1
|
Aalinkeel R, Quigg RJ, Alexander J. The complement system and kidney cancer: pathogenesis to clinical applications. J Clin Invest 2025; 135:e188351. [PMID: 40309765 PMCID: PMC12043091 DOI: 10.1172/jci188351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025] Open
Abstract
Kidney cancer poses unique clinical challenges because of its resistance to conventional treatments and its tendency to metastasize. The kidney is particularly susceptible to dysfunction of the complement system, an immune network that tumors often exploit. Recent discoveries have highlighted that the complement system not only plays a crucial role in immune surveillance and defense in the circulatory system, but also functions intracellularly and autonomously. This concept has shifted the focus of investigation toward understanding how complement proteins influence cancer progression by regulating the tumor microenvironment (TME), cell signaling, proliferation, metabolism, and the immune response. With the complement system and its inhibitors emerging as a promising new class of immunotherapeutics and potential complement-targeted treatments advancing through development pipelines and clinical trials, this Review provides a timely examination of how harnessing the complement system could lead to effective tumor treatments and how to strategically combine complement inhibitors with other cancer treatments, offering renewed hope in the fight against kidney cancer.
Collapse
|
2
|
Wu J, Lu J, Pan M, Gu X, Wang Y, Dai L. Inhibition of neutral sphingomyelinase-2 restrains enterovirus 71 infection by autophagy. Microb Pathog 2025; 200:107326. [PMID: 39864764 DOI: 10.1016/j.micpath.2025.107326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/31/2024] [Accepted: 01/22/2025] [Indexed: 01/28/2025]
Abstract
Enterovirus 71 (EV-71) is a major pathogenic factor that causes hand, foot, and mouth disease in young children and infants. Given the limited treatments for EV-71 infection, discovering new host factors and understanding the mechanisms involved will aid in combating this viral infection. Neutral sphingomyelinase-2 (nSMase-2, encoded by SMPD3) is a crucial cellular cofactor in viral infection. We found that EV-71 infection increased nSMase-2 expression in African green monkey kidney cells (Vero cells). Knockdown of nSMase-2 by small interfering RNA obviously decreased the viral replication and infectivity. Furthermore, the knockdown of nSMase-2 reduced autophagy-associated proteins expression. Collectively, our findings uncovered a potential mechanism of nSMase-2 supporting EV-71 infection.
Collapse
Affiliation(s)
- Jing Wu
- Department of Laboratory Medicine, Suzhou Mental Health Center, The Affiliated Guangji Hospital of Soochow University, Suzhou, 215000, Jiangsu, China.
| | - Jian Lu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Soochow University, Suzhou, 215137, Jiangsu, China
| | - Mingzhi Pan
- Department of Laboratory Medicine, Suzhou Mental Health Center, The Affiliated Guangji Hospital of Soochow University, Suzhou, 215000, Jiangsu, China
| | - Xiaochu Gu
- Department of Laboratory Medicine, Suzhou Mental Health Center, The Affiliated Guangji Hospital of Soochow University, Suzhou, 215000, Jiangsu, China
| | - Yun Wang
- Department of Laboratory Medicine, Suzhou Mental Health Center, The Affiliated Guangji Hospital of Soochow University, Suzhou, 215000, Jiangsu, China
| | - Lu Dai
- Department of Laboratory Medicine, Suzhou Mental Health Center, The Affiliated Guangji Hospital of Soochow University, Suzhou, 215000, Jiangsu, China
| |
Collapse
|
3
|
Huang M, Cao S, Huang Y, Tan Z, Duan R. The combined metabolism and transcriptome of tail muscles reveal the effects of antimony pulse exposure on swimming behavior of Pelophylax nigromaculatus tadpoles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:177929. [PMID: 39647201 DOI: 10.1016/j.scitotenv.2024.177929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/02/2024] [Accepted: 12/02/2024] [Indexed: 12/10/2024]
Abstract
Due to the periodic emission of pollutants, the exposure mode of contaminants in water bodies is mostly pulse exposure, and the toxic effects of fluctuating exposure on aquatic animals are not consistent with traditional toxicological experiments of constant exposure. The toxic effects of heavy metal antimony (Sb) on the swimming behavior of Pelophylax nigromaculatus tadpoles after pulse exposure (PESb) and continuous exposure (CESb) for 28 days were explored. The mechanisms were analyzed from the perspectives of tail muscle metabolism and transcriptomics. Compared to the control group, PESb and CESb decreased the average speed of P. nigromaculatus tadpoles by 25.72 % and 18.08 %, respectively. PESb and CESb led to changes in 70 and 24 metabolites of tail muscle, respectively. PESb led to alterations in metabolic pathways related to pyrimidine metabolism, arginine biosynthesis, and glycerophospholipid metabolism. In contrast, CESb altered metabolic pathways such as alanine, aspartate, and glutamate metabolism. Compared to the control, 1225 and 1139 DEGs were identified for PESb and CESb, respectively. These DEGs were mainly associated with functions such as immune response, DNA replication, protein digestion, and absorption. It can be seen that PESb and CESb can alter the metabolism and transcriptome of the tail muscle of P. nigromaculatus tadpoles, leading to differential expression of individual movements.
