1
|
Ortega S, Figueiredo AM, Moroni B, Abarca N, Dashti A, Köster PC, Bailo B, Cano-Terriza D, Gonzálvez M, Fayos M, Oleaga Á, Martínez-Carrasco C, Velarde R, Torres RT, Ferreira E, Hipólito D, Barros T, Lino A, Robetto S, Rossi L, Muñoz-de-Mier GJ, Ávalos G, Calero-Bernal R, González-Barrio D, Sánchez S, García-Bocanegra I, Carmena D. Free-Ranging Wolves (Canis lupus) are Natural Reservoirs of Intestinal Microeukaryotes of Public Health Significance in Southwestern Europe. Zoonoses Public Health 2025; 72:269-283. [PMID: 39648658 DOI: 10.1111/zph.13202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 12/10/2024]
Abstract
INTRODUCTION Intestinal microeukaryote parasites are major contributors to the burden of diarrhoea in humans and domestic animals, but their epidemiology in wildlife is not fully understood. We investigated the frequency, genetic diversity and zoonotic potential of protists of animal and public health significance in free-ranging grey wolf (Canis lupus) populations in south-western Europe. METHODS Individually formed faecal samples collected from necropsied wolves or scat trails in Italy (n = 47), Portugal (n = 43) and Spain (n = 225) during the period 2011-2023 were retrospectively analysed using molecular (PCR and Sanger sequencing) methods. Complementary epidemiological data were gathered when available. RESULTS Giardia duodenalis was the most frequent microeukaryote found (40.3%, 127/315; 95% CI: 34.9-46.0), followed by Cryptosporidium spp. (3.5%, 11/315; 95% CI: 1.8-6.2), Enterocytozoon bieneusi and Encephalitozoon spp. (1.6%, 5/315; 95% CI: 0.5-3.7 each). Blastocystis was not identified in any of the faecal samples analysed. Sequence analyses confirmed the presence of canine-adapted assemblage D within G. duodenalis (n = 7). Three Cryptosporidium species were identified, namely canine-adapted C. canis (n = 9), zoonotic C. parvum (n = 1) and primarily anthroponotic C.hominis (n = 1). Genotyping tools enabled the identification of subtype family XXe2 within C. canis. Among microsporidia, the canine-adapted genotype PtEb IX was identified within E. bieneusi. Two samples were confirmed as Enc. intestinalis and three more as Enc. cuniculi genotype IV. This is the first record of Enc. intestinalis and Enc. cuniculi in the grey wolf globally. CONCLUSIONS Silent carriage of intestinal microeukaryotes seems common in free-ranging grey wolves in southwestern Europe. Wolves can contribute to environmental contamination through the transmission stages (cysts, oocysts, spores) of species/genotypes potentially infective to humans. Individuals in close contact with wolf carcasses or their faecal material may be at potential risk of infection by microeukaryotic pathogens.
Collapse
Affiliation(s)
- Sheila Ortega
- Parasitology Reference and Research Laboratory, National Centre for Microbiology, Majadahonda, Madrid, Spain
| | - Ana M Figueiredo
- CESAM and Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Barbara Moroni
- Istituto Zooprofilattico di Piemonte, Liguria e Valle d'Aosta (IZSPLV), Torino, Italy
| | - Nadia Abarca
- Parasitology Reference and Research Laboratory, National Centre for Microbiology, Majadahonda, Madrid, Spain
- Department of Veterinary Sciences, Biomedical Sciences Institute, Autonomous University of Ciudad Juárez, Chihuahua, Mexico
| | - Alejandro Dashti
- Parasitology Reference and Research Laboratory, National Centre for Microbiology, Majadahonda, Madrid, Spain
| | - Pamela C Köster
- Parasitology Reference and Research Laboratory, National Centre for Microbiology, Majadahonda, Madrid, Spain
- Faculty of Health Sciences, Alfonso X El Sabio University (UAX), Villanueva de la Cañada, Madrid, Spain
- Women for Africa Foundation, Madrid, Spain
| | - Begoña Bailo
- Parasitology Reference and Research Laboratory, National Centre for Microbiology, Majadahonda, Madrid, Spain
| | - David Cano-Terriza
- Department of Animal Health, Animal Health and Zoonoses Research Group (GISAZ), UIC Zoonoses and Emerging Diseases (ENZOEM), University of Córdoba, Córdoba, Spain
- CIBER Infectious Diseases (CIBERINFEC), Health Institute Carlos III, Madrid, Spain
| | - Moisés Gonzálvez
- Department of Animal Health, Animal Health and Zoonoses Research Group (GISAZ), UIC Zoonoses and Emerging Diseases (ENZOEM), University of Córdoba, Córdoba, Spain
- Department of Animal Health, Faculty of Veterinary Sciences, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Murcia, Spain
| | - Manena Fayos
- Centro de Recuperación de Fauna Silvestre de Cantabria, Tragsatec, Dirección General de Montes y Biodiversidad Cantabria, Gobierno de Cantabria, Santander, Spain
| | - Álvaro Oleaga
- Sociedad de Servicios del Principado de Asturias S.A. (SERPA), Gijón, Spain
| | - Carlos Martínez-Carrasco
- Department of Animal Health, Faculty of Veterinary Sciences, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Murcia, Spain
| | - Roser Velarde
- Wildlife Ecology & Health Group (WEH) and Servei d'Ecopatologia de Fauna Salvatge (SEFaS), Departament de Medicina i Cirugia Animals, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Rita T Torres
- CESAM and Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Eduardo Ferreira
- CESAM and Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Dário Hipólito
- CESAM and Department of Biology, University of Aveiro, Aveiro, Portugal
- Veterinary Biology Unit, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Tânia Barros
- CESAM and Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Ana Lino
- CESAM and Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Serena Robetto
- Istituto Zooprofilattico di Piemonte, Liguria e Valle d'Aosta (IZSPLV), Torino, Italy
- Centro di Referenza Nazionale per le Malattie Degli Animali Selvatici (CeRMAS), Quart, Aosta, Italy
| | - Luca Rossi
- Department of Veterinary Sciences, University of Torino, Torino, Italy
| | - Gemma J Muñoz-de-Mier
- Faculty of Health Sciences, Alfonso X El Sabio University (UAX), Villanueva de la Cañada, Madrid, Spain
| | - Gabriel Ávalos
- Parasitology Reference and Research Laboratory, National Centre for Microbiology, Majadahonda, Madrid, Spain
| | - Rafael Calero-Bernal
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Madrid, Spain
| | - David González-Barrio
- Parasitology Reference and Research Laboratory, National Centre for Microbiology, Majadahonda, Madrid, Spain
| | - Sergio Sánchez
- Parasitology Reference and Research Laboratory, National Centre for Microbiology, Majadahonda, Madrid, Spain
| | - Ignacio García-Bocanegra
- Department of Animal Health, Animal Health and Zoonoses Research Group (GISAZ), UIC Zoonoses and Emerging Diseases (ENZOEM), University of Córdoba, Córdoba, Spain
- CIBER Infectious Diseases (CIBERINFEC), Health Institute Carlos III, Madrid, Spain
| | - David Carmena
- Parasitology Reference and Research Laboratory, National Centre for Microbiology, Majadahonda, Madrid, Spain
- CIBER Infectious Diseases (CIBERINFEC), Health Institute Carlos III, Madrid, Spain
| |
Collapse
|
2
|
Iosif R, Skrbinšek T, Erős N, Konec M, Boljte B, Jan M, Promberger‐Fürpass B. Wolf Population Size and Composition in One of Europe's Strongholds, the Romanian Carpathians. Ecol Evol 2025; 15:e71200. [PMID: 40242802 PMCID: PMC12000540 DOI: 10.1002/ece3.71200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 03/04/2025] [Accepted: 03/19/2025] [Indexed: 04/18/2025] Open
Abstract
Strategies of coexistence with large carnivores should integrate scientific evidence, population monitoring providing an opportunity for advancing outdated management paradigms. We estimated wolf population density and social dynamics across a 1400 km2 area in a data-poor region of the Romanian Carpathians. Across three consecutive years (2017-2018 until 2019-2020), we collected and genotyped 505 noninvasive DNA wolf samples (scat, hair and urine) to identify individuals, reconstruct pedigrees, and check for the presence of hybridization with domestic dogs. We identified 27 males, 20 females, and one F1 wolf-dog hybrid male. We delineated six wolf packs, with pack size varying between two and seven individuals, and documented yearly changes in pack composition. Using a spatial capture-recapture approach, we estimated population density at 2.35 wolves/100 km2 (95% BCI = 1.68-3.03) and population abundance at 70 individuals (95% BCI = 49-89). Noninvasive DNA data collection coupled with spatial capture-recapture has the potential to inform on wolf population size and dynamics at broader spatial scales, across different sampling areas representative of the diverse Carpathian landscapes, and across different levels of human impact, supporting wildlife decision making in one of Europe's main strongholds for large carnivores.
Collapse
Affiliation(s)
- Ruben Iosif
- Foundation Conservation CarpathiaBrașovRomania
| | - Tomaž Skrbinšek
- University of Ljubljana, Biotechnical FacultyDepartment Of BiologyLjubljanaSlovenia
- DivjaLabs Ltd.LjubljanaSlovenia
| | - Nándor Erős
- Centre for Ecological ResearchInstitute of Aquatic EcologyDebrecenHungary
- Centre for Systems Biology, Biodiversity and Bioresources, Hungarian Department of Biology and EcologyBabeş‐Bolyai UniversityCluj‐NapocaRomania
| | - Marjeta Konec
- University of Ljubljana, Biotechnical FacultyDepartment Of BiologyLjubljanaSlovenia
- DivjaLabs Ltd.LjubljanaSlovenia
| | - Barbara Boljte
- University of Ljubljana, Biotechnical FacultyDepartment Of BiologyLjubljanaSlovenia
- DivjaLabs Ltd.LjubljanaSlovenia
| | - Maja Jan
- University of Ljubljana, Biotechnical FacultyDepartment Of BiologyLjubljanaSlovenia
| | | |
Collapse
|
3
|
Santostasi NL, Bauduin S, Grente O, Gimenez O, Ciucci P. Simulating the efficacy of wolf-dog hybridization management with individual-based modeling. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2025; 39:e14312. [PMID: 38894638 PMCID: PMC11780192 DOI: 10.1111/cobi.14312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 06/21/2024]
Abstract
Introgressive hybridization between wolves and dogs is a conservation concern due to its potentially deleterious long-term evolutionary consequences. European legislation requires that wolf-dog hybridization be mitigated through effective management. We developed an individual-based model (IBM) to simulate the life cycle of gray wolves that incorporates aspects of wolf sociality that affect hybridization rates (e.g., the dissolution of packs after the death of one/both breeders) with the goal of informing decision-making on management of wolf-dog hybridization. We applied our model by projecting hybridization dynamics in a local wolf population under different mate choice and immigration scenarios and contrasted results of removal of admixed individuals with their sterilization and release. In several scenarios, lack of management led to complete admixture, whereas reactive management interventions effectively reduced admixture in wolf populations. Management effectiveness, however, strongly depended on mate choice and number and admixture level of individuals immigrating into the wolf population. The inclusion of anthropogenic mortality affecting parental and admixed individuals (e.g., poaching) increased the probability of pack dissolution and thus increased the probability of interbreeding with dogs or admixed individuals and boosted hybridization and introgression rates in all simulation scenarios. Recognizing the necessity of additional model refinements (appropriate parameterization, thorough sensitivity analyses, and robust model validation) to generate management recommendations applicable in real-world scenarios, we maintain confidence in our model's potential as a valuable conservation tool that can be applied to diverse situations and species facing similar threats.
Collapse
Affiliation(s)
- Nina Luisa Santostasi
- Department of Biology and Biotechnologies “Charles Darwin”Sapienza University of RomeRomaItaly
- CEFECNRS, Univ. Montpellier, EPHE, IRDMontpellierFrance
- National Biodiversity Future CenterPalermoItaly
| | - Sarah Bauduin
- Direction de la Recherche et Appui Scientifique, Service Conservation et Gestion des Espèces à EnjeuxOffice Français de la BiodiversitéJuvignacFrance
| | - Oksana Grente
- CEFECNRS, Univ. Montpellier, EPHE, IRDMontpellierFrance
| | | | - Paolo Ciucci
- Department of Biology and Biotechnologies “Charles Darwin”Sapienza University of RomeRomaItaly
- National Biodiversity Future CenterPalermoItaly
| |
Collapse
|
4
|
Sarabia C, Salado I, Fernández-Gil A, vonHoldt BM, Hofreiter M, Vilà C, Leonard JA. Potential Adaptive Introgression From Dogs in Iberian Grey Wolves (Canis lupus). Mol Ecol 2025:e17639. [PMID: 39791197 DOI: 10.1111/mec.17639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/03/2024] [Accepted: 12/16/2024] [Indexed: 01/12/2025]
Abstract
Invading species along with increased anthropogenization may lead to hybridization events between wild species and closely related domesticates. As a consequence, wild species may carry introgressed alleles from domestic species, which is generally assumed to yield adverse effects in wild populations. The opposite evolutionary consequence, adaptive introgression, where introgressed genes are positively selected in the wild species, is possible but has rarely been documented. Grey wolves (Canis lupus) are widely distributed across the Holarctic and frequently coexist with their close relative, the domestic dog (C. familiaris). Despite ample opportunity, hybridization rarely occurs in most populations. Here we studied the geographically isolated grey wolves of the Iberian Peninsula, who have coexisted with a large population of loosely controlled dogs for thousands of years in a human-modified landscape. We assessed the extent and impact of dog introgression on the current Iberian grey wolf population by analysing 150 whole genomes of Iberian and other Eurasian grey wolves as well as dogs originating from across Europe and western Siberia. We identified almost no recent introgression and a small (< 5%) overall ancient dog ancestry. Using a combination of single scan statistics and ancestry enrichment estimates, we identified positive selection on six genes (DAPP1, NSMCE4A, MPPED2, PCDH9, MBTPS1, and CDH13) for which wild Iberian wolves carry alleles introgressed from dogs. The genes with introgressed and positively selected alleles include functions in immune response and brain functions, which may explain some of the unique behavioural phenotypes in Iberian wolves such as their reduced dispersal compared to other wolf populations.
