclear. In this study, an integrated strategy of network pharmacology, lipidomics, metabolomics, and molecular docking were performed to elucidate the mechanism of YCHD's anti-cholestasis effect. Network pharmacology demonstrated YCHD mainly modulated lipid and atherosclerosis signaling pathways with the involvement of NF-κB, TNF, MAPK, and PI3K/AKT signaling pathways. In vivo experiments, male C57BL/6 J mice model of cholestasis was established by alpha-naphthyl isothiocyanate (ANIT), and were treated with different dosages (3 g/kg and 9 g/kg) of YCHD for one week. Ursodeoxycholic acid (UDCA) was used as a positive control. The in vivo experiments verified the ameliorative effect of YCHD on inflammation, hepatocellular injury and cholestasis. Furthermore, lipidomics and metabolomics research showed that YCHD could improve the metabolism disorder of glycerolipid, glycerophospholipid and amino acids. Subsequently, further WB and molecular docking validation experiments showed that the active compounds in YCHD have regulatory effects on the PPARγ/NF-κB/JNK pathway, the core pathway in lipid and atherosclerosis pathways, thereby inhibiting inflammatory response and improving lipid metabolism disorders. This study could provide evidence of the molecular mechanism and material basis of YCHD in treating cholestasis. This study also provided new research ideas for the discovery of active ingredients in traditional Chinese medicine formulas for the treatment of cholestasis.
Collapse
Affiliation(s)
- Weiwei Li
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Jing Zhu
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ting Zhou
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ziwen Jin
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
2
|
Cheon I, Kim M, Kim KH, Ko S. Hepatic Nuclear Receptors in Cholestasis-to-Cholangiocarcinoma Pathology. THE AMERICAN JOURNAL OF PATHOLOGY 2025; 195:409-421. [PMID: 39326734 PMCID: PMC11983697 DOI: 10.1016/j.ajpath.2024.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/22/2024] [Accepted: 07/26/2024] [Indexed: 09/28/2024]
Abstract
Cholestasis, characterized by impaired bile flow, is associated with an increased risk of cholangiocarcinoma (CCA), a malignancy originating from the biliary epithelium and hepatocytes. Hepatic nuclear receptors (NRs) are pivotal in regulating bile acid and metabolic homeostasis, and their dysregulation is implicated in cholestatic liver diseases and the progression of liver cancer. This review elucidates the role of various hepatic NRs in the pathogenesis of cholestasis-to-CCA progression. It explores their impact on bile acid metabolism as well as their interactions with other signaling pathways implicated in CCA development. Additionally, it introduces available murine models of cholestasis/primary sclerosing cholangitis leading to CCA and discusses the clinical potential of targeting hepatic NRs as a promising approach for the prevention and treatment of cholestatic liver diseases and CCA. Understanding the complex interplay between hepatic NRs and cholestasis-to-CCA pathology holds promise for the development of novel preventive and therapeutic strategies for this devastating disease.
Collapse
Affiliation(s)
- Inyoung Cheon
- Department of Anesthesiology, Critical Care, and Pain Medicine and Center for Perioperative Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas; Department of Molecular Medicine and Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Minwook Kim
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Kang Ho Kim
- Department of Anesthesiology, Critical Care, and Pain Medicine and Center for Perioperative Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas.
| | - Sungjin Ko
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| |
Collapse
|
3
|
Sung I, Lee S, Bang D, Yi J, Lee S, Kim S. MDTR: a knowledge-guided interpretable representation for quantifying liver toxicity at transcriptomic level. Front Pharmacol 2025; 15:1398370. [PMID: 39926256 PMCID: PMC11802568 DOI: 10.3389/fphar.2024.1398370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 12/27/2024] [Indexed: 02/11/2025] Open
Abstract
Introduction Drug-induced liver injury (DILI) has been investigated at the patient level. Analysis of gene perturbation at the cellular level can help better characterize biological mechanisms of hepatotoxicity. Despite accumulating drug-induced transcriptome data such as LINCS, analyzing such transcriptome data upon drug treatment is a challenging task because the perturbation of expression is dose and time dependent. In addition, the mechanisms of drug toxicity are known only as literature information, not in a computable form. Methods To address these challenges, we propose a Multi-Dimensional Transcriptomic Ruler (MDTR) that quantifies the degree of DILI at the transcriptome level. To translate transcriptome data to toxicity-related mechanisms, MDTR incorporates KEGG pathways as representatives of mechanisms, mapping transcriptome data to biological pathways and subsequently aggregating them for each of the five hepatotoxicity mechanisms. Given that a single mechanism involves multiple pathways, MDTR measures pathway-level perturbation by constructing a radial basis kernel-based toxicity space and measuring the Mahalanobis distance in the transcriptomic kernel space. Representing each mechanism as a dimension, MDTR is visualized in a radar chart, enabling an effective visual presentation of hepatotoxicity at transcriptomic level. Results and Discussion In experiments with the LINCS dataset, we show that MDTR outperforms existing methods for measuring the distance of transcriptome data when describing for dose-dependent drug perturbations. In addition, MDTR shows interpretability at the level of DILI mechanisms in terms of the distance, i.e., in a metric space. Furthermore, we provided a user-friendly and freely accessible website (http://biohealth.snu.ac.kr/software/MDTR), enabling users to easily measure DILI in drug-induced transcriptome data.
Collapse
Affiliation(s)
- Inyoung Sung
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea
| | - Sangseon Lee
- Institute of Computer Technology, Seoul National University, Seoul, Republic of Korea
| | - Dongmin Bang
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea
- AIGENDRUG Co., Ltd., Seoul, Republic of Korea
| | - Jungseob Yi
- Interdisciplinary Program in Artificial Intelligence, Seoul National University, Seoul, Republic of Korea
| | - Sunho Lee
- AIGENDRUG Co., Ltd., Seoul, Republic of Korea
| | - Sun Kim
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea
- AIGENDRUG Co., Ltd., Seoul, Republic of Korea
- Interdisciplinary Program in Artificial Intelligence, Seoul National University, Seoul, Republic of Korea
- Department of Computer Science and Engineering, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
4
|
Xue C, Zeng P, Gong K, Li Q, Feng Z, Wang M, Chen S, Yang Y, Li J, Zhang S, Yin Z, Liang Y, Yan T, Yu M, Feng K, Zhao D, Yang X, Zhang X, Ma L, Iwakiri Y, Chen L, Tang X, Chen Y, Chen H, Duan Y. Nogo-B inhibition facilitates cholesterol metabolism to reduce hypercholesterolemia. Cell Rep 2024; 43:114691. [PMID: 39235944 DOI: 10.1016/j.celrep.2024.114691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 07/09/2024] [Accepted: 08/12/2024] [Indexed: 09/07/2024] Open
Abstract
The strategy of lowering cholesterol levels by promoting cholesterol excretion is still lacking, and few molecular targets act on multiple cholesterol metabolic processes. In this study, we find that Nogo-B deficiency/inhibition simultaneously promotes hepatic uptake of cholesterol and cholesterol excretion. Nogo-B deficiency decreases cholesterol levels by activating ATP-binding cassette transporters (ABCs), apolipoprotein E (ApoE), and low-density lipoprotein receptor (LDLR) expression. We discover that Nogo-B interacts with liver X receptor α (LXRα), and Nogo-B deficiency inhibits ubiquitination degradation of LXRα, thereby enhancing its function on cholesterol excretion. Decreased cellular cholesterol levels further activate SREBP2 and LDLR expression, thereby promoting hepatic uptake of cholesterol. Nogo-B inhibition decreases atherosclerotic plaques and cholesterol levels in mice, and Nogo-B levels are correlated to cholesterol levels in human plasma. In this study, Nogo-B deficiency/inhibition not only promotes hepatic uptake of blood cholesterol but also facilitates cholesterol excretion. This study reports a strategy to lower cholesterol levels by inhibiting Nogo-B expression to promote hepatic cholesterol uptake and cholesterol excretion.