Collapse
Affiliation(s)
- Minyi Huang
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, Hunan, China; Key Laboratory of Development, Utilization, Quality and Safety Control of Characteristic Agricultural Resources in Central Hunan Province, Loudi 417000, Hunan, China
| | - Songle Cao
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, Hunan, China; Key Laboratory of Development, Utilization, Quality and Safety Control of Characteristic Agricultural Resources in Central Hunan Province, Loudi 417000, Hunan, China
| | - Ying Huang
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, Hunan, China; Key Laboratory of Development, Utilization, Quality and Safety Control of Characteristic Agricultural Resources in Central Hunan Province, Loudi 417000, Hunan, China
| | - Zikang Tan
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, Hunan, China; Key Laboratory of Development, Utilization, Quality and Safety Control of Characteristic Agricultural Resources in Central Hunan Province, Loudi 417000, Hunan, China
| | - Renyan Duan
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, Hunan, China; Key Laboratory of Development, Utilization, Quality and Safety Control of Characteristic Agricultural Resources in Central Hunan Province, Loudi 417000, Hunan, China.
| |
Collapse
|
4
|
Gao R, Song SJ, Tian MY, Wang LB, Zhang Y, Li X. Myelin debris phagocytosis in demyelinating disease. Glia 2024; 72:1934-1954. [PMID: 39073200 DOI: 10.1002/glia.24602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024]
Abstract
Demyelinating diseases are often caused by a variety of triggers, including immune responses, viral infections, malnutrition, hypoxia, or genetic factors, all of which result in the loss of myelin in the nervous system. The accumulation of myelin debris at the lesion site leads to neuroinflammation and inhibits remyelination; therefore, it is crucial to promptly remove the myelin debris. Initially, Fc and complement receptors on cellular surfaces were the primary clearance receptors responsible for removing myelin debris. However, subsequent studies have unveiled the involvement of additional receptors, including Mac-2, TAM receptors, and the low-density lipoprotein receptor-related protein 1, in facilitating the removal process. In addition to microglia and macrophages, which serve as the primary effector cells in the disease phase, a variety of other cell types such as astrocytes, Schwann cells, and vascular endothelial cells have been demonstrated to engage in the phagocytosis of myelin debris. Furthermore, we have concluded that oligodendrocyte precursor cells, as myelination precursor cells, also exhibit this phagocytic capability. Moreover, our research group has innovatively identified the low-density lipoprotein receptor as a potential phagocytic receptor for myelin debris. In this article, we discuss the functional processes of various phagocytes in demyelinating diseases. We also highlight the alterations in signaling pathways triggered by phagocytosis, and provide a comprehensive overview of the various phagocytic receptors involved. Such insights are invaluable for pinpointing potential therapeutic strategies for the treatment of demyelinating diseases by targeting phagocytosis.
Collapse
Affiliation(s)
- Rui Gao
- The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Sheng-Jiao Song
- The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Meng-Yuan Tian
- The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Li-Bin Wang
- Neurosurgery Department, Huazhong University of Science and Technology Union Shenzhen Hospital/Shenzhen Nanshan Hospital, Shenzhen, Guangdong, China
| | - Yuan Zhang
- The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Xing Li
- The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| |
Collapse
|
5
|
Su X, Wang G, Liu S, Li J, Shao M, Yang Y, Song M, Han Y, Li W, Lv L. Autophagy defects at weaning impair complement-dependent synaptic pruning and induce behavior deficits. J Neuroinflammation 2024; 21:239. [PMID: 39334475 PMCID: PMC11438297 DOI: 10.1186/s12974-024-03235-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
Autophagy is crucial for synaptic plasticity and the architecture of dendritic spines. However, the role of autophagy in schizophrenia (SCZ) and the mechanisms through which it affects synaptic function remain unclear. In this study, we identified 995 single nucleotide polymorphisms (SNPs) across 19 autophagy-related genes that are associated with SCZ. Gene Set Enrichment Analysis (GSEA) of data from the Gene Expression Omnibus public database revealed defective autophagy in patients with SCZ. Using a maternal immune activation (MIA) rat model, we observed that autophagy was downregulated during the weaning period, and early-life activation of autophagy with rapamycin restored abnormal behaviors and electrophysiological deficits in adult rats. Additionally, inhibition of autophagy with 3-Methyladenine (3-MA) during the weaning period resulted in aberrant behaviors, abnormal electrophysiology, increased spine density, and reduced microglia-mediated synaptic pruning. Furthermore, 3-MA treatment significantly decreased the expression and synaptosomal content of complement, impaired the recognition of C3b and CR3, indicating that autophagy deficiency disrupts complement-mediated synaptic pruning. Our findings provide evidence for a significant association between SCZ and defective autophagy, highlighting a previously underappreciated role of autophagy in regulating the synaptic and behavioral deficits induced by MIA.