Collapse
Affiliation(s)
- Carlos Sarabia
- Center for Computational Molecular Biology, Brown University, Providence, Rhode Island, USA
| | - Isabel Salado
- Estación Biológica de Doñana (EBD-CSIC), Seville, Spain
| | | | - Bridgett M vonHoldt
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
| | - Michael Hofreiter
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Carles Vilà
- Estación Biológica de Doñana (EBD-CSIC), Seville, Spain
| | | |
Collapse
|
5
|
Battilani D, Gargiulo R, Caniglia R, Fabbri E, Madrigal JR, Fontsere C, Ciucani MM, Gopalakrishnan S, Girardi M, Fracasso I, Mastroiaco M, Ciucci P, Vernesi C. Beyond population size: Whole-genome data reveal bottleneck legacies in the peninsular Italian wolf. J Hered 2025; 116:10-23. [PMID: 39189963 DOI: 10.1093/jhered/esae041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 08/15/2024] [Indexed: 08/28/2024] Open
Abstract
Preserving genetic diversity and adaptive potential while avoiding inbreeding depression is crucial for the long-term conservation of natural populations. Despite demographic increases, traces of past bottleneck events at the genomic level should be carefully considered for population management. From this perspective, the peninsular Italian wolf is a paradigmatic case. After being on the brink of extinction in the late 1960s, peninsular Italian wolves rebounded and recolonized most of the peninsula aided by conservation measures, including habitat and legal protection. Notwithstanding their demographic recovery, a comprehensive understanding of the genomic consequences of the historical bottleneck in Italian wolves is still lacking. To fill this gap, we sequenced whole genomes of 13 individuals sampled in the core historical range of the species in Central Italy to conduct population genomic analyses, including a comparison with wolves from two highly-inbred wolf populations (i.e. Scandinavia and Isle Royale). We found that peninsular Italian wolves, despite their recent recovery, still exhibit relatively low genetic diversity, a small effective population size, signatures of inbreeding, and a non-negligible genetic load. Our findings indicate that the peninsular Italian wolf population is still susceptible to bottleneck legacies, which could lead to local inbreeding depression in case of population reduction or fragmentations. This study emphasizes the importance of considering key genetic parameters to design appropriate long-term conservation management plans.
Collapse
Affiliation(s)
- Daniele Battilani
- Department of Biology and Biotechnologies "Charles Darwin", Università di Roma La Sapienza, Roma, Italy
- Area per la Genetica della Conservazione, ISPRA, Ozzano dell'Emilia Bologna, Italy
- Center for Evolutionary Hologenomics, The Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Roberta Gargiulo
- Ecosystem Stewardship, Royal Botanical Gardens, Kew, United Kingdom
| | - Romolo Caniglia
- Area per la Genetica della Conservazione, ISPRA, Ozzano dell'Emilia Bologna, Italy
| | - Elena Fabbri
- Area per la Genetica della Conservazione, ISPRA, Ozzano dell'Emilia Bologna, Italy
| | - Jazmín Ramos- Madrigal
- Center for Evolutionary Hologenomics, The Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Claudia Fontsere
- Center for Evolutionary Hologenomics, The Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Marta Maria Ciucani
- Center for Evolutionary Hologenomics, The Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Shyam Gopalakrishnan
- Center for Evolutionary Hologenomics, The Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Matteo Girardi
- Research and Innovation Centre-Fondazione Edmund Mach, S. Michele all'Adige, Italy
| | - Ilaria Fracasso
- Research and Innovation Centre-Fondazione Edmund Mach, S. Michele all'Adige, Italy
| | - Matteo Mastroiaco
- Department of Biology and Biotechnologies "Charles Darwin", Università di Roma La Sapienza, Roma, Italy
| | - Paolo Ciucci
- Department of Biology and Biotechnologies "Charles Darwin", Università di Roma La Sapienza, Roma, Italy
| | - Cristiano Vernesi
- Research and Innovation Centre-Fondazione Edmund Mach, S. Michele all'Adige, Italy
| |
Collapse
|
6
|
Krzysiak MK, Świątalska A, Plis-Kuprianowicz E, Konieczny A, Bakier S, Tomczuk K, Larska M. Fatal Sarcoptes scabiei and Demodex sp. co-infestation in wolves ( Canis lupus) at the Białowieża National Park, Poland - is it a consequence of climate change? J Vet Res 2024; 68:551-562. [PMID: 39776685 PMCID: PMC11702252 DOI: 10.2478/jvetres-2024-0068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
Introduction In winter 2021/2022, a wolf population in the primeval Białowieża Forest in Poland was struck by an outbreak of severe mange caused by mixed infestations of Sarcoptes and Demodex mites. We present an epidemiological analysis of this mange which caused significant morbidity and mortality. Material and Methods Ten sites known for wolf activity were monitored by camera trapping. A diagnostic necropsy and testing of a young wolf was performed to determine the causes of death. Results Five young wolves with severe alopecia of the entire body and some other individuals with minor to medium mange lesions were identified by the camera surveillance. The necropsy of the carcass revealed emaciation, dehydration and anaemia with starvation as the cause of death, likely attributable to severe infestation with Sarcoptes scabiei and Demodex sp. mites. Rabies and infections with Borreliella sp., Anaplasma sp., Ehrlichia sp., Francisella tularensis, Babesia sp. and tick-borne encephalitis virus were excluded by specific tests. Conclusions The described analysis is the first documented co-infestation of this kind in wolves. The outbreak coincided with very mild winter conditions with a high average minimum temperature, which may have favoured mite survival outside the host, and light snowfall, which may have influenced the wolves' ability to hunt. Other potential drivers of the outbreak could be the large proportion of wetland terrain, increasing number of wolves in the area and anthropogenic pressure on their habitats including the migration crisis at the Polish-Belarusian border and the increased presence of military and border forces, even despite the relief from the anthropogenic pressure from tourism due to the COVID-19 lockdown.
Collapse
Affiliation(s)
- Michał K. Krzysiak
- Department of Parasitology and Invasive Diseases, University of Life Sciences in Lublin, 20-950Lublin, Poland
| | | | | | - Andrzej Konieczny
- Faculty of Agrobioengineering, University of Live Sciences, Lublin20-950, Poland
| | - Sławomir Bakier
- Faculty of Civil Engineering and Environmental Sciences, Institute of Forest Sciences, Białystok University of Technology, 15-351Białystok, Poland
| | - Krzysztof Tomczuk
- Department of Parasitology and Invasive Diseases, University of Life Sciences in Lublin, 20-950Lublin, Poland
| | - Magdalena Larska
- Department of Virology, National Veterinary Research Institute, 24-100Puławy, Poland
| |
Collapse
|
7
|
Pérez‐Sorribes L, Villar‐Yanez P, Smeds L, Mergeay J. Comparing Genetic Ne Reconstructions Over Time With Long-Time Wolf Monitoring Data in Two Populations. Evol Appl 2024; 17:e70022. [PMID: 39430439 PMCID: PMC11486914 DOI: 10.1111/eva.70022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/26/2024] [Accepted: 09/23/2024] [Indexed: 10/22/2024] Open
Abstract
Many methods are now available to calculate N e , but their performance varies depending on assumptions. Although simulated data are useful to discover certain types of bias, real empirical data supported by detailed known population histories allow us to discern how well methods perform with actual messy and complex data. Here, we focus on two genomic data sets of grey wolf populations for which population size changes of the past 40-120 years are well documented. We use this background to explore in what detail we can retrieve the known population history from these populations, in the light of pitfalls relating to population history, sampling design and the change in the spatial scale at which N e is estimated as we go further back in time. The Scandinavian wolf population was founded in the early 1980s from a few individuals and has gradually expanded up to 510 wolves. Although the founder event of the Scandinavian population was detected by GONE, the founding effective population size was strongly overestimated when the most recent samples were used, but less so when older samples were considered. Nevertheless, the present-day N e corresponds to theoretical expectations. The western Great Lakes wolf population of Minnesota is the only population in the contiguous United States that persisted throughout the 20th century, surviving intense persecution. We found a good concordance between the estimated N e and trends in census size data, but the reconstruction of N e clearly highlights the difficulty of interpreting results in spatially structured populations that underwent demographic fluctuations.
Collapse
Affiliation(s)
| | | | - Linnéa Smeds
- Department of Ecology and GeneticsUppsala UniversityUppsalaSweden
| | - Joachim Mergeay
- Research Institute for Nature and ForestGeraardsbergenBelgium
- Ecology, Evolution and Biodiversity ConservationKU LeuvenLeuvenBelgium
| |
Collapse
|
8
|
Salado I, Preick M, Lupiáñez-Corpas N, Fernández-Gil A, Vilà C, Hofreiter M, Leonard JA. Large variance in inbreeding within the Iberian wolf population. J Hered 2024; 115:349-359. [PMID: 37955431 PMCID: PMC11235127 DOI: 10.1093/jhered/esad071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/06/2023] [Accepted: 11/09/2023] [Indexed: 11/14/2023] Open
Abstract
The gray wolf (Canis lupus) population on the Iberian Peninsula was the largest in western and central Europe during most of the 20th century, with its size apparently never under a few hundred individuals. After partial legal protection in the 1970s in Spain, the northwest Iberian population increased to about 300 to 350 packs and then stabilized. In contrast to many current European wolf populations, which have been connected through gene flow, the Iberian wolf population has been isolated for decades. Here, we measured changes in genomic diversity and inbreeding through the last decades in a geographic context. We find that the level of genomic diversity in Iberian wolves is low compared with other Eurasian wolf populations. Despite population expansion in the last 50 years, some modern wolves had very high inbreeding, especially in the recently recolonized and historical edge areas. These individuals contrast with others with low inbreeding within the same population. The high variance in inbreeding despite population expansion seems associated with small-scale fragmentation of the range that is revealed by the genetic similarity between modern and historical samples from close localities despite being separated by decades, remaining differentiated from other individuals that are just over 100 km away, a small distance for a species with great dispersal capacity inhabiting a continuous range. This illustrates that, despite its demographically stable condition, the population would probably benefit from favoring connectivity within the population as well as genetic exchange with other European wolf populations to avoid excessive fragmentation and local inbreeding depression.
Collapse
Affiliation(s)
- Isabel Salado
- Conservation and Evolutionary Genetics Group, Department of Ecology and Evolution, Estación Biológica de Doñana (EBD-CSIC), Seville, Spain
| | - Michaela Preick
- Evolutionary Adaptive Genomics Group, Faculty of Science, Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Natividad Lupiáñez-Corpas
- Conservation and Evolutionary Genetics Group, Department of Ecology and Evolution, Estación Biológica de Doñana (EBD-CSIC), Seville, Spain
| | - Alberto Fernández-Gil
- Department of Conservation Biology, Estación Biológica de Doñana (EBD-CSIC), Seville, Spain
| | - Carles Vilà
- Conservation and Evolutionary Genetics Group, Department of Ecology and Evolution, Estación Biológica de Doñana (EBD-CSIC), Seville, Spain
| | - Michael Hofreiter
- Evolutionary Adaptive Genomics Group, Faculty of Science, Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Jennifer A Leonard
- Conservation and Evolutionary Genetics Group, Department of Ecology and Evolution, Estación Biológica de Doñana (EBD-CSIC), Seville, Spain
| |
Collapse
|
9
|
Musiani M, Randi E. Conservation genomics of wolves: The global impact of RK Wayne's research. J Hered 2024; 115:458-469. [PMID: 38381553 DOI: 10.1093/jhered/esae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 01/31/2024] [Accepted: 02/20/2024] [Indexed: 02/23/2024] Open
Abstract
RK Wayne has arguably been the most influential geneticist of canids, famously promoting the conservation of wolves in his homeland, the United States. His influence has been felt in other countries and regions outside the contiguous United States, where he inspired others, also including former graduate students and research fellows of his, to use modern molecular techniques to examine the evolutionary biology of canids to inform the conservation and management of wolves. In this review, we focus on the implications of Wayne's work on wolves outside the United States. He envisioned a clear future for wolf conservation research, involving the study of wolves' ecological and genetic diversity, and the description of ecotypes requiring conservation. He also documented widespread hybridization among canids and introgression of DNA from domestic dogs to wolves, a process that started dozens of thousands of years ago. His work therefore calls for innovative studies, such as examining the potential fitness benefits of introgression. Inspired by his results, for example, on the purging of deleterious alleles in small populations, wolf researchers should use novel molecular tools to challenge other conservation genetics paradigms. Overall, RK Wayne's work constitutes a call for answers, which as scientists or citizens concerned with conservation matters, we are obliged to address, as we contribute to monitoring and maintaining biodiversity during our period of dramatic transformations of the biosphere.
Collapse
Affiliation(s)
- Marco Musiani
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali (BiGeA), University of Bologna, Bologna, Italy
| | - Ettore Randi
- Department of Chemistry and Bioscience, Aalborg University, Aalborg Øst, Denmark
| |
Collapse
|
10
|
Musto C, Cerri J, Capizzi D, Fontana MC, Rubini S, Merialdi G, Berzi D, Ciuti F, Santi A, Rossi A, Barsi F, Gelmini L, Fiorentini L, Pupillo G, Torreggiani C, Bianchi A, Gazzola A, Prati P, Sala G, Apollonio M, Delogu M, Biancardi A, Uboldi L, Moretti A, Garbarino C. First evidence of widespread positivity to anticoagulant rodenticides in grey wolves (Canis lupus). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:169990. [PMID: 38232835 DOI: 10.1016/j.scitotenv.2024.169990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 01/05/2024] [Accepted: 01/05/2024] [Indexed: 01/19/2024]
Abstract
Second-generation Anticoagulant Rodenticides (ARs) can be critical for carnivores, due to their widespread use and impacts. However, although many studies explored the impacts of ARs on small and mesocarnivores, none assessed the extent to which they could contaminate large carnivores in anthropized landscapes. We filled this gap by exploring spatiotemporal trends in grey wolf (Canis lupus) exposure to ARs in central and northern Italy, by subjecting a large sample of dead wolves (n = 186) to the LC-MS/MS method. Most wolves (n = 115/186, 61.8 %) tested positive for ARs (1 compound, n = 36; 2 compounds, n = 47; 3 compounds, n = 16; 4 or more compounds, n = 16). Bromadiolone, brodifacoum and difenacoum, were the most common compounds, with brodifacoum and bromadiolone being the ARs that co-occurred the most (n = 61). Both the probability of testing positive for multiple ARs and the concentration of brodifacoum, and bromadiolone in the liver, systematically increased in wolves that were found at more anthropized sites. Moreover, wolves became more likely to test positive for ARs through time, particularly after 2020. Our results underline that rodent control, based on ARs, increases the risks of unintentional poisoning of non-target wildlife. However, this risk does not only involve small and mesocarnivores, but also large carnivores at the top of the food chain, such as wolves. Therefore, rodent control is adding one further conservation threat to endangered large carnivores in anthropized landscapes of Europe, whose severity could increase over time and be far higher than previously thought. Large-scale monitoring schemes for ARs in European large carnivores should be devised as soon as possible.
