1
|
Spengler RN, Kienast F, Roberts P, Boivin N, Begun DR, Ashastina K, Petraglia M. Bearing Fruit: Miocene Apes and Rosaceous Fruit Evolution. BIOLOGICAL THEORY 2023; 18:134-151. [PMID: 37214192 PMCID: PMC10191964 DOI: 10.1007/s13752-022-00413-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 09/08/2022] [Indexed: 05/24/2023]
Abstract
Extinct megafaunal mammals in the Americas are often linked to seed-dispersal mutualisms with large-fruiting tree species, but large-fruiting species in Europe and Asia have received far less attention. Several species of arboreal Maloideae (apples and pears) and Prunoideae (plums and peaches) evolved large fruits starting around nine million years ago, primarily in Eurasia. As evolutionary adaptations for seed dispersal by animals, the size, high sugar content, and bright colorful visual displays of ripeness suggest that mutualism with megafaunal mammals facilitated the evolutionary change. There has been little discussion as to which animals were likely candidate(s) on the late Miocene landscape of Eurasia. We argue that several possible dispersers could have consumed the large fruits, with endozoochoric dispersal usually relying on guilds of species. During the Pleistocene and Holocene, the dispersal guild likely included ursids, equids, and elephantids. During the late Miocene, large primates were likely also among the members of this guild, and the potential of a long-held mutualism between the ape and apple clades merits further discussion. If primates were a driving factor in the evolution of this large-fruit seed-dispersal system, it would represent an example of seed-dispersal-based mutualism with hominids millions of years prior to crop domestication or the development of cultural practices, such as farming.
Collapse
Affiliation(s)
- Robert N. Spengler
- Department of Archaeology, Max Planck Institute for Geoanthropology, Jena, Germany
- Domestication and Anthropogenic Evolution Research Group, Max Planck Institute for Geoanthropology, Jena, Germany
| | - Frank Kienast
- Senckenberg Research Station of Quaternary, Palaeontology, Weimar, Germany
| | - Patrick Roberts
- Department of Archaeology, Max Planck Institute for Geoanthropology, Jena, Germany
- isoTROPIC Research Group, Max Planck Institute for Geoanthropology, Jena, Germany
| | - Nicole Boivin
- Department of Archaeology, Max Planck Institute for Geoanthropology, Jena, Germany
- Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington, DC USA
- School of Social Science, The University of Queensland, Brisbane, Australia
- Department of Anthropology and Archaeology, University of Calgary, Calgary, Canada
| | - David R. Begun
- Department of Anthropology, University of Toronto, Toronto, Canada
| | - Kseniia Ashastina
- Department of Archaeology, Max Planck Institute for Geoanthropology, Jena, Germany
- Domestication and Anthropogenic Evolution Research Group, Max Planck Institute for Geoanthropology, Jena, Germany
| | - Michael Petraglia
- Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington, DC USA
- Australian Research Centre for Human Evolution, Griffith University, Nathan, Queensland Australia
| |
Collapse
|
2
|
Dispersal success of a specialized tropical tree depends on complex interactions among diverse mammalian frugivores. Glob Ecol Conserv 2022. [DOI: 10.1016/j.gecco.2022.e02312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
3
|
Significance of seed dispersal by the largest frugivore for large-diaspore trees. Sci Rep 2022; 12:19086. [PMID: 36411297 PMCID: PMC9678871 DOI: 10.1038/s41598-022-23018-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 10/21/2022] [Indexed: 11/23/2022] Open
Abstract
How do large-bodied frugivores contribute to seed dispersal of large-diaspore plants? This study examined seed dispersal effectiveness for two large-diaspore tree species, Astrotrichilia asterotricha (AA) and Abrahamia deflexa (AD), in a Madagascan forest. I evaluated fruit removal rates through focal tree observations and factors affecting seedling recruitment up to the 2-year-old seedling stage. I confirmed brown lemur (Eulemur fulvus) as the sole disperser, removing 58.8% and 26.0% of fruits produced by AA and AD. Brown lemurs frequently visited large-crowned AA trees with high density of fallen fruits and more adjacent fruiting trees during seasons with low fruit diversity. Most AA seedlings were removed by predators, although canopy openness slightly improved seedling establishment. Although AD seeds were severely attacked by predators under mother trees, the seedlings survived under dispersal conditions distant from the mother trees, and with low density of diaspores. AD had a higher cumulative probability from fruit removal to seedling recruitment (6.5%) than AA (1.5%) in the first rainy season. This study clarifies the significance of seed dispersal to tree recruitment strategies, which vary among different combinations of tree species and large frugivores, i.e. quantitative dispersal to reach suitable microhabitats, and qualitative dispersal to escape from dangerous zones near mother trees.