Collapse
Affiliation(s)
- Xi Su
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, 388 Middle Jianshe Road, Xinxiang, 453002, China.
- Brain Institute, Henan Academy of Innovations in Medical Science, Zhengzhou, 451163, China.
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, 453002, China.
- International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, 453002, China.
- Henan Collaborative Innovation Center of Prevention and Treatment of Mental Disorder, Xinxiang, 453002, China.
| | - Guanyu Wang
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, 388 Middle Jianshe Road, Xinxiang, 453002, China
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, 453002, China
- International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, 453002, China
| | - Senqi Liu
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, 388 Middle Jianshe Road, Xinxiang, 453002, China
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, 453002, China
- International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, 453002, China
| | - Jinming Li
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, 388 Middle Jianshe Road, Xinxiang, 453002, China
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, 453002, China
- International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, 453002, China
| | - Minglong Shao
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, 388 Middle Jianshe Road, Xinxiang, 453002, China
- Brain Institute, Henan Academy of Innovations in Medical Science, Zhengzhou, 451163, China
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, 453002, China
- International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, 453002, China
- Henan Collaborative Innovation Center of Prevention and Treatment of Mental Disorder, Xinxiang, 453002, China
| | - Yongfeng Yang
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, 388 Middle Jianshe Road, Xinxiang, 453002, China
- Brain Institute, Henan Academy of Innovations in Medical Science, Zhengzhou, 451163, China
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, 453002, China
- International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, 453002, China
- Henan Collaborative Innovation Center of Prevention and Treatment of Mental Disorder, Xinxiang, 453002, China
| | - Meng Song
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, 388 Middle Jianshe Road, Xinxiang, 453002, China
- Brain Institute, Henan Academy of Innovations in Medical Science, Zhengzhou, 451163, China
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, 453002, China
- International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, 453002, China
- Henan Collaborative Innovation Center of Prevention and Treatment of Mental Disorder, Xinxiang, 453002, China
| | - Yong Han
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, 388 Middle Jianshe Road, Xinxiang, 453002, China
- Brain Institute, Henan Academy of Innovations in Medical Science, Zhengzhou, 451163, China
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, 453002, China
- International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, 453002, China
- Henan Collaborative Innovation Center of Prevention and Treatment of Mental Disorder, Xinxiang, 453002, China
| | - Wenqiang Li
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, 388 Middle Jianshe Road, Xinxiang, 453002, China
- Brain Institute, Henan Academy of Innovations in Medical Science, Zhengzhou, 451163, China
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, 453002, China
- International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, 453002, China
- Henan Collaborative Innovation Center of Prevention and Treatment of Mental Disorder, Xinxiang, 453002, China
| | - Luxian Lv
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, 388 Middle Jianshe Road, Xinxiang, 453002, China.
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, 453002, China.
- International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, 453002, China.
| |
Collapse
|
6
|
Ponticelli C, Reggiani F, Moroni G. Autophagy: A Silent Protagonist in Kidney Transplantation. Transplantation 2024; 108:1532-1541. [PMID: 37953477 DOI: 10.1097/tp.0000000000004862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Autophagy is a lysosome-dependent regulated mechanism that recycles unnecessary cytoplasmic components. It is now known that autophagy dysfunction may have a pathogenic role in several human diseases and conditions, including kidney transplantation. Both defective and excessive autophagy may induce or aggravate several complications of kidney transplantation, such as ischemia-reperfusion injury, alloimmune response, and immunosuppressive treatment and side effects. Although it is still complicated to measure autophagy levels in clinical practice, more attention should be paid to the factors that may influence autophagy. In kidney transplantation, the association of low doses of a mammalian target of rapamycin inhibitor with low doses of a calcineurin inhibitor may be of benefit for autophagy modulation. However, further studies are needed to explore the role of other autophagy regulators.