Collapse
Affiliation(s)
- Carmela Musto
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Bologna, Italy.
| | - Jacopo Cerri
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy.
| | - Dario Capizzi
- Directorate for Environment, Latium Region, 00173 Rome, Italy
| | - Maria Cristina Fontana
- Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna "B. Ubertini", 25124 Brescia, Italy
| | - Silva Rubini
- Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna "B. Ubertini", 25124 Brescia, Italy
| | - Giuseppe Merialdi
- Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna "B. Ubertini", 25124 Brescia, Italy
| | - Duccio Berzi
- Centro per lo Studio e la Documentazione sul Lupo, 50033 Firenze, Italy
| | - Francesca Ciuti
- Centro per lo Studio e la Documentazione sul Lupo, 50033 Firenze, Italy
| | - Annalisa Santi
- Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna "B. Ubertini", 25124 Brescia, Italy
| | - Arianna Rossi
- Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna "B. Ubertini", 25124 Brescia, Italy
| | - Filippo Barsi
- Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna "B. Ubertini", 25124 Brescia, Italy
| | - Luca Gelmini
- Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna "B. Ubertini", 25124 Brescia, Italy
| | - Laura Fiorentini
- Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna "B. Ubertini", 25124 Brescia, Italy
| | - Giovanni Pupillo
- Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna "B. Ubertini", 25124 Brescia, Italy
| | - Camilla Torreggiani
- Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna "B. Ubertini", 25124 Brescia, Italy
| | - Alessandro Bianchi
- Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna "B. Ubertini", 25124 Brescia, Italy
| | - Alessandra Gazzola
- Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna "B. Ubertini", 25124 Brescia, Italy
| | - Paola Prati
- Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna "B. Ubertini", 25124 Brescia, Italy
| | - Giovanni Sala
- Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna "B. Ubertini", 25124 Brescia, Italy
| | - Marco Apollonio
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy
| | - Mauro Delogu
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Bologna, Italy
| | - Alberto Biancardi
- Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna "B. Ubertini", 25124 Brescia, Italy
| | - Laura Uboldi
- Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna "B. Ubertini", 25124 Brescia, Italy
| | - Alessandro Moretti
- Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna "B. Ubertini", 25124 Brescia, Italy
| | - Chiara Garbarino
- Istituto Zooprofilattico della Lombardia e dell'Emilia-Romagna "B. Ubertini", 25124 Brescia, Italy
| |
Collapse
|
11
|
Amici F, Meacci S, Caray E, Oña L, Liebal K, Ciucci P. A first exploratory comparison of the behaviour of wolves (Canis lupus) and wolf-dog hybrids in captivity. Anim Cogn 2024; 27:9. [PMID: 38429445 PMCID: PMC10907477 DOI: 10.1007/s10071-024-01849-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/31/2023] [Accepted: 11/07/2023] [Indexed: 03/03/2024]
Abstract
Extensive introgression of genes from domesticated taxa may be a serious threat for the genomic integrity and adaptability of wild populations. Grey wolves (Canis lupus) are especially vulnerable to this phenomenon, but there are no studies yet assessing the potential behavioural effects of dog-introgression in wolves. In this study, we conducted a first systematic comparison of admixed (N = 11) and non-admixed (N = 14) wolves in captivity, focusing on their reaction to unfamiliar humans and novel objects, and the cohesiveness of their social groups. When exposed to unfamiliar humans in the experimental task, wolves were more vigilant, fearful and aggressive than admixed wolves, and less likely to approach humans, but also more likely to spend time in human proximity. When exposed to novel objects, wolves were more aggressive than admixed wolves, less likely to spend time in object proximity, and more likely to interact with objects, but also less vigilant and as fearful as admixed wolves. Finally, social networks were more cohesive in wolves than in admixed wolves. Although caution is needed when comparing groups of captive individuals with different life experiences, our study suggests that dog admixture may lead to important behavioural changes in wolves, with possible implications for conservation strategies.
Collapse
Affiliation(s)
- Federica Amici
- Life Sciences, Institute for Biology, Human Biology and Primate Cognition, Leipzig University, Leipzig, Germany.
- Department of Comparative Cultural Psychology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
| | - Simone Meacci
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Emmeline Caray
- Department of Life Sciences, University of Strasbourg, Strasbourg, France
| | - Linda Oña
- Life Sciences, Institute for Biology, Human Biology and Primate Cognition, Leipzig University, Leipzig, Germany
| | - Katja Liebal
- Life Sciences, Institute for Biology, Human Biology and Primate Cognition, Leipzig University, Leipzig, Germany
- Department of Comparative Cultural Psychology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Paolo Ciucci
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy
| |
Collapse
|
12
|
Juozaitytė-Ngugu E, Maziliauskaitė E, Kirjušina M, Prakas P, Vaitkevičiūtė R, Stankevičiūtė J, Butkauskas D. Identification of Sarcocystis and Trichinella Species in Muscles of Gray Wolf ( Canis lupus) from Lithuania. Vet Sci 2024; 11:85. [PMID: 38393103 PMCID: PMC10892562 DOI: 10.3390/vetsci11020085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Apicomplexan Sarcocystis and Trichinella nematodes are food-borne parasites whose life cycle is carried-out in various wildlife and domestic animals. The gray wolf (Canis lupus) is an apex predator acting as an ecosystem engineer. This study aimed to identify the species of Sarcocystis and Trichinella found in the muscles of gray wolves in Lithuania. During the 2017-2022 period, diaphragm, heart, and hind leg samples of 15 animals were examined. Microscopical analysis showed the presence of two types of Sarcocystis parasites in 26.7% of the analyzed muscle samples. Based on the sequencing of five loci, nuclear 18S rDNA, 28S rDNA, ITS1, mitochondrial cox1, and apicoplast rpoB, S. arctica, and S. svanai were identified. The current work presents the first report of S. svanai in gray wolf. Phylogenetically, S. svanai clustered together with S. lutrae, infecting various carnivorans, and S. arctica was most closely related to S. felis from domestic cats. Trichinella spp. were found in 12 gray wolves (80%). For the first time, Trichinella species were molecularly identified in gray wolves from Lithuania. Trichinella britovi was confirmed in all of the isolated Trichinella larvae using a multiplex PCR. Gray wolves in Lithuania may serve as a major source of zoonotic pathogens due to the presence of these parasites.
Collapse
Affiliation(s)
| | | | - Muza Kirjušina
- Department of Ecology, Institute of Life Sciences and Technology, Daugavpils University, Parādes 1, 5401 Daugavpils, Latvia
| | - Petras Prakas
- Nature Research Centre, Akademijos 2, 08412 Vilnius, Lithuania
| | - Rasa Vaitkevičiūtė
- Agriculture Academy, Vytautas Magnus University, Studentų 11, Akademija, 53361 Kaunas, Lithuania
| | - Jolanta Stankevičiūtė
- Agriculture Academy, Vytautas Magnus University, Studentų 11, Akademija, 53361 Kaunas, Lithuania
| | | |
Collapse
|
13
|
Yue Y, Yang Z, Wei W, Yang B, Qi D, Gu X, Yang X, Lu S, Zhang W, Dai Q, Zhang Z. The effectiveness of using giant panda as a surrogate for protecting sympatric species. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119803. [PMID: 38134503 DOI: 10.1016/j.jenvman.2023.119803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/13/2023] [Accepted: 12/03/2023] [Indexed: 12/24/2023]
Abstract
The use of umbrella species to promote biodiversity conservation is practiced worldwide. The giant panda (Ailuropoda melanoleuca) an iconic species for world wildlife conservation, that inhabits regions with significant biodiversity. Given that the functions at wildlife of different trophic levels and in different body size groups are different within the ecosystem, it is unknown whether those groups of wildlife co-occurring with giant pandas are each likewise protected. To examine the umbrella effect of giant pandas on sympatric species, we used an extensive dataset of wildlife from more than 78% of giant panda habitats. We analysed the changes in distribution for four wildlife categories (large carnivores, large herbivores, medium carnivores and medium herbivores) using a generalized linear mixed model, and the underlying driving factors using binomial logistic regression models. Changes in forests in giant panda habitats were evaluated using Fragstats. The results have shown that the counts of herbivores and medium carnivores increased significantly during the decade. However, those of large carnivores significantly declined. Forest cover and nature reserves showed significant and positive effects on wildlife in 2001 and 2011, while the human population had significant and negative impacts on the herbivores and carnivores. Our results have also suggested that there has been a slight alleviation in forest fragmentation in areas unaffected by earthquakes. We concluded that the umbrella strategy of using the giant panda as an umbrella species achieved partial success by promoting the recovery of herbivores and medium carnivores. Meanwhile, this has indicated that the strategy was not sufficient for large carnivores, and therefore not enough for local ecosystems, given the critical role of large carnivores. We have suggested integrating habitat patches, controlling human disturbance, and preparing for potential human-wildlife conflict management in the Giant Panda National Park to restore large carnivore populations and maintain ecosystem functioning.
Collapse
Affiliation(s)
- Ying Yue
- Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, China; University of Chinese Academy of Sciences, 100101, Beijing, China
| | - Zhisong Yang
- Sichuan Academy of Giant Panda, Chengdu, 610081, China
| | - Wei Wei
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, 637002, China
| | - Biao Yang
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, 637002, China
| | - Dunwu Qi
- Chengdu Research Base of Giant Panda Breeding, Chengdu, 610081, China
| | - Xiaodong Gu
- Sichuan Provincial Administration of Giant Panda National Park, 610081, Chengdu, China
| | - Xuyu Yang
- Sichuan Provincial Nature Protected Area Administration Station, 610081, Chengdu, China
| | - Song Lu
- College of Life Science, Sichuan University, 610064, Chengdu, China
| | - Wen Zhang
- Sichuan Forestry and Grassland Survey and Planning Institute, 610081, Chengdu, China
| | - Qiang Dai
- Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, China; University of Chinese Academy of Sciences, 100101, Beijing, China.
| | - Zejun Zhang
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, 637002, China; College of Chemistry and Life Sciences, Chengdu Normal University, 611130, Chengdu, China.
| |
Collapse
|
14
|
Jarausch A, von Thaden A, Sin T, Corradini A, Pop MI, Chiriac S, Gazzola A, Nowak C. Assessment of genetic diversity, population structure and wolf-dog hybridisation in the Eastern Romanian Carpathian wolf population. Sci Rep 2023; 13:22574. [PMID: 38114536 PMCID: PMC10730609 DOI: 10.1038/s41598-023-48741-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 11/29/2023] [Indexed: 12/21/2023] Open
Abstract
The Carpathian Mountains have been constantly inhabited by grey wolves and present one of the largest distribution areas in Europe, comprising between 2300 and 2700 individuals in Romania. To date, however, relatively little is known about the Romanian wolf population. We aimed to provide a first assessment of genetic diversity, population structure and wolf-dog hybridisation based on 444 mostly non-invasively collected samples in the Eastern Romanian Carpathians. Pack reconstruction and analysis of population genetic parameters were performed with mitochondrial DNA control-region sequencing and microsatellite genotyping. We found relatively high levels of genetic diversity, which is similar to values found in previous studies on Carpathian wolves from Poland and Slovakia, as well as to the long-lasting Dinaric-Balkan wolf population. We found no significant population structure in our study region, suggesting effective dispersal and admixture. Analysis of wolf-dog hybridisation using a Single Nucleotide Polymorphism panel optimised for hybrid detection revealed low rates of admixture between wolves and domestic dogs. Our results provide evidence for the existence of a genetically viable wolf population in the Romanian Carpathians. The genetic data obtained in this study may serve as valuable baseline information for the elaboration of monitoring standards and management plans for wolves in Romania.
Collapse
Affiliation(s)
- Anne Jarausch
- Conservation Genetics Group, Senckenberg Research Institute and Natural History Museum Frankfurt, Clamecystraße 12, 63571, Gelnhausen, Germany.
- Department of Biological Sciences, Johann Wolfgang Goethe-University, Biologicum, Max-von-Laue-Straße 9, 60438, Frankfurt am Main, Germany.
| | - Alina von Thaden
- Conservation Genetics Group, Senckenberg Research Institute and Natural History Museum Frankfurt, Clamecystraße 12, 63571, Gelnhausen, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325, Frankfurt am Main, Germany
| | - Teodora Sin
- Department of Systems Ecology and Sustainability, Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, 050095, Bucharest, Romania
- Association for the Conservation of Biological Diversity, Ion Creanga 12, 620083, Focsani, Romania
| | - Andrea Corradini
- Association for the Conservation of Biological Diversity, Ion Creanga 12, 620083, Focsani, Romania
- Animal Ecology Unit, Research and Innovation Centre, Fondazione Edmund Mach, Via Edmund Mach 1, 38098, San Michele all'Adige, TN, Italy
- NBFC, National Biodiversity Future Center, 90133, Palermo, PA, Italy
| | - Mihai I Pop
- Association for the Conservation of Biological Diversity, Ion Creanga 12, 620083, Focsani, Romania
| | - Silviu Chiriac
- Environmental Protection Agency, Vrancea County, Dinicu Golescu 2, 620106, Focsani, Romania
| | - Andrea Gazzola
- Association for the Conservation of Biological Diversity, Ion Creanga 12, 620083, Focsani, Romania
| | - Carsten Nowak
- Conservation Genetics Group, Senckenberg Research Institute and Natural History Museum Frankfurt, Clamecystraße 12, 63571, Gelnhausen, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325, Frankfurt am Main, Germany
| |
Collapse
|
15
|
Selva N, Bautista C, Fernández-Gil A, de Gabriel Hernando M, García-Rodríguez A, Naves J, Calzada J, Díaz-Fernández M, Díaz-Vaquero V, Leonard JA, Morales-González A, Naves-Alegre L, Quevedo M, Salado I, Vilà C, Revilla E. FAIR data would alleviate large carnivore conflict. Science 2023; 382:893-894. [PMID: 37995234 DOI: 10.1126/science.adl6080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Affiliation(s)
- Nuria Selva
- Institute of Nature Conservation, Polish Academy of Sciences, 31120 Kraków, Poland
- Departamento de Ciencias Integradas, Facultad de Ciencias Experimentales, Centro de Estudios Avanzados en Física, Matemáticas y Computación, Universidad de Huelva, 21071 Huelva, Spain
- Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas, 41092 Sevilla, Spain
| | - Carlos Bautista
- Institute of Nature Conservation, Polish Academy of Sciences, 31120 Kraków, Poland
| | - Alberto Fernández-Gil
- Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas, 41092 Sevilla, Spain
| | | | | | - Javier Naves
- Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas, 41092 Sevilla, Spain
| | - Javier Calzada
- Departamento de Ciencias Integradas, Facultad de Ciencias Experimentales, Centro de Estudios Avanzados en Física, Matemáticas y Computación, Universidad de Huelva, 21071 Huelva, Spain
| | - Manuel Díaz-Fernández
- Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas, 41092 Sevilla, Spain
| | - Vanessa Díaz-Vaquero
- Biodiversity Research Institute, University of Oviedo-Consejo Superior de Investigaciones Científicas-Principality of Asturias, 33600 Mieres, Spain
| | - Jennifer A Leonard
- Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas, 41092 Sevilla, Spain
| | - Ana Morales-González
- Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas, 41092 Sevilla, Spain
| | - Lara Naves-Alegre
- Department of Ecology, University of Alicante, 03690 Alicante, Spain
| | - Mario Quevedo
- Biodiversity Research Institute, University of Oviedo-Consejo Superior de Investigaciones Científicas-Principality of Asturias, 33600 Mieres, Spain
| | - Isabel Salado
- Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas, 41092 Sevilla, Spain
| | - Carles Vilà
- Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas, 41092 Sevilla, Spain
| | - Eloy Revilla
- Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas, 41092 Sevilla, Spain
| |
Collapse
|
16
|
Lobo D, López-Bao JV, Godinho R. The population bottleneck of the Iberian wolf impacted genetic diversity but not admixture with domestic dogs: A temporal genomic approach. Mol Ecol 2023; 32:5986-5999. [PMID: 37855673 DOI: 10.1111/mec.17171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 09/25/2023] [Accepted: 10/06/2023] [Indexed: 10/20/2023]
Abstract
After decades of intense persecution, the Iberian wolf subspecies faced a severe bottleneck in the 1970s that considerably reduced its range and population size, nearly leading to its extinction in central and southern Iberian Peninsula. Such population decline could have impacted the genetic diversity of Iberian wolves through different processes, namely genetic drift and dynamics of hybridization with domestic dogs. By contrasting the genomes of 68 contemporary with 54 historical samples spanning the periods before and immediately after the 1970s bottleneck, we found evidence of its impact on genetic diversity and dynamics of wolf-dog hybridization. Our genome-wide assessment revealed that wolves and dogs form two well-differentiated genetic groups in Iberia and that hybridization rates did not increase during the bottleneck. However, an increased number of hybrid individuals was found over time during the population re-expansion, particularly at the edge of the wolf range. We estimated a low percentage of dog ancestry (~1.4%) in historical samples, suggesting that dog introgression was not a key driver for wolf extinction in central and southern Iberia. Our findings also unveil a significant decline in genetic diversity in contemporary samples, with the highest proportion of homozygous segments in the genome being recently inherited. Overall, our study provides unprecedented insight into the impact of a sharp decline on the Iberian wolf genome and refines our understanding of the ecological and evolutionary drivers of wolf-dog hybridization in the wild.
