1
|
Nor WMFSBWM, Kwong SC, Fuzi AAM, Said NABM, Jamil AHA, Lee YY, Lee SC, Lim YAL, Chung I. Linking microRNA to metabolic reprogramming and gut microbiota in the pathogenesis of colorectal cancer (Review). Int J Mol Med 2025; 55:46. [PMID: 39820715 PMCID: PMC11759585 DOI: 10.3892/ijmm.2025.5487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 12/03/2024] [Indexed: 01/19/2025] Open
Abstract
Colorectal cancer (CRC), an emerging public health concern, is one of the leading causes of cancer morbidity and mortality worldwide. An increasing body of evidence shows that dysfunction in metabolic reprogramming is a crucial characteristic of CRC progression. Specifically, metabolic reprogramming abnormalities in glucose, glutamine and lipid metabolism provide the tumour with energy and nutrients to support its rapid cell proliferation and survival. More recently, microRNAs (miRNAs) appear to be involved in the pathogenesis of CRC, including regulatory roles in energy metabolism. In addition, it has been revealed that dysbiosis in CRC might play a key role in impairing the host metabolic reprogramming processes, and while the exact interactions remain unclear, the link may lie with miRNAs. Hence, the aims of the current review include first, to delineate the metabolic reprogramming abnormalities in CRC; second, to explain how miRNAs mediate the aberrant regulations of CRC metabolic pathways; third, linking miRNAs with metabolic abnormalities and dysbiosis in CRC and finally, to discuss the roles of miRNAs as potential biomarkers.
Collapse
Affiliation(s)
| | - Soke Chee Kwong
- Centre for Population Health (CePH), Department of Social and Preventive Medicine, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Afiqah Alyaa Md Fuzi
- Office of Deputy Vice Chancellor (Research and Innovation), Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Nur Akmarina Binti Mohd Said
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Amira Hajirah Abd Jamil
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Yeong Yeh Lee
- School of Medical Sciences, Universiti Sains Malaysia, 16150 Kota Bharu, Malaysia
| | - Soo Ching Lee
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Yvonne Ai-Lian Lim
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Ivy Chung
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
2
|
Jin K, Chu X, Qian J. Arginine and colorectal cancer: Exploring arginine-related therapeutic strategies and novel insights into cancer immunotherapies. Int Immunopharmacol 2025; 148:114146. [PMID: 39879835 DOI: 10.1016/j.intimp.2025.114146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 01/02/2025] [Accepted: 01/21/2025] [Indexed: 01/31/2025]
Abstract
Concerning the progression of societies and the evolution of lifestyle and dietary habits, the potential for the development of human malignancies, particularly colorectal cancer (CRC), has markedly escalated, positioning it as one of the most prevalent and lethal forms of cancer globally. Empirical evidence indicates that the metabolic processes of cancerous and healthy cells can significantly impact immune responses and the fate of tumors. Arginine, a multifaceted amino acid, assumes a crucial and paradoxical role in various metabolic pathways, as certain tumors exhibit arginine auxotrophy while others do not. Notably, CRC is classified as arginine non-auxotrophic, possessing the ability to synthesize arginine from citrulline. Systemic arginine deprivation and the inhibition of arginine uptake represent two prevalent therapeutic strategies in oncological treatment. However, given the divergent behaviors of tumors concerning the metabolism and synthesis of arginine, one of these therapeutic approaches-namely systemic arginine deprivation-does not apply to CRC. This review elucidates the characteristics of arginine uptake inhibition and systemic arginine deprivation alongside their respective benefits and limitations in CRC. Furthermore, the involvement of arginine in immunotherapeutic strategies is examined in light of the most recent discoveries on various human malignancies.
Collapse
Affiliation(s)
- Ketao Jin
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang 310003, China.
| | - Xiufeng Chu
- Department of General Surgery, Shaoxing Central Hospital, Shaoxing, Zhejiang 312030, China
| | - Jun Qian
- Department of Colorectal Surgery, Xinchang People's Hospital, Affiliated Xinchang Hospital, Wenzhou Medical University, Xinchang, Zhejiang 312500, China.
| |
Collapse
|
3
|
Zhang J, Wu L, Ding R, Deng X, Chen Z. Role of miRNA‑122 in cancer (Review). Int J Oncol 2024; 65:83. [PMID: 39027994 PMCID: PMC11299766 DOI: 10.3892/ijo.2024.5671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/01/2024] [Indexed: 07/20/2024] Open
Abstract
MicroRNAs (miRNAs) are small non‑coding RNAs that serve key roles in cell proliferation, migration, invasion and apoptosis by regulating gene expression. In malignant tumors, miRNA‑122 serves either as a tumor suppressor or oncogene, influencing tumor progression via downstream gene targeting. However, the precise role of miRNA‑122 in cancer remains unclear. miRNA‑122 is a potential biomarker and modulator of radiotherapy and chemotherapy. The present review aimed to summarize the roles of miRNA‑122 in cancer, its potential as a biomarker for diagnosis and prognosis and its implications in cancer therapy, including radiotherapy and chemotherapy, alongside strategies for systemic delivery.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Respiratory Medicine, Taizhou Fourth People's Hospital, Taizhou, Jiangsu 225300, P.R. China
| | - Linghua Wu
- Department of Traditional Chinese Medicine, Taizhou Fifth People's Hospital, Taizhou, Jiangsu 225766, P.R. China
| | - Rong Ding
- Department of Respiratory Medicine, Taizhou Fourth People's Hospital, Taizhou, Jiangsu 225300, P.R. China
| | - Xin Deng
- School of Basic Medical Sciences, Guangxi University of Traditional Chinese Medicine, Nanning, Guangxi 530200, P.R. China
| | - Zeshan Chen
- Department of Traditional Chinese Medicine, Guangxi Zhuang Autonomous Region People's Hospital, Nanning, Guangxi 530016, P.R. China
| |
Collapse
|
4
|
Al-Gazally ME, Khan R, Imran M, Ramírez-Coronel AA, Alshahrani SH, Altalbawy FMA, Turki Jalil A, Romero-Parra RM, Zabibah RS, Shahid Iqbal M, Karampoor S, Mirzaei R. The role and mechanism of action of microRNA-122 in cancer: Focusing on the liver. Int Immunopharmacol 2023; 123:110713. [PMID: 37523968 DOI: 10.1016/j.intimp.2023.110713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 07/08/2023] [Accepted: 07/24/2023] [Indexed: 08/02/2023]
Abstract
microRNA-122 (miR-122) is a highly conserved microRNA that is predominantly expressed in the liver and plays a critical role in the regulation of liver metabolism. Recent studies have shown that miR-122 is involved in the pathogenesis of various types of cancer, particularly liver cancer. In this sense, The current findings highlighted the potential role of miR-122 in regulating many vital processes in cancer pathophysiology, including apoptosis, signaling pathway, cell metabolism, immune system response, migration, and invasion. These results imply that miR-122, which has been extensively studied for its biological functions and potential therapeutic applications, acts as a tumor suppressor or oncogene in cancer development. We first provide an overview and summary of the physiological function and mode of action of miR-122 in liver cancer. We will examine the various signaling pathways and molecular mechanisms through which miR-122 exerts its effects on cancer cells, including the regulation of oncogenic and tumor suppressor genes, the modulation of cell proliferation and apoptosis, and the regulation of metastasis. Most importantly, we will also discuss the potential diagnostic and therapeutic applications of miR-122 in cancer, including the development of miRNA-based biomarkers for cancer diagnosis and prognosis, and the potential use of miR-122 as a therapeutic target for cancer treatment.
Collapse
Affiliation(s)
| | - Ramsha Khan
- MBBS, Nawaz Sharif Medical College, Gujrat, Pakistan
| | - Muhammad Imran
- MBBS, Multan Medical and Dental College, Multan, Pakistan
| | | | | | - Farag M A Altalbawy
- National Institute of Laser Enhanced Sciences (NILES), University of Cairo, Giza 12613, Egypt; Department of Chemistry, University College of Duba, University of Tabuk, Tabuk, Saudi Arabia
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla 51001, Iraq
| | | | - Rahman S Zabibah
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Muhammad Shahid Iqbal
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam bin Abdulaziz University, 11942 Alkharj, Saudi Arabia
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
5
|
Zhang Y, Jiao Z, Chen M, Shen B, Shuai Z. Roles of Non-Coding RNAs in Primary Biliary Cholangitis. Front Mol Biosci 2022; 9:915993. [PMID: 35874606 PMCID: PMC9305664 DOI: 10.3389/fmolb.2022.915993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Primary biliary cholangitis (PBC) is an autoimmune-mediated chronic cholestatic liver disease, fatigue, and skin itching are the most common clinical symptoms. Its main pathological feature is the progressive damage and destruction of bile duct epithelial cells. Non-coding RNA (NcRNA, mainly including microRNA, long non-coding RNA and circular RNA) plays a role in the pathological and biological processes of various diseases, especially autoimmune diseases. Many validated ncRNAs are expected to be biomarkers for the diagnosis or treatment of PBC. This review will elucidate the pathogenesis of PBC and help to identify potential ncRNA biomarkers for PBC.
Collapse
Affiliation(s)
- Yaqin Zhang
- Department of Rheumatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ziying Jiao
- Department of Physiology, School of Basic Medicine of Anhui Medical University, Hefei, China
| | - Mingwei Chen
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Bing Shen
- Department of Physiology, School of Basic Medicine of Anhui Medical University, Hefei, China
| | - Zongwen Shuai
- Department of Rheumatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- *Correspondence: Zongwen Shuai,
| |
Collapse
|
6
|
Sun B, Zhao H. Bioinformatics Analysis of Differential Gene and MicroRNA Expression in Lung Adenocarcinoma: Genetic Effects on Patient Prognosis, as Indicated by the TCGA Database. Cancer Inform 2022; 21:11769351221082020. [PMID: 35342284 PMCID: PMC8943533 DOI: 10.1177/11769351221082020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 01/26/2022] [Indexed: 12/24/2022] Open
Abstract
Objective: To investigate the differential expression of genes and microRNAs (miRNAs) in patients with lung adenocarcinoma and the relationship between such changes and patient prognosis. Methods: We analyzed the expression levels of genes and miRNAs in lung adenocarcinoma tissues and adjacent normal tissues using The Cancer Genome Atlas database (TCGA). We analyzed the function of the differentially expressed genes and miRNAs in a co-expression network. Finally, we performed survival analysis of differential genes and miRNAs in the co-expression network using clinical data from the TCGA database. Results: We successfully identified 6064 differentially expressed genes: 5324 upregulated genes and 740 downregulated genes. And we identified 161 differentially expressed miRNAs: 126 upregulated miRNAs and 35 downregulated miRNAs. We identified several genes that were related to each other in the co-expression network. Further analysis revealed that the high expression levels of G6PC, APOB, F2, PAQR9, and PAQR9-AS1 genes were associated with poor prognosis. However, there was no significant correlation between the expression of hsa-mir-122 with regards to patient prognosis. Conclusions: Our data showed that hsa-mir-122 and a number of related genes may affect the prognosis of patients with lung adenocarcinoma by regulating the cytoskeleton, thus promoting tumor angiogenesis and the metastasis of tumor cells. The high expression levels of some differentially expressed genes was associated with the low survival rate in patients with lung adenocarcinoma. However, the levels of hsa-mir-122 were not correlated with patient prognosis.