Collapse
Affiliation(s)
| | - Francesco Reggiani
- Nephrology and Dialysis Unit, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Gabriella Moroni
- Nephrology and Dialysis Unit, IRCCS Humanitas Research Hospital, Milan, Italy
| |
Collapse
|
7
|
Cano I, Blaker E, Hartnell D, Farbos A, Moore KA, Cobb A, Santos EM, van Aerle R. Transcriptomic Responses to Koi Herpesvirus in Isolated Blood Leukocytes from Infected Common Carp. Viruses 2024; 16:380. [PMID: 38543746 PMCID: PMC10974277 DOI: 10.3390/v16030380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/08/2024] [Accepted: 02/23/2024] [Indexed: 04/01/2024] Open
Abstract
Koi herpesvirus (KHV, CyHV-3) causes severe economic losses in carp farms. Its eradication is challenging due to the establishment of latency in blood leukocytes and other tissues. To understand the molecular mechanisms leading to KHV infection in leukocytes, common carp were bath-exposed to KHV at 17 °C. After confirming the presence of viral transcripts in blood leukocytes at ten days post infection, RNA-Seq was performed on peripheral blood leukocytes on the Illumina NovaSeq. KHV infection triggered a robust immune response mediated by pattern recognition receptors, mainly toll-like receptors (tlr2, tlr5, tlr7, and tlr13), urokinase plasminogen activator surface receptor-like, galectin proteins, and lipid mediators such as leukotriene B4 receptor 1. Enriched pathways showed increased mitochondria oxidative phosphorylation and the activation of signalling pathways such as mitogen-activated protein kinases (MAPKs) and vascular endothelial growth factor (VEGF). KHV-infected leukocytes showed low production of reactive oxygen species (ROS) and glutathione metabolism, high iron export and phagocytosis activity, and low autophagy. Macrophage polarization was deduced from the up-regulation of genes such as arginase non-hepatic 1-like, macrophage mannose receptor-1, crem, il-10, and il-13 receptors, while markers for cytotoxic T cells were observed to be down-regulated. Further work is required to characterise these leukocyte subsets and the molecular events leading to KHV latency in blood leukocytes.
Collapse
Affiliation(s)
- Irene Cano
- International Centre of Excellence for Aquatic Animal Health, Cefas Laboratory, Dorset DT4 8UB, UK; (E.B.); (D.H.); (A.C.); (R.v.A.)
- Centre for Sustainable Aquaculture Futures, University of Exeter, Exeter EX2 4TH, UK;
| | - Ellen Blaker
- International Centre of Excellence for Aquatic Animal Health, Cefas Laboratory, Dorset DT4 8UB, UK; (E.B.); (D.H.); (A.C.); (R.v.A.)
| | - David Hartnell
- International Centre of Excellence for Aquatic Animal Health, Cefas Laboratory, Dorset DT4 8UB, UK; (E.B.); (D.H.); (A.C.); (R.v.A.)
| | - Audrey Farbos
- Biosciences, Faculty of Life and Health Sciences, University of Exeter, Exeter EX2 4TH, UK; (A.F.); (K.A.M.)
| | - Karen A. Moore
- Biosciences, Faculty of Life and Health Sciences, University of Exeter, Exeter EX2 4TH, UK; (A.F.); (K.A.M.)
| | - Adele Cobb
- International Centre of Excellence for Aquatic Animal Health, Cefas Laboratory, Dorset DT4 8UB, UK; (E.B.); (D.H.); (A.C.); (R.v.A.)
| | - Eduarda M. Santos
- Centre for Sustainable Aquaculture Futures, University of Exeter, Exeter EX2 4TH, UK;
- Biosciences, Faculty of Life and Health Sciences, University of Exeter, Exeter EX2 4TH, UK; (A.F.); (K.A.M.)
| | - Ronny van Aerle
- International Centre of Excellence for Aquatic Animal Health, Cefas Laboratory, Dorset DT4 8UB, UK; (E.B.); (D.H.); (A.C.); (R.v.A.)
- Centre for Sustainable Aquaculture Futures, University of Exeter, Exeter EX2 4TH, UK;
| |
Collapse
|
8
|
Singh P, Kemper C. Complement, complosome, and complotype: A perspective. Eur J Immunol 2023; 53:e2250042. [PMID: 37120820 PMCID: PMC10613581 DOI: 10.1002/eji.202250042] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/01/2023]
Abstract
Recent rapid progress in key technological advances, including the broader accessibility of single-cell "omic" approaches, have allowed immunologists to gain important novel insights into the contributions of individual immune cells in protective immunity and immunopathologies. These insights also taught us that there is still much to uncover about the (cellular) networks underlying immune responses. For example, in the last decade, studies on a key component of innate immunity, the complement system, have defined intracellularly active complement (the complosome) as a key orchestrator of normal cell physiology. This added an unexpected facet to the biology of complement, which was long considered fully explored. Here, we will summarize succinctly the known activation modes and functions of the complosome and provide a perspective on the origins of intracellular complement. We will also make a case for extending assessments of the complotype, the individual inherited landscape of common variants in complement genes, to the complosome, and for reassessing patients with known serum complement deficiencies for complosome perturbations. Finally, we will discuss where we see current opportunities and hurdles for dissecting the compartmentalization of complement activities toward a better understanding of their contributions to cellular function in health and disease.