Collapse
Affiliation(s)
- Chao Xue
- Department of Cardiology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China; College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Peng Zeng
- College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Ke Gong
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Qian Li
- College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Zian Feng
- Department of Cardiology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Mengyao Wang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Shasha Chen
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yanfang Yang
- College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Jiaqi Li
- College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Shuang Zhang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Zequn Yin
- Department of Cardiology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Yingquan Liang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Tengteng Yan
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Miao Yu
- Medical College of Soochow University, Suzhou 215031, China
| | - Ke Feng
- College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Dan Zhao
- College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Xiaoxiao Yang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xia Zhang
- Tianjin Baodi Hospital, Baodi Clinical College of Tianjin Medical University, Tianjin 301800, China
| | - Likun Ma
- Department of Cardiology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Yasuko Iwakiri
- Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Liang Chen
- College of Life Science, Anhui Medical University, Hefei 230032, China
| | - Xiaoqiang Tang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, No. 17 People's South Road, Chengdu, Sichuan 610041, China
| | - Yuanli Chen
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Houzao Chen
- Department of Biochemistry & Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005, China.
| | - Yajun Duan
- Department of Cardiology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China.
| |
Collapse
|
5
|
Gong K, Xue C, Feng Z, Pan R, Wang M, Chen S, Chen Y, Guan Y, Dai L, Zhang S, Jiang L, Li L, Wang B, Yin Z, Ma L, Iwakiri Y, Tang J, Liao C, Chen H, Duan Y. Intestinal Nogo-B reduces GLP1 levels by binding to proglucagon on the endoplasmic reticulum to inhibit PCSK1 cleavage. Nat Commun 2024; 15:6845. [PMID: 39122737 PMCID: PMC11315690 DOI: 10.1038/s41467-024-51352-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
Glucagon-like peptide 1 (GLP1), which is mainly processed and cleaved from proglucagon in enteroendocrine cells (EECs) of the intestinal tract, acts on the GLP1 receptor in pancreatic cells to stimulate insulin secretion and to inhibit glucagon secretion. However, GLP1 processing is not fully understood. Here, we show that reticulon 4B (Nogo-B), an endoplasmic reticulum (ER)-resident protein, interacts with the major proglucagon fragment of proglucagon to retain proglucagon on the ER, thereby inhibiting PCSK1-mediated cleavage of proglucagon in the Golgi. Intestinal Nogo-B knockout in male type 2 diabetes mellitus (T2DM) mice increases GLP1 and insulin levels and decreases glucagon levels, thereby alleviating pancreatic injury and insulin resistance. Finally, we identify aberrantly elevated Nogo-B expression and inhibited proglucagon cleavage in EECs from diabetic patients. Our study reveals the subcellular regulatory processes involving Nogo-B during GLP1 production and suggests intestinal Nogo-B as a potential therapeutic target for T2DM.
Collapse
Affiliation(s)
- Ke Gong
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Department of Physiology, Faculty of Basic Medical Sciences, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, Hubei, China
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui, China
| | - Chao Xue
- College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China
| | - Zian Feng
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Ruru Pan
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Mengyao Wang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui, China
| | - Shasha Chen
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui, China
| | - Yuanli Chen
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui, China
| | - Yudong Guan
- Department of Geriatrics, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Lingyun Dai
- Department of Geriatrics, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Shuang Zhang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui, China
| | - Liwei Jiang
- Laboratory of Immunoengineering, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Ling Li
- Laboratory of Immunoengineering, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Bei Wang
- Department of Pathology, China-Japan Friendship Hospital, Beijing, China
| | - Zequn Yin
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Likun Ma
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Yasuko Iwakiri
- Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT, USA
| | - Junming Tang
- Department of Physiology, Faculty of Basic Medical Sciences, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Chenzhong Liao
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui, China
| | - Houzao Chen
- Department of Biochemistry & Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yajun Duan
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
6
|
Tang G, Zhang J, Zhang L, Xia L, Tang X, Chen R, Zhou R. Efficacy and safety of peroxisome proliferator-activated receptor agonists for the treatment of primary biliary cholangitis: a meta-analysis of randomized controlled trials. Front Pharmacol 2024; 15:1432814. [PMID: 39108746 PMCID: PMC11301641 DOI: 10.3389/fphar.2024.1432814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 06/27/2024] [Indexed: 03/17/2025] Open
Abstract
BACKGROUND Peroxisome proliferator-activated receptor (PPAR) agonists are recognised as a promising treatment for primary biliary cholangitis (PBC). However, the effects and safety of these agonists on PBC remain unexplored. Our study aimed to investigate the efficacy and safety of PPAR agonists in treating PBC. METHODS We searched Cochrane Library, and Web of Science, PubMed, and Embase databases from inception to 15 March 2024 for randomised controlled studies (RCTs) that enrolled individuals with PBC treated with PPAR agonists compared with placebo. The primary outcomes were biochemical response and normalization of the alkaline phosphatase (ALP) level. RESULTS Eight RCTs involving 869 participants in total were included. The meta-analysis revealed that compared to placebo, PPAR agonists increased the rate of biochemical response (RR: 5.53; 95% CI: 3.79, 8.06) and normalization of the ALP level (RR: 17.18; 95% CI: 5.61, 52.61). In addition, PPAR agonists can also reduce alanine aminotransferase (ALT) (MD: -12.69 U/L; 95% CI: -18.03, -7.35), aspartate aminotransferase (AST) (MD: -4.18 U/L; 95% CI: -7.28, -1.08), ALP (MD: -142.95 U/L; 95% CI: -167.29, -118.60), γ-glutamyltransferase (GGT) (MD: -63.03 U/L; 95% CI: -92.08, -33.98), and total cholesterol (TC) levels (SMD: -0.71; 95% CI: -1.38, -0.04), and there was no significant difference in overall adverse reactions (RR: 0.99; 95% CI: 0.92, 1.05), serious adverse reactions (RR: 1.10; 95% CI: 0.70, 1.72) between the two groups. CONCLUSION PPAR agonists are safe and well-tolerated in patients with PBC and are effective in improving the rate of biochemical response and related biomarkers.