Collapse
Affiliation(s)
- Diana Lobo
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- BIOPOLIS, Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| | - José Vicente López-Bao
- Biodiversity Research Institute (CSIC - Oviedo University - Principality of Asturias) Oviedo University, Mieres, Spain
| | - Raquel Godinho
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- BIOPOLIS, Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
- Centre for Ecological Genomics and Wildlife Conservation, Department of Zoology, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
17
|
Žunna A, Ruņģis DE, Ozoliņš J, Stepanova A, Done G. Genetic Monitoring of Grey Wolves in Latvia Shows Adverse Reproductive and Social Consequences of Hunting. BIOLOGY 2023; 12:1255. [PMID: 37759654 PMCID: PMC10525079 DOI: 10.3390/biology12091255] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/17/2023] [Accepted: 09/17/2023] [Indexed: 09/29/2023]
Abstract
Nowadays, genetic research methods play an important role in animal population studies. Since 2009, genetic material from Latvian wolf specimens obtained through hunting has been systematically gathered. This study, spanning until 2021, scrutinizes the consequences of regulated wolf hunting on population genetic metrics, kinship dynamics, and social organization. We employed 16 autosomal microsatellites to investigate relationships between full siblings and parent-offspring pairs. Our analysis encompassed expected and observed heterozygosity, inbreeding coefficients, allelic diversity, genetic distance and differentiation, mean pairwise relatedness, and the number of migrants per generation. The Latvian wolf population demonstrated robust genetic diversity with minimal inbreeding, maintaining stable allelic diversity and high heterozygosity over time and it is not fragmented. Our findings reveal the persistence of conventional wolf pack structures and enduring kinship groups. However, the study also underscores the adverse effects of intensified hunting pressure, leading to breeder loss, pack disruption, territorial displacement, and the premature dispersal of juvenile wolves.
Collapse
Affiliation(s)
- Agrita Žunna
- Latvian State Forest Research Institute Silava, Rīgas Str. 111, LV-2169 Salaspils, Latvia; (D.E.R.)
| | | | | | | | | |
Collapse
|
18
|
Jan M, Stronen AV, Boljte B, Černe R, Huber Đ, Iosif R, Kljun F, Konec M, Kos I, Krofel M, Kusak J, Luštrik R, Majić Skrbinšek A, Promberger-Füerpass B, Potočnik H, Rigg R, Trontelj P, Skrbinšek T. Wolf genetic diversity compared across Europe using the yardstick method. Sci Rep 2023; 13:13727. [PMID: 37608038 PMCID: PMC10444868 DOI: 10.1038/s41598-023-40834-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 08/17/2023] [Indexed: 08/24/2023] Open
Abstract
Integrating data across studies with traditional microsatellite genetic markers requires careful calibration and represents an obstacle for investigation of wide-ranging species where populations require transboundary management. We used the "yardstick" method to compare results published across Europe since 2002 and new wolf (Canis lupus) genetic profiles from the Carpathian Mountains in Central Europe and the Dinaric Mountains in Southeastern Europe, with the latter as our reference population. We compared each population with Dinaric wolves, considering only shared markers (range 4-17). For each population, we calculated standard genetic diversity indices plus calibrated heterozygosity (Hec) and allelic richness (Ac). Hec and Ac in Dinaric (0.704 and 9.394) and Carpathian wolves (0.695 and 7.023) were comparable to those observed in other large and mid-sized European populations, but smaller than those of northeastern Europe. Major discrepancies in marker choices among some studies made comparisons more difficult. However, the yardstick method, including the new measures of Hec and Ac, provided a direct comparison of genetic diversity values among wolf populations and an intuitive interpretation of the results. The yardstick method thus permitted the integration of diverse sources of publicly available microsatellite data for spatiotemporal genetic monitoring of evolutionary potential.
Collapse
Affiliation(s)
- Maja Jan
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia.
| | - Astrid Vik Stronen
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia
- DivjaLabs d.o.o., Aljaževa ulica 35a, 1000, Ljubljana, Slovenia
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220, Aalborg, Denmark
| | - Barbara Boljte
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia
- DivjaLabs d.o.o., Aljaževa ulica 35a, 1000, Ljubljana, Slovenia
| | - Rok Černe
- Slovenia Forest Service, Večna pot 2, 1000, Ljubljana, Slovenia
| | - Đuro Huber
- Faculty of Veterinary Medicine, University of Zagreb, Vjekoslava Heinzelova 55, 10000, Zagreb, Croatia
| | - Ruben Iosif
- Foundation Conservation Carpathia, 27 Calea Feldioarei, 500471, Brașov, Romania
| | - Franc Kljun
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia
| | - Marjeta Konec
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia
- DivjaLabs d.o.o., Aljaževa ulica 35a, 1000, Ljubljana, Slovenia
| | - Ivan Kos
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia
| | - Miha Krofel
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia
| | - Josip Kusak
- Faculty of Veterinary Medicine, University of Zagreb, Vjekoslava Heinzelova 55, 10000, Zagreb, Croatia
| | - Roman Luštrik
- Genialis Inc, Vojkova cesta 63, 1000, Ljubljana, Slovenia
| | - Aleksandra Majić Skrbinšek
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia
- DivjaLabs d.o.o., Aljaževa ulica 35a, 1000, Ljubljana, Slovenia
| | | | - Hubert Potočnik
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia
| | - Robin Rigg
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia
- Slovak Wildlife Society, Belanská 574/6, P.O. Box 72, Liptovský Hrádok, 033 01, Slovakia
| | - Peter Trontelj
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia
| | - Tomaž Skrbinšek
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia
- DivjaLabs d.o.o., Aljaževa ulica 35a, 1000, Ljubljana, Slovenia
| |
Collapse
|
19
|
Ciucani MM, Ramos-Madrigal J, Hernández-Alonso G, Carmagnini A, Aninta SG, Sun X, Scharff-Olsen CH, Lanigan LT, Fracasso I, Clausen CG, Aspi J, Kojola I, Baltrūnaitė L, Balčiauskas L, Moore J, Åkesson M, Saarma U, Hindrikson M, Hulva P, Bolfíková BČ, Nowak C, Godinho R, Smith S, Paule L, Nowak S, Mysłajek RW, Lo Brutto S, Ciucci P, Boitani L, Vernesi C, Stenøien HK, Smith O, Frantz L, Rossi L, Angelici FM, Cilli E, Sinding MHS, Gilbert MTP, Gopalakrishnan S. The extinct Sicilian wolf shows a complex history of isolation and admixture with ancient dogs. iScience 2023; 26:107307. [PMID: 37559898 PMCID: PMC10407145 DOI: 10.1016/j.isci.2023.107307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 11/04/2022] [Accepted: 07/04/2023] [Indexed: 08/11/2023] Open
Abstract
The Sicilian wolf remained isolated in Sicily from the end of the Pleistocene until its extermination in the 1930s-1960s. Given its long-term isolation on the island and distinctive morphology, the genetic origin of the Sicilian wolf remains debated. We sequenced four nuclear genomes and five mitogenomes from the seven existing museum specimens to investigate the Sicilian wolf ancestry, relationships with extant and extinct wolves and dogs, and diversity. Our results show that the Sicilian wolf is most closely related to the Italian wolf but carries ancestry from a lineage related to European Eneolithic and Bronze Age dogs. The average nucleotide diversity of the Sicilian wolf was half of the Italian wolf, with 37-50% of its genome contained in runs of homozygosity. Overall, we show that, by the time it went extinct, the Sicilian wolf had high inbreeding and low-genetic diversity, consistent with a population in an insular environment.
Collapse
Affiliation(s)
- Marta Maria Ciucani
- Section for Evolutionary Genomics, the Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Jazmín Ramos-Madrigal
- Section for Evolutionary Genomics, the Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Center for Evolutionary Hologenomics, the Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Germán Hernández-Alonso
- Section for Evolutionary Genomics, the Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Center for Evolutionary Hologenomics, the Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Alberto Carmagnini
- Palaeogenomics Group, Department of Veterinary Sciences, Ludwig Maximilian University, Munich, Germany
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Sabhrina Gita Aninta
- Palaeogenomics Group, Department of Veterinary Sciences, Ludwig Maximilian University, Munich, Germany
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Xin Sun
- Center for Evolutionary Hologenomics, the Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | | | - Liam Thomas Lanigan
- Section for Evolutionary Genomics, the Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Ilaria Fracasso
- Forest Ecology Unit, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige (TN), Italy
| | - Cecilie G. Clausen
- Section for Evolutionary Genomics, the Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Center for Evolutionary Hologenomics, the Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Jouni Aspi
- Ecology and Genetics Research Unit, University of Oulu, Finland
| | - Ilpo Kojola
- Natural Resources Institute Finland, Rovaniemi, Finland
| | | | | | - Jane Moore
- Società Amatori Cirneco dell’Etna, Modica (RG), Italy
| | - Mikael Åkesson
- Swedish University of Agricultural Sciences, Grimsö Wildlife Research Station, Department of Ecology, Riddarhyttan, Sweden
| | - Urmas Saarma
- Department of Zoology, Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Maris Hindrikson
- Department of Zoology, Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Pavel Hulva
- Charles University, Department of Zoology, Faculty of Science, Prague 2, Czech Republic
| | | | - Carsten Nowak
- Center for Wildlife Genetics, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany
| | - Raquel Godinho
- CIBIO/InBIO, University of Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| | - Steve Smith
- Konrad Lorenz Institute of Ethology, University of Veterinary Medicine, Vienna, Austria
| | - Ladislav Paule
- Faculty of Forestry, Technical University, Zvolen, Slovakia
| | - Sabina Nowak
- Department of Ecology, Institute of Functional Biology and Ecology, Faculty of Biology, University of Warsaw, Biological and Chemical Research Centre, Warszawa, Poland
| | - Robert W. Mysłajek
- Department of Ecology, Institute of Functional Biology and Ecology, Faculty of Biology, University of Warsaw, Biological and Chemical Research Centre, Warszawa, Poland
| | - Sabrina Lo Brutto
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technology (STEBICEF), University of Palermo, Palermo, Italy
- Museum of Zoology "P. Doderlein", SIMUA, University of Palermo, Palermo, Italy
| | - Paolo Ciucci
- Università di Roma La Sapienza, Department Biology and Biotechnologies "Charles Darwin", Roma, Italy
| | - Luigi Boitani
- Università di Roma La Sapienza, Department Biology and Biotechnologies "Charles Darwin", Roma, Italy
| | - Cristiano Vernesi
- Forest Ecology Unit, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige (TN), Italy
| | - Hans K. Stenøien
- NTNU University Museum, Norwegian University of Science and Technology, Trondheim, Norway
| | - Oliver Smith
- Section for Evolutionary Genomics, the Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Laurent Frantz
- Palaeogenomics Group, Department of Veterinary Sciences, Ludwig Maximilian University, Munich, Germany
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | | | - Francesco Maria Angelici
- FIZV, Via Marco Aurelio 2, Roma, Italy
- National Center for Wildlife, Al Imam Faisal Ibn Turki Ibn Abdullah, Ulaishah, Saudi Arabia
| | - Elisabetta Cilli
- Laboratory of Ancient DNA, Department of Cultural Heritage (DBC), University of Bologna, Bologna, Italy
| | - Mikkel-Holger S. Sinding
- Section for Evolutionary Genomics, the Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - M. Thomas P. Gilbert
- Section for Evolutionary Genomics, the Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Center for Evolutionary Hologenomics, the Globe Institute, University of Copenhagen, Copenhagen, Denmark
- University Museum, Norwegian University of Science and Technology, Trondheim, Norway
| | - Shyam Gopalakrishnan
- Section for Evolutionary Genomics, the Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Center for Evolutionary Hologenomics, the Globe Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
20
|
Cerri J, Musto C, Stefanini FM, di Nicola U, Riganelli N, Fontana MC, Rossi A, Garbarino C, Merialdi G, Ciuti F, Berzi D, Delogu M, Apollonio M. A human-neutral large carnivore? No patterns in the body mass of gray wolves across a gradient of anthropization. PLoS One 2023; 18:e0282232. [PMID: 37262076 DOI: 10.1371/journal.pone.0282232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 02/11/2023] [Indexed: 06/03/2023] Open
Abstract
The gray wolf (Canis lupus) expanded its distribution in Europe over the last few decades. To better understand the extent to which wolves could re-occupy their historical range, it is important to test if anthropization can affect their fitness-related traits. After having accounted for ecologically relevant confounders, we assessed how anthropization influenced i) the growth of wolves during their first year of age (n = 53), ii) sexual dimorphism between male and female adult wolves (n = 121), in a sample of individuals that had been found dead in Italy between 1999 and 2021. Wolves in anthropized areas have a smaller overall variation in their body mass, during their first year of age. Because they already have slightly higher body weight at 3-5 months, possibly due to the availability of human-derived food sources. The difference in the body weight of adult females and males slightly increases with anthropization. However, this happens because of an increase in the body mass of males only, possibly due to sex-specific differences in dispersal and/or to "dispersal phenotypes". Anthropization in Italy does not seem to have any clear, nor large, effect on the body mass of wolves. As body mass is in turn linked to important processes, like survival and reproduction, our findings indicates that wolves could potentially re-occupy most of their historical range in Europe, as anthropized landscapes do not seem to constrain such of an important life-history trait. Wolf management could therefore be needed across vast spatial scales and in anthropized areas prone to social conflicts.