Collapse
Affiliation(s)
- Bingqing Sun
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Hongwen Zhao
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
7
|
Gibriel AA, Ismail MF, Sleem H, Zayed N, Yosry A, El-Nahaas SM, Shehata NI. Diagnosis and staging of HCV associated fibrosis, cirrhosis and hepatocellular carcinoma with target identification for miR-650, 552-3p, 676-3p, 512-5p and 147b. Cancer Biomark 2022; 34:413-430. [DOI: 10.3233/cbm-210456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND: Chronic HCV infection progresses to fibrosis, cirrhosis and hepatocellular carcinoma (HCC). The latter represents the third most common cause for cancer mortality. Currently, there is no reliable non-invasive biomarker for diagnosis of HCV mediated disorders. OBJECTIVE: Profiling expression signature for circulatory miRNAs in the plasma of 167 Egyptian patients (40 healthy, 48 HCV fibrotic, 39 HCV cirrhotic and 40 HCV-HCC cases). METHODS: QRTPCR was used to quantify expression signature for circulatory miRNAs. RESULTS: MiR-676 and miR-650 were powerful in discriminating cirrhotic and late fibrosis from HCC. MiR-650 could distinguish mild (f0-f1) and advanced (f2-f3) fibrosis from HCC cases. MiR-650 and miR-147b could distinguish early fibrosis from healthy controls meanwhile miR-676 and miR-147b could effectively distinguish between mild chronic and (f1-f3) cases from healthy individuals. All studied miRNAs, except miR-512, can differentiate between (f0-f3) cases and healthy controls. Multivariate logistic regression revealed three potential miRNA panels for effective differentiation of HCC, cirrhotic and chronic liver cases. MiR-676-3p and miR-512-5p were significantly correlated in (f1-f3) fibrosis meanwhile miR-676 and miR-512 could differentiate between cirrhosis and (f0-f3) cases. Both miR-650 and miR-512-5p were positively correlated in the cirrhotic group and in (f0-f4) group. Putative targets for investigated miRNAs were also determined. CONCLUSIONS: Investigated miRNAs could assist in staging and diagnosis of HCV associated disorders.
Collapse
Affiliation(s)
- Abdullah Ahmed Gibriel
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, The British University in Egypt (BUE), Cairo, Egypt
| | - Manal Fouad Ismail
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Hameis Sleem
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, The British University in Egypt (BUE), Cairo, Egypt
| | - Naglaa Zayed
- Endemic Medicine Department and Hepatology Unit, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Ayman Yosry
- Endemic Medicine Department and Hepatology Unit, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Saeed M. El-Nahaas
- Endemic Medicine Department and Hepatology Unit, Faculty of Medicine, Cairo University, Cairo, Egypt
| | | |
Collapse
|
8
|
Cervena K, Novosadova V, Pardini B, Naccarati A, Opattova A, Horak J, Vodenkova S, Buchler T, Skrobanek P, Levy M, Vodicka P, Vymetalkova V. Analysis of MicroRNA Expression Changes During the Course of Therapy In Rectal Cancer Patients. Front Oncol 2021; 11:702258. [PMID: 34540669 PMCID: PMC8444897 DOI: 10.3389/fonc.2021.702258] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/16/2021] [Indexed: 12/28/2022] Open
Abstract
MicroRNAs (miRNAs) regulate gene expression in a tissue-specific manner. However, little is known about the miRNA expression changes induced by the therapy in rectal cancer (RC) patients. We evaluated miRNA expression levels before and after therapy and identified specific miRNA signatures reflecting disease course and treatment responses of RC patients. First, miRNA expression levels were assessed by next-generation sequencing in two plasma samplings (at the time of diagnosis and a year after) from 20 RC patients. MiR-122-5p and miR-142-5p were classified for subsequent validation in plasma and plasma extracellular vesicles (EVs) on an independent group of RC patients (n=107). Due to the intrinsic high differences in miRNA expression levels between samplings, cancer-free individuals (n=51) were included in the validation phase to determine the baseline expression levels of the selected miRNAs. Expression levels of these miRNAs were significantly different between RC patients and controls (for all p <0.001). A year after diagnosis, miRNA expression profiles were significantly modified in patients responding to treatment and were no longer different from those measured in cancer-free individuals. On the other hand, patients not responding to therapy maintained low expression levels in their second sampling (miR-122-5p: plasma: p=0.05, EVs: p=0.007; miR-142-5p: plasma: p=0.008). Besides, overexpression of miR-122-5p and miR-142-5p in RC cell lines inhibited cell growth and survival. This study provides novel evidence that circulating miR-122-5p and miR-142-5p have a high potential for RC screening and early detection as well as for the assessment of patients' outcomes and the effectiveness of treatment schedule.
Collapse
Affiliation(s)
- Klara Cervena
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia.,Institute of Biology and Medical Genetics, 1stMedical Faculty, Charles University, Prague, Czechia
| | - Vendula Novosadova
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Prague, Czechia
| | - Barbara Pardini
- Molecular Genetics Epidemiology Unit, Italian Institute for Genomic Medicine, c/o IRCCS Candiolo,, Turin, Italy.,Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Alessio Naccarati
- Molecular Genetics Epidemiology Unit, Italian Institute for Genomic Medicine, c/o IRCCS Candiolo,, Turin, Italy.,Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Alena Opattova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia.,Institute of Biology and Medical Genetics, 1stMedical Faculty, Charles University, Prague, Czechia.,Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - Josef Horak
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia.,Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Sona Vodenkova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia.,Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - Tomas Buchler
- Department of Oncology, First Faculty of Medicine, Charles University and Thomayer Hospital, Prague, Czechia
| | - Pavel Skrobanek
- Department of Oncology, First Faculty of Medicine, Charles University and Thomayer Hospital, Prague, Czechia
| | - Miroslav Levy
- Department of Surgery, First Faculty of Medicine, Charles University and Thomayer Hospital, Prague, Czechia
| | - Pavel Vodicka
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia.,Institute of Biology and Medical Genetics, 1stMedical Faculty, Charles University, Prague, Czechia.,Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - Veronika Vymetalkova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia.,Institute of Biology and Medical Genetics, 1stMedical Faculty, Charles University, Prague, Czechia.,Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| |
Collapse
|
9
|
Zheng W, Wu F, Fu K, Sun G, Sun G, Li X, Jiang W, Cao H, Wang H, Tang W. Emerging Mechanisms and Treatment Progress on Liver Metastasis of Colorectal Cancer. Onco Targets Ther 2021; 14:3013-3036. [PMID: 33986602 PMCID: PMC8110277 DOI: 10.2147/ott.s301371] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 03/24/2021] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer is currently the third largest malignant tumor in the world, with high new cases and high mortality. Metastasis is one of the most common causes of death of colorectal cancer, of which liver metastasis is the most fatal. Since the beginning of the Human Genome Project in 2001, people have gradually recognized the 3 billion base pairs that make up the human genome, of which only about 1.5% of the nucleic acid sequences are used for protein coding, including proto-oncogenes and tumor suppressor genes. A large number of differences in the expression of proto-oncogenes and tumor suppressor genes have also been found in the study of colorectal cancer, which proves that they are also actively involved in the progression of colorectal cancer and promote the occurrence of liver metastasis. Except for 1.5% of the coding sequence, the rest of the nucleic acid sequence does not encode any protein, which is called non-coding RNA. With the deepening of research, genome sequences without protein coding potential that were originally considered “junk sequences” may have important biological functions. Many years of studies have found that a large number of abnormal expression of ncRNA in colorectal cancer liver metastasis, indicating that ncRNA plays an important role in it. To explore the role and mechanism of these coding sequences and non-coding RNA in liver metastasis of colorectal cancer is very important for the early diagnosis and treatment of liver metastasis of colorectal cancer. This article reviews the coding genes and ncRNA that have been found in the study of liver metastasis of colorectal cancer in recent years, as well as the mechanisms that have been identified or are still under study, as well as the clinical treatment of liver metastasis of colorectal cancer.
Collapse
Affiliation(s)
- Wubin Zheng
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Fan Wu
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Kai Fu
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Guangshun Sun
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Guoqiang Sun
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Xiao Li
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Wei Jiang
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Hongyong Cao
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Hanjin Wang
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Weiwei Tang
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Transplantation, Chinese Academy of Medical Sciences, Nanjing, People's Republic of China
| |
Collapse
|
10
|
Cai R, Lu Q, Wang D. Construction and prognostic analysis of miRNA-mRNA regulatory network in liver metastasis from colorectal cancer. World J Surg Oncol 2021; 19:7. [PMID: 33397428 PMCID: PMC7784011 DOI: 10.1186/s12957-020-02107-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 12/03/2020] [Indexed: 02/08/2023] Open
Abstract
Background Colorectal cancer (CRC) is one of the most common cancers in the world, and liver metastasis is the leading cause of colorectal cancer-related deaths. However, the mechanism of liver metastasis in CRC has not been clearly elucidated. Methods Three datasets from the Gene Expression Omnibus (GEO) database were analyzed to obtain differentially expressed genes (DEGs), which were subjected to functional enrichment analysis and protein-protein interaction analysis. Subsequently, mRNA-miRNA network was constructed, and the associated DEGs and DEMs were performed for prognostic analysis. Finally, we did infiltration analysis of growth arrest specific 1 (GAS1)-associated immune cells. Results We obtained 325 DEGs and 9 differentially expressed miRNAs (DEMs) between primary CRC and liver metastases. Enrichment analysis and protein-protein interactions (PPI) further revealed the involvement of DEGs in the formation of the inflammatory microenvironment and epithelial-mesenchymal transition (EMT) during the liver metastases process in CRC. Survival analysis demonstrated that low-expressed GAS1 as well as low-expressed hsa-miR-33b-5p was a favorable prognostic indicator of overall survival. Further exploration of GAS1 revealed that its expression was interrelated with the infiltration of immune cells in tumor tissues. Conclusions In summary, DEGs, DEMs, and their interactions found in liver metastasis of CRC may provide a basis for further understanding of the mechanism of CRC metastasis.