Collapse
Affiliation(s)
- Gang Tang
- Division of Biliary Tract Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jie Zhang
- Division of Biliary Tract Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Linyu Zhang
- Center for Translational Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lingying Xia
- Division of Biliary Tract Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiaojuan Tang
- Division of Biliary Tract Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Rui Chen
- Division of Biliary Tract Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Rongxing Zhou
- Division of Biliary Tract Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
7
|
Wang T, Zhang M, Gong X, Chen W, Peng Y, Liao C, Xu H, Li Q, Shen G, Ren H, Zhu Y, Zhang B, Mao J, Wei L, Chen Y, Yang X. Inhibition of Nogo-B reduces the progression of pancreatic cancer by regulation NF-κB/GLUT1 and SREBP1 pathways. iScience 2024; 27:109741. [PMID: 38706871 PMCID: PMC11068639 DOI: 10.1016/j.isci.2024.109741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/22/2024] [Accepted: 04/10/2024] [Indexed: 05/07/2024] Open
Abstract
Pancreatic cancer (PC) is a lethal disease and associated with metabolism dysregulation. Nogo-B is related to multiple metabolic related diseases and types of cancers. However, the role of Nogo-B in PC remains unknown. In vitro, we showed that cell viability and migration was largely reduced in Nogo-B knockout or knockdown cells, while enhanced by Nogo-B overexpression. Consistently, orthotopic tumor and metastasis was reduced in global Nogo knockout mice. Furthermore, we indicated that glucose enhanced cell proliferation was associated to the elevation expression of Nogo-B and nuclear factor κB (NF-κB). While, NF-κB, glucose transporter type 1 (GLUT1) and sterol regulatory element-binding protein 1 (SREBP1) expression was reduced in Nogo-B deficiency cells. In addition, we showed that GLUT1 and SREBP1 was downstream target of NF-κB. Therefore, we demonstrated that Nogo deficiency inhibited PC progression is regulated by the NF-κB/GLUT1 and SREBP1 pathways, and suggested that Nogo-B may be a target for PC therapy.
Collapse
Affiliation(s)
- Tianxiang Wang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional Interventions, College of Food and Biological Engineering, Hefei University of Technology, Hefei 230000, China
| | - Min Zhang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional Interventions, College of Food and Biological Engineering, Hefei University of Technology, Hefei 230000, China
| | - Xinyu Gong
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional Interventions, College of Food and Biological Engineering, Hefei University of Technology, Hefei 230000, China
| | - Wanjing Chen
- Department of General Surgery, The Second Affiliated Hospital, Anhui Medical University, Hefei 230000, China
| | - Ying Peng
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional Interventions, College of Food and Biological Engineering, Hefei University of Technology, Hefei 230000, China
| | - Chenzhong Liao
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional Interventions, College of Food and Biological Engineering, Hefei University of Technology, Hefei 230000, China
| | - Hongmei Xu
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional Interventions, College of Food and Biological Engineering, Hefei University of Technology, Hefei 230000, China
| | - Qingshan Li
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional Interventions, College of Food and Biological Engineering, Hefei University of Technology, Hefei 230000, China
| | - Guodong Shen
- Department of Geriatrics, The First Affiliated Hospital of University of Science and Technology of China, Gerontology Institute of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230000, China
| | - Huirong Ren
- Department of Geriatrics, The First Affiliated Hospital of University of Science and Technology of China, Gerontology Institute of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230000, China
| | - Yaxin Zhu
- Institute for International Health Professions Education and Research, China Medical University, Shenyang 110000, China
| | - Baotong Zhang
- Department of Human Cell Biology and Genetics, School of Medicine, Southern University of Science and Technology, Shenzhen 518000, China
| | - Jiali Mao
- Department of Anesthesiology, The First Affiliated Hospital of University of Science and Technology of China, Hefei 230000, China
| | - Lingling Wei
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional Interventions, College of Food and Biological Engineering, Hefei University of Technology, Hefei 230000, China
| | - Yuanli Chen
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional Interventions, College of Food and Biological Engineering, Hefei University of Technology, Hefei 230000, China
| | - Xiaoxiao Yang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional Interventions, College of Food and Biological Engineering, Hefei University of Technology, Hefei 230000, China
| |
Collapse
|
8
|
Zhang W, Wu H, Luo S, Lu X, Tan X, Wen L, Ma X, Efferth T. Molecular insights into experimental models and therapeutics for cholestasis. Biomed Pharmacother 2024; 174:116594. [PMID: 38615607 DOI: 10.1016/j.biopha.2024.116594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/02/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024] Open
Abstract
Cholestatic liver disease (CLD) is a range of conditions caused by the accumulation of bile acids (BAs) or disruptions in bile flow, which can harm the liver and bile ducts. To investigate its pathogenesis and treatment, it is essential to establish and assess experimental models of cholestasis, which have significant clinical value. However, owing to the complex pathogenesis of cholestasis, a single modelling method can merely reflect one or a few pathological mechanisms, and each method has its adaptability and limitations. We summarize the existing experimental models of cholestasis, including animal models, gene-knockout models, cell models, and organoid models. We also describe the main types of cholestatic disease simulated clinically. This review provides an overview of targeted therapy used for treating cholestasis based on the current research status of cholestasis models. In addition, we discuss the respective advantages and disadvantages of different models of cholestasis to help establish experimental models that resemble clinical disease conditions. In sum, this review not only outlines the current research with cholestasis models but also projects prospects for clinical treatment, thereby bridging basic research and practical therapeutic applications.
Collapse
Affiliation(s)
- Wenwen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hefei Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shiman Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaohua Lu
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Xiyue Tan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Wen
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
9
|
Li J, Zhang S, Sun Y, Li J, Feng Z, Li H, Zhang M, Yan T, Han J, Duan Y. Liver ChREBP deficiency inhibits fructose-induced insulin resistance in pregnant mice and female offspring. EMBO Rep 2024; 25:2097-2117. [PMID: 38532128 PMCID: PMC11014959 DOI: 10.1038/s44319-024-00121-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 02/18/2024] [Accepted: 02/29/2024] [Indexed: 03/28/2024] Open
Abstract
High fructose intake during pregnancy increases insulin resistance (IR) and gestational diabetes mellitus (GDM) risk. IR during pregnancy primarily results from elevated hormone levels. We aim to determine the role of liver carbohydrate response element binding protein (ChREBP) in insulin sensitivity and lipid metabolism in pregnant mice and their offspring. Pregnant C57BL/6J wild-type mice and hepatocyte-specific ChREBP-deficient mice were fed with a high-fructose diet (HFrD) or normal chow diet (NC) pre-delivery. We found that the combination of HFrD with pregnancy excessively activates hepatic ChREBP, stimulating progesterone synthesis by increasing MTTP expression, which exacerbates IR. Increased progesterone levels upregulated hepatic ChREBP via the progesterone-PPARγ axis. Placental progesterone activated the progesterone-ChREBP loop in female offspring, contributing to IR and lipid accumulation. In normal dietary conditions, hepatic ChREBP modestly affected progesterone production and influenced IR during pregnancy. Our findings reveal the role of hepatic ChREBP in regulating insulin sensitivity and lipid homeostasis in both pregnant mice consuming an HFrD and female offspring, and suggest it as a potential target for managing gestational metabolic disorders, including GDM.