Collapse
|
4
|
Aslan C, Beckman NG, Rogers HS, Bronstein J, Zurell D, Hartig F, Shea K, Pejchar L, Neubert M, Poulsen J, HilleRisLambers J, Miriti M, Loiselle B, Effiom E, Zambrano J, Schupp G, Pufal G, Johnson J, Bullock JM, Brodie J, Bruna E, Cantrell RS, Decker R, Fricke E, Gurski K, Hastings A, Kogan O, Razafindratsima O, Sandor M, Schreiber S, Snell R, Strickland C, Zhou Y. Employing plant functional groups to advance seed dispersal ecology and conservation. AOB PLANTS 2019; 11:plz006. [PMID: 30895154 PMCID: PMC6420810 DOI: 10.1093/aobpla/plz006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 02/05/2019] [Indexed: 05/06/2023]
Abstract
Seed dispersal enables plants to reach hospitable germination sites and escape natural enemies. Understanding when and how much seed dispersal matters to plant fitness is critical for understanding plant population and community dynamics. At the same time, the complexity of factors that determine if a seed will be successfully dispersed and subsequently develop into a reproductive plant is daunting. Quantifying all factors that may influence seed dispersal effectiveness for any potential seed-vector relationship would require an unrealistically large amount of time, materials and financial resources. On the other hand, being able to make dispersal predictions is critical for predicting whether single species and entire ecosystems will be resilient to global change. Building on current frameworks, we here posit that seed dispersal ecology should adopt plant functional groups as analytical units to reduce this complexity to manageable levels. Functional groups can be used to distinguish, for their constituent species, whether it matters (i) if seeds are dispersed, (ii) into what context they are dispersed and (iii) what vectors disperse them. To avoid overgeneralization, we propose that the utility of these functional groups may be assessed by generating predictions based on the groups and then testing those predictions against species-specific data. We suggest that data collection and analysis can then be guided by robust functional group definitions. Generalizing across similar species in this way could help us to better understand the population and community dynamics of plants and tackle the complexity of seed dispersal as well as its disruption.
Collapse
Affiliation(s)
- Clare Aslan
- Landscape Conservation Initiative, Northern Arizona University, Flagstaff, AZ, USA
| | | | - Haldre S Rogers
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Judie Bronstein
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | - Damaris Zurell
- Dynamic Macroecology, Landscape Dynamics, Swiss Federal Research Institute WSL, Zürcherstrasse, Birmensdorf, Switzerland
| | - Florian Hartig
- Faculty of Biology and Pre-Clinical Medicine, University of Regensburg, Universitätsstraße, Regensburg, Germany
| | - Katriona Shea
- Department of Biology, Pennsylvania State University, 208 Mueller Laboratory, University Park, PA, USA
| | - Liba Pejchar
- Department of Fish, Wildlife and Conservation Biology, Colorado State University, Fort Collins, CO, USA
| | - Mike Neubert
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - John Poulsen
- Nicholas School of the Environment, Duke University, Durham, USA
| | | | - Maria Miriti
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH, USA
| | - Bette Loiselle
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL, USA
| | - Edu Effiom
- CRS Forestry Commission, Calabar, Nigeria
| | - Jenny Zambrano
- National Socio-Environmental Synthesis Center, 1 Park Place, Annapolis, MD, USA
| | - Geno Schupp
- Department of Biology, Utah State University, Logan, UT, USA
| | - Gesine Pufal
- Naturschutz & Landschaftsökologie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Jeremy Johnson
- Department of Geography, Texas A&M University, College Station, TX, USA
| | | | - Jedediah Brodie
- Wildlife Biology Program, University of Montana, Missoula, MT, USA
| | - Emilio Bruna
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL, USA
| | | | | | - Evan Fricke
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Katie Gurski
- Department of Mathematics, Howard University, Washington, DC, USA
| | | | - Oleg Kogan
- Physics Department, California Polytechnic State University, San Luis Obispo, CA, USA
| | | | - Manette Sandor
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | | | - Rebecca Snell