Collapse
Affiliation(s)
- Jacopo Cerri
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Carmela Musto
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Federico M Stefanini
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano "La Statale", Milano, Italy
| | | | | | - Maria C Fontana
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna Bruno Ubertino, Brescia, Italy
| | - Arianna Rossi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna Bruno Ubertino, Brescia, Italy
| | - Chiara Garbarino
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna Bruno Ubertino, Brescia, Italy
| | - Giuseppe Merialdi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna Bruno Ubertino, Brescia, Italy
| | | | | | - Mauro Delogu
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Marco Apollonio
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| |
Collapse
|
21
|
Tyagi A, Godbole M, Vanak AT, Ramakrishnan U. Citizen science facilitates first ever genetic detection of wolf-dog hybridization in Indian savannahs. Ecol Evol 2023; 13:e10100. [PMID: 37214618 PMCID: PMC10191802 DOI: 10.1002/ece3.10100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 05/24/2023] Open
Abstract
Human demographic expansion has confined wildlife to fragmented habitats, often in proximity to human-modified landscapes. Such interfaces facilitate increased interactions between feral or domesticated animals and wildlife, posing a high risk to wild species. This is especially relevant for free-ranging dogs (Canis lupus familiaris) and wild canids like gray wolves (Canis lupus) and golden jackals (Canis aureus). Wolf-dog hybridization may lead to a significant reduction of specific adaptations in wolves that could result in the decline of wolf populations. Detection and genetic discrimination of hybrids between dogs and wolves are challenging because of their complex demographic history and close ancestry. Citizen scientists identified two phenotypically different-looking individuals and subsequently collected non-invasive samples that were used by geneticists to test wolf-dog hybridization. Genomic data from shed hair samples of suspected hybrid individuals using double-digest restriction-site-associated DNA (ddRAD) sequencing resulted in 698 single nucleotide polymorphism (SNP) markers. We investigated the genetic origin of these two individuals analyzed with genetically known dogs, wolves, and other canid species including jackals and dholes (Cuon alpinus). Our results provide the first genetic evidence of one F2 hybrid and the other individual could be a complex hybrid between dogs and wolves. Our results re-iterate the power of next-generation sequencing (NGS) for non-invasive samples as an efficient tool for detecting hybrids. Our results suggest the need for more robust monitoring of wolf populations and highlight the tremendous potential for collaborative approaches between citizens and conservation scientists to detect and monitor threats to biodiversity.
Collapse
Affiliation(s)
- Abhinav Tyagi
- National Centre for Biological SciencesTata Institute of Fundamental ResearchBengaluruKarnatakaIndia
- SASTRA Deemed to be UniversityThanjavurTamilnaduIndia
| | | | - Abi Tamim Vanak
- Ashoka Trust for Research in Ecology and the EnvironmentBengaluruKarnatakaIndia
- School of Life SciencesUniversity of KwaZulu‐NatalDurbanSouth Africa
| | - Uma Ramakrishnan
- National Centre for Biological SciencesTata Institute of Fundamental ResearchBengaluruKarnatakaIndia
| |
Collapse
|
22
|
Huang L, Feng G, Li D, Shang W, Zhang L, Yan R, Jiang Y, Li S. Genetic variation of endangered Jankowski’s Bunting (Emberiza jankowskii): High connectivity and a moderate history of demographic decline. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2022.996617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
IntroductionContinued discovery of “mismatch” patterns between population size and genetic diversity, involving wild species such as insects, amphibians, birds, mammals, and others, has raised issues about how population history, especially recent dynamics under human disturbance, affects currently standing genetic variation. Previous studies have revealed high genetic diversity in endangered Jankowski’s Bunting. However, it is unclear how the demographic history and recent habitat changes shape the genetic variation of Jankowski’s Bunting.MethodsTo explore the formation and maintenance of high genetic diversity in endangered Jankowski’s Bunting, we used a mitochondrial control region (partial mtDNA CR) and 15 nuclear microsatellite markers to explore the recent demographic history of Jankowski’s Bunting, and we compared the historical and contemporary gene flows between populations to reveal the impact of habitat change on population connectivity. Specifically, we aimed to test the following hypotheses: (1) Jankowski’s Bunting has a large historical Ne and a moderate demographic history; and (2) recent habitat change might have no significant impact on the species’ population connectivity.ResultsThe results suggested that large historical effective population size, as well as severe but slow population decline, may partially explain the high observable genetic diversity. Comparison of historical (over the past 4Ne generations) and contemporary (1–3 generations) gene flow indicated that the connectivity between five local populations was only marginally affected by landscape changes.DiscussionOur results suggest that high population connectivity and a moderate history of demographic decline are powerful explanations for the rich genetic variation in Jankowski’s Bunting. Although there is no evidence that the genetic health of Jankowski’s Bunting is threatened, the time-lag effects on the genetic response to recent environmental changes is a reminder to be cautious about the current genetic characteristics of this species. Where possible, factors influencing genetic variation should be integrated into a systematic framework for conducting robust population health assessments. Given the small contemporary population size, inbreeding, and ecological specialization, we recommend that habitat protection be maintained to maximize the genetic diversity and population connectivity of Jankowski’s Bunting.
Collapse
|
23
|
Loss of Mitochondrial Genetic Diversity despite Population Growth: The Legacy of Past Wolf Population Declines. Genes (Basel) 2022; 14:genes14010075. [PMID: 36672816 PMCID: PMC9858670 DOI: 10.3390/genes14010075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/28/2022] Open
Abstract
Gray wolves (Canis lupus) in the Iberian Peninsula declined substantially in both range and population size in the last few centuries due to human persecution and habitat fragmentation. However, unlike many other western European populations, gray wolves never went extinct in Iberia. Since the minimum number was recorded around 1970, their numbers have significantly increased and then stabilized in recent decades. We analyzed mitochondrial genomes from 54 historical specimens of Iberian wolves from across their historical range using ancient DNA methods. We compared historical and current mitochondrial diversity in Iberian wolves at the 5' end of the control region (n = 17 and 27) and the whole mitochondrial genome excluding the control region (n = 19 and 29). Despite an increase in population size since the 1970s, genetic diversity declined. We identified 10 whole mitochondrial DNA haplotypes in 19 historical specimens, whereas only six of them were observed in 29 modern Iberian wolves. Moreover, a haplotype that was restricted to the southern part of the distribution has gone extinct. Our results illustrate a lag between demographic and genetic diversity changes, and show that after severe population declines, genetic diversity can continue to be lost in stable or even expanding populations. This suggests that such populations may be of conservation concern even after their demographic trajectory has been reversed.
Collapse
|
24
|
Smeds L, Ellegren H. From high masked to high realized genetic load in inbred Scandinavian wolves. Mol Ecol 2022; 32:1567-1580. [PMID: 36458895 DOI: 10.1111/mec.16802] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 11/17/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022]
Abstract
When new mutations arise at functional sites they are more likely to impair than improve fitness. If not removed by purifying selection, such deleterious mutations will generate a genetic load that can have negative fitness effects in small populations and increase the risk of extinction. This is relevant for the highly inbred Scandinavian wolf (Canis lupus) population, founded by only three wolves in the 1980s and suffering from inbreeding depression. We used functional annotation and evolutionary conservation scores to study deleterious variation in a total of 209 genomes from both the Scandinavian and neighbouring wolf populations in northern Europe. The masked load (deleterious mutations in heterozygote state) was highest in Russia and Finland with deleterious alleles segregating at lower frequency than neutral variation. Genetic drift in the Scandinavian population led to the loss of ancestral alleles, fixation of deleterious variants and a significant increase in the per-individual realized load (deleterious mutations in homozygote state; an increase by 45% in protein-coding genes) over five generations of inbreeding. Arrival of immigrants gave a temporary genetic rescue effect with ancestral alleles re-entering the population and thereby shifting deleterious alleles from homozygous into heterozygote genotypes. However, in the absence of permanent connectivity to Finnish and Russian populations, inbreeding has then again led to the exposure of deleterious mutations. These observations provide genome-wide insight into the magnitude of genetic load and genetic rescue at the molecular level, and in relation to population history. They emphasize the importance of securing gene flow in the management of endangered populations.
Collapse
Affiliation(s)
- Linnéa Smeds
- Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - Hans Ellegren
- Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| |
Collapse
|
25
|
Thomas NE, Hailer F, Bruford MW, Chadwick EA. Country-wide genetic monitoring over 21 years reveals lag in genetic recovery despite spatial connectivity in an expanding carnivore (Eurasian otter, Lutra lutra) population. Evol Appl 2022; 15:2125-2141. [PMID: 36540646 PMCID: PMC9753835 DOI: 10.1111/eva.13505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 08/05/2022] [Accepted: 10/06/2022] [Indexed: 11/16/2022] Open
Abstract
Numerous terrestrial mammal species have experienced extensive population declines during past centuries, due largely to anthropogenic pressures. For some species, including the Eurasian otter (Lutra lutra), environmental and legal protection has more recently led to population growth and recolonization of parts of their historic ranges. While heralded as conservation success, only few such recoveries have been examined from a genetic perspective, i.e. whether genetic variability and connectivity have been restored. We here use large-scale and long-term genetic monitoring data from UK otters, whose population underwent a well-documented population decline between the 1950s and 1970s, to explore the dynamics of a population re-expansion over a 21-year period. We genotyped otters from across Wales and England at five time points between 1994 and 2014 using 15 microsatellite loci. We used this combination of long-term temporal and large-scale spatial sampling to evaluate 3 hypotheses relating to genetic recovery that (i) gene flow between subpopulations would increase over time, (ii) genetic diversity of previously isolated populations would increase and that (iii) genetic structuring would weaken over time. Although we found an increase in inter-regional gene flow and admixture levels among subpopulations, there was no significant temporal change in either heterozygosity or allelic richness. Genetic structuring among the main subpopulations hence remained strong and showed a clear historical continuity. These findings highlight an underappreciated aspect of population recovery of endangered species: that genetic recovery may often lag behind the processes of spatial and demographic recovery. In other words, the restoration of the physical connectivity of populations does not necessarily lead to genetic connectivity. Our findings emphasize the need for genetic data as an integral part of conservation monitoring, to enable the potential vulnerability of populations to be evaluated.
Collapse
Affiliation(s)
- Nia E. Thomas
- Organisms and Environment Research Division, School of BiosciencesCardiff UniversityCardiffWalesUK
| | - Frank Hailer
- Organisms and Environment Research Division, School of BiosciencesCardiff UniversityCardiffWalesUK
| | - Michael W. Bruford
- Organisms and Environment Research Division, School of BiosciencesCardiff UniversityCardiffWalesUK
| | - Elizabeth A. Chadwick
- Organisms and Environment Research Division, School of BiosciencesCardiff UniversityCardiffWalesUK
| |
Collapse
|
26
|
Pratzer M, Nill L, Kuemmerle T, Zurell D, Fandos G. Large carnivore range expansion in Iberia in relation to different scenarios of permeability of human‐dominated landscapes. DIVERS DISTRIB 2022. [DOI: 10.1111/ddi.13645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Marie Pratzer
- Geography Department Humboldt‐Universität zu Berlin Berlin Germany
| | - Leon Nill
- Geography Department Humboldt‐Universität zu Berlin Berlin Germany
| | - Tobias Kuemmerle
- Geography Department Humboldt‐Universität zu Berlin Berlin Germany
| | - Damaris Zurell
- Geography Department Humboldt‐Universität zu Berlin Berlin Germany
- Institute for Biochemistry and Biology University of Potsdam Potsdam Germany
| | - Guillermo Fandos
- Geography Department Humboldt‐Universität zu Berlin Berlin Germany
- Institute for Biochemistry and Biology University of Potsdam Potsdam Germany
| |
Collapse
|
27
|
Kazimirov PA, Leontyev SV, Nechaeva AV, Belokon MM, Belokon YS, Bondarev AY, Davydov AV, Politov DV. Population Genetic Structure of the Steppe Wolf of Russia and Kazakhstan by Microsatellite Loci. RUSS J GENET+ 2022. [DOI: 10.1134/s1022795422110047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
28
|
Zhang C, Li J, Yang B, Dai Q. habCluster: identifying the geographical boundary among intraspecific units using community detection algorithms in R. FRONTIERS IN CONSERVATION SCIENCE 2022. [DOI: 10.3389/fcosc.2022.908012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Conservation management for a species generally rests on intraspecific units, while identification of their geographic boundaries is necessary for the implementation. Intraspecific units can be discriminated using population genetic methods, yet an analytical approach is still lacking for detecting their geographic boundaries. Here, based on landscape connectivity, we present a raster-based geographical boundary delineation method, habCluster, using community detection algorithms. Community detection is a technique in graph theory used to identify clusters of highly connected nodes within a network. We assume that the habitat raster cells with better connections tend to form a continuous habitat patch than the others, thus making the range of an intraspecific unit. The method was tested on the gray wolf (Canis lupus) habitat in Europe and the giant panda (Ailuropoda melanoleuca) habitat in China. The habitat suitability index (HSI) maps for gray wolves and giant pandas were evaluated using species distribution models. Each cell in the HSI raster is treated as a node and directly connected with its eight neighbor cells. The edge weight between nodes is the reciprocal of the relative distance between the centers of the nodes weighted by the average of their HSI values. We implement habCluster using the R programming language with the inline C++ code to speed up the computing. We found that the boundaries of the clusters delineated using habCluster could serve as a good indicator of habitat patches. In the giant panda case, the clusters match generally well with nature reserves. habCluster can provide a spatial analysis basis for conservation management plans such as monitoring, translocation and reintroduction, and population structure research.
Collapse
|
29
|
Fehér P, Frank K, Gombkötő P, Rigg R, Bedő P, Újváry D, Stéger V, Szemethy L. The origin and population genetics of wolves in the north Hungarian mountains. Mamm Biol 2022. [DOI: 10.1007/s42991-022-00287-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AbstractThe grey wolf (Canis lupus) is one of the most challenging species to conserve in our modern and crowded world. Due to various factors, most European wolf populations are currently growing. In Hungary, numbers have increased since the 2000s. Although spontaneous recolonisation from Slovakia is considered to be the most likely mechanism by the majority of experts, some stakeholders claim that hand-reared individuals have been released. To determine the origin of wolves in northern Hungary, we analysed samples of free-ranging wolves collected in Slovakia and Hungary as well as samples from wolves in private enclosures in the region. We also included reference samples from domestic dogs. All samples were genotyped at 14 canine autosomal tetranucleotide microsatellite loci (STR) and analysed using multivariate, Bayesian methods. Hungarian wolf samples were also analysed using kinship methods. In the free-ranging wolf samples, all loci were polymorphic with 3–12 alleles. The overall observed (Ho) and unbiased expected (uHE) heterozygosities were 0.60–0.66 and 0.69–0.71, respectively. Parental and sibling relationships were also found among Hungarian individuals: three generations of a pack in the Bükk Mountains were identified. Samples from free-ranging wolves clustered separately from those of captive wolves and dogs. However, genetic similarities were found between Slovakian and Hungarian wolf samples. Our analyses indicate a Slovakian origin of the sampled Hungarian wolves, and we found no evidence that individuals originating in captivity have played any role in the recolonisation process. Kinship relationships and moderate genetic diversity suggest that there is ongoing gene flow across the Slovakian–Hungarian border.