Collapse
Affiliation(s)
- Jiaqi Li
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China
| | - Shuang Zhang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Yuyao Sun
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China
| | - Jian Li
- Tianjin Central Hospital of Gynecology Obstetrics, Tianjin, 300052, China
| | - Zian Feng
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Huaxin Li
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Mengxue Zhang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Tengteng Yan
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Jihong Han
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China.
| | - Yajun Duan
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
10
|
Sun Y, Zhang L, Jiang Z. The role of peroxisome proliferator-activated receptors in the regulation of bile acid metabolism. Basic Clin Pharmacol Toxicol 2024; 134:315-324. [PMID: 38048777 DOI: 10.1111/bcpt.13971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/25/2023] [Accepted: 11/30/2023] [Indexed: 12/06/2023]
Abstract
Bile acids are synthesized from cholesterol in the liver. Dysregulation of bile acid homeostasis, characterized by excessive accumulation in the liver, gallbladder and blood, can lead to hepatocellular damage and the development of cholestatic liver disease. Nuclear receptors play a crucial role in the control of bile acid metabolism by efficiently regulating bile acid synthesis and transport in the liver. Among these receptors, peroxisome proliferator-activated receptor (PPAR), a ligand-activated transcription factor belonging to the nuclear hormone receptor superfamily, controls the expression of genes involved in adipogenesis, lipid metabolism, inflammation and glucose homeostasis and has emerged as a potential therapeutic target for the treatment of the metabolic syndrome in the past two decades. Emerging evidence suggests that PPAR activation holds promise as a therapeutic target for cholestatic liver disease, as it affects both bile acid production and transport. This review provides a comprehensive overview of recent advances in elucidating the role of PPAR in the regulation of bile acid metabolism, highlighting the current position of PPAR agonists in the treatment of primary biliary cholangitis. By summarizing the specific regulatory effects of PPAR on bile acids, this review contributes to the exploration of novel therapeutic strategies for cholestatic liver diseases.
Collapse
Affiliation(s)
- Yuqing Sun
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, Pharmaceutical Animal Experimental Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Luyong Zhang
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, Pharmaceutical Animal Experimental Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, China
| | - Zhenzhou Jiang
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, Pharmaceutical Animal Experimental Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
11
|
Tang W, Ding Z, Gao H, Yan Q, Liu J, Han Y, Hou X, Liu Z, Chen L, Yang D, Ma G, Cao H. Targeting Kindlin-2 in adipocytes increases bone mass through inhibiting FAS/PPAR γ/FABP4 signaling in mice. Acta Pharm Sin B 2023; 13:4535-4552. [PMID: 37969743 PMCID: PMC10638509 DOI: 10.1016/j.apsb.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/14/2023] [Accepted: 05/18/2023] [Indexed: 11/17/2023] Open
Abstract
Osteoporosis (OP) is a systemic skeletal disease that primarily affects the elderly population, which greatly increases the risk of fractures. Here we report that Kindlin-2 expression in adipose tissue increases during aging and high-fat diet fed and is accompanied by decreased bone mass. Kindlin-2 specific deletion (K2KO) controlled by Adipoq-Cre mice or adipose tissue-targeting AAV (AAV-Rec2-CasRx-sgK2) significantly increases bone mass. Mechanistically, Kindlin-2 promotes peroxisome proliferator-activated receptor gamma (PPARγ) activation and downstream fatty acid binding protein 4 (FABP4) expression through stabilizing fatty acid synthase (FAS), and increased FABP4 inhibits insulin expression and decreases bone mass. Kindlin-2 inhibition results in accelerated FAS degradation, decreased PPARγ activation and FABP4 expression, and therefore increased insulin expression and bone mass. Interestingly, we find that FABP4 is increased while insulin is decreased in serum of OP patients. Increased FABP4 expression through PPARγ activation by rosiglitazone reverses the high bone mass phenotype of K2KO mice. Inhibition of FAS by C75 phenocopies the high bone mass phenotype of K2KO mice. Collectively, our study establishes a novel Kindlin-2/FAS/PPARγ/FABP4/insulin axis in adipose tissue modulating bone mass and strongly indicates that FAS and Kindlin-2 are new potential targets and C75 or AAV-Rec2-CasRx-sgK2 treatment are potential strategies for OP treatment.
Collapse
Affiliation(s)
- Wanze Tang
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen 518055, China
- The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhen Ding
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen 518055, China
| | - Huanqing Gao
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen 518055, China
| | - Qinnan Yan
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jingping Liu
- Clinical Laboratory of the Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Yingying Han
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiaoting Hou
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhengwei Liu
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen 518055, China
| | - Litong Chen
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen 518055, China
| | - Dazhi Yang
- The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518055, China
| | - Guixing Ma
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen 518055, China
| | - Huiling Cao
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
12
|
Gong K, Zhang Z, Chen SS, Zhu XR, Wang MY, Yang XY, Ding C, Han JH, Li QS, Duan YJ. 6-Methyl flavone inhibits Nogo-B expression and improves high fructose diet-induced liver injury in mice. Acta Pharmacol Sin 2023; 44:2216-2229. [PMID: 37402997 PMCID: PMC10618526 DOI: 10.1038/s41401-023-01121-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/01/2023] [Indexed: 07/06/2023]
Abstract
Excessive fructose consumption increases hepatic de novo lipogenesis, resulting in cellular stress, inflammation and liver injury. Nogo-B is a resident protein of the endoplasmic reticulum that regulates its structure and function. Hepatic Nogo-B is a key protein in glycolipid metabolism, and inhibition of Nogo-B has protective effects against metabolic syndrome, thus small molecules that inhibit Nogo-B have therapeutic benefits for glycolipid metabolism disorders. In this study we tested 14 flavones/isoflavones in hepatocytes using dual luciferase reporter system based on the Nogo-B transcriptional response system, and found that 6-methyl flavone (6-MF) exerted the strongest inhibition on Nogo-B expression in hepatocytes with an IC50 value of 15.85 μM. Administration of 6-MF (50 mg· kg-1 ·d-1, i.g. for 3 weeks) significantly improved insulin resistance along with ameliorated liver injury and hypertriglyceridemia in high fructose diet-fed mice. In HepG2 cells cultured in a media containing an FA-fructose mixture, 6-MF (15 μM) significantly inhibited lipid synthesis, oxidative stress and inflammatory responses. Furthermore, we revealed that 6-MF inhibited Nogo-B/ChREBP-mediated fatty acid synthesis and reduced lipid accumulation in hepatocytes by restoring cellular autophagy and promoting fatty acid oxidation via the AMPKα-mTOR pathway. Thus, 6-MF may serve as a potential Nogo-B inhibitor to treat metabolic syndrome caused by glycolipid metabolism dysregulation.