Collapse
Affiliation(s)
- Ruyun Cai
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, China
| | - Qian Lu
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, China
| | - Da Wang
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, China.
| |
Collapse
|
11
|
Scalise M, Console L, Rovella F, Galluccio M, Pochini L, Indiveri C. Membrane Transporters for Amino Acids as Players of Cancer Metabolic Rewiring. Cells 2020; 9:cells9092028. [PMID: 32899180 PMCID: PMC7565710 DOI: 10.3390/cells9092028] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 02/06/2023] Open
Abstract
Cancer cells perform a metabolic rewiring to sustain an increased growth rate and compensate for the redox stress caused by augmented energy metabolism. The metabolic changes are not the same in all cancers. Some features, however, are considered hallmarks of this disease. As an example, all cancer cells rewire the amino acid metabolism for fulfilling both the energy demand and the changed signaling routes. In these altered conditions, some amino acids are more frequently used than others. In any case, the prerequisite for amino acid utilization is the presence of specific transporters in the cell membrane that can guarantee the absorption and the traffic of amino acids among tissues. Tumor cells preferentially use some of these transporters for satisfying their needs. The evidence for this phenomenon is the over-expression of selected transporters, associated with specific cancer types. The knowledge of the link between the over-expression and the metabolic rewiring is crucial for understanding the molecular mechanism of reprogramming in cancer cells. The continuous growth of information on structure-function relationships and the regulation of transporters will open novel perspectives in the fight against human cancers.
Collapse
Affiliation(s)
- Mariafrancesca Scalise
- Unit of Biochemistry and Molecular Biotechnology, Department DiBEST (Biologia, Ecologia, Scienze della Terra), University of Calabria, Via Bucci 4C, 87036 Arcavacata di Rende, Italy; (M.S.); (L.C.); (F.R.); (M.G.); (L.P.)
| | - Lara Console
- Unit of Biochemistry and Molecular Biotechnology, Department DiBEST (Biologia, Ecologia, Scienze della Terra), University of Calabria, Via Bucci 4C, 87036 Arcavacata di Rende, Italy; (M.S.); (L.C.); (F.R.); (M.G.); (L.P.)
| | - Filomena Rovella
- Unit of Biochemistry and Molecular Biotechnology, Department DiBEST (Biologia, Ecologia, Scienze della Terra), University of Calabria, Via Bucci 4C, 87036 Arcavacata di Rende, Italy; (M.S.); (L.C.); (F.R.); (M.G.); (L.P.)
| | - Michele Galluccio
- Unit of Biochemistry and Molecular Biotechnology, Department DiBEST (Biologia, Ecologia, Scienze della Terra), University of Calabria, Via Bucci 4C, 87036 Arcavacata di Rende, Italy; (M.S.); (L.C.); (F.R.); (M.G.); (L.P.)
| | - Lorena Pochini
- Unit of Biochemistry and Molecular Biotechnology, Department DiBEST (Biologia, Ecologia, Scienze della Terra), University of Calabria, Via Bucci 4C, 87036 Arcavacata di Rende, Italy; (M.S.); (L.C.); (F.R.); (M.G.); (L.P.)
| | - Cesare Indiveri
- Unit of Biochemistry and Molecular Biotechnology, Department DiBEST (Biologia, Ecologia, Scienze della Terra), University of Calabria, Via Bucci 4C, 87036 Arcavacata di Rende, Italy; (M.S.); (L.C.); (F.R.); (M.G.); (L.P.)
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM) via Amendola 122/O, 70126 Bari, Italy
- Correspondence: ; Tel.: +39-09-8449-2939
| |
Collapse
|
12
|
How Dysregulated Ion Channels and Transporters Take a Hand in Esophageal, Liver, and Colorectal Cancer. Rev Physiol Biochem Pharmacol 2020; 181:129-222. [PMID: 32875386 DOI: 10.1007/112_2020_41] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Over the last two decades, the understanding of how dysregulated ion channels and transporters are involved in carcinogenesis and tumor growth and progression, including invasiveness and metastasis, has been increasing exponentially. The present review specifies virtually all ion channels and transporters whose faulty expression or regulation contributes to esophageal, hepatocellular, and colorectal cancer. The variety reaches from Ca2+, K+, Na+, and Cl- channels over divalent metal transporters, Na+ or Cl- coupled Ca2+, HCO3- and H+ exchangers to monocarboxylate carriers and organic anion and cation transporters. In several cases, the underlying mechanisms by which these ion channels/transporters are interwoven with malignancies have been fully or at least partially unveiled. Ca2+, Akt/NF-κB, and Ca2+- or pH-dependent Wnt/β-catenin signaling emerge as cross points through which ion channels/transporters interfere with gene expression, modulate cell proliferation, trigger epithelial-to-mesenchymal transition, and promote cell motility and metastasis. Also miRs, lncRNAs, and DNA methylation represent potential links between the misexpression of genes encoding for ion channels/transporters, their malfunctioning, and cancer. The knowledge of all these molecular interactions has provided the basis for therapeutic strategies and approaches, some of which will be broached in this review.
Collapse
|
13
|
Chu YL, Li H, Ng PLA, Kong ST, Zhang H, Lin Y, Tai WCS, Yu ACS, Yim AKY, Tsang HF, Cho WCS, Wong SCC. The potential of circulating exosomal RNA biomarkers in cancer. Expert Rev Mol Diagn 2020; 20:665-678. [PMID: 32188269 DOI: 10.1080/14737159.2020.1745064] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 03/17/2020] [Indexed: 02/04/2023]
Abstract
INTRODUCTION There are great potentials of using exosomal RNAs (exoRNA) as biomarkers in cancers. The isolation of exoRNA requires the use of ultracentrifugation to isolate cell-free RNA followed by detection using real-time PCR, microarray, next-generation sequencing, or Nanostring nCounter system. The use of exoRNA enrichment panels has largely increased the detection sensitivity and specificity when compared to traditional diagnostic tests. Moreover, using exoRNA as biomarkers can assist the early detection of chemo and radioresistance cancer, and in turn opens up the possibility of personalized treatment to patients. Finally, exoRNA can be detected at an early stage of cancer recurrence to improve the survival rate. AREAS COVERED In this review, the authors summarized the detection methods of exoRNA as well as its potential as a biomarker in cancer diagnosis and chemo and radioresistance. EXPERT OPINION The application of exoRNAs in clinical diagnosis is still in its infancy. Further researches on extracellular vesicles isolation, detection protocols, exoRNA classes and subclasses, and the regulatory biological pathways have to be performed before exoRNA can be applied translationally.
Collapse
Affiliation(s)
- Yin Lam Chu
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University , Kowloon, Hong Kong
| | - Harriet Li
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University , Kowloon, Hong Kong
| | - Pik Lan Amanda Ng
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University , Kowloon, Hong Kong
| | - Siu Ting Kong
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University , Kowloon, Hong Kong
| | - Hao Zhang
- Institute of Precision Cancer Medicine and Pathology, Jinan University Medical College , Guangzhou, Guangdong, China
| | - Yusheng Lin
- Department of Immunotherapy and Gastrointestinal Oncology, Affiliated Cancer Hospital of Shantou University Medical College , Shantou, Guangdong, China
| | - William Chi Shing Tai
- Department of Applied Biology and Chemical Technology, Faculty of Applied Sciences and Textiles, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region , Kowloon, China
| | | | | | - Hin Fung Tsang
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University , Kowloon, Hong Kong
| | | | - Sze Chuen Cesar Wong
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University , Kowloon, Hong Kong
| |
Collapse
|
14
|
Ha J, Park C, Park C, Park S. Improved Prediction of miRNA-Disease Associations Based on Matrix Completion with Network Regularization. Cells 2020; 9:cells9040881. [PMID: 32260218 PMCID: PMC7226829 DOI: 10.3390/cells9040881] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/30/2019] [Accepted: 04/01/2020] [Indexed: 12/12/2022] Open
Abstract
The identification of potential microRNA (miRNA)-disease associations enables the elucidation of the pathogenesis of complex human diseases owing to the crucial role of miRNAs in various biologic processes and it yields insights into novel prognostic markers. In the consideration of the time and costs involved in wet experiments, computational models for finding novel miRNA-disease associations would be a great alternative. However, computational models, to date, are biased towards known miRNA-disease associations; this is not suitable for rare miRNAs (i.e., miRNAs with a few known disease associations) and uncommon diseases (i.e., diseases with a few known miRNA associations). This leads to poor prediction accuracies. The most straightforward way of improving the performance is by increasing the number of known miRNA-disease associations. However, due to lack of information, increasing attention has been paid to developing computational models that can handle insufficient data via a technical approach. In this paper, we present a general framework—improved prediction of miRNA-disease associations (IMDN)—based on matrix completion with network regularization to discover potential disease-related miRNAs. The success of adopting matrix factorization is demonstrated by its excellent performance in recommender systems. This approach considers a miRNA network as additional implicit feedback and makes predictions for disease associations relevant to a given miRNA based on its direct neighbors. Our experimental results demonstrate that IMDN achieved excellent performance with reliable area under the receiver operating characteristic (ROC) area under the curve (AUC) values of 0.9162 and 0.8965 in the frameworks of global and local leave-one-out cross-validations (LOOCV), respectively. Further, case studies demonstrated that our method can not only validate true miRNA-disease associations but also suggest novel disease-related miRNA candidates.
Collapse
Affiliation(s)
- Jihwan Ha
- Department of Computer Science, Yonsei University, Seoul 03722, Korea; (J.H.); (C.P.)
| | - Chihyun Park
- Department of Computer Science, Yonsei University, Seoul 03722, Korea; (J.H.); (C.P.)
| | - Chanyoung Park
- Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, OH 61801, USA;
| | - Sanghyun Park
- Department of Computer Science, Yonsei University, Seoul 03722, Korea; (J.H.); (C.P.)
- Correspondence: ; Tel.: +82-2-2123-5714
| |
Collapse
|
15
|
Li H, Zhang X, Jin Z, Yin T, Duan C, Sun J, Xiong R, Li Z. MiR-122 Promotes the Development of Colon Cancer by Targeting ALDOA In Vitro. Technol Cancer Res Treat 2020; 18:1533033819871300. [PMID: 31564215 PMCID: PMC6767722 DOI: 10.1177/1533033819871300] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Non-coding RNAs, originally considered junk gene products, have taken center
stage in view of their significant involvement in a spectrum of biological
processes during human development, thereby offering novel therapeutic targets
for improvement of treatment options. Accumulating evidence has demonstrated
non-coding RNA dysfunction across various human cancers. In particular,
microRNAs have emerged as key regulatory molecules in cancer biology. MicroRNAs
are noninvasive, readily accessible biomarkers that can be effectively applied
for diagnosis and prognosis of different tumor types, including colon cancer. In
this study, we reanalyzed the available data with bioinformatics tools to
identify differentially expressed microRNAs in colon cancer cells. The top 3
upregulated microRNAs (miR-10, miR-199, and miR-122) in colon cancer cells were
further validated in tissues of clinical patients via reverse
transcription-quantitative polymerase chain reaction. Our results showed that
miR-122 significantly promotes the proliferation and invasion ability of SW480
and SW620 cells through inhibition of Aldolase, Fructose-Bisphosphate A
(ALDOA) expression. We further summarized recent advances
in our understanding of the functional relevance of microRNAs in cancer
development and discussed the possible implications of specific microRNAs in
colon cancer. This study extends our knowledge of microRNA involvement in colon
cancer biology and presents novel candidates for the development of attractive
therapeutic strategies.