Collapse
|
30
|
Poyarkov AD, Korablev MP, Bragina E, Hernandez-Blanco JA. Overview of Current Research on Wolves in Russia. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.869161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This paper provides an overview of wolf research in Russia at the beginning of the 21st century. Wolf research covered various directions, including population density estimation, management methods and minimization of human-wildlife conflicts, general and behavioral ecology, behavior, wolf population genetics and morphology, paleontology, dog domestication, helminthology and the wolves’ role in the rabies transmission. Some studies are performed with state-of-art methodology using molecular genetics, mathematical modeling, camera traps, and GPS telemetry.
Collapse
|
31
|
Ostermann‐Miyashita E, König HJ, Pernat N, Bellingrath‐Kimura SD, Hibler S, Kiffner C. Knowledge of returning wildlife species and willingness to participate in citizen science projects among wildlife park visitors in Germany. PEOPLE AND NATURE 2022. [DOI: 10.1002/pan3.10379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Emu‐Felicitas Ostermann‐Miyashita
- Junior Research Group Human‐Wildlife Conflict and Coexistence Leibniz Centre for Agricultural Landscape Research (ZALF) Müncheberg Germany
- Faculty of Life Sciences, Thaer‐Institute of Agricultural and Horticultural Sciences Humboldt Universität zu Berlin Berlin Germany
| | - Hannes J. König
- Junior Research Group Human‐Wildlife Conflict and Coexistence Leibniz Centre for Agricultural Landscape Research (ZALF) Müncheberg Germany
| | - Nadja Pernat
- Research Area 2: Land Use and Governance Leibniz Centre for Agricultural Landscape Research (ZALF) Müncheberg Germany
- Institute of Landscape Ecology, Animal Ecology Research Group University of Münster Münster Germany
| | - Sonoko Dorothea Bellingrath‐Kimura
- Faculty of Life Sciences, Thaer‐Institute of Agricultural and Horticultural Sciences Humboldt Universität zu Berlin Berlin Germany
- Research Area 2: Land Use and Governance Leibniz Centre for Agricultural Landscape Research (ZALF) Müncheberg Germany
| | - Sophia Hibler
- Junior Research Group Human‐Wildlife Conflict and Coexistence Leibniz Centre for Agricultural Landscape Research (ZALF) Müncheberg Germany
- Department of Plant Ecology and Nature Conservation University of Potsdam Potsdam Germany
| | - Christian Kiffner
- Junior Research Group Human‐Wildlife Conflict and Coexistence Leibniz Centre for Agricultural Landscape Research (ZALF) Müncheberg Germany
| |
Collapse
|
32
|
Guimarães NF, Álvares F, Ďurová J, Urban P, Bučko J, Iľko T, Brndiar J, Štofik J, Pataky T, Barančeková M, Kropil R, Smolko P. What drives wolf preference towards wild ungulates? Insights from a multi-prey system in the Slovak Carpathians. PLoS One 2022; 17:e0265386. [PMID: 35759447 PMCID: PMC9236239 DOI: 10.1371/journal.pone.0265386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/13/2022] [Indexed: 11/18/2022] Open
Abstract
The wolf is a generalist-opportunistic predator that displays diverse and remarkably adaptable feeding strategies across its range with local adaptations to certain prey species depending on their availability and vulnerability. The multi-prey system of the Slovak Carpathians supports important portion of the European wolf population; however, it has been markedly understudied. We evaluated winter diet composition and prey selection of Slovak wolves based on 321 scat samples collected between September–April within four different study areas during 2015–2017. The winter diet of wolves in the Slovak Carpathians was characterized by a 98% occurrence of wild large-sized and medium-sized ungulates with red deer occurring in wolf scats most often, consistent with their highest density among other wild ungulates. However, by comparing the consumption with availability of wild prey, we found that wolves in fact selected for wild boar especially in areas with higher altitudinal range, while selected for red deer in areas with low altitudinal range where this prey species was more spatially predictable. Although wolves showed the potential to switch between red deer and wild boar when their density increases, we found that this variation can be rather linked to changing prey vulnerability, which is dependent on particular environmental conditions at local scale such as topography and snow accumulation. The present study provides valuable insights into the winter foraging ecology of Slovak wolves in a multi-prey system of the Carpathians and allows for practical implications in the management of the rapidly increasing populations of wild ungulates across Europe.
Collapse
Affiliation(s)
- Nuno F. Guimarães
- Faculty of Forestry, Department of Applied Zoology and Wildlife Management, Technical University in Zvolen, Zvolen, Slovakia
- Little Fox, The Centre of Natural Sciences, Research and Environmental Education, Staré Hory, Slovakia
- Diana–Carpathian Wildlife Research, Banská Bystrica, Slovakia
- * E-mail:
| | - Francisco Álvares
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| | - Jana Ďurová
- Little Fox, The Centre of Natural Sciences, Research and Environmental Education, Staré Hory, Slovakia
- Faculty of Ecology and Environmental Studies, Technical University in Zvolen, Technical University in Zvolen, Zvolen, Slovakia
| | - Peter Urban
- Department of Biology and Ecology, Faculty of Natural Sciences, Matej Bel University in Banská Bystrica, Banská Bystrica, Slovakia
| | | | - Tomáš Iľko
- Diana–Carpathian Wildlife Research, Banská Bystrica, Slovakia
- Muráň Plateau National Park, State Nature Conservancy of the Slovak Republic, Revúca, Slovakia
| | - Jaro Brndiar
- Diana–Carpathian Wildlife Research, Banská Bystrica, Slovakia
| | - Jozef Štofik
- Poloniny National Park, State Nature Conservancy of the Slovakia Republic, Stakčín, Slovakia
| | - Tibor Pataky
- Faculty of Forestry, Department of Applied Zoology and Wildlife Management, Technical University in Zvolen, Zvolen, Slovakia
| | - Miroslava Barančeková
- Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, Brno, Czech Republic
- University of Veterinary Sciences Brno, Brno, Czech Republic
| | - Rudolf Kropil
- Faculty of Forestry, Department of Applied Zoology and Wildlife Management, Technical University in Zvolen, Zvolen, Slovakia
| | - Peter Smolko
- Faculty of Forestry, Department of Applied Zoology and Wildlife Management, Technical University in Zvolen, Zvolen, Slovakia
- Diana–Carpathian Wildlife Research, Banská Bystrica, Slovakia
| |
Collapse
|
33
|
A reduced SNP panel to trace gene flow across southern European wolf populations and detect hybridization with other Canis taxa. Sci Rep 2022; 12:4195. [PMID: 35264717 PMCID: PMC8907317 DOI: 10.1038/s41598-022-08132-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 03/01/2022] [Indexed: 12/18/2022] Open
Abstract
Intra- and inter-specific gene flow are natural evolutionary processes. However, human-induced hybridization is a global conservation concern across taxa, and the development of discriminant genetic markers to differentiate among gene flow processes is essential. Wolves (Canis lupus) are affected by hybridization, particularly in southern Europe, where ongoing recolonization of historic ranges is augmenting gene flow among divergent populations. Our aim was to provide diagnostic canid markers focused on the long-divergent Iberian, Italian and Dinaric wolf populations, based on existing genomic resources. We used 158 canid samples to select a panel of highly informative single nucleotide polymorphisms (SNPs) to (i) distinguish wolves in the three regions from domestic dogs (C. l. familiaris) and golden jackals (C. aureus), and (ii) identify their first two hybrid generations. The resulting 192 SNPs correctly identified the five canid groups, all simulated first-generation (F1) hybrids (0.482 ≤ Qi ≤ 0.512 between their respective parental groups) and all first backcross (BC1) individuals (0.723 ≤ Qi ≤ 0.827 to parental groups). An assay design and test with invasive and non-invasive canid samples performed successfully for 178 SNPs. By separating natural population admixture from inter-specific hybridization, our reduced panel can help advance evolutionary research, monitoring, and timely conservation management.
Collapse
|
34
|
Canuti M, Fry K, Dean Cluff H, Mira F, Fenton H, Lang AS. Co‐circulation of five species of dog parvoviruses and canine adenovirus type 1 among gray wolves (
Canis lupus
) in northern Canada. Transbound Emerg Dis 2022; 69:e1417-e1433. [DOI: 10.1111/tbed.14474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/05/2022] [Accepted: 02/08/2022] [Indexed: 11/26/2022]
Affiliation(s)
- Marta Canuti
- Department of Biology Memorial University of Newfoundland St. John's NL Canada
| | - Kelsi Fry
- Department of Biology Memorial University of Newfoundland St. John's NL Canada
| | - H. Dean Cluff
- Environment and Natural Resources ‐ North Slave Region Government of the Northwest Territories Yellowknife Canada
| | - Francesco Mira
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri” Palermo Italy
| | - Heather Fenton
- Environment and Natural Resources ‐ North Slave Region Government of the Northwest Territories Yellowknife Canada
| | - Andrew S. Lang
- Department of Biology Memorial University of Newfoundland St. John's NL Canada
| |
Collapse
|
35
|
Viluma A, Flagstad Ø, Åkesson M, Wikenros C, Sand H, Wabakken P, Ellegren H. Whole-genome resequencing of temporally stratified samples reveals substantial loss of haplotype diversity in the highly inbred Scandinavian wolf population. Genome Res 2022; 32:449-458. [PMID: 35135873 PMCID: PMC8896455 DOI: 10.1101/gr.276070.121] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 12/30/2021] [Indexed: 11/25/2022]
Abstract
Genetic drift can dramatically change allele frequencies in small populations and lead to reduced levels of genetic diversity, including loss of segregating variants. However, there is a shortage of quantitative studies of how genetic diversity changes over time in natural populations, especially on genome-wide scales. Here, we analyzed whole-genome sequences from 76 wolves of a highly inbred Scandinavian population, founded by only one female and two males, sampled over a period of 30 yr. We obtained chromosome-level haplotypes of all three founders and found that 10%–24% of their diploid genomes had become lost after about 20 yr of inbreeding (which approximately corresponds to five generations). Lost haplotypes spanned large genomic regions, as expected from the amount of recombination during this limited time period. Altogether, 160,000 SNP alleles became lost from the population, which may include adaptive variants as well as wild-type alleles masking recessively deleterious alleles. Although not sampled, we could indirectly infer that the two male founders had megabase-sized runs of homozygosity and that all three founders showed significant haplotype sharing, meaning that there were on average only 4.2 unique haplotypes in the six copies of each autosome that the founders brought into the population. This violates the assumption of unrelated founder haplotypes often made in conservation and management of endangered species. Our study provides a novel view of how whole-genome resequencing of temporally stratified samples can be used to visualize and directly quantify the consequences of genetic drift in a small inbred population.
Collapse
|
36
|
Dondina O, Meriggi A, Bani L, Orioli V. Decoupling residents and dispersers from detection data improve habitat selection modelling: the case study of the wolf in a natural corridor. ETHOL ECOL EVOL 2022. [DOI: 10.1080/03949370.2021.1988724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Olivia Dondina
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, Milano 20126, Italy
| | - Alberto Meriggi
- Department of Earth and Environmental Sciences, University of Pavia, Via Ferrata 1, Pavia 27100, Italy
| | - Luciano Bani
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, Milano 20126, Italy
| | - Valerio Orioli
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, Milano 20126, Italy
| |
Collapse
|
37
|
Åkesson M, Flagstad Ø, Aspi J, Kojola I, Liberg O, Wabakken P, Sand H. Genetic signature of immigrants and their effect on genetic diversity in the recently established Scandinavian wolf population. CONSERV GENET 2021. [DOI: 10.1007/s10592-021-01423-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractTransboundary connectivity is a key component when conserving and managing animal species that require large areas to maintain viable population sizes. Wolves Canis lupus recolonized the Scandinavian Peninsula in the early 1980s. The population is geographically isolated and relies on immigration to not lose genetic diversity and to maintain long term viability. In this study we address (1) to what extent the genetic diversity among Scandinavian wolves has recovered during 30 years since its foundation in relation to the source populations in Finland and Russia, (2) if immigration has occurred from both Finland and Russia, two countries with very different wolf management and legislative obligations to ensure long term viability of wolves, and (3) if immigrants can be assumed to be unrelated. Using 26 microsatellite loci we found that although the genetic diversity increased among Scandinavian wolves (n = 143), it has not reached the same levels found in Finland (n = 25) or in Russia (n = 19). Low genetic differentiation between Finnish and Russian wolves, complicated our ability to determine the origin of immigrant wolves (n = 20) with respect to nationality. Nevertheless, based on differences in allelic richness and private allelic richness between the two countries, results supported the occurrence of immigration from both countries. A priori assumptions that immigrants are unrelated is non-advisable, since 5.8% of the pair-wise analyzed immigrants were closely related. To maintain long term viability of wolves in Northern Europe, this study highlights the potential and need for management actions that facilitate transboundary dispersal.
Collapse
|
38
|
Šnjegota D, Stronen AV, Boljte B, Ćirović D, Djan M, Huber D, Jelenčič M, Konec M, Kusak J, Skrbinšek T. Population genetic structure of wolves in the northwestern Dinaric-Balkan region. Ecol Evol 2021; 11:18492-18504. [PMID: 35003687 PMCID: PMC8717286 DOI: 10.1002/ece3.8444] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 11/29/2022] Open
Abstract
The Balkan Peninsula and the Dinaric Mountains possess extraordinary biodiversity and support one of the largest and most diverse wolf (Canis lupus) populations in Europe. Results obtained with diverse genetic markers show west-east substructure, also seen in various other species, despite the absence of obvious barriers to movement. However, the spatial extent of the genetic clusters remains unresolved, and our aim was to combine fine-scale sampling with population and spatial genetic analyses to improve resolution of wolf genetic clusters. We analyzed 16 autosomal microsatellites from 255 wolves sampled in Slovenia, Croatia, Bosnia and Herzegovina (BIH), and Serbia and documented three genetic clusters. These comprised (1) Slovenia and the regions of Gorski kotar and Lika in Croatia, (2) the region of Dalmatia in southern Croatia and BIH, and (3) Serbia. When we mapped the clusters geographically, we observed west-east genetic structure across the study area, together with some specific structure in BIH-Dalmatia. We observed that cluster 1 had a smaller effective population size, consistent with earlier reports of population recovery since the 1980s. Our results provide foundation for future genomic studies that would further resolve the observed west-east population structure and its evolutionary history in wolves and other taxa in the region and identify focal areas for habitat conservation. They also have immediate importance for conservation planning for the wolves in one of the most important parts of the species' European range.