Collapse
Affiliation(s)
- Ke Gong
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230031, China
| | - Zhen Zhang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230031, China
| | - Sha-Sha Chen
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230031, China
| | - Xin-Ran Zhu
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230031, China
| | - Meng-Yao Wang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230031, China
| | - Xin-Yue Yang
- Department of Cardiology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Chen Ding
- Department of Cardiology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Ji-Hong Han
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230031, China
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Qing-Shan Li
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230031, China.
| | - Ya-Jun Duan
- Department of Cardiology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China.
| |
Collapse
|
13
|
Chen Y, Yang S, Liu L, Yang X, Duan Y, Zhang S, Han J. A novel therapy for hepatic cholestasis treatment-the combination of rosiglitazone and fenofibrate. Eur J Pharmacol 2022; 938:175428. [PMID: 36436592 DOI: 10.1016/j.ejphar.2022.175428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 11/26/2022]
Abstract
Hepatic cholestasis can develop into liver fibrosis and eventually liver failure. Currently, ursodeoxycholic acid (UDCA) or UDCA combined with fenofibrate is used for cholestasis treatment. Rosiglitazone inhibited α-naphthyl isothiocyanate (ANIT)-induced cholestasis in mice. In this study, we compared the effect of rosiglitazone, UDCA, fenofibrate, combined rosiglitazone and fenofibrate or UDCA and fenofibrate on ANIT-induced cholestasis. C57BL/6J mice were induced cholestasis by ANIT while treated with rosiglitazone, UDCA, fenofibrate, combination of rosiglitazone and fenofibrate, or combination of UDCA and fenofibrate. Liver and serum samples were collected to determine liver necrosis and serum biochemical parameters. Rosiglitazone alone or combined with fenofibrate demonstrated better effects than UDCA alone or UDCA combined with fenofibrate in reduction of cholestasis-induced serum biochemical parameters and liver necrosis. Surprisingly, UDCA combined with fenofibrate, but not rosiglitazone combined with fenofibrate, potently increased accumulation of free fatty acids (FFAs) in the liver. Mechanistically, the protection of combination of rosiglitazone and fenofibrate against cholestasis was attributed to activated adiponectin pathway to enhance FXR and mitochondrial functions and reduce apoptosis in the liver. The accumulation of FFAs in the liver by combination of UDCA and fenofibrate was caused by activation of fatty acid biosynthesis and uptake, and triglyceride hydrolysis. Taken together, our study not only demonstrates the adverse effect of combination therapy of UDCA and fenofibrate, but also suggests the combination of rosiglitazone and fenofibrate can be another option for cholestasis treatment.
Collapse
Affiliation(s)
- Yuanli Chen
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Shu Yang
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China; College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Lipei Liu
- College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Xiaoxiao Yang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Yajun Duan
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Shuang Zhang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China.
| | - Jihong Han
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China; College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.
| |
Collapse
|
14
|
Zhao D, Xue C, Yang Y, Li J, Wang X, Chen Y, Zhang S, Chen Y, Duan Y, Yang X, Han J. Lack of Nogo-B expression ameliorates PPARγ deficiency-aggravated liver fibrosis by regulating TLR4-NF-κB-TNF-α axis and macrophage polarization. Biomed Pharmacother 2022; 153:113444. [DOI: 10.1016/j.biopha.2022.113444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/09/2022] [Accepted: 07/18/2022] [Indexed: 11/02/2022] Open
|
15
|
Li H, Zhang M, Wang Y, Gong K, Yan T, Wang D, Meng X, Yang X, Chen Y, Han J, Duan Y, Zhang S. Daidzein alleviates doxorubicin-induced heart failure via the SIRT3/FOXO3a signaling pathway. Food Funct 2022; 13:9576-9588. [PMID: 36000402 DOI: 10.1039/d2fo00772j] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Heart failure (HF) is a clinical syndrome characterized by typical symptoms that usually occur at the end stage of various heart diseases and lead to death. Daidzein (DAI), an isoflavone found in soy foods, is widely used to treat menopausal syndrome, prostate cancer, breast cancer, heart disease, cardiovascular disease, and osteoporosis, and has anti-oxidant and anti-inflammatory properties. However, the effects of DAI in HF remain unknown. In this study, doxorubicin (DOX) was used to establish HF models of C57BL/6J mice and H9c2 cells with DAI treatment. Our results showed that DAI markedly improved the DOX-induced decline in cardiac function, and decreased the left ventricular ejection fraction, cardiac inflammation, oxidative stress, apoptosis, and fibrosis. Mechanistically, DAI affects cardiac energy metabolism by regulating SIRT3, and meets the ATP demand of the heart by improving glucose, lipid, and ketone body metabolism as well as restoring mitochondrial dysfunction in vivo and in vitro. Additionally, DAI can exert an antioxidant function and alleviate HF through the SIRT3/FOXO3a pathway. In conclusion, we demonstrate that DAI alleviates DOX-induced cardiotoxicity by regulating cardiac energy metabolism as well as reducing inflammation, oxidative stress, apoptosis and fibrosis, indicating its potential application for HF treatment.
Collapse
Affiliation(s)
- Huaxin Li
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China.
| | - Mengxue Zhang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China.
| | - Yuanyu Wang
- Beijing Institute of Biomedicine, Beijing, China
| | - Ke Gong
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China.
| | - Tengteng Yan
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China.
| | - Dandan Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230011, China
| | - Xianshe Meng
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China.
| | - Xiaoxiao Yang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China.
| | - Yuanli Chen
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China.
| | - Jihong Han
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China. .,College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China
| | - Yajun Duan
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China. .,Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230031, China.
| | - Shuang Zhang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China.