Collapse
Affiliation(s)
- Hong Li
- Hubei Cancer Hospital, Wuhan, Hubei, China
| | - Xinhua Zhang
- Hubei Cancer Hospital, Wuhan, Hubei, China.,Xinhua Zhang is the co-first author
| | - Zhao Jin
- Zhongnan Hospital of Wuhan University
| | - Tao Yin
- Hubei Cancer Hospital, Wuhan, Hubei, China
| | | | - Junwei Sun
- Hubei Cancer Hospital, Wuhan, Hubei, China
| | - Rui Xiong
- Hubei Cancer Hospital, Wuhan, Hubei, China
| | - Zilin Li
- Hubei Cancer Hospital, Wuhan, Hubei, China
| |
Collapse
|
16
|
Potential miRNA-disease association prediction based on kernelized Bayesian matrix factorization. Genomics 2020; 112:809-819. [DOI: 10.1016/j.ygeno.2019.05.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/09/2019] [Accepted: 05/24/2019] [Indexed: 12/19/2022]
|
17
|
Santoni G, Morelli MB, Santoni M, Nabissi M, Marinelli O, Amantini C. Targeting Transient Receptor Potential Channels by MicroRNAs Drives Tumor Development and Progression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1131:605-623. [PMID: 31646527 DOI: 10.1007/978-3-030-12457-1_24] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Transient receptor potential (TRP) cation channel superfamily plays important roles in a variety of cellular processes such polymodal cellular sensing, adhesion, polarity, proliferation, differentiation and apoptosis. The expression of TRP channels is strictly regulated and their de-regulation can stimulate cancer development and progression.In human cancers, specific miRNAs are expressed in different tissues, and changes in the regulation of gene expression mediated by specific miRNAs have been associated with carcinogenesis. Several miRNAs/TRP channel pairs have been reported to play an important role in tumor biology. Thus, the TRPM1 gene regulates melanocyte/melanoma behaviour via TRPM1 and microRNA-211 transcripts. Both miR-211 and TRPM1 proteins are regulated through microphthalmia-associated transcription factor (MIFT) and the expression of miR-211 is decreased during melanoma progression. Melanocyte phenotype and melanoma behaviour strictly depend on dual TRPM1 activity, with loss of TRPM1 protein promoting melanoma aggressiveness and miR-211 expression supporting tumour suppressor. TRPM3 plays a major role in the development and progression of human clear cell renal cell carcinoma (ccRCC) with von Hippel-Lindau (VHL) loss. TRPM3, a direct target of miR-204, is enhanced in ccRCC with inactivated or deleted VHL. Loss of VHL inhibits miR-204 expression that lead to increased oncogenic autophagy. Therefore, the understanding of specific TRP channels/miRNAs molecular pathways in distinct tumors could provide a clinical rationale for target therapy in cancer.
Collapse
Affiliation(s)
- Giorgio Santoni
- School of Pharmacy, Experimental Medicine Section, University of Camerino, Camerino, Italy.
| | - Maria Beatrice Morelli
- School of Pharmacy, Experimental Medicine Section, University of Camerino, Camerino, Italy
| | - Matteo Santoni
- Clinic and Oncology Unit, Macerata Hospital, Macerata, Italy
| | - Massimo Nabissi
- School of Pharmacy, Experimental Medicine Section, University of Camerino, Camerino, Italy
| | - Oliviero Marinelli
- School of Pharmacy, Experimental Medicine Section, University of Camerino, Camerino, Italy
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Consuelo Amantini
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| |
Collapse
|
18
|
Sur DG, Colceriu M, Sur G, Aldea C, Silaghi C, Samasca G, Lupan I, Căinap C, Burz C, Irimie A. MiRNAs roles in the diagnosis, prognosis and treatment of colorectal cancer. Expert Rev Proteomics 2019; 16:851-856. [PMID: 31446809 DOI: 10.1080/14789450.2019.1659732] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Introduction: The liver is the main location for metastasization in stage IV colorectal cancers. Areas covered: This review intends to comprehensively present the most important studies conducted in the past few years concerning the role of miRNAs in colorectal cancer liver metastases, trying to clarify some aspects regarding tumor biology and favorite liver metastasization site. Expert commentary: Recent advances in tissue and serum RNA extraction has considerably improved the field of microRNAs studies. These molecules known to play a crucial role in the metastatic stage indicate a starting point in the development of clinical biomarkers with a possible role in the stratification of high-risk patients for adequate treatment.
Collapse
Affiliation(s)
- Daniel G Sur
- 11th Department of Medical Oncology, "Iuliu Hatieganu" University of Medicine and Pharmacy , Cluj-Napoca , Romania.,Medical Oncology Department, Institute of Oncology "Prof. Ion Chiricuta" , Cluj-Napoca , Romania
| | - Marius Colceriu
- Department of Pediatric Gastroenterology, "Iuliu Hatieganu" University of Medicine and Pharmacy , Cluj-Napoca , Romania
| | - Genel Sur
- Department of Pediatric Gastroenterology, "Iuliu Hatieganu" University of Medicine and Pharmacy , Cluj-Napoca , Romania
| | - Cornel Aldea
- Department of Pediatric Gastroenterology, "Iuliu Hatieganu" University of Medicine and Pharmacy , Cluj-Napoca , Romania
| | - Ciprian Silaghi
- Department of Biochemistry, "Iuliu Hatieganu" University of Medicine and Pharmacy , Cluj-Napoca , Romania
| | - Gabriel Samasca
- Department of Immunology and Allergology, "Iuliu Hatieganu" University of Medicine and Pharmacy , Cluj-Napoca , Romania
| | - Iulia Lupan
- Molecular Biology Department, Babes Bolyai University , Cluj-Napoca , Romania
| | - Călin Căinap
- 11th Department of Medical Oncology, "Iuliu Hatieganu" University of Medicine and Pharmacy , Cluj-Napoca , Romania.,Medical Oncology Department, Institute of Oncology "Prof. Ion Chiricuta" , Cluj-Napoca , Romania
| | - Claudia Burz
- Department of Immunology and Allergology, "Iuliu Hatieganu" University of Medicine and Pharmacy , Cluj-Napoca , Romania.,Medical Oncology Department, Institute of Oncology "Prof. Ion Chiricuta" , Cluj-Napoca , Romania
| | - Alexandru Irimie
- 11th Department of Medical Oncology, "Iuliu Hatieganu" University of Medicine and Pharmacy , Cluj-Napoca , Romania.,Surgical Oncology Department, Institute of Oncology "Prof. Ion Chiricuta" , Cluj-Napoca , Romania
| |
Collapse
|
19
|
Chung CZ, Balasuriya N, Manni E, Liu X, Li SSC, O’Donoghue P, Heinemann IU. Gld2 activity is regulated by phosphorylation in the N-terminal domain. RNA Biol 2019; 16:1022-1033. [PMID: 31057087 PMCID: PMC6602411 DOI: 10.1080/15476286.2019.1608754] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/25/2019] [Accepted: 04/14/2019] [Indexed: 02/06/2023] Open
Abstract
The de-regulation of microRNAs (miRNAs) is associated with multiple human diseases, yet cellular mechanisms governing miRNA abundance remain largely elusive. Human miR-122 is required for Hepatitis C proliferation, and low miR-122 abundance is associated with hepatic cancer. The adenylyltransferase Gld2 catalyses the post-transcriptional addition of a single adenine residue (A + 1) to the 3'-end of miR-122, enhancing its stability. Gld2 activity is inhibited by binding to the Hepatitis C virus core protein during HepC infection, but no other mechanisms of Gld2 regulation are known. We found that Gld2 activity is regulated by site-specific phosphorylation in its disordered N-terminal domain. We identified two phosphorylation sites (S62, S110) where phosphomimetic substitutions increased Gld2 activity and one site (S116) that markedly reduced activity. Using mass spectrometry, we confirmed that HEK 293 cells readily phosphorylate the N-terminus of Gld2. We identified protein kinase A (PKA) and protein kinase B (Akt1) as the kinases that site-specifically phosphorylate Gld2 at S116, abolishing Gld2-mediated nucleotide addition. The data demonstrate a novel phosphorylation-dependent mechanism to regulate Gld2 activity, revealing tumour suppressor miRNAs as a previously unknown target of Akt1-dependent signalling.
Collapse
Affiliation(s)
- Christina Z. Chung
- Department of Biochemistry, The University of Western Ontario, London, Canada
| | - Nileeka Balasuriya
- Department of Biochemistry, The University of Western Ontario, London, Canada
| | - Emad Manni
- Department of Biochemistry, The University of Western Ontario, London, Canada
| | - Xuguang Liu
- Department of Biochemistry, The University of Western Ontario, London, Canada
| | - Shawn Shun-Cheng Li
- Department of Biochemistry, The University of Western Ontario, London, Canada
- Department of Oncology and Child Health Research Institute, The University of Western Ontario, London, Canada
| | - Patrick O’Donoghue
- Department of Biochemistry, The University of Western Ontario, London, Canada
- Department of Chemistry, The University of Western Ontario, London, Canada
| | - Ilka U. Heinemann
- Department of Biochemistry, The University of Western Ontario, London, Canada
| |
Collapse
|
20
|
Laser capture microdissection: techniques and applications in liver diseases. Hepatol Int 2019; 13:138-147. [DOI: 10.1007/s12072-018-9917-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 11/28/2018] [Indexed: 02/07/2023]
|
21
|
Liu CH, Ampuero J, Gil-Gómez A, Montero-Vallejo R, Rojas Á, Muñoz-Hernández R, Gallego-Durán R, Romero-Gómez M. miRNAs in patients with non-alcoholic fatty liver disease: A systematic review and meta-analysis. J Hepatol 2018; 69:1335-1348. [PMID: 30142428 DOI: 10.1016/j.jhep.2018.08.008] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 07/21/2018] [Accepted: 08/07/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS microRNAs (miRNAs) are deregulated in non-alcoholic fatty liver disease (NAFLD) and have been proposed as useful markers for the diagnosis and stratification of disease severity. We conducted a meta-analysis to identify the potential usefulness of miRNA biomarkers in the diagnosis and stratification of NAFLD severity. METHODS After a systematic review, circulating miRNA expression consistency and mean fold-changes were analysed using a vote-counting strategy. The sensitivity, specificity, positive and negative likelihood ratios, diagnostic odds ratio and area under the curve (AUC) for the diagnosis of NAFLD or non-alcoholic steatohepatitis (NASH) were pooled using a bivariate meta-analysis. Deeks' funnel plot was used to assess the publication bias. RESULTS Thirty-seven studies of miRNA expression profiles and six studies of diagnostic accuracy were ultimately included in the quantitative analysis. miRNA-122 and miRNA-192 showed consistent upregulation. miRNA-122 was upregulated in every scenario used to distinguish NAFLD severity. The miRNA expression correlation between the serum and liver tissue was inconsistent across studies. miRNA-122 distinguished NAFLD from healthy controls with an AUC of 0.82 (95% CI 0.75-0.89), and miRNA-34a distinguished non-alcoholic steatohepatitis (NASH) from non-alcoholic fatty liver (NAFL) with an AUC of 0.78 (95% CI 0.67-0.88). CONCLUSION miRNA-34a, miRNA-122 and miRNA-192 were identified as potential diagnostic markers to segregate NAFL from NASH. Both miRNA-122, in distinguishing NAFLD from healthy controls, and miRNA-34a, in distinguishing NASH from NAFL, showed moderate diagnostic accuracy. miRNA-122 was upregulated in every scenario of NAFL, NASH and fibrosis. LAY SUMMARY: microRNAs are deregulated in non-alcoholic fatty liver disease. The microRNAs, miRNA-34a, miRNA-122 and miRNA-192, were identified as potential biomarkers of non-alcoholic fatty liver and non-alcoholic steatohepatitis, at different stages of disease severity. The correlation between miRNA expression in the serum and in liver tissue was inconsistent, or even inverse.