Collapse
Affiliation(s)
- Parul Singh
- Complement and Inflammation Research Section, National Heart, Lung and Blood Institute, Bethesda, MD 20892, USA
| | - Claudia Kemper
- Complement and Inflammation Research Section, National Heart, Lung and Blood Institute, Bethesda, MD 20892, USA
| |
Collapse
|
9
|
Ponticelli C, Moroni G, Reggiani F. Autophagy and podocytopathy. Nephrol Dial Transplant 2023; 38:1931-1939. [PMID: 36708169 DOI: 10.1093/ndt/gfad024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Indexed: 01/29/2023] Open
Abstract
Autophagy is a complex process of lysosomal-dependent degradation of unwanted cellular material. In response to endogenous or exogenous stimuli, autophagy is induced and regulated by two kinases: the AMP activated kinase and the mammalian target of rapamycin (mTOR). Cells activated by Unc-51-like kinase 1 form a double membrane complex that sequesters the cargo (phagophore) and elongates producing spherical vesicles (autophagosomes). These reach and fuse with lysosomes, which degrade the cargo (autolysosomes). The resulting macromolecules are released back and recycled in the cytosol for reuse. In the podocyte, autophagy is a homeostatic mechanism that contributes to the formation and preservation of the morphological and functional integrity of actin cytoskeleton. Podocytes, fenestrated endothelial cells and glomerular basement membrane compose the glomerular filtration barrier. Podocyte damage may cause dysfunction of the glomerular barrier, proteinuria and glomerulosclerosis in different glomerular diseases and particularly in so-called podocytopathies, namely minimal change disease and focal segmental glomerulosclerosis. Several drugs and molecules may activate autophagic function in murine models. Among them, aldosterone inhibitors, mineralocorticoid inhibitors and vitamin D3 were proven to protect podocyte from injury and reduce proteinuria in clinical studies. However, no clinical trial with autophagy regulators in podocytopathies has been conducted. Caution is needed with other autophagy activators, such as mTOR inhibitors and metformin, because of potential adverse events.
Collapse
Affiliation(s)
| | - Gabriella Moroni
- Nephrology and Dialysis Unit, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Francesco Reggiani
- Nephrology and Dialysis Unit, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| |
Collapse
|
10
|
Wang L, Sun Y, Kong F, Jiang Y, An M, Jin B, Cao D, Li R, Guan X, Liang S, Abudurexiti S, Gong P. Mild Hypothermia Alleviates Complement C5a-Induced Neuronal Autophagy During Brain Ischemia-Reperfusion Injury After Cardiac Arrest. Cell Mol Neurobiol 2023; 43:1957-1974. [PMID: 36006573 PMCID: PMC11412180 DOI: 10.1007/s10571-022-01275-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/17/2022] [Indexed: 02/06/2023]
Abstract
After restoration of spontaneous circulation (ROSC) following cardiac arrest, complements can be activated and excessive autophagy can contribute to the brain ischemia-reperfusion (I/R) injury. Mild hypothermia (HT) protects against brain I/R injury after ROSC, but the mechanisms have not been fully elucidated. Here, we found that HT significantly inhibited the increases in serum NSE, S100β, and C5a, as well as neurologic deficit scores, TUNEL-positive cells, and autophagic vacuoles in the pig brain cortex after ROSC. The C5a receptor 1 (C5aR1) mRNA and the C5a, C5aR1, Beclin 1, LC3-II, and cleaved caspase-3 proteins were significantly increased, but the P62 protein and the PI3K/Akt/mTOR pathway-related proteins were significantly reduced in pigs after ROSC or neuronal oxygen-glucose deprivation/reoxygenation. HT could significantly attenuate the above changes in NT-treated neurons. Furthermore, C5a treatment induced autophagy and apoptosis and reduced the PI3K/Akt/mTOR pathway-related proteins in cultured neurons, which could be reversed by C5aR1 antagonist PMX205. Our findings demonstrated that C5a could bind to C5aR1 to induce neuronal autophagy during the brain I/R injury, which was associated with the inhibited PI3K/Akt/mTOR pathway. HT could inhibit C5a-induced neuronal autophagy by regulating the C5a-C5aR1 interaction and the PI3K/Akt/mTOR pathway, which might be one of the neuroprotective mechanisms underlying I/R injury. The C5a receptor 1 (C5aR1) mRNA and the C5a, C5aR1, Beclin 1, LC3-II, and cleaved caspase-3 proteins were significantly increased, but the P62 protein and the PI3K/Akt/mTOR pathway-related proteins were significantly reduced in pigs after ROSC or neuronal oxygen-glucose deprivation/reoxygenation. Mild hypothermia (HT) could significantly attenuate the above changes in NT-treated neurons. Furthermore, C5a treatment induced autophagy and apoptosis and reduced the PI3K/Akt/mTOR pathway-related proteins in cultured neurons, which could be reversed by C5aR1 antagonist PMX205. Proposed mechanism by which HT protects against brain I/R injury by repressing C5a-C5aR1-induced excessive autophagy. Complement activation in response to brain I/R injury generates C5a that can interact with C5aR1 to inactivate mTOR, probably through the PI3K-AKT pathway, which can finally lead to autophagy activation. The excessively activated autophagy ultimately contributes to cell apoptosis and brain injury. HT may alleviate complement activation and then reduce C5a-induced autophagy to protect against brain I/R injury. HT, mild hypothermia; I/R, ischemia reperfusion.