| |
Collapse
|
16
|
San-Huang-Chai-Zhu Formula Ameliorates Liver Injury in Intrahepatic Cholestasis through Suppressing SIRT1/PGC-1 α-Regulated Mitochondrial Oxidative Stress. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7832540. [PMID: 35845569 PMCID: PMC9286970 DOI: 10.1155/2022/7832540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/25/2022] [Indexed: 11/17/2022]
Abstract
Background Chinese herbal formulae possess promising applications in treating intrahepatic cholestasis. Objective Our study aims to explore the protective effect of the San-Huang-Chai-Zhu formula (SHCZF) on liver injury in intrahepatic cholestasis (IC) and investigate the underlying mechanism related to mitochondrial oxidative stress. Methods An IC rat model was established by α-naphthyl isothiocyanate induction. Hepatic histomorphology was observed through hematoxylin and eosin staining. Levels of biochemical indexes of hepatic function and oxidative stress were determined by an enzyme-linked immunosorbent assay. Cell apoptosis in liver tissues was detected by the TUNEL assay. The mRNA expression of mtDNA, SIRT1, and PGC-1α was measured by qRT-PCR, and the protein expression of Bax, Bcl-2, caspase-3, SIRT1, and PGC-1α was determined by Western blotting. Results SHCZF treatment attenuated liver injury in IC. Levels of hepatic function parameters were decreased after SHCZF administration. In addition, the decreased level of malondialdehyde (MDA) and the increased levels of superoxide dismutase (SOD), glutathione (GSH), and adenosine triphosphate (ATP) in hepatic mitochondria confirmed that SHCZF could attenuate oxidative stress in IC. SHCZF treatment also reduced the apoptosis in the liver tissues of IC rats. Furthermore, SHCZF administration upregulated the expression of mtDNA, SIRT1, and PGC-1α in IC. Conclusions SHCZF exerts a protective effect on liver injury in IC via alleviating SIRT1/PGC-1α-regulated mitochondrial oxidative stress.
Collapse
|
17
|
Ye X, Zhang T, Han H. PPARα: A potential therapeutic target of cholestasis. Front Pharmacol 2022; 13:916866. [PMID: 35924060 PMCID: PMC9342652 DOI: 10.3389/fphar.2022.916866] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 06/29/2022] [Indexed: 12/12/2022] Open
Abstract
The accumulation of bile acids in the liver leads to the development of cholestasis and hepatocyte injury. Nuclear receptors control the synthesis and transport of bile acids in the liver. Among them, the farnesoid X receptor (FXR) is the most common receptor studied in treating cholestasis. The activation of this receptor can reduce the amount of bile acid synthesis and decrease the bile acid content in the liver, alleviating cholestasis. Ursodeoxycholic acid (UDCA) and obeticholic acid (OCA) have a FXR excitatory effect, but the unresponsiveness of some patients and the side effect of pruritus seriously affect the results of UDCA or OCA treatment. The activator of peroxisome proliferator-activated receptor alpha (PPARα) has emerged as a new target for controlling the synthesis and transport of bile acids during cholestasis. Moreover, the anti-inflammatory effect of PPARα can effectively reduce cholestatic liver injury, thereby improving patients’ physiological status. Here, we will focus on the function of PPARα and its involvement in the regulation of bile acid transport and metabolism. In addition, the anti-inflammatory effects of PPARα will be discussed in some detail. Finally, we will discuss the application of PPARα agonists for cholestatic liver disorders.
Collapse
Affiliation(s)
- Xiaoyin Ye
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tong Zhang
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Tong Zhang, ; Han Han,
| | - Han Han
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Tong Zhang, ; Han Han,
| |
Collapse
|
18
|
Wang X, Yin Z, Meng X, Yang D, Meng H, Liao C, Wei L, Chen Y, Yang X, Han J, Duan Y, Zhang S. Daidzein alleviates neuronal damage and oxidative stress via GSK3β/Nrf2 pathway in mice. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
19
|
Wang X, Yang Y, Zhao D, Zhang S, Chen Y, Chen Y, Feng K, Li X, Han J, Iwakiri Y, Duan Y, Yang X. Inhibition of high-fat diet-induced obesity via reduction of ER-resident protein Nogo occurs through multiple mechanisms. J Biol Chem 2022; 298:101561. [PMID: 34998825 PMCID: PMC8814669 DOI: 10.1016/j.jbc.2022.101561] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 12/18/2021] [Accepted: 12/22/2021] [Indexed: 12/12/2022] Open
Abstract
Obesity is a risk factor for insulin resistance, type 2 diabetes, and cardiovascular diseases. Reticulon-4 (Nogo) is an endoplasmic reticulum–resident protein with unclear functions in obesity. Herein, we investigated the effect of Nogo on obesity and associated metabolic disorders. Human serum samples were collected to explore the relationship between circulating Nogo-B and body mass index value. Nogo-deficient and WT littermate control mice were fed normal chow or high-fat diet (HFD) for 14 weeks, and HFD-induced obese C57BL/6J mice were injected scrambled or Nogo siRNA for 2 weeks. We found that in human and mouse serum, Nogo-B was positively correlated to body mass index/bodyweight and lipid profiles. Reduced Nogo (by genetic deletion or siRNA transfection) protected mice against HFD-induced obesity and related metabolic disorders. We demonstrate that Nogo deficiency reversed HFD-induced whitening of brown adipose tissue, thereby increasing thermogenesis. It also ameliorated lipid accumulation in tissues by activating the adiponectin–adiponectin receptor 1–AMP-activated kinase α signaling axis. Finally, Nogo deficiency potently reduced HFD-induced serum proinflammatory cytokines and infiltration of macrophages into metabolic organs, which is related to enhanced NF-κB p65 degradation via the lysosome pathway. Collectively, our study suggests that reduced levels of Nogo protect mice against HFD-induced obesity by increasing thermogenesis and energy metabolism while inhibiting NF-κB-mediated inflammation. Our results indicate that inhibition of Nogo may be a potential strategy for obesity treatment.
Collapse
Affiliation(s)
- Xiaolin Wang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Yanfang Yang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Dan Zhao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Shuang Zhang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Yi Chen
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Yuanli Chen
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Ke Feng
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Xiaoju Li
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Jihong Han
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China; Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Yasuko Iwakiri
- Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Yajun Duan
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China.
| | - Xiaoxiao Yang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China.
| |
Collapse
|
20
|
Xiang J, Yang G, Ma C, Wei L, Wu H, Zhang W, Tao X, Jiang L, Liang Z, Kang L, Yang S. Tectorigenin alleviates intrahepatic cholestasis by inhibiting hepatic inflammation and bile accumulation via activation of PPARγ. Br J Pharmacol 2021; 178:2443-2460. [PMID: 33661551 DOI: 10.1111/bph.15429] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 02/07/2021] [Accepted: 02/21/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND PURPOSE Increasing evidence suggests that human cholestasis is closely associated with the accumulation and activation of hepatic macrophages. Research indicates that activation of PPARγ exerts liver protective effects in cholestatic liver disease (CLD), particularly by ameliorating inflammation and fibrosis, thus limiting disease progression. However, existing PPARγ agonists, such as troglitazone and rosiglitazone, have significant side effects that prevent their clinical application in the treatment of CLD. In this study, we found that tectorigenin alleviates intrahepatic cholestasis in mice by activating PPARγ. EXPERIMENTAL APPROACH Wild-type mice were intragastrically administered α-naphthylisothiocyanate (ANIT) or fed a diet containing 0.1% 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) to simultaneously establish an experimental model of intrahepatic cholestasis and tectorigenin intervention, followed by determination of intrahepatic cholestasis and the mechanisms involved. In addition, PPARγ-deficient mice were administered ANIT and/or tectorigenin to determine whether tectorigenin exerts its liver protective effect by activating PPARγ. KEY RESULTS Treatment with tectorigenin alleviated intrahepatic cholestasis by inhibiting the recruitment and activation of hepatic macrophages and by promoting the expression of bile transporters via activation of PPARγ. Furthermore, tectorigenin increased expression of the bile salt export pump (BSEP) through enhanced PPARγ binding to the BSEP promoter. In PPARγ-deficient mice, the hepatoprotective effect of tectorigenin during cholestasis was blocked. CONCLUSION AND IMPLICATIONS In conclusion, tectorigenin reduced the recruitment and activation of hepatic macrophages and enhanced the export of bile acids by activating PPARγ. Taken together, our results suggest that tectorigenin is a candidate compound for cholestasis treatment.