Collapse
Affiliation(s)
- Chang-Hai Liu
- Institute of Biomedicine of Seville, Sevilla, Spain; University of Seville, Seville, Spain
| | - Javier Ampuero
- Institute of Biomedicine of Seville, Sevilla, Spain; Unit of Digestive Diseases and Ciberehd, University Hospital Virgen del Rocío, Seville, Spain; University of Seville, Seville, Spain
| | - Antonio Gil-Gómez
- Institute of Biomedicine of Seville, Sevilla, Spain; University of Seville, Seville, Spain
| | - Rocío Montero-Vallejo
- Institute of Biomedicine of Seville, Sevilla, Spain; University of Seville, Seville, Spain
| | - Ángela Rojas
- Institute of Biomedicine of Seville, Sevilla, Spain
| | | | | | - Manuel Romero-Gómez
- Institute of Biomedicine of Seville, Sevilla, Spain; Unit of Digestive Diseases and Ciberehd, University Hospital Virgen del Rocío, Seville, Spain; University of Seville, Seville, Spain.
| |
Collapse
|
22
|
Neve B, Jonckheere N, Vincent A, Van Seuningen I. Epigenetic Regulation by lncRNAs: An Overview Focused on UCA1 in Colorectal Cancer. Cancers (Basel) 2018; 10:E440. [PMID: 30441811 PMCID: PMC6266399 DOI: 10.3390/cancers10110440] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/06/2018] [Accepted: 11/08/2018] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancers have become the second leading cause of cancer-related deaths. In particular, acquired chemoresistance and metastatic lesions occurring in colorectal cancer are a major challenge for chemotherapy treatment. Accumulating evidence shows that long non-coding (lncRNAs) are involved in the initiation, progression, and metastasis of cancer. We here discuss the epigenetic mechanisms through which lncRNAs regulate gene expression in cancer cells. In the second part of this review, we focus on the role of lncRNA Urothelial Cancer Associated 1 (UCA1) to integrate research in different types of cancer in order to decipher its putative function and mechanism of regulation in colorectal cancer cells. UCA1 is highly expressed in cancer cells and mediates transcriptional regulation on an epigenetic level through the interaction with chromatin modifiers, by direct regulation via chromatin looping and/or by sponging the action of a diversity of miRNAs. Furthermore, we discuss the role of UCA1 in the regulation of cell cycle progression and its relation to chemoresistance in colorectal cancer cells.
Collapse
Affiliation(s)
- Bernadette Neve
- Inserm UMR-S 1172, Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer (JPArc), Team "Mucins, Epithelial Differentiation and Carcinogenesis"; University Lille; CHU Lille,59045, Lille CEDEX, France.
| | - Nicolas Jonckheere
- Inserm UMR-S 1172, Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer (JPArc), Team "Mucins, Epithelial Differentiation and Carcinogenesis"; University Lille; CHU Lille,59045, Lille CEDEX, France.
| | - Audrey Vincent
- Inserm UMR-S 1172, Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer (JPArc), Team "Mucins, Epithelial Differentiation and Carcinogenesis"; University Lille; CHU Lille,59045, Lille CEDEX, France.
| | - Isabelle Van Seuningen
- Inserm UMR-S 1172, Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer (JPArc), Team "Mucins, Epithelial Differentiation and Carcinogenesis"; University Lille; CHU Lille,59045, Lille CEDEX, France.
| |
Collapse
|
23
|
Qu A, Yang Y, Zhang X, Wang W, Liu Y, Zheng G, Du L, Wang C. Development of a preoperative prediction nomogram for lymph node metastasis in colorectal cancer based on a novel serum miRNA signature and CT scans. EBioMedicine 2018; 37:125-133. [PMID: 30314890 PMCID: PMC6284350 DOI: 10.1016/j.ebiom.2018.09.052] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 09/25/2018] [Accepted: 09/30/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Preoperative prediction of lymph node (LN) status is of crucial importance for appropriate treatment planning in patients with colorectal cancer (CRC). In this study, we sought to develop and validate a non-invasive nomogram model to preoperatively predict LN metastasis in CRC. METHODS Development of the nomogram entailed three subsequent stages with specific patient sets. In the discovery set (n = 20), LN-status-related miRNAs were screened from high-throughput sequencing data of human CRC serum samples. In the training set (n = 218), a miRNA panel-clinicopathologic nomogram was developed by logistic regression analysis for preoperative prediction of LN metastasis. In the validation set (n = 198), we validated the above nomogram with respect to its discrimination, calibration and clinical application. FINDINGS Four differently expressed miRNAs (miR-122-5p, miR-146b-5p, miR-186-5p and miR-193a-5p) were identified in the serum samples from CRC patients with and without LN metastasis, which also had regulatory effects on CRC cell migration. The combined miRNA panel could provide higher LN prediction capability compared with computed tomography (CT) scans (P < .0001 in both the training and validation sets). Furthermore, a nomogram integrating the miRNA-based panel and CT-reported LN status was constructed in the training set, which performed well in both the training and validation sets (AUC: 0.913 and 0.883, respectively). Decision curve analysis demonstrated the clinical usefulness of the nomogram. INTERPRETATION Our nomogram is a reliable prediction model that can be conveniently and efficiently used to improve the accuracy of preoperative prediction of LN metastasis in patients with CRC.
Collapse
Affiliation(s)
- Ailin Qu
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan 250033, Shandong Province, China
| | - Yongmei Yang
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, Jinan 250012, Shandong Province, China
| | - Xin Zhang
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, Jinan 250012, Shandong Province, China
| | - Wenfei Wang
- Humanistic Medicine Research Center, Qilu Hospital, Shandong University, Jinan 250012, Shandong Province, China; Humanistic Medicine Research Center, Shandong University, Jinan 250012, Shandong Province, China
| | - Yingjie Liu
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, Jinan 250012, Shandong Province, China
| | - Guixi Zheng
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, Jinan 250012, Shandong Province, China
| | - Lutao Du
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan 250033, Shandong Province, China
| | - Chuanxin Wang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan 250033, Shandong Province, China.
| |
Collapse
|
24
|
Huang S, Tan X, Huang Z, Chen Z, Lin P, Fu SW. microRNA biomarkers in colorectal cancer liver metastasis. J Cancer 2018; 9:3867-3873. [PMID: 30410589 PMCID: PMC6218777 DOI: 10.7150/jca.28588] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 08/20/2018] [Indexed: 12/26/2022] Open
Abstract
Liver metastasis is a primary factor of prognosis and long-term survival for patients diagnosed with colorectal cancer (CRC). Colorectal cancer liver metastasis (CRCLM), is a complex biological process involving multiple factors and steps, and its mechanisms are yet to be discovered. In recent years, small noncoding RNAs, especially microRNAs (miRNAs) have been proven to play an important role in tumorigenesis, progression and metastasis in a variety of cancers, including CRC. Increasing evidence suggests that miRNAs, including those from exosomes secreted by tumor cells in circulation, could be used as promising biomarkers in early cancer detection, treatment, and prognosis. In this review, we focus on the functional roles and clinical applications of miRNAs, especially those from circulating exosomes secreted by tumor cells related to CRCLM.
Collapse
Affiliation(s)
- Shulin Huang
- Department of Medicine (Division of Genomic Medicine), The George Washington University School of Medicine and Health Sciences, Washington, DC.,Department of Breast and Thyroid Surgery, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China
| | - Xiaohui Tan
- Department of Medicine (Division of Genomic Medicine), The George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Zhongcheng Huang
- Department of Colorectal and Anal Surgery, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China
| | - Zihua Chen
- Hepatobiliary and enteric Surgery Research Center/Department of Gastrointestinal Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Paul Lin
- Department of Surgery, The George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Sidney W Fu
- Department of Medicine (Division of Genomic Medicine), The George Washington University School of Medicine and Health Sciences, Washington, DC
| |
Collapse
|
25
|
Differential miRNA expression profiling reveals miR-205-3p to be a potential radiosensitizer for low- dose ionizing radiation in DLD-1 cells. Oncotarget 2018; 9:26387-26405. [PMID: 29899866 PMCID: PMC5995186 DOI: 10.18632/oncotarget.25405] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 04/28/2018] [Indexed: 12/12/2022] Open
Abstract
Enhanced radiosensitivity at low doses of ionizing radiation (IR) (0.2 to 0.6 Gy) has been reported in several cell lines. This phenomenon, known as low doses hyper-radiosensitivity (LDHRS), appears as an opportunity to decrease toxicity of radiotherapy and to enhance the effects of chemotherapy. However, the effect of low single doses IR on cell death is subtle and the mechanism underlying LDHRS has not been clearly explained, limiting the utility of LDHRS for clinical applications. To understand the mechanisms responsible for cell death induced by low-dose IR, LDHRS was evaluated in DLD-1 human colorectal cancer cells and the expression of 80 microRNAs (miRNAs) was assessed by qPCR array. Our results show that DLD-1 cells display an early DNA damage response and apoptotic cell death when exposed to 0.6 Gy. miRNA expression profiling identified 3 over-expressed (miR-205-3p, miR-1 and miR-133b) and 2 down-regulated miRNAs (miR-122-5p, and miR-134-5p) upon exposure to 0.6 Gy. This miRNA profile differed from the one in cells exposed to high-dose IR (12 Gy), supporting a distinct low-dose radiation-induced cell death mechanism. Expression of a mimetic miR-205-3p, the most overexpressed miRNA in cells exposed to 0.6 Gy, induced apoptotic cell death and, more importantly, increased LDHRS in DLD-1 cells. Thus, we propose miR-205-3p as a potential radiosensitizer to low-dose IR.