Collapse
Affiliation(s)
- Ling Wang
- Department of Emergency Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, China
- Dalian Medical University, Dalian, 116000, Liaoning, China
| | - Yuanyuan Sun
- Department of Emergency Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, China
| | - Fang Kong
- Department of Emergency Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, China
| | - Yi Jiang
- Department of Emergency Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, China
| | - Mengmeng An
- Department of Emergency Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, China
| | - Beibei Jin
- Department of Emergency Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, China
| | - Da Cao
- Department of Emergency Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, China
| | - Ruifang Li
- Department of Emergency Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, China
| | - Xiaolan Guan
- Department of Emergency Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, China
| | - Shuangshuang Liang
- Department of Emergency Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, China
| | - Subi Abudurexiti
- Department of Emergency Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, China
| | - Ping Gong
- Department of Emergency Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, China.
| |
Collapse
|
11
|
Li Y, Wang Q, Li J, Li A, Wang Q, Zhang Q, Chen Y. Therapeutic modulation of V Set and Ig domain-containing 4 (VSIG4) signaling in immune and inflammatory diseases. Cytotherapy 2023; 25:561-572. [PMID: 36642683 DOI: 10.1016/j.jcyt.2022.12.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/14/2022] [Accepted: 12/14/2022] [Indexed: 01/15/2023]
Abstract
Inflammation is the result of acute and chronic stresses, caused by emotional or physical trauma, or nutritional or environmental pollutants, and brings serious harm to human life and health. As an important cellular component of the innate immune barrier, the macrophage plays a key role in maintaining tissue homeostasis and promoting tissue repair by controlling infection and resolving inflammation. Several studies suggest that V Set and Ig domain-containing 4 is specifically expressed in tissue macrophages and is associated with a variety of inflammatory diseases. In this paper, we mainly summarize the recent research on V Set and Ig domain-containing 4 structures, functions, function and roles in acute and chronic inflammatory diseases, and provide a novel therapeutic avenue for the treatment of inflammatory diseases, including nervous system, urinary, respiratory and metabolic diseases.
Collapse
Affiliation(s)
- You Li
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning, China; Engineering Technology Research Center for the Utilization of Functional Components of Organic Natural Products, Dalian University, Dalian, Liaoning, China
| | - Qi Wang
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning, China; Engineering Technology Research Center for the Utilization of Functional Components of Organic Natural Products, Dalian University, Dalian, Liaoning, China
| | - Jiaxin Li
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning, China; Engineering Technology Research Center for the Utilization of Functional Components of Organic Natural Products, Dalian University, Dalian, Liaoning, China
| | - Aohan Li
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning, China; Engineering Technology Research Center for the Utilization of Functional Components of Organic Natural Products, Dalian University, Dalian, Liaoning, China
| | - Qianqian Wang
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning, China; Engineering Technology Research Center for the Utilization of Functional Components of Organic Natural Products, Dalian University, Dalian, Liaoning, China
| | - Qinggao Zhang
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning, China; Engineering Technology Research Center for the Utilization of Functional Components of Organic Natural Products, Dalian University, Dalian, Liaoning, China.
| | - Yingqing Chen
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning, China; Engineering Technology Research Center for the Utilization of Functional Components of Organic Natural Products, Dalian University, Dalian, Liaoning, China.
| |
Collapse
|
12
|
Fernández-Calle R, Konings SC, Frontiñán-Rubio J, García-Revilla J, Camprubí-Ferrer L, Svensson M, Martinson I, Boza-Serrano A, Venero JL, Nielsen HM, Gouras GK, Deierborg T. APOE in the bullseye of neurodegenerative diseases: impact of the APOE genotype in Alzheimer's disease pathology and brain diseases. Mol Neurodegener 2022; 17:62. [PMID: 36153580 PMCID: PMC9509584 DOI: 10.1186/s13024-022-00566-4] [Citation(s) in RCA: 111] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 08/29/2022] [Indexed: 02/06/2023] Open
Abstract
ApoE is the major lipid and cholesterol carrier in the CNS. There are three major human polymorphisms, apoE2, apoE3, and apoE4, and the genetic expression of APOE4 is one of the most influential risk factors for the development of late-onset Alzheimer's disease (AD). Neuroinflammation has become the third hallmark of AD, together with Amyloid-β plaques and neurofibrillary tangles of hyperphosphorylated aggregated tau protein. This review aims to broadly and extensively describe the differential aspects concerning apoE. Starting from the evolution of apoE to how APOE's single-nucleotide polymorphisms affect its structure, function, and involvement during health and disease. This review reflects on how APOE's polymorphisms impact critical aspects of AD pathology, such as the neuroinflammatory response, particularly the effect of APOE on astrocytic and microglial function and microglial dynamics, synaptic function, amyloid-β load, tau pathology, autophagy, and cell-cell communication. We discuss influential factors affecting AD pathology combined with the APOE genotype, such as sex, age, diet, physical exercise, current therapies and clinical trials in the AD field. The impact of the APOE genotype in other neurodegenerative diseases characterized by overt inflammation, e.g., alpha- synucleinopathies and Parkinson's disease, traumatic brain injury, stroke, amyotrophic lateral sclerosis, and multiple sclerosis, is also addressed. Therefore, this review gathers the most relevant findings related to the APOE genotype up to date and its implications on AD and CNS pathologies to provide a deeper understanding of the knowledge in the APOE field.