Collapse
Affiliation(s)
- Jiaqing Xiang
- Department of Endocrinology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China
| | - Guangyan Yang
- Department of Endocrinology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China
| | - Chuanrui Ma
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
| | - Lingling Wei
- Institute of Agricultural Economics and Information, Jiangxi Academy of Agricultural Sciences, Jiangxi, China
| | - Han Wu
- Department of Endocrinology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health Commission, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Wei Zhang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, China
| | - Xiuhua Tao
- Institute of Vegetables and Flowers, Jiangxi Academy of Agricultural Sciences, Jiangxi, China
| | - Lingyun Jiang
- Department of Endocrinology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China
| | - Zhen Liang
- Department of Endocrinology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China
| | - Lin Kang
- Department of Endocrinology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China
| | - Shu Yang
- Department of Endocrinology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, China
| |
Collapse
|
21
|
Wu H, Feng K, Zhang C, Zhang H, Zhang J, Hua Y, Dong Z, Zhu Y, Yang S, Ma C. Metformin attenuates atherosclerosis and plaque vulnerability by upregulating KLF2-mediated autophagy in apoE -/- mice. Biochem Biophys Res Commun 2021; 557:334-341. [PMID: 33915432 DOI: 10.1016/j.bbrc.2021.04.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 04/08/2021] [Indexed: 01/22/2023]
Abstract
Atherosclerosis is a chronic lipid disfunction and inflammatory disease, which is characterized with enriched foam cells and necrotic core underneath the vascular endothelium. Therefore, the inhibition of foam cell formation is a critical step for atherosclerosis treatment. Metformin, a first-line treatment for Type 2 diabetes, is reported to be beneficial to cardiovascular disease. However, the mechanism underlying the antiatherogenic effect of metformin remains unclear. Macrophage autophagy is reported to be a highly anti-atherogenic process that promotes the catabolism of cytosolic lipid to maintain cellular lipid homeostasis. Notably, dysfunctional autophagy in macrophages plays a detrimental role during atherogenesis. Krueppel-like factor 2 (KLF2) is an important transcription factor that functions as a key regulator of the autophagy-lysosome pathway. While the role of KLF2 in foam cell formation during the atherogenesis remains elusive. In this study, we first investigated whether metformin could protect against atherogenesis via enhancing autophagy in high fat diet (HFD)-induced apoE-/- mice. Subsequently, we further determined the molecular mechanism that whether metformin could inhibit foam cell formation by activating KLF2-mediated autophagy. We show that metformin protected against HFD-induced atherosclerosis and enhanced plaque stability in apoE-/- mice. Metformin inhibits foam cell formation and cellular apoptosis partially through enhancing autophagy. Mechanistically, metformin promotes autophagy via modulating KLF2 expression. Taken together, our study demonstrates a novel antiatherogenic mechanism of metformin by upregulating KLF2-mediated autophagy.
Collapse
Affiliation(s)
- Han Wu
- Department of Endocrinology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University & The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Ke Feng
- Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Chao Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hao Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jing Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yunqing Hua
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhengwei Dong
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yaxian Zhu
- Department of Endocrinology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University & The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China.
| | - Shu Yang
- Department of Endocrinology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University & The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China.
| | - Chuanrui Ma
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| |
Collapse
|
22
|
Zheng S, Cao P, Yin Z, Wang X, Chen Y, Yu M, Xu B, Liao C, Duan Y, Zhang S, Han J, Yang X. Apigenin protects mice against 3,5-diethoxycarbonyl-1,4-dihydrocollidine-induced cholestasis. Food Funct 2021; 12:2323-2334. [PMID: 33620063 DOI: 10.1039/d0fo02910f] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cholestasis can induce liver fibrosis and cirrhosis. Apigenin has anti-oxidant and anti-inflammatory effects. Herein, we determined whether apigenin can protect mice against cholestasis. In vitro, apigenin protected TFK-1 cells (a human bile duct cancer cell line) against H2O2-induced ROS generation and inhibited transforming growth factor-β-activated collagen type 1 alpha 1 and α-smooth muscle actin in LX2 cells (a human hepatic stellate cell line). In vivo, cholestatic mice induced by 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) were treated with apigenin. Apigenin potently blocked DDC-induced gallbladder atrophy and associated liver injury, fibrosis and collagen accumulation. Moreover, apigenin relieved the DDC-caused abnormality of bile acid metabolism and restored the balance between bile secretion and excretion by regulating the farnesoid X receptor signaling pathway. Furthermore, apigenin reduced inflammation or oxidative stress in the liver by blocking the DDC-activated Toll-like receptor 4, nuclear factor κB and tumor necrosis factor α, or DDC-suppressed superoxidase dismutase 1/2, catalase and glutathione peroxidase. Taken together, apigenin improves DDC-induced cholestasis by reducing inflammation and oxidative damage and improving bile acid metabolism, indicating its potential application for cholestasis treatment.