Collapse
|
26
|
Hasan A, Byambaa B, Morshed M, Cheikh MI, Shakoor RA, Mustafy T, Marei HE. Advances in osteobiologic materials for bone substitutes. J Tissue Eng Regen Med 2018; 12:1448-1468. [DOI: 10.1002/term.2677] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 02/04/2018] [Accepted: 04/12/2018] [Indexed: 01/03/2023]
Affiliation(s)
- Anwarul Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering; Qatar University; Doha Qatar
| | - Batzaya Byambaa
- Center for Biomedical Engineering, Department of Medicine; Brigham and Women's Hospital, Harvard Medical School; Cambridge MA USA
- Harvard-MIT Division of Health Sciences and Technology; Massachusetts Institute of Technology; Cambridge MA USA
| | - Mahboob Morshed
- School of Life Sciences; Independent University, Bangladesh (IUB); Dhaka Bangladesh
| | - Mohammad Ibrahim Cheikh
- Department of Mechanical Engineering, Faculty of Engineering and Architecture; American University of Beirut; Beirut Lebanon
| | | | - Tanvir Mustafy
- Department of Mechanical Engineering; Ecole Polytechnique de Montreal; Quebec Canada
| | - Hany E. Marei
- Biomedical Research Center; Qatar University; Doha Qatar
| |
Collapse
|
27
|
Sayagués JM, Corchete LA, Gutiérrez ML, Sarasquete ME, Del Mar Abad M, Bengoechea O, Fermiñán E, Anduaga MF, Del Carmen S, Iglesias M, Esteban C, Angoso M, Alcazar JA, García J, Orfao A, Muñoz-Bellvis L. Genomic characterization of liver metastases from colorectal cancer patients. Oncotarget 2018; 7:72908-72922. [PMID: 27662660 PMCID: PMC5341953 DOI: 10.18632/oncotarget.12140] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 09/13/2016] [Indexed: 01/09/2023] Open
Abstract
Metastatic dissemination is the most frequent cause of death of sporadic colorectal cancer (sCRC) patients. Genomic abnormalities which are potentially characteristic of such advanced stages of the disease are complex and so far, they have been poorly described and only partially understood. We evaluated the molecular heterogeneity of sCRC tumors based on simultaneous assessment of the overall GEP of both coding mRNA and non-coding RNA genes in primary sCRC tumor samples from 23 consecutive patients and their paired liver metastases. Liver metastases from the sCRC patients analyzed, systematically showed deregulated transcripts of those genes identified as also deregulated in their paired primary colorectal carcinomas. However, some transcripts were found to be specifically deregulated in liver metastases (vs. non-tumoral colorectal tissues) while expressed at normal levels in their primary tumors, reflecting either an increased genomic instability of metastatic cells or theiradaption to the liver microenvironment. Newly deregulated metastatic transcripts included overexpression of APOA1, HRG, UGT2B4, RBP4 and ADH4 mRNAS and the miR-3180-3p, miR-3197, miR-3178, miR-4793 and miR-4440 miRNAs, together with decreased expression of the IGKV1-39, IGKC, IGKV1-27, FABP4 and MYLK mRNAS and the miR-363, miR-1, miR-143, miR-27b and miR-28-5p miRNAs. Canonical pathways found to be specifically deregulated in liver metastatic samples included multiple genes related with intercellular adhesion and the metastatic processes (e.g., IGF1R, PIK3CA, PTEN and EGFR), endocytosis (e.g., the PDGFRA, SMAD2, ERBB3, PML and FGFR2), and the cell cycle (e.g., SMAD2, CCND2, E2F5 and MYC). Our results also highlighted the activation of genes associated with the TGFβ signaling pathway, -e.g. RHOA, SMAD2, SMAD4, SMAD5, SMAD6, BMPR1A, SMAD7 and MYC-, which thereby emerge as candidate genes to play an important role in CRC tumor metastasis.
Collapse
Affiliation(s)
- José María Sayagués
- Cytometry Service-NUCLEUS, Department of Medicine, Cancer Research Center, IBMCC-CSIC/USAL and IBSAL, University of Salamanca, Salamanca, Spain
| | - Luís Antonio Corchete
- Cáncer Research Center and Service of Hematology, University Hospital of Salamanca, Salamanca, Spain
| | - María Laura Gutiérrez
- Cytometry Service-NUCLEUS, Department of Medicine, Cancer Research Center, IBMCC-CSIC/USAL and IBSAL, University of Salamanca, Salamanca, Spain
| | - Maria Eugenia Sarasquete
- Cáncer Research Center and Service of Hematology, University Hospital of Salamanca, Salamanca, Spain
| | - María Del Mar Abad
- Department of Pathology, University Hospital of Salamanca, Salamanca, Spain
| | - Oscar Bengoechea
- Department of Pathology, University Hospital of Salamanca, Salamanca, Spain
| | - Encarna Fermiñán
- Genomics Unit, Cancer Research Center, IBMCC-CSIC/USAL, Salamanca, Spain
| | - María Fernanda Anduaga
- Service of General and Gastrointestinal Surgery and IBSAL, University Hospital of Salamanca, Salamanca, Spain
| | - Sofia Del Carmen
- Department of Pathology, University Hospital of Salamanca, Salamanca, Spain
| | - Manuel Iglesias
- Service of General and Gastrointestinal Surgery and IBSAL, University Hospital of Salamanca, Salamanca, Spain
| | - Carmen Esteban
- Service of General and Gastrointestinal Surgery and IBSAL, University Hospital of Salamanca, Salamanca, Spain
| | - María Angoso
- Service of General and Gastrointestinal Surgery and IBSAL, University Hospital of Salamanca, Salamanca, Spain
| | - Jose Antonio Alcazar
- Service of General and Gastrointestinal Surgery and IBSAL, University Hospital of Salamanca, Salamanca, Spain
| | - Jacinto García
- Service of General and Gastrointestinal Surgery and IBSAL, University Hospital of Salamanca, Salamanca, Spain
| | - Alberto Orfao
- Cytometry Service-NUCLEUS, Department of Medicine, Cancer Research Center, IBMCC-CSIC/USAL and IBSAL, University of Salamanca, Salamanca, Spain
| | - Luís Muñoz-Bellvis
- Service of General and Gastrointestinal Surgery and IBSAL, University Hospital of Salamanca, Salamanca, Spain
| |
Collapse
|
28
|
LRSSLMDA: Laplacian Regularized Sparse Subspace Learning for MiRNA-Disease Association prediction. PLoS Comput Biol 2017; 13:e1005912. [PMID: 29253885 PMCID: PMC5749861 DOI: 10.1371/journal.pcbi.1005912] [Citation(s) in RCA: 186] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 01/02/2018] [Accepted: 12/01/2017] [Indexed: 12/17/2022] Open
Abstract
Predicting novel microRNA (miRNA)-disease associations is clinically significant due to miRNAs’ potential roles of diagnostic biomarkers and therapeutic targets for various human diseases. Previous studies have demonstrated the viability of utilizing different types of biological data to computationally infer new disease-related miRNAs. Yet researchers face the challenge of how to effectively integrate diverse datasets and make reliable predictions. In this study, we presented a computational model named Laplacian Regularized Sparse Subspace Learning for MiRNA-Disease Association prediction (LRSSLMDA), which projected miRNAs/diseases’ statistical feature profile and graph theoretical feature profile to a common subspace. It used Laplacian regularization to preserve the local structures of the training data and a L1-norm constraint to select important miRNA/disease features for prediction. The strength of dimensionality reduction enabled the model to be easily extended to much higher dimensional datasets than those exploited in this study. Experimental results showed that LRSSLMDA outperformed ten previous models: the AUC of 0.9178 in global leave-one-out cross validation (LOOCV) and the AUC of 0.8418 in local LOOCV indicated the model’s superior prediction accuracy; and the average AUC of 0.9181+/-0.0004 in 5-fold cross validation justified its accuracy and stability. In addition, three types of case studies further demonstrated its predictive power. Potential miRNAs related to Colon Neoplasms, Lymphoma, Kidney Neoplasms, Esophageal Neoplasms and Breast Neoplasms were predicted by LRSSLMDA. Respectively, 98%, 88%, 96%, 98% and 98% out of the top 50 predictions were validated by experimental evidences. Therefore, we conclude that LRSSLMDA would be a valuable computational tool for miRNA-disease association prediction. Discovering miRNA-disease associations promotes the understanding towards the molecular mechanisms of various human diseases at the miRNA level, and contributes to the development of diagnostic biomarkers and treatment tools for diseases. Computational models can make the discovery more efficient and experiments more productive. LRSSLMDA was proposed to computationally infer potential miRNA-disease associations via adopting sparse subspace learning with Laplacian regularization on the known miRNA-disease association network and the informative feature profiles extracted from the integrated miRNA/disease similarity networks. Experimental results in global and local leave-one-out cross validation and 5-fold cross validation showed a superior prediction performance of LRSSLMDA over previous models. Moreover, three types of case studies on five important human diseases were carried out to further demonstrate the model’s predictive power: respectively, 98%, 88%, 96%, 98% and 98% out of the top 50 predicted miRNAs were confirmed by experimental literatures. So, we believe that LRSSLMDA could make reliable predictions and might guide future experimental studies on miRNA-disease associations.
Collapse
|
29
|
Kurihara H, Maruyama R, Ishiguro K, Kanno S, Yamamoto I, Ishigami K, Mitsuhashi K, Igarashi H, Ito M, Tanuma T, Sukawa Y, Okita K, Hasegawa T, Imai K, Yamamoto H, Shinomura Y, Nosho K. The relationship between EZH2 expression and microRNA-31 in colorectal cancer and the role in evolution of the serrated pathway. Oncotarget 2017; 7:12704-17. [PMID: 26871294 PMCID: PMC4914316 DOI: 10.18632/oncotarget.7260] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 01/27/2016] [Indexed: 02/07/2023] Open
Abstract
Polycomb group protein enhancer of zeste homolog 2 (EZH2) is a methyltransferase that correlates with the regulation of invasion and metastasis and is overexpressed in human cancers such as colorectal cancer. MicroRNA-31 (miR-31) plays an oncogenic role and is associated with BRAF mutation and poor prognosis in colorectal cancer. EZH2 is functionally considered to suppress miR-31 expression in human cancers; however, no study has reported its relationship with colon cancer. We therefore evaluated EZH2 expression using immunohistochemistry and assessed miR-31 and epigenetic alterations using 301 colorectal carcinomas and 207 premalignant lesions. Functional analysis was performed to identify the association between EZH2 and miR-31 using cancer cell lines. In the current study, negative, weak, moderate, and strong EZH2 expressions were observed in 15%, 19%, 25%, and 41% of colorectal cancers, respectively. EZH2 was inversely associated with miR-31 (P < 0.0001), independent of clinicopathological and molecular features. In a multivariate stage-stratified analysis, high EZH2 expression was related to favorable prognosis (P = 0.0022). Regarding premalignant lesions, negative EZH2 expression was frequently detected in sessile serrated adenomas/polyps (SSA/Ps) (76%; P < 0.0001) compared with hyperplastic polyps, traditional serrated adenomas, and non-serrated adenomas (25–36%). Functional analysis demonstrated that the knockdown of EZH2 increased miR-31 expression. In conclusion, an inverse association was identified between EZH2 and miR-31 in colorectal cancers. Our data also showed that upregulation of EZH2 expression may be rare in SSA/Ps. These results suggest that EZH2 suppresses miR-31 in colorectal cancer and may correlate with differentiation and evolution of serrated pathway.