- Environmental and Plant Biology, Ohio University, Athens, OH, USA
| | | | - Ying Zhou
- Department of Mathematics, Lafayette College, Easton, PA, USA
| |
Collapse
|
5
|
González-Varo JP, Arroyo JM, Jordano P. The timing of frugivore-mediated seed dispersal effectiveness. Mol Ecol 2018; 28:219-231. [PMID: 30151871 PMCID: PMC6905405 DOI: 10.1111/mec.14850] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 08/08/2018] [Accepted: 08/15/2018] [Indexed: 12/01/2022]
Abstract
The seed dispersal effectiveness framework allows assessing mutualistic services from frugivorous animals in terms of quantity and quality. Quantity accounts for the number of seeds dispersed and quality for the probability of recruitment of dispersed seeds. Research on this topic has largely focused on the spatial patterns of seed deposition because seed fates often vary between microhabitats due to differences in biotic and abiotic factors. However, the temporal dimension has remained completely overlooked despite these factors-and even local disperser assemblages-can change dramatically during long fruiting periods. Here, we test timing effects on seed dispersal effectiveness, using as study case a keystone shrub species dispersed by frugivorous birds and with a fruiting period of 9 months. We evaluated quantity and quality in different microhabitats of a Mediterranean forest and different periods of the fruiting phenophase. We identified the bird species responsible for seed deposition through DNA barcoding and evaluated the probability of seedling recruitment through a series of field experiments on sequential demographic processes. We found that timing matters: The disperser assemblage was temporally structured, seed viability decreased markedly during the plant's fruiting phenophase, and germination was lower for viable seeds dispersed in the fruiting peak. We show how small contributions to seed deposition by transient migratory species can result in a relevant effectiveness if they disperse seeds in a high-quality period for seedling recruitment. This study expands our understanding of seed dispersal effectiveness, highlighting the importance of timing and infrequent interactions for population and community dynamics.
Collapse
Affiliation(s)
- Juan P González-Varo
- Integrative Ecology Group, Estación Biológica de Doñana, EBD-CSIC, Sevilla, Spain.,Terrestrial Ecology Group, Instituto Mediterráneo de Estudios Avanzados, UIB-CSIC, Esporles, Spain
| | - Juan M Arroyo
- Integrative Ecology Group, Estación Biológica de Doñana, EBD-CSIC, Sevilla, Spain
| | - Pedro Jordano
- Integrative Ecology Group, Estación Biológica de Doñana, EBD-CSIC, Sevilla, Spain
| |
Collapse
|
6
|
Temporal dynamics in the effectiveness of seed dispersal by birds visiting a tropical tree. JOURNAL OF TROPICAL ECOLOGY 2018. [DOI: 10.1017/s0266467418000226] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Abstract:Seed dispersal effectiveness (SDE) is related to the role of seed dispersal agents in realizing the reproductive potential of plants through seed dispersal and subsequent plant recruitment. The SDE of a given seed disperser may vary spatially and temporally, with important implications for our understanding of the mutualistic relationships involving plants and frugivores. Here we observed 22 frugivorous bird species visiting an individual tree (Cabralea canjerana) over a 9-y period in a fragment of Atlantic forest in south-eastern Brazil to document the temporal variation in SDE. The quantitative (that takes into account the frequency of feeding visits to the focal plant and the number of fruits removed per visit) and qualitative (that considers the probability of seed deposition on a suitable site for plant recruitment) components of SDE varied in two and one order of magnitude both among bird species and among years within bird species, respectively. As a result, the SDE of bird species fluctuates over the years, especially for a migratory species that is the main seed disperser ofC. canjerana(Chivi vireoVireo chivi) whose quantitative component (i.e. the product of visit and fruit intake rates) varied from 3.0 to 7.1. This study illustrates the dynamic nature of the seed-dispersal environment to which a plant is subjected to over the course of its life, which has important consequences for the plant's individual fitness.