Collapse
Affiliation(s)
- Rosalía Fernández-Calle
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
| | - Sabine C. Konings
- Department of Experimental Medical Science, Experimental Dementia Research Unit, Lund University, Lund, Sweden
| | - Javier Frontiñán-Rubio
- Oxidative Stress and Neurodegeneration Group, Faculty of Medicine, Universidad de Castilla-La Mancha, Ciudad Real, Spain
| | - Juan García-Revilla
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
- Departamento de Bioquímica Y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, and Instituto de Biomedicina de Sevilla-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Lluís Camprubí-Ferrer
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
| | - Martina Svensson
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
| | - Isak Martinson
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
| | - Antonio Boza-Serrano
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
- Departamento de Bioquímica Y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, and Instituto de Biomedicina de Sevilla-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - José Luís Venero
- Departamento de Bioquímica Y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, and Instituto de Biomedicina de Sevilla-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Henrietta M. Nielsen
- Department of Biochemistry and Biophysics at, Stockholm University, Stockholm, Sweden
| | - Gunnar K. Gouras
- Department of Experimental Medical Science, Experimental Dementia Research Unit, Lund University, Lund, Sweden
| | - Tomas Deierborg
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
| |
Collapse
|
13
|
Kremlitzka M, Colineau L, Nowacka AA, Mohlin FC, Wozniak K, Blom AM, King BC. Alternative translation and retrotranslocation of cytosolic C3 that detects cytoinvasive bacteria. Cell Mol Life Sci 2022; 79:291. [PMID: 35546365 PMCID: PMC9095555 DOI: 10.1007/s00018-022-04308-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/29/2022] [Accepted: 04/12/2022] [Indexed: 01/05/2023]
Abstract
Complement C3 was originally regarded as a serum effector protein, although recent data has emerged suggesting that intracellular C3 can also regulate basic cellular processes. Despite the growing interest in intracellular C3 functions, the mechanism behind its generation has not been demonstrated. In this study we show that C3 can be expressed from an alternative translational start site, resulting in C3 lacking the signal peptide, which is therefore translated in the cytosol. In contrast to the secreted form, alternatively translated cytosolic C3 is not glycosylated, is present mainly in a reduced state, and is turned over by the ubiquitin–proteasome system. C3 can also be retrotranslocated from the endoplasmic reticulum into the cytosol, structurally resembling secreted C3. Finally, we demonstrate that intracellular cytosolic C3 can opsonize invasive Staphylococcus aureus within epithelial cell, slowing vacuolar escape as well as impacting bacterial survival on subsequent exposure to phagocytes. Our work therefore reveals the existence and origin of intracellular, cytosolic C3, and demonstrates functions for cytosolic C3 in intracellular detection of cytoinvasive pathogens.
Collapse
Affiliation(s)
- Mariann Kremlitzka
- Division of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmö, Sweden.,Department of Immunology, Eötvös Loránd University, Budapest, Hungary
| | - Lucie Colineau
- Division of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Alicja A Nowacka
- Division of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Frida C Mohlin
- Division of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Katarzyna Wozniak
- Division of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Anna M Blom
- Division of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmö, Sweden.
| | - Ben C King
- Division of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmö, Sweden
| |
Collapse
|
14
|
Wenzel U, Kemper C, Köhl J. Canonical and non-canonical functions of the complement system in health and disease. Br J Pharmacol 2021; 178:2751-2753. [PMID: 34159599 DOI: 10.1111/bph.15503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Ulrich Wenzel
- III. Medizinische Klinik, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Claudia Kemper
- Complement and Inflammation Research Section, NIH, Bethesda, Maryland, USA.,Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Jörg Köhl
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany.,Division of Immunobiology, Cincinnati Children's Hospital and University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
15
|
King BC, Blom AM. Complement in metabolic disease: metaflammation and a two-edged sword. Semin Immunopathol 2021; 43:829-841. [PMID: 34159399 PMCID: PMC8613079 DOI: 10.1007/s00281-021-00873-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 05/23/2021] [Indexed: 01/28/2023]
Abstract
We are currently experiencing an enduring global epidemic of obesity and diabetes. It is now understood that chronic low-grade tissue inflammation plays an important role in metabolic disease, brought upon by increased uptake of a so-called Western diet, and a more sedentary lifestyle. Many evolutionarily conserved links exist between metabolism and the immune system, and an imbalance in this system induced by chronic over-nutrition has been termed 'metaflammation'. The complement system is an important and evolutionarily ancient part of innate immunity, but recent work has revealed that complement not only is involved in the recognition of pathogens and induction of inflammation, but also plays important roles in cellular and tissue homeostasis. Complement can therefore contribute both positively and negatively to metabolic control, depending on the nature and anatomical site of its activity. This review will therefore focus on the interactions of complement with mechanisms and tissues relevant for metabolic control, obesity and diabetes.