Collapse
Affiliation(s)
- Dragana Šnjegota
- Department of Biology and EcologyFaculty of Natural Sciences and MathematicsUniversity of Banja LukaBanja LukaBosnia and Herzegovina
| | - Astrid Vik Stronen
- Department of BiologyBiotechnical FacultyUniversity of LjubljanaLjubljanaSlovenia
| | - Barbara Boljte
- Department of BiologyBiotechnical FacultyUniversity of LjubljanaLjubljanaSlovenia
| | - Duško Ćirović
- Faculty of BiologyUniversity of BelgradeBelgradeSerbia
| | - Mihajla Djan
- Department of Biology and EcologyFaculty of SciencesUniversity of Novi SadNovi SadSerbia
| | - Djuro Huber
- Department of BiologyFaculty of Veterinary MedicineUniversity of ZagrebZagrebCroatia
| | - Maja Jelenčič
- Department of BiologyBiotechnical FacultyUniversity of LjubljanaLjubljanaSlovenia
| | - Marjeta Konec
- Department of BiologyBiotechnical FacultyUniversity of LjubljanaLjubljanaSlovenia
| | - Josip Kusak
- Department of BiologyFaculty of Veterinary MedicineUniversity of ZagrebZagrebCroatia
| | - Tomaž Skrbinšek
- Department of BiologyBiotechnical FacultyUniversity of LjubljanaLjubljanaSlovenia
| |
Collapse
|
39
|
Dziech A. Identification of Wolf-Dog Hybrids in Europe – An Overview of Genetic Studies. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.760160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Significant development of genetic tools during the last decades provided opportunities for more detailed analyses and deeper understanding of species hybridization. New genetic markers allowed for reliable identification of admixed individuals deriving from recent hybridization events (a few generations) and those originating from crossings up to 19 generations back. Implementation of microsatellites (STRs) together with Bayesian clustering provided abundant knowledge regarding presence of admixed individuals in numerous populations and helped understand the problematic nature of studying hybridization (i.a., defining a reliable thresholds for recognizing individuals as admixed or obtaining well-grounded results representing actual proportion of hybrids in a population). Nevertheless, their utilization is limited to recent crossbreeding events. Single Nucleotide Polymorphisms (SNPs) proved to be more sensible tools for admixture analyses furnishing more reliable knowledge, especially for older generation backcrosses. Small sets of Ancestry Informative Markers (AIMs) of both types of markers were effective enough to implement in monitoring programs, however, SNPs seem to be more appropriate because of their ability to identify admixed individuals up to 3rd generations. The main aim of this review is to summarize abundant knowledge regarding identification of wolf-dog hybrids in Europe and discuss the most relevant problems relating to the issue, together with advantages and disadvantages of implemented markers and approaches.
Collapse
|
40
|
Pilot M, Moura AE, Okhlopkov IM, Mamaev NV, Manaseryan NH, Hayrapetyan V, Kopaliani N, Tsingarska E, Alagaili AN, Mohammed OB, Ostrander EA, Bogdanowicz W. Human-modified canids in human-modified landscapes: The evolutionary consequences of hybridization for grey wolves and free-ranging domestic dogs. Evol Appl 2021; 14:2433-2456. [PMID: 34745336 PMCID: PMC8549620 DOI: 10.1111/eva.13257] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 05/05/2021] [Accepted: 05/19/2021] [Indexed: 12/22/2022] Open
Abstract
Introgressive hybridization between domestic animals and their wild relatives is an indirect form of human-induced evolution, altering gene pools and phenotypic traits of wild and domestic populations. Although this process is well documented in many taxa, its evolutionary consequences are poorly understood. In this study, we assess introgression patterns in admixed populations of Eurasian wolves and free-ranging domestic dogs (FRDs), identifying chromosomal regions with significantly overrepresented hybrid ancestry and assessing whether genes located within these regions show signatures of selection. Although the dog admixture proportion in West Eurasian wolves (2.7%) was greater than the wolf admixture proportion in FRDs (0.75%), the number and average length of chromosomal blocks showing significant overrepresentation of hybrid ancestry were smaller in wolves than FRDs. In wolves, 6% of genes located within these blocks showed signatures of positive selection compared to 23% in FRDs. We found that introgression from wolves may provide a considerable adaptive advantage to FRDs, counterbalancing some of the negative effects of domestication, which can include reduced genetic diversity and excessive tameness. In wolves, introgression from FRDs is mostly driven by drift, with a small number of positively selected genes associated with brain function and behaviour. The predominance of drift may be the consequence of small effective size of wolf populations, which reduces efficiency of selection for weakly advantageous or against weakly disadvantageous introgressed variants. Small wolf population sizes result largely from human-induced habitat loss and hunting, thus linking introgression rates to anthropogenic processes. Our results imply that maintenance of large population sizes should be an important element of wolf management strategies aimed at reducing introgression rates of dog-derived variants.
Collapse
Affiliation(s)
- Małgorzata Pilot
- Museum and Institute of ZoologyPolish Academy of SciencesWarsawPoland
| | - Andre E. Moura
- Museum and Institute of ZoologyPolish Academy of SciencesWarsawPoland
| | - Innokentiy M. Okhlopkov
- Institute of Biological Problems of CryolithozoneSiberian Branch of Russian Academy of SciencesYakutskRussia
| | - Nikolay V. Mamaev
- Institute of Biological Problems of CryolithozoneSiberian Branch of Russian Academy of SciencesYakutskRussia
| | - Ninna H. Manaseryan
- Scientific Center of Zoology and HydroecologyNational Academy of SciencesYerevanArmenia
| | | | | | | | - Abdulaziz N. Alagaili
- KSU Mammals Research ChairDepartment of ZoologyKing Saud UniversityRiyadhSaudi Arabia
| | - Osama B. Mohammed
- KSU Mammals Research ChairDepartment of ZoologyKing Saud UniversityRiyadhSaudi Arabia
| | - Elaine A. Ostrander
- Cancer Genetics and Comparative Genomics BranchNational Human Genome Research InstituteNational Institutes of HealthBethesdaMDUSA
| | | |
Collapse
|
41
|
Kutzer P, Szentiks CA, Bock S, Fritsch G, Magyar T, Schulze C, Semmler T, Ewers C. Re-Emergence and Spread of Haemorrhagic Septicaemia in Germany: The Wolf as a Vector? Microorganisms 2021; 9:microorganisms9091999. [PMID: 34576894 PMCID: PMC8465458 DOI: 10.3390/microorganisms9091999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/15/2021] [Accepted: 09/17/2021] [Indexed: 11/16/2022] Open
Abstract
Since 2010, outbreaks of haemorrhagic septicaemia (HS) caused by Pasteurella (P.) multocida capsular type B (PmB) emerged in Germany. In 2017, we noticed a close spatiotemporal relationship between HS outbreak sites and wolf (Canis lupus) territories. Thus, the main objectives of our study were to investigate the molecular epidemiology of German PmB-HS-isolates and to assess the role of wolves as putative vectors of this pathogen. We collected 83 PmB isolates from HS outbreaks that occurred between 2010 and 2019 and sampled 150 wolves, which were found dead in the years 2017 to 2019, revealing another three PmB isolates. A maximum-likelihood-based phylogeny of the core genomes of 65 PmB-HS-isolates and the three PmB-wolf-isolates showed high relatedness. Furthermore, all belonged to capsular:LPS:MLST genotype B:L2:ST122RIRDC and showed highly similar virulence gene profiles, but clustered separately from 35 global ST122RIRDC strains. Our data revealed that German HS outbreaks were caused by a distinct genomic lineage of PmB-ST122 strains, hinting towards an independent, ongoing epidemiologic event. We demonstrated for the first time, that carnivores, i.e., wolves, might harbour PmB as a part of their oropharyngeal microbiota. Furthermore, the results of our study imply that wolves can carry the pathogen over long distances, indicating a major role of that animal species in the ongoing epidemiological event of HS in Germany.
Collapse
Affiliation(s)
- Peter Kutzer
- Landeslabor Berlin-Brandenburg, 15236 Frankfurt (Oder), Germany; (S.B.); (C.S.)
- Correspondence: ; Tel.: +49-335-5217-2118
| | - Claudia A. Szentiks
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, 10315 Berlin, Germany;
| | - Sabine Bock
- Landeslabor Berlin-Brandenburg, 15236 Frankfurt (Oder), Germany; (S.B.); (C.S.)
| | - Guido Fritsch
- Department of Reproduction Management, Leibniz Institute for Zoo and Wildlife Research, 10315 Berlin, Germany;
| | - Tibor Magyar
- Veterinary Medical Research Institute, Eötvös Lóránd Research Network (ELKH), 1143 Budapest, Hungary;
| | - Christoph Schulze
- Landeslabor Berlin-Brandenburg, 15236 Frankfurt (Oder), Germany; (S.B.); (C.S.)
| | - Torsten Semmler
- Microbial Genomics, Robert Koch Institute, 13353 Berlin, Germany;
| | - Christa Ewers
- Faculty of Veterinary Medicine, Institute for Hygiene and Infectious Diseases of Animals, Justus Liebig University Giessen, 35392 Giessen, Germany;
| |
Collapse
|
42
|
Assessing trends in wolf impact on livestock through verified claims in historical vs. recent areas of occurrence in Italy. EUR J WILDLIFE RES 2021. [DOI: 10.1007/s10344-021-01522-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
43
|
Santostasi NL, Gimenez O, Caniglia R, Fabbri E, Molinari L, Reggioni W, Ciucci P. Estimating Admixture at the Population Scale: Taking Imperfect Detectability and Uncertainty in Hybrid Classification Seriously. J Wildl Manage 2021. [DOI: 10.1002/jwmg.22038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Nina L. Santostasi
- Department of Biology and Biotechnologies “Charles Darwin” University of Rome La Sapienza Rome Italy
| | - Olivier Gimenez
- CEFE, CNRS University of Montpellier, University Paul Valéry Montpellier 3, EPHE, IRD Montpellier France
| | - Romolo Caniglia
- Italian Institute for Environmental Protection and Research (ISPRA), Unit for Conservation Genetics (BIO–CGE), Ozzano dell'Emilia Italy
| | - Elena Fabbri
- Italian Institute for Environmental Protection and Research (ISPRA), Unit for Conservation Genetics (BIO–CGE), Ozzano dell'Emilia Italy
| | - Luigi Molinari
- Wolf Apennine Center, Appennino Tosco‐Emiliano National Park, Ligonchio Italy
| | - Willy Reggioni
- Wolf Apennine Center, Appennino Tosco‐Emiliano National Park, Ligonchio Italy
| | - Paolo Ciucci
- CEFE, CNRS University of Montpellier, University Paul Valéry Montpellier 3, EPHE, IRD Montpellier France
| |
Collapse
|
44
|
How the west was won: genetic reconstruction of rapid wolf recolonization into Germany's anthropogenic landscapes. Heredity (Edinb) 2021; 127:92-106. [PMID: 33846578 PMCID: PMC8249462 DOI: 10.1038/s41437-021-00429-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 03/14/2021] [Accepted: 03/16/2021] [Indexed: 02/02/2023] Open
Abstract
Following massive persecution and eradication, strict legal protection facilitated a successful reestablishment of wolf packs in Germany, which has been ongoing since 2000. Here, we describe this recolonization process by mitochondrial DNA control-region sequencing, microsatellite genotyping and sex identification based on 1341 mostly non-invasively collected samples. We reconstructed the genealogy of German wolf packs between 2005 and 2015 to provide information on trends in genetic diversity, dispersal patterns and pack dynamics during the early expansion process. Our results indicate signs of a founder effect at the start of the recolonization. Genetic diversity in German wolves is moderate compared to other European wolf populations. Although dispersal among packs is male-biased in the sense that females are more philopatric, dispersal distances are similar between males and females once only dispersers are accounted for. Breeding with close relatives is regular and none of the six male wolves originating from the Italian/Alpine population reproduced. However, moderate genetic diversity and inbreeding levels of the recolonizing population are preserved by high sociality, dispersal among packs and several immigration events. Our results demonstrate an ongoing, rapid and natural wolf population expansion in an intensively used cultural landscape in Central Europe.
Collapse
|
45
|
Harmoinen J, von Thaden A, Aspi J, Kvist L, Cocchiararo B, Jarausch A, Gazzola A, Sin T, Lohi H, Hytönen MK, Kojola I, Stronen AV, Caniglia R, Mattucci F, Galaverni M, Godinho R, Ruiz-González A, Randi E, Muñoz-Fuentes V, Nowak C. Reliable wolf-dog hybrid detection in Europe using a reduced SNP panel developed for non-invasively collected samples. BMC Genomics 2021; 22:473. [PMID: 34171993 PMCID: PMC8235813 DOI: 10.1186/s12864-021-07761-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 06/01/2021] [Indexed: 12/25/2022] Open
Abstract
Background Understanding the processes that lead to hybridization of wolves and dogs is of scientific and management importance, particularly over large geographical scales, as wolves can disperse great distances. However, a method to efficiently detect hybrids in routine wolf monitoring is lacking. Microsatellites offer only limited resolution due to the low number of markers showing distinctive allele frequencies between wolves and dogs. Moreover, calibration across laboratories is time-consuming and costly. In this study, we selected a panel of 96 ancestry informative markers for wolves and dogs, derived from the Illumina CanineHD Whole-Genome BeadChip (174 K). We designed very short amplicons for genotyping on a microfluidic array, thus making the method suitable also for non-invasively collected samples. Results Genotypes based on 93 SNPs from wolves sampled throughout Europe, purebred and non-pedigree dogs, and suspected hybrids showed that the new panel accurately identifies parental individuals, first-generation hybrids and first-generation backcrosses to wolves, while second- and third-generation backcrosses to wolves were identified as advanced hybrids in almost all cases. Our results support the hybrid identity of suspect individuals and the non-hybrid status of individuals regarded as wolves. We also show the adequacy of these markers to assess hybridization at a European-wide scale and the importance of including samples from reference populations. Conclusions We showed that the proposed SNP panel is an efficient tool for detecting hybrids up to the third-generation backcrosses to wolves across Europe. Notably, the proposed genotyping method is suitable for a variety of samples, including non-invasive and museum samples, making this panel useful for wolf-dog hybrid assessments and wolf monitoring at both continental and different temporal scales. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07761-5.