Collapse
Affiliation(s)
- Hiroyoshi Kurihara
- Department of Gastroenterology, Rheumatology and Clinical Immunology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Reo Maruyama
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Kazuya Ishiguro
- Department of Gastroenterology, Rheumatology and Clinical Immunology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Shinichi Kanno
- Department of Gastroenterology, Rheumatology and Clinical Immunology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Itaru Yamamoto
- Department of Gastroenterology, Rheumatology and Clinical Immunology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Keisuke Ishigami
- Department of Gastroenterology, Rheumatology and Clinical Immunology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Kei Mitsuhashi
- Department of Gastroenterology, Rheumatology and Clinical Immunology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hisayoshi Igarashi
- Department of Gastroenterology, Rheumatology and Clinical Immunology, Sapporo Medical University School of Medicine, Sapporo, Japan.,The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Miki Ito
- Department of Gastroenterology, Rheumatology and Clinical Immunology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tokuma Tanuma
- Department of Gastroenterology, Rheumatology and Clinical Immunology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yasutaka Sukawa
- Department of Gastroenterology, Rheumatology and Clinical Immunology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Kenji Okita
- Department of Surgery, Surgical Oncology and Science, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tadashi Hasegawa
- Department of Surgical Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Kohzoh Imai
- The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Yamamoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, St. Marianna University School of Medicine, Kawasaki, Japan
| | | | - Katsuhiko Nosho
- Department of Gastroenterology, Rheumatology and Clinical Immunology, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
30
|
Su R, Cao S, Ma J, Liu Y, Liu X, Zheng J, Chen J, Liu L, Cai H, Li Z, Zhao L, He Q, Xue Y. Knockdown of SOX2OT inhibits the malignant biological behaviors of glioblastoma stem cells via up-regulating the expression of miR-194-5p and miR-122. Mol Cancer 2017; 16:171. [PMID: 29132362 PMCID: PMC5683208 DOI: 10.1186/s12943-017-0737-1] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 10/29/2017] [Indexed: 12/22/2022] Open
Abstract
Background Accumulating evidence has highlighted the potential role of long non-coding RNAs (lncRNAs) in the biological behaviors of glioblastoma stem cells (GSCs). Here, we elucidated the function and possible molecular mechanisms of the effect of lncRNA-SOX2OT on the biological behaviors of GSCs. Results Real-time PCR demonstrated that SOX2OT expression was up-regulated in glioma tissues and GSCs. Knockdown of SOX2OT inhibited the proliferation, migration and invasion of GSCs, and promoted GSCs apoptosis. MiR-194-5p and miR-122 were down-regulated in human glioma tissues and GSCs, and miR-194-5p and miR-122 respectively exerted tumor-suppressive functions by inhibiting the proliferation, migration and invasion of GSCs, while promoting GSCs apoptosis. Knockdown of SOX2OT significantly increased the expression of miR-194-5p and miR-122 in GSCs. Dual-luciferase reporter assay revealed that SOX2OT bound to both miR-194-5p and miR-122. SOX3 and TDGF-1 were up-regulated in human glioma tissues and GSCs. Knockdown of SOX3 inhibited the proliferation, migration and invasion of GSCs, promoted GSCs apoptosis, and decreased TDGF-1 mRNA and protein expression through direct binding to the TDGF-1 promoter. Over-expression of miR-194-5p and miR-122 decreased the mRNA and protein expression of SOX3 by targeting its 3’UTR. Knockdown of TDGF-1 inhibited the proliferation, migration and invasion of GSCs, promoted GSCs apoptosis, and inhibited the JAK/STAT signaling pathway. Furthermore, SOX3 knockdown also inhibited the SOX2OT expression through direct binding to the SOX2OT promoter and formed a positive feedback loop. Conclusion This study is the first to demonstrate that the SOX2OT-miR-194-5p/miR-122-SOX3-TDGF-1 pathway forms a positive feedback loop and regulates the biological behaviors of GSCs, and these findings might provide a novel strategy for glioma treatment. Electronic supplementary material The online version of this article (10.1186/s12943-017-0737-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rui Su
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, 110122, People's Republic of China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, 110122, People's Republic of China
| | - Shuo Cao
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, 110122, People's Republic of China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, 110122, People's Republic of China
| | - Jun Ma
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, 110122, People's Republic of China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, 110122, People's Republic of China
| | - Yunhui Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China.,Liaoning Research Center for Translational Medicine in Nervous System Disease, Shenyang, 110004, People's Republic of China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, People's Republic of China
| | - Xiaobai Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China.,Liaoning Research Center for Translational Medicine in Nervous System Disease, Shenyang, 110004, People's Republic of China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, People's Republic of China
| | - Jian Zheng
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China.,Liaoning Research Center for Translational Medicine in Nervous System Disease, Shenyang, 110004, People's Republic of China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, People's Republic of China
| | - Jiajia Chen
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, 110122, People's Republic of China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, 110122, People's Republic of China
| | - Libo Liu
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, 110122, People's Republic of China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, 110122, People's Republic of China
| | - Heng Cai
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China.,Liaoning Research Center for Translational Medicine in Nervous System Disease, Shenyang, 110004, People's Republic of China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, People's Republic of China
| | - Zhen Li
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China.,Liaoning Research Center for Translational Medicine in Nervous System Disease, Shenyang, 110004, People's Republic of China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, People's Republic of China
| | - Lini Zhao
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, 110122, People's Republic of China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, 110122, People's Republic of China
| | - Qianru He
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, 110122, People's Republic of China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, 110122, People's Republic of China
| | - Yixue Xue
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, 110122, People's Republic of China. .,Key Laboratory of Cell Biology, Ministry of Public Health of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, 110122, People's Republic of China.
| |
Collapse
|
31
|
Tenascin C in colorectal cancer stroma is a predictive marker for liver metastasis and is a potent target of miR-198 as identified by microRNA analysis. Br J Cancer 2017; 117:1360-1370. [PMID: 29065427 PMCID: PMC5672932 DOI: 10.1038/bjc.2017.291] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 07/18/2017] [Accepted: 07/31/2017] [Indexed: 01/12/2023] Open
Abstract
Background: Tumour stroma has important roles in the development of colorectal cancer (CRC) metastasis. We aimed to clarify the roles of microRNAs (miRNAs) and their target genes in CRC stroma in the development of liver metastasis. Methods: Tumour stroma was isolated from formalin-fixed, paraffin-embedded tissues of primary CRCs with or without liver metastasis by laser capture microdissection, and miRNA expression was analysed using TaqMan miRNA arrays. Results: Hierarchical clustering classified 16 CRCs into two groups according to the existence of synchronous liver metastasis. Combinatory target prediction identified tenascin C as a predicted target of miR-198, one of the top 10 miRNAs downregulated in tumour stroma of CRCs with synchronous liver metastasis. Immunohistochemical analysis of tenascin C in 139 primary CRCs revealed that a high staining intensity was correlated with synchronous liver metastasis (P<0.001). Univariate and multivariate analyses revealed that the tenascin C staining intensity was an independent prognostic factor to predict postoperative overall survival (P=0.005; n=139) and liver metastasis-free survival (P=0.001; n=128). Conclusions: Alterations of miRNAs in CRC stroma appear to form a metastasis-permissive environment that can elevate tenascin C to promote liver metastasis. Tenascin C in primary CRC stroma has the potential to be a novel biomarker to predict postoperative prognosis.
Collapse
|
32
|
Yang Y, Du Y, Liu X, Cho WC. Involvement of Non-coding RNAs in the Signaling Pathways of Colorectal Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 937:19-51. [PMID: 27573893 DOI: 10.1007/978-3-319-42059-2_2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) is one of the most common diagnosed cancers worldwide. The metastasis and development of resistance to anti-cancer treatment are major challenges in the treatment of CRC. Understanding mechanisms underpinning the pathogenesis is therefore critical in developing novel agents for CRC treatments. A large number of evidence has demonstrated that non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs have functional roles in both the physiological and pathological processes by regulating the expression of their target genes. These molecules are engaged in the pathobiology of neoplastic diseases and are targets for the diagnosis, prognosis and therapy of a variety of cancers, including CRC. In this regard, ncRNAs have emerged as one of the hallmarks of CRC pathogenesis and they also play key roles in metastasis, drug resistance and the stemness of CRC stem cell by regulating various signaling networks. Therefore, a better understanding the ncRNAs involved in the signaling pathways of CRC may lead to the development of novel strategy for diagnosis, prognosis and treatment of CRC. In this chapter, we summarize the latest findings on ncRNAs, with a focus on miRNAs and lncRNAs involving in signaling networks and in the regulation of pathogenic signaling pathways in CRC.
Collapse
Affiliation(s)
- Yinxue Yang
- The General Hospital, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Yong Du
- The General Hospital, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Xiaoming Liu
- The General Hospital, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, China.
| |
Collapse
|
33
|
Wang D, Liu J, Huo T, Tian Y, Zhao L. The role of microRNAs in colorectal liver metastasis: Important participants and potential clinical significances. Tumour Biol 2017; 39:1010428317709640. [PMID: 28651498 DOI: 10.1177/1010428317709640] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Colorectal cancer is one of the most common cancers in the world, and liver metastasis is the leading direct cause of cancer-related deaths in colorectal cancer. MicroRNA is involved in tumor metastasis in many aspects; mounting studies have shown that microRNAs play important roles in colorectal liver metastasis. Although lots of reviews about the association between microRNAs and colorectal cancer metastasis have been published, the reviews specifically focusing on microRNAs and colorectal liver metastasis are still lacking in the literature. To address this issue, here, we summarize the underlying mechanisms of microRNAs in colorectal liver metastasis and explore their potential clinical applications in this aspect.
Collapse
Affiliation(s)
- Dongxu Wang
- 1 School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, China
- 2 Shandong Academy of Medical Sciences, Jinan, China
- 3 Shandong Cancer Hospital Affiliated to Shandong University, Jinan, China
| | - Jie Liu
- 1 School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, China
- 2 Shandong Academy of Medical Sciences, Jinan, China
- 3 Shandong Cancer Hospital Affiliated to Shandong University, Jinan, China
| | - Tingting Huo
- 3 Shandong Cancer Hospital Affiliated to Shandong University, Jinan, China
- 4 The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yaowen Tian
- 1 School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, China
- 2 Shandong Academy of Medical Sciences, Jinan, China
- 3 Shandong Cancer Hospital Affiliated to Shandong University, Jinan, China
| | - Lei Zhao
- 1 School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, China
- 2 Shandong Academy of Medical Sciences, Jinan, China
- 3 Shandong Cancer Hospital Affiliated to Shandong University, Jinan, China
- 4 The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
34
|
Ghanbari M, Saberfar E, Goodarzi Z, Lashini H, Ghanbari S, Karamimanesh M, Baesi K. Regulation of HSVtk gene by endogenous microRNA-122a in liver cell lines as suicide gene therapy. GASTROENTEROLOGY AND HEPATOLOGY FROM BED TO BENCH 2017; 10:202-207. [PMID: 29118936 PMCID: PMC5660270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
AIM Here, we use miR-122a that exhibits liver-specific expression for developing a post-transcriptional regulative system mediated by microRNAs. BACKGROUND Gene therapy with adenovirus (Ad) vectors that express herpes simplex virus thymidine kinase (HSVtk) and ganciclovir (GCV) have been suggested as a therapeutic strategy to cancer. However, Ad vectors injected into tumors are dispersed into the systemic circulation and transduce liver cells, resulting in severe hepatotoxicity. To be effective, the delivery and expression of suicide genes to cancer treatment ought to be specific to tumor cells, and avoid death of healthy cells. Researchers have demonstrated that expression of transgene could be suppressed in healthy cells with use of vectors that are reactive to microRNA regulation. METHODS We constructed an Ad vector carrying four tandem copies of target sequences of miR-122a that were incorporated into 3'-UTR of HSVtk gene. The expression level of miR-122a was quantified in HepG2 and Huh7 cell lines. RESULTS Quantitative RT- PCR analysis demonstrated that Huh7 cells express large amounts of miR-122a compared to HepG2 cells. The viability of Huh7 cells and HepG2 cells after infection by Ad-tk-122aT vector was 83% and 23.5%, respectively. The viability of Huh7 cells was not reduced in the presence of GCV after infection by Ad-tk-122a vector. In contrast, cytotoxicity of HSV-tk/GCV was similar in Huh7 cells and HepG2 cells by Ad-tk vector, with 35.3% and 27% viability, respectively. CONCLUSION Inclusion of the miR-122a target sequences in the HSVtk expression cassette yielded a feasible strategy for reducing cytotoxicity of suicide gene in a liver cell line with high miR-122a expression.