Collapse
Affiliation(s)
- B C King
- Department of Translational Medicine, Lund University, Lund, Sweden.
| | - A M Blom
- Department of Translational Medicine, Lund University, Lund, Sweden
| |
Collapse
|
16
|
Krag TO, Holm-Yildiz S, Witting N, Vissing J. Autophagy is affected in patients with hypokalemic periodic paralysis: an involvement in vacuolar myopathy? Acta Neuropathol Commun 2021; 9:109. [PMID: 34120654 PMCID: PMC8201813 DOI: 10.1186/s40478-021-01212-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/07/2021] [Indexed: 11/18/2022] Open
Abstract
Hypokalemic periodic paralysis is an autosomal dominant, rare disorder caused by variants in the genes for voltage-gated calcium channel CaV1.1 (CACNA1S) and NaV1.4 (SCN4A). Patients with hypokalemic periodic paralysis may suffer from periodic paralysis alone, periodic paralysis co-existing with permanent weakness or permanent weakness alone. Hypokalemic periodic paralysis has been known to be associated with vacuolar myopathy for decades, and that vacuoles are a universal feature regardless of phenotype. Hence, we wanted to investigate the nature and cause of the vacuoles. Fourteen patients with the p.R528H variation in the CACNA1S gene was included in the study. Histology, immunohistochemistry and transmission electron microscopy was used to assess general histopathology, ultrastructure and pattern of expression of proteins related to muscle fibres and autophagy. Western blotting and real-time PCR was used to determine the expression levels of proteins and mRNA of the proteins investigated in immunohistochemistry. Histology and transmission electron microscopy revealed heterogenous vacuoles containing glycogen, fibrils and autophagosomes. Immunohistochemistry demonstrated autophagosomes and endosomes arrested at the pre-lysosome fusion stage. Expression analysis showed a significant decrease in levels of proteins an mRNA involved in autophagy in patients, suggesting a systemic effect. However, activation level of the master regulator of autophagy gene transcription, TFEB, did not differ between patients and controls, suggesting competing control over autophagy gene transcription by nutritional status and calcium concentration, both controlling TFEB activity. The findings suggest that patients with hypokalemic periodic paralysis have disrupted autophagic processing that contribute to the vacuoles seen in these patients.
Collapse
|
17
|
Eshraghi M, Adlimoghaddam A, Mahmoodzadeh A, Sharifzad F, Yasavoli-Sharahi H, Lorzadeh S, Albensi BC, Ghavami S. Alzheimer's Disease Pathogenesis: Role of Autophagy and Mitophagy Focusing in Microglia. Int J Mol Sci 2021; 22:3330. [PMID: 33805142 PMCID: PMC8036323 DOI: 10.3390/ijms22073330] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/14/2021] [Accepted: 03/19/2021] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is a debilitating neurological disorder, and currently, there is no cure for it. Several pathologic alterations have been described in the brain of AD patients, but the ultimate causative mechanisms of AD are still elusive. The classic hallmarks of AD, including amyloid plaques (Aβ) and tau tangles (tau), are the most studied features of AD. Unfortunately, all the efforts targeting these pathologies have failed to show the desired efficacy in AD patients so far. Neuroinflammation and impaired autophagy are two other main known pathologies in AD. It has been reported that these pathologies exist in AD brain long before the emergence of any clinical manifestation of AD. Microglia are the main inflammatory cells in the brain and are considered by many researchers as the next hope for finding a viable therapeutic target in AD. Interestingly, it appears that the autophagy and mitophagy are also changed in these cells in AD. Inside the cells, autophagy and inflammation interact in a bidirectional manner. In the current review, we briefly discussed an overview on autophagy and mitophagy in AD and then provided a comprehensive discussion on the role of these pathways in microglia and their involvement in AD pathogenesis.
Collapse
Affiliation(s)
- Mehdi Eshraghi
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA;
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Aida Adlimoghaddam
- St. Boniface Hospital Albrechtsen Research Centre, Division of Neurodegenerative Disorders, Winnipeg, MB R2H2A6, Canada; (A.A.); (B.C.A.)
| | - Amir Mahmoodzadeh
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran;
| | - Farzaneh Sharifzad
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (F.S.); (H.Y.-S.)
| | - Hamed Yasavoli-Sharahi
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (F.S.); (H.Y.-S.)
| | - Shahrokh Lorzadeh
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada;
| | - Benedict C. Albensi
- St. Boniface Hospital Albrechtsen Research Centre, Division of Neurodegenerative Disorders, Winnipeg, MB R2H2A6, Canada; (A.A.); (B.C.A.)
- Department of Pharmacology & Therapeutics, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada;
- Research Institute of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, MB R3E 0V9, Canada
- Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
- Faculty of Medicine, Katowice School of Technology, 40-555 Katowice, Poland
| |
Collapse
|