Collapse
Affiliation(s)
- Jenni Harmoinen
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland.
| | - Alina von Thaden
- Conservation Genetics Group, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany.,Institute for Ecology, Evolution and Diversity, Johann Wolfgang Goethe-University, Biologicum, Frankfurt am Main, Germany
| | - Jouni Aspi
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
| | - Laura Kvist
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
| | - Berardino Cocchiararo
- Conservation Genetics Group, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany.,LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt am Main, Germany
| | - Anne Jarausch
- Conservation Genetics Group, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany.,Institute for Ecology, Evolution and Diversity, Johann Wolfgang Goethe-University, Biologicum, Frankfurt am Main, Germany
| | - Andrea Gazzola
- Association for the Conservation of Biological Diversity, Focşani, Romania
| | - Teodora Sin
- Association for the Conservation of Biological Diversity, Focşani, Romania.,Department of Systems Ecology and Sustainability, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Hannes Lohi
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland.,Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.,Folkhälsan Research Center, Helsinki, Finland
| | - Marjo K Hytönen
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland.,Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.,Folkhälsan Research Center, Helsinki, Finland
| | - Ilpo Kojola
- Natural Resources Institute Finland (Luke), Eteläranta 55, FI-96300, Rovaniemi, Finland
| | - Astrid Vik Stronen
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia.,Department of Biotechnology and Life Sciences, Insubria University, Varese, Italy
| | - Romolo Caniglia
- Unit for Conservation Genetics (BIO-CGE), Department for the Monitoring and Protection of the Environment and for Biodiversity Conservation, Italian Institute for Environmental Protection and Research, Bologna, Italy
| | - Federica Mattucci
- Unit for Conservation Genetics (BIO-CGE), Department for the Monitoring and Protection of the Environment and for Biodiversity Conservation, Italian Institute for Environmental Protection and Research, Bologna, Italy
| | | | - Raquel Godinho
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus de Vairão, 4485-661, Vairão, Portugal.,Department of Biology, Faculty of Science, University of Porto, Porto, Portugal
| | - Aritz Ruiz-González
- Unit for Conservation Genetics (BIO-CGE), Department for the Monitoring and Protection of the Environment and for Biodiversity Conservation, Italian Institute for Environmental Protection and Research, Bologna, Italy.,Department of Zoology and Animal Cell Biology, Zoology Laboratory, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Ettore Randi
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy.,Department of Chemistry and Bioscience, Faculty of Engineering and Science, University of Aalborg, Aalborg, Denmark
| | - Violeta Muñoz-Fuentes
- Conservation Genetics Group, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany.,European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Carsten Nowak
- Conservation Genetics Group, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany.,LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt am Main, Germany
| |
Collapse
|
46
|
Wikenros C, Gicquel M, Zimmermann B, Flagstad Ø, Åkesson M. Age at first reproduction in wolves: different patterns of density dependence for females and males. Proc Biol Sci 2021; 288:20210207. [PMID: 33823674 PMCID: PMC8059544 DOI: 10.1098/rspb.2021.0207] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/09/2021] [Indexed: 01/14/2023] Open
Abstract
Age at first reproduction constitutes a key life-history trait in animals and is evolutionarily shaped by fitness benefits and costs of delayed versus early reproduction. The understanding of how intrinsic and extrinsic changes affects age at first reproduction is crucial for conservation and management of threatened species because of its demographic effects on population growth and generation time. For a period of 40 years in the Scandinavian wolf (Canis lupus) population, including the recolonization phase, we estimated age at first successful reproduction (pup survival to at least three weeks of age) and examined how the variation among individuals was explained by sex, population size (from 1 to 74 packs), primiparous or multiparous origin, reproductive experience of the partner and inbreeding. Median age at first reproduction was 3 years for females (n = 60) and 2 years for males (n = 74), and ranged between 1 and 8-10 years of age (n = 297). Female age at first reproduction decreased with increasing population size, and increased with higher levels of inbreeding. The probability for males to reproduce later first decreased, reaching its minimum when the number of territories approached 40-60, and then increased with increasing population size. Inbreeding for males and reproductive experience of parents and partners for both sexes had overall weak effects on age at first reproduction. These results allow for more accurate parameter estimates when modelling population dynamics for management and conservation of small and vulnerable wolf populations, and show how humans through legal harvest and illegal hunting influence an important life-history trait like age at first reproduction.
Collapse
Affiliation(s)
- Camilla Wikenros
- Grimsö Wildlife Research Station, Department of Ecology, Swedish University of Agricultural Sciences, 73993 Riddarhyttan, Sweden
| | - Morgane Gicquel
- Grimsö Wildlife Research Station, Department of Ecology, Swedish University of Agricultural Sciences, 73993 Riddarhyttan, Sweden
| | - Barbara Zimmermann
- Faculty of Applied Ecology, Agricultural Sciences and Biotechnology, Campus Evenstad, Inland Norway University of Applied Sciences, 2480 Koppang, Norway
| | - Øystein Flagstad
- Norwegian Institute for Nature Research, PO Box 5685 Torgard, 7485 Trondheim, Norway
| | - Mikael Åkesson
- Grimsö Wildlife Research Station, Department of Ecology, Swedish University of Agricultural Sciences, 73993 Riddarhyttan, Sweden
| |
Collapse
|
47
|
Smeds L, Aspi J, Berglund J, Kojola I, Tirronen K, Ellegren H. Whole-genome analyses provide no evidence for dog introgression in Fennoscandian wolf populations. Evol Appl 2021; 14:721-734. [PMID: 33767747 PMCID: PMC7980305 DOI: 10.1111/eva.13151] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/09/2020] [Accepted: 10/11/2020] [Indexed: 01/02/2023] Open
Abstract
Hybridization and admixture can threaten the genetic integrity of populations and be of particular concern to endangered species. Hybridization between grey wolves and dogs has been documented in many wolf populations worldwide and is a prominent example of human-mediated hybridization between a domesticated species and its wild relative. We analysed whole-genome sequences from >200 wolves and >100 dogs to study admixture in Fennoscandian wolf populations. A principal component analysis of genetic variation and admixture showed that wolves and dogs were well-separated, without evidence for introgression. Analyses of local ancestry revealed that wolves had <1% mixed ancestry, levels comparable to the degree of mixed ancestry in many dogs, and likely not resulting from recent wolf-dog hybridization. We also show that the founders of the Scandinavian wolf population were genetically inseparable from Finnish and Russian Karelian wolves, pointing at the geographical origin of contemporary Scandinavian wolves. Moreover, we found Scandinavian-born animals among wolves sampled in Finland, demonstrating bidirectional gene flow between the Scandinavian Peninsula and eastern countries. The low incidence of admixture between wolves and dogs in Fennoscandia may be explained by the fact that feral dogs are rare in this part of Europe and that careful monitoring and management act to remove hybrids before they backcross into wolf populations.
Collapse
Affiliation(s)
- Linnéa Smeds
- Department of Ecology and GeneticsUppsala UniversityUppsalaSweden
| | - Jouni Aspi
- Department of Ecology and GeneticsUniversity of OuluOuluFinland
| | - Jonas Berglund
- Department of Ecology and GeneticsUppsala UniversityUppsalaSweden
| | - Ilpo Kojola
- Natural Resources Institute Finland (Luke)RovaniemiFinland
| | - Konstantin Tirronen
- Institute of BiologyKarelian Research Centre of the Russian Academy of SciencePetrozavodskRussian Federation
| | - Hans Ellegren
- Department of Ecology and GeneticsUppsala UniversityUppsalaSweden
| |
Collapse
|
48
|
Tarlinton RE, Fabijan J, Hemmatzadeh F, Meers J, Owen H, Sarker N, Seddon JM, Simmons G, Speight N, Trott DJ, Woolford L, Emes RD. Transcriptomic and genomic variants between koala populations reveals underlying genetic components to disorders in a bottlenecked population. CONSERV GENET 2021. [DOI: 10.1007/s10592-021-01340-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
AbstractHistorical hunting pressures on koalas in the southern part of their range in Australia have led to a marked genetic bottleneck when compared with their northern counterparts. There are a range of suspected genetic disorders such as testicular abnormalities, oxalate nephrosis and microcephaly reported at higher prevalence in these genetically restricted southern animals. This paper reports analysis of differential expression of genes from RNAseq of lymph nodes, SNPs present in genes and the fixation index (population differentiation due to genetic structure) of these SNPs from two populations, one in south east Queensland, representative of the northern genotype and one in the Mount Lofty Ranges South Australia, representative of the southern genotype. SNPs that differ between these two populations were significantly enriched in genes associated with brain diseases. Genes which were differentially expressed between the two populations included many associated with brain development or disease, and in addition a number associated with testicular development, including the androgen receptor. Finally, one of the 8 genes both differentially expressed and with a statistical difference in SNP frequency between populations was SLC26A6 (solute carrier family 26 member 6), an anion transporter that was upregulated in SA koalas and is associated with oxalate transport and calcium oxalate uroliths in humans. Together the differences in SNPs and gene expression described in this paper suggest an underlying genetic basis for several disorders commonly seen in southern Australian koalas, supporting the need for further research into the genetic basis of these conditions, and highlighting that genetic selection in managed populations may need to be considered in the future.
Collapse
|
49
|
Cimatti M, Ranc N, Benítez‐López A, Maiorano L, Boitani L, Cagnacci F, Čengić M, Ciucci P, Huijbregts MAJ, Krofel M, López‐Bao JV, Selva N, Andren H, Bautista C, Ćirović D, Hemmingmoore H, Reinhardt I, Marenče M, Mertzanis Y, Pedrotti L, Trbojević I, Zetterberg A, Zwijacz‐Kozica T, Santini L. Large carnivore expansion in Europe is associated with human population density and land cover changes. DIVERS DISTRIB 2021. [DOI: 10.1111/ddi.13219] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Affiliation(s)
- Marta Cimatti
- Department of Environmental Science Institute for Wetland and Water Research Faculty of Science Radboud University Nijmegen The Netherlands
- Department of Biology and Biotechnologies “Charles Darwin” “La Sapienza” University of Rome Rome Italy
| | - Nathan Ranc
- Organismic and Evolutionary Biology Department Harvard University Cambridge MA USA
- Department of Biodiversity and Molecular Ecology Research and Innovation Centre Fondazione Edmund Mach Trento Italy
| | - Ana Benítez‐López
- Department of Environmental Science Institute for Wetland and Water Research Faculty of Science Radboud University Nijmegen The Netherlands
- Integrative Ecology Group Estación Biológica de Doñana (EBD‐CSIC) Sevilla Spain
| | - Luigi Maiorano
- Department of Biology and Biotechnologies “Charles Darwin” “La Sapienza” University of Rome Rome Italy
| | - Luigi Boitani
- Department of Biology and Biotechnologies “Charles Darwin” “La Sapienza” University of Rome Rome Italy
| | - Francesca Cagnacci
- Department of Biodiversity and Molecular Ecology Research and Innovation Centre Fondazione Edmund Mach Trento Italy
| | - Mirza Čengić
- Department of Environmental Science Institute for Wetland and Water Research Faculty of Science Radboud University Nijmegen The Netherlands
| | - Paolo Ciucci
- Department of Biology and Biotechnologies “Charles Darwin” “La Sapienza” University of Rome Rome Italy
| | - Mark A. J. Huijbregts
- Department of Environmental Science Institute for Wetland and Water Research Faculty of Science Radboud University Nijmegen The Netherlands
| | - Miha Krofel
- Department for Forestry and Renewable Forest Resources Biotechnical Faculty University of Ljubljana Ljubljana Slovenia
| | | | - Nuria Selva
- Institute of Nature Conservation Polish Academy of Sciences Kraków Poland
| | - Henrik Andren
- Grimsö Wildlife Research Station Department of Ecology Swedish University of Agricultural Sciences Uppsala Sweden
| | - Carlos Bautista
- Institute of Nature Conservation Polish Academy of Sciences Kraków Poland
| | - Duško Ćirović
- Faculty of Biology University of Belgrade Belgrade Serbia
| | - Heather Hemmingmoore
- Grimsö Wildlife Research Station Department of Ecology Swedish University of Agricultural Sciences Uppsala Sweden
| | - Ilka Reinhardt
- LUPUS – German Institute for Wolf Monitoring and Research Spreewitz Germany
| | | | - Yorgos Mertzanis
- Callisto – Wildlife and Nature Conservation Society Thessaloniki Greece
| | - Luca Pedrotti
- Forest and Wildlife Service Provincia di Trento Italy
| | - Igor Trbojević
- Faculty of Sciences University of Banja Luka Banja Luka Bosnia and Herzegovina
- Faculty of Ecology Independent University of Banja Luka Banja Luka Bosnia and Herzegovina
| | | | | | - Luca Santini
- Department of Environmental Science Institute for Wetland and Water Research Faculty of Science Radboud University Nijmegen The Netherlands
- Institute of Research on Terrestrial Ecosystems National Research Council Montelibretti Italy
| |
Collapse
|
50
|
Petersen A, Åkesson M, Axner E, Ågren E, Wikenros C, Dalin AM. Characteristics of reproductive organs and estimates of reproductive potential in Scandinavian male grey wolves (Canis lupus). Anim Reprod Sci 2021; 226:106693. [PMID: 33476906 DOI: 10.1016/j.anireprosci.2021.106693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 01/07/2021] [Accepted: 01/07/2021] [Indexed: 11/19/2022]
Abstract
Improved knowledge about reproductive patterns and potential in male wolves (i.e., testicular development and size relative to age, pubertal age, and seasonal effects) is needed for evaluation and monitoring of reproductive outcomes in populations. Reproductive organs from 215 male wolves, culled as a result of licensed hunting, protective culling or from carcasses found were examined. The testes and epididymis were weighed and measured. There were biopsy samples collected from the testes and the cauda epididymis for histological determinations if there were spermatozoa in tissues collected. There were reproductive tissue analyses of 197 males while there were separate evaluations of tissues from ten cryptorchid animals. Juvenile wolves (< 1 year, n = 47) had a lesser body mass and mean testes mass than subadult (1-2 years, n = 71) and adult (>2 years, n = 79) males. Season also affected testicular characteristics of structures evaluated with subadult and adult males having a lesser mass during summer months (May-August). Of the 197 males, 70 % had spermatozoa in the seminiferous tubules and the cauda epididymis and were classified as being 'potentially fertile' when tissues were collected, while 22 % were classified as being non-fertile (no spermatozoa, including males that were pre-pubertal) and tissues of 8% could not be evaluated. When testes mass was greater, there was a greater likelihood that spermatozoa were present. There were seven of the ten cryptorchid males of the unilateral type. These testicular and epididymal findings will be useful for evaluating the reproductive potential and management of wolves in Scandinavia.
Collapse
Affiliation(s)
- Amanda Petersen
- Swedish University of Agricultural Sciences, SLU, Dept. of Clinical Sciences, Div. of Reproduction, PO Box 7054, SE-75007 Uppsala, Sweden.
| | - Mikael Åkesson
- Swedish University of Agricultural Sciences, SLU, Dept. of Ecology, Grimsö Wildlife Research Station, SE-73091 Riddarhyttan, Sweden.
| | - Eva Axner
- Swedish University of Agricultural Sciences, SLU, Dept. of Clinical Sciences, Div. of Reproduction, PO Box 7054, SE-75007 Uppsala, Sweden.
| | - Erik Ågren
- National Veterinary Institute, SVA, SE-75189 Uppsala, Sweden.
| | - Camilla Wikenros
- Swedish University of Agricultural Sciences, SLU, Dept. of Ecology, Grimsö Wildlife Research Station, SE-73091 Riddarhyttan, Sweden.
| | - Anne-Marie Dalin
- Swedish University of Agricultural Sciences, SLU, Dept. of Clinical Sciences, Div. of Reproduction, PO Box 7054, SE-75007 Uppsala, Sweden.
| |
Collapse
|