Collapse
Affiliation(s)
- Shihong Zheng
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China.
| | - Peichang Cao
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China.
| | - Zequn Yin
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China.
| | - Xuerui Wang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China.
| | - Yuanli Chen
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China.
| | - Maoyun Yu
- School of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, China
| | - Baocai Xu
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China.
| | - Chenzhong Liao
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China.
| | - Yajun Duan
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China.
| | - Shuang Zhang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China.
| | - Jihong Han
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China. and College of Life Sciences, Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China
| | - Xiaoxiao Yang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China.
| |
Collapse
|
23
|
Zhang S, Guo F, Yu M, Yang X, Yao Z, Li Q, Wei Z, Feng K, Zeng P, Zhao D, Li X, Zhu Y, Miao QR, Iwakiri Y, Chen Y, Han J, Duan Y. Reduced Nogo expression inhibits diet-induced metabolic disorders by regulating ChREBP and insulin activity. J Hepatol 2020; 73:1482-1495. [PMID: 32738448 DOI: 10.1016/j.jhep.2020.07.034] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 06/26/2020] [Accepted: 07/21/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND & AIMS Chronic overconsumption of a high-carbohydrate diet leads to steatosis and its associated metabolic disorder and, eventually, to non-alcoholic fatty liver disease. Carbohydrate-responsive element binding protein (ChREBP) and insulin regulate de novo lipogenesis from glucose. Herein, we studied the effect of reticulon-4 (Nogo) expression on diet-induced metabolic disorders in mice. METHODS Nogo-deficient (Nogo-/-) and littermate control [wild-type (WT)] mice were fed a high-glucose or high-fructose diet (HGD/HFrD) to induce metabolic disorders. The effects of Nogo small interfering (si) RNA (siRNA) on HFrD-induced metabolic disorders were investigated in C57BL/6J mice. RESULTS HGD/HFrD induced steatosis and its associated metabolic disorders in WT mice by activating ChREBP and impairing insulin sensitivity. They also activated Nogo-B expression, which in turn inhibited insulin activity. In response to HGD/HFrD feeding, Nogo deficiency enhanced insulin sensitivity and energy metabolism to reduce the expression of ChREBP and lipogenic molecules, activated AMP-activated catalytic subunit α, peroxisome proliferator activated receptor α and fibroblast growth factor 21, and reduced endoplasmic reticulum (ER) stress and inflammation, thereby blocking HGD/HFrD-induced hepatic lipid accumulation, insulin resistance and other metabolic disorders. Injection of Nogo siRNA protected C57BL/6J mice against HFrD-induced metabolic disorders by ameliorating insulin sensitivity, ChREBP activity, ER stress and inflammation. CONCLUSIONS Our study identified Nogo as an important mediator of insulin sensitivity and ChREBP activity. Reduction of Nogo expression is a potential strategy for the treatment of high-carbohydrate diet-induced metabolic complications. LAY SUMMARY Nogo deficiency blocks high-carbohydrate diet-induced glucose intolerance and insulin resistance, while increasing glucose/lipid utilisation and energy expenditure. Thus, reduction of Nogo expression protects against high-carbohydrate diet-induced body-weight gain, hepatic lipid accumulation and the associated metabolic disorders, indicating that approaches inhibiting Nogo expression can be applied for the treatment of diseases associated with metabolic disorders.
Collapse
Affiliation(s)
- Shuang Zhang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China; College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China
| | - Fangling Guo
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China
| | - Miao Yu
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China
| | - Xiaoxiao Yang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Zhi Yao
- Tianjin Medical University, Tianjin, China
| | - Qi Li
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China
| | - Zhuo Wei
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China
| | - Ke Feng
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China
| | - Peng Zeng
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China
| | - Dan Zhao
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China
| | - Xiaoju Li
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China
| | - Yan Zhu
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qing Robert Miao
- Winthrop Hospital Diabetes and Obesity Research Center, New York University, New York, NY, USA
| | - Yasuko Iwakiri
- Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT, USA
| | - Yuanli Chen
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China.
| | - Jihong Han
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China; College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China.
| | - Yajun Duan
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China.
| |
Collapse
|
24
|
Zhang S, Yu M, Guo F, Yang X, Chen Y, Ma C, Li Q, Wei Z, Li X, Wang H, Hu H, Zhang Y, Kong D, Miao QR, Hu W, Hajjar DP, Zhu Y, Han J, Duan Y. Rosiglitazone alleviates intrahepatic cholestasis induced by α-naphthylisothiocyanate in mice: The role of circulating 15-deoxy-Δ 12,14 -PGJ 2 and Nogo. Br J Pharmacol 2020; 177:1041-1060. [PMID: 31658492 DOI: 10.1111/bph.14886] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 09/14/2019] [Accepted: 09/21/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND AND PURPOSE Intrahepatic cholestasis is mainly caused by dysfunction of bile secretion and has limited effective treatment. Rosiglitazone is a synthetic agonist of PPARγ, whose endogenous agonist is 15-deoxy-Δ12,14 -PGJ2 (15d-PGJ2 ). Reticulon 4B (Nogo-B) is the detectable Nogo protein family member in the liver and secreted into circulation. Here, we determined if rosiglitazone can alleviate intrahepatic cholestasis in mice. EXPERIMENTAL APPROACH Wild-type, hepatocyte-specific PPARγ or Nogo-B knockout mice received intragastric administration of α-naphthylisothiocyanate (ANIT) and/or rosiglitazone, followed by determination of intrahepatic cholestasis and the involved mechanisms. Serum samples from primary biliary cholangitis (PBC) patients and non-PBC controls were analysed for cholestasis-related parameters. KEY RESULTS Rosiglitazone prevented wild type, but not hepatocyte-specific PPARγ deficient mice from developing ANIT-induced intrahepatic cholestasis by increasing expression of bile homeostatic proteins, reducing hepatic necrosis, and correcting abnormal serum parameters and enterohepatic circulation of bile. Nogo-B knockout provided protection similar to that of rosiglitazone treatment. ANIT-induced intrahepatic cholestasis decreased 15d-PGJ2 but increased Nogo-B in serum, and both were corrected by rosiglitazone. Nogo-B deficiency in the liver increased 15d-PGJ2 production, thereby activating expression of PPARγ and bile homeostatic proteins. Rosiglitazone and Nogo-B deficiency also alleviated cholestasis-associated dyslipidemia. In addition, rosiglitazone reduced symptoms of established intrahepatic cholestasis in mice. In serum from PBC patients, the decreased 15d-PGJ2 and increased Nogo-B levels were significantly correlated with classical cholestatic markers. CONCLUSIONS AND IMPLICATIONS Levels of 15d-PGJ2 and Nogo are important biomarkers for intrahepatic cholestasis. Synthetic agonists of PPARγ could be used for treatment of intrahepatic cholestasis and cholestasis-associated dyslipidemia.
Collapse
Affiliation(s)
- Shuang Zhang
- College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Miao Yu
- Institute for Cardiovascular Science and Department of Cardiovascular Surgery of the First Affiliated Hospital, Medical College of Soochow University, Suzhou, China
| | - Fangling Guo
- College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Xiaoxiao Yang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Yuanli Chen
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Chuanrui Ma
- College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Qi Li
- College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Zhuo Wei
- College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Xiaoju Li
- College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Hua Wang
- Department of Oncology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Huaqing Hu
- Department of Oncology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yujue Zhang
- Department of Oncology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Derun Kong
- Department of Oncology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qing Robert Miao
- Winthrop Hospital Diabetes and Obesity Research Center, New York University, New York, New York
| | - Wenquan Hu
- Winthrop Hospital Diabetes and Obesity Research Center, New York University, New York, New York
| | - David P Hajjar
- Weill Cornell Medicine, Cornell University, New York, New York
| | - Yan Zhu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jihong Han
- College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.,Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Yajun Duan
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| |
Collapse
|