Collapse
|
7
|
McConkey KR, Nathalang A, Brockelman WY, Saralamba C, Santon J, Matmoon U, Somnuk R, Srinoppawan K. Different megafauna vary in their seed dispersal effectiveness of the megafaunal fruit Platymitra macrocarpa (Annonaceae). PLoS One 2018; 13:e0198960. [PMID: 30020929 PMCID: PMC6051586 DOI: 10.1371/journal.pone.0198960] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 05/28/2018] [Indexed: 11/18/2022] Open
Abstract
The world’s largest terrestrial animals (megafauna) can play profound roles in seed dispersal. Yet, the term ‘megafauna’ is often used to encompass a diverse range of body sizes and physiologies of, primarily, herbivorous animals. To determine the extent to which these animals varied in their seed dispersal effectiveness (SDE), we compared the contribution of different megafauna for the large-fruited Platymitra macrocarpa (Annonaceae), in a tropical evergreen forest in Thailand. We quantified ‘seed dispersal effectiveness’ by measuring the quantity and quality contributions of all consumers of P. macrocarpa fruit. Seed dispersal quantity was the proportion of the crop consumed by each species. Quality was defined as the proportion of seeds handled by each animal taxon that survived to produce a 2-month seedling. Megafauna (elephants, sambar deer, bears) dispersed 78% of seeds that produced seedlings, with 21% dispersed by gibbons (a medium-sized frugivore). The main megafaunal consumers displayed different dispersal strategies. Elephants were the most effective dispersers (37% of seedlings) and they achieved this by being high-quality and low-quantity dispersers. Bears displayed a similar strategy but were especially rare visitors to the trees (24% of the total seedlings produced). Sambar were high-quantity dispersers, but most seeds they handled did not survive and they were responsible for only 17% of seedlings. Gibbons displayed a high SDE relative to their body size, but they probably cannot match the role of elephants despite being more regular consumers of the fruit. The low density and poor regeneration of P. macrocarpa in the study site suggest that current dispersal rates by megafauna are insufficient, possibly reflecting reduced or missing megafauna populations. We show that different megafaunal species disperse seeds in different ways and may make unique contributions to the reproductive success of the plant species.
Collapse
Affiliation(s)
- Kim R. McConkey
- School of Natural Sciences and Engineering, National Institute of Advanced Studies, Indian Institute of Science Campus, Bangalore, India
- School of Geography, University of Nottingham Malaysia Campus, Semenyih, Selangor, Malaysia
- * E-mail: (KRM); (AN)
| | - Anuttara Nathalang
- Ecology Lab, BIOTEC, National Science and Technology Development Agency, Pathum Thani, Thailand
- * E-mail: (KRM); (AN)
| | - Warren Y. Brockelman
- Ecology Lab, BIOTEC, National Science and Technology Development Agency, Pathum Thani, Thailand
- Institute of Molecular Biosciences, Mahidol University–Salaya, Phutthamonthon, Nakhon Pathom, Thailand
| | - Chanpen Saralamba
- Conservation Biology Program, Mahidol University Kanchanaburi Campus, Sai Yok, Kanchanaburi, Thailand
| | - Jantima Santon
- Ecology Lab, BIOTEC, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Umaporn Matmoon
- Ecology Lab, BIOTEC, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Rathasart Somnuk
- Ecology Lab, BIOTEC, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Kanchit Srinoppawan
- Department of National Parks, Wildlife and Plant Conservation, Chatuchak, Bangkok, Thailand
| |
Collapse
|
8
|
|
9
|
Hai BT, Chen J, McConkey KR, Dayananda SK. Gibbons (Nomascus gabriellae) provide key seed dispersal for the Pacific walnut (Dracontomelon dao), in Asia's lowland tropical forest. ACTA OECOLOGICA-INTERNATIONAL JOURNAL OF ECOLOGY 2018. [DOI: 10.1016/j.actao.2018.03.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
10
|
|
11
|
McConkey KR. Seed Dispersal by Primates in Asian Habitats: From Species, to Communities, to Conservation. INT J PRIMATOL 2018. [DOI: 10.1007/s10764-017-0013-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
12
|
Corlett RT. Frugivory and seed dispersal by vertebrates in tropical and subtropical Asia: An update. Glob Ecol Conserv 2017. [DOI: 10.1016/j.gecco.2017.04.007] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
13
|
Tsuji Y, Ningsih JIDP, Kitamura S, Widayati KA, Suryobroto B. Neglected seed dispersers: endozoochory by Javan lutungs (Trachypithecus auratus) in Indonesia. Biotropica 2017. [DOI: 10.1111/btp.12439] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Yamato Tsuji
- Primate Research Institute; Kyoto University; 41-2, Kanrin Inuyama Aich 484-8506 Japan
- Ishikawa Prefectural University; 1-308, Suematsu Nonoichi Ishikawa 921-8836 Japan
| | - Jenni Indah Dwi Pajar Ningsih
- Bogor Agricultural University; Jl. Agatis; Gedung Fakultas Peternakan Wing 1 Darmaga Bogor 16680 West Java, Indonesia
| | - Shumpei Kitamura
- Ishikawa Prefectural University; 1-308, Suematsu Nonoichi Ishikawa 921-8836 Japan
| | - Kanthi Arum Widayati
- Bogor Agricultural University; Jl. Agatis; Gedung Fakultas Peternakan Wing 1 Darmaga Bogor 16680 West Java, Indonesia
| | - Bambang Suryobroto
- Bogor Agricultural University; Jl. Agatis; Gedung Fakultas Peternakan Wing 1 Darmaga Bogor 16680 West Java, Indonesia
| |
Collapse
|
14
|
Tsuji Y, Morimoto M. Endozoochorous seed dispersal by Japanese macaques (Macaca fuscata): Effects of temporal variation in ranging and seed characteristics on seed shadows. Am J Primatol 2015; 78:185-91. [PMID: 26469699 DOI: 10.1002/ajp.22490] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 10/01/2015] [Accepted: 10/01/2015] [Indexed: 11/10/2022]
Abstract
Variation in seed shadows generated by frugivores is caused by daily, seasonal, and inter-annual variation in ranging, as well as inter-specific variability in gut passage times according to seed characteristics. We studied the extent to which seed weight, specific gravity, and daily (morning, afternoon, and evening) and inter-annual (2004 vs. 2005) variation in ranging affected seed shadows generated by wild Japanese macaques (Macaca fuscata) in northern Japan. The macaques ingested fleshy fruits of 11 species during the two year study period; Viburnum dilatatum (Caprifoliaceae: heavier seeds with higher specific gravity) and Rosa multiflora (Rosaceae: lighter seeds with lower specific gravity) were eaten frequently in both years. The travel distances of macaques after feeding on V. dilatatum and R. multiflora fruits were estimated by combining feeding locations and ranging patterns measured in the field with gut passage times of model seeds in captive animals. Median travel distances after fruit feeding were 431 (quantile range: 277-654) and 478 m (265-646), respectively, with a maximum of 1,261 m. Neither year nor time of day affected travel distances. The gut passage time of model V. dilatatum seeds was longer than that of model R. multiflora seed, but this did not affect dispersal distances. Seed shadows for both species over 2 years showed unimodal distribution (peak: 101-500 m) and more than 90%, 20%, and 3% of ingested seeds were estimated to be dispersed >100, >500, and >1000 m, respectively, the longest known distances among macaque species. R. multiflora seeds tended to be dispersed further in 2004 than 2005, but V. dilatatum seeds were not, implying that inter-annual variations in ranging pattern due to the distribution and abundance of nut fruiting could affect dispersal distance.
Collapse
Affiliation(s)
- Yamato Tsuji
- Primate Research Institute, Kyoto University, 41-2 Kanrin, Inuyama, Aichi, 484-8506, Japan
| | - Mayumi Morimoto
- Primate Research Institute, Kyoto University, 41-2 Kanrin, Inuyama, Aichi, 484-8506, Japan
| |
Collapse
|
15
|
McConkey KR, Brockelman WY, Saralamba C, Nathalang A. Effectiveness of primate seed dispersers for an “oversized” fruit,Garcinia benthamii. Ecology 2015; 96:2737-47. [DOI: 10.1890/14-1931.1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|