Collapse
Affiliation(s)
- Maryam Ghanbari
- Faculty of Advanced Sciences and Technology, Pharmaceutical Sciences Branch, Islamic Azad University (IAUPS), Tehran, Iran
| | - Esmaeil Saberfar
- Researches and Development Department, Bayerpaul Group, Tehran, Iran
| | - Zahra Goodarzi
- Applied Virology Research Center, Baqyatallah University of Medical Sciences, Tehran, Iran
| | - Hadi Lashini
- Applied Virology Research Center, Baqyatallah University of Medical Sciences, Tehran, Iran
| | - Sahar Ghanbari
- Environmental Health Expert Center, Fasa University of Medical Sciences, Fasa, Fars, Iran
| | - Mojtaba Karamimanesh
- Environmental Health Expert Center, Fasa University of Medical Sciences, Fasa, Fars, Iran
| | - Kazem Baesi
- Hepatitis and AIDS Department, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
35
|
Maierthaler M, Benner A, Hoffmeister M, Surowy H, Jansen L, Knebel P, Chang-Claude J, Brenner H, Burwinkel B. Plasma miR-122 and miR-200 family are prognostic markers in colorectal cancer. Int J Cancer 2016; 140:176-187. [PMID: 27632639 DOI: 10.1002/ijc.30433] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 08/15/2016] [Indexed: 12/14/2022]
Abstract
Circulating microRNAs (miRNAs) have been proposed as minimally invasive prognostic markers for various types of cancers, including colorectal cancer (CRC), the third most diagnosed cancer worldwide. We aimed to evaluate the levels of circulating miRNAs that might serve as markers for CRC prognosis and survival. We included plasma samples of 543 CRC patients with stage I-IV disease from a population-based study carried out in Germany. After comprehensive evaluation of current literature, 95 miRNAs were selected and measured with Custom TaqMan® Array MicroRNA Cards. Plasma samples of non-metastatic and metastatic colon cancer patients, each group consisting of ten patients with 'good' and ten patients with 'bad' prognosis were screened. Identified candidate miRNAs were further validated by RT-qPCR in the whole study cohort. The association of the miRNA levels with patients' survival and the prognostic subtypes was analyzed with uni- and multivariate logistic regression and Cox proportional hazards regression models. Increased miR-122 levels were associated with a 'bad' prognostic subtype in metastatic CRC (Odds ratio: 1.563, 95% confidence interval (CI): 1.038-2.347) and a shorter relapse-free survival and overall survival for non-metastatic (Hazard ratio (HR): 1.370, 95% CI: 1.028-1.825; HR: 1.353, 95% CI: 1.002-1.828) and metastatic (HR: 1.264, 95% CI: 1.050-1.520; HR: 1.292, 95% CI: 1.078-1.548) CRC patients. Additionally, several members of the miR-200 family showed associations with patients' prognosis and correlations to clinicopathological characteristics. The here identified miRNA markers, miR-122 and the miR-200 family members, could be of use in the development of a multi-marker blood test for CRC prognosis.
Collapse
Affiliation(s)
- Melanie Maierthaler
- Division of Molecular Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Gynecology and Obstetrics, Molecular Biology of Breast Cancer, University of Heidelberg, Heidelberg, Germany
| | - Axel Benner
- Division of Biostatistics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Harald Surowy
- Division of Molecular Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Gynecology and Obstetrics, Molecular Biology of Breast Cancer, University of Heidelberg, Heidelberg, Germany
| | - Lina Jansen
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Phillip Knebel
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, Unit of Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Barbara Burwinkel
- Division of Molecular Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Gynecology and Obstetrics, Molecular Biology of Breast Cancer, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
36
|
Mitsuhashi K, Yamamoto I, Kurihara H, Kanno S, Ito M, Igarashi H, Ishigami K, Sukawa Y, Tachibana M, Takahashi H, Tokino T, Maruyama R, Suzuki H, Imai K, Shinomura Y, Yamamoto H, Nosho K. Analysis of the molecular features of rectal carcinoid tumors to identify new biomarkers that predict biological malignancy. Oncotarget 2016; 6:22114-25. [PMID: 26090613 PMCID: PMC4673150 DOI: 10.18632/oncotarget.4294] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 06/05/2015] [Indexed: 02/06/2023] Open
Abstract
Although gastrointestinal carcinoid tumors are relatively rare in the digestive tract, a quarter of them are present in the rectum. In the absence of specific tumor biomarkers, lymphatic or vascular invasion is generally used to predict the risk of lymph node metastasis. We, therefore, examined the genetic and epigenetic alterations potentially associated with lymphovascular invasion among 56 patients with rectal carcinoid tumors. We also conducted a microRNA (miRNA) array analysis. Our analysis failed to detect mutations in BRAF, KRAS, NRAS, or PIK3CA or any microsatellite instability (MSI); however, we did observe CpG island methylator phenotype (CIMP) positivity in 13% (7/56) of the carcinoid tumors. The CIMP-positive status was significantly correlated with lymphovascular invasion (P = 0.036). The array analysis revealed that microRNA-885 (miR-885)-5p was the most up-regulated miRNA in the carcinoid tumors with lymphovascular invasion compared with that in those without invasion. In addition, high miR-885-5p expression was independently associated with lymphovascular invasion (P = 0.0002). In conclusion, our findings suggest that miR-885-5p and CIMP status may be useful biomarkers for predicting biological malignancy in patients with rectal carcinoid tumors.
Collapse
Affiliation(s)
- Kei Mitsuhashi
- Department of Gastroenterology, Rheumatology and Clinical Immunology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Itaru Yamamoto
- Department of Gastroenterology, Rheumatology and Clinical Immunology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiroyoshi Kurihara
- Department of Gastroenterology, Rheumatology and Clinical Immunology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Shinichi Kanno
- Department of Gastroenterology, Rheumatology and Clinical Immunology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Miki Ito
- Department of Gastroenterology, Rheumatology and Clinical Immunology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hisayoshi Igarashi
- Department of Gastroenterology, Rheumatology and Clinical Immunology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Keisuke Ishigami
- Department of Gastroenterology, Rheumatology and Clinical Immunology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yasutaka Sukawa
- Department of Gastroenterology, Rheumatology and Clinical Immunology, Sapporo Medical University School of Medicine, Sapporo, Japan.,Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Mami Tachibana
- Department of Gastroenterology, Rheumatology and Clinical Immunology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiroaki Takahashi
- Department of Gastroenterology, Keiyukai Daini Hospital, Sapporo, Japan
| | - Takashi Tokino
- Department of Medical Genome Sciences, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Reo Maruyama
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiromu Suzuki
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Kohzoh Imai
- The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yasuhisa Shinomura
- Department of Gastroenterology, Rheumatology and Clinical Immunology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiroyuki Yamamoto
- Department of Gastroenterology and Hepatology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Katsuhiko Nosho
- Department of Gastroenterology, Rheumatology and Clinical Immunology, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
37
|
Jiang H, Liu J, Chen Y, Ma C, Li B, Hao T. Up-regulation of mir-10b predicate advanced clinicopathological features and liver metastasis in colorectal cancer. Cancer Med 2016; 5:2932-2941. [PMID: 27592860 PMCID: PMC5083747 DOI: 10.1002/cam4.789] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Revised: 05/09/2016] [Accepted: 05/11/2016] [Indexed: 12/21/2022] Open
Abstract
Given the emerging role of microRNA in tumor disease progression, we investigated the association between miRNA 10b expression, liver metastasis, and clinicopathological of colorectal cancer (CRC). Two hundred and forty‐six pairs of samples (including CRC samples and normal adjacent tissues) from CRC patients were collected from May 2004 to May 2009. All samples verified to contain at least 80% tumor cells, and were immediately frozen in liquid nitrogen and stored at −80°C or fixed in 10% formalin for paraffin embedding. The expression of miRNA‐10b in CRC tissues was evaluated using a quantitative real‐time polymerase chain reaction RT‐PCR. Correlation between miR‐10b expression and poor clinicopathological of CRC patients were analyzed using Student's t‐tests and Chi‐square tests. A Kaplan–Meier survival curve was generated following a log‐rank test. miR‐10b expression was up‐regulated in CRC tissues (P < 0.0001) and in patients diagnosed as colorectal liver metastasis (CLM) at initial involvement or during follow‐up. When the Tumor Node Metastasis (TNM) stage was taken into consideration, the expression levels of miR‐10b were positively correlated with advanced TNM stages. In addition, the miR‐10b expression of patients diagnosed as CLM at initial involvement was significantly higher than those without liver metastasis (nCLM). Similarly, those patients developed with CLM during follow‐up (FCLM) was also markedly higher than those with nCLM. miR‐10b expression was also found correlated with advanced stage (P < 0.0001), lymph node metastasis (P = 0.025), venous infiltration (P = 0.007), poorer differentiation (P = 0.002), and served as an independent prognostic factor of poor overall survival (P < 0.0001). This study demonstrated the expression of miR‐10b had strong potential to serve as a noninvasive biomarker for CRC prognosis and predicting liver metastasis.
Collapse
Affiliation(s)
- Hong Jiang
- Department of General Surgery, Binzhou Medical University Hospital, Binzhou, 256603, China.
| | - Jijun Liu
- Department of General Surgery, Binzhou Medical University Hospital, Binzhou, 256603, China
| | - Yingtao Chen
- Department of General Surgery, Binzhou Medical University Hospital, Binzhou, 256603, China
| | - Chong Ma
- Department of General Surgery, Binzhou Medical University Hospital, Binzhou, 256603, China
| | - Baosong Li
- Department of General Surgery, Binzhou Medical University Hospital, Binzhou, 256603, China
| | - Tao Hao
- Department of General Surgery, Binzhou Medical University Hospital, Binzhou, 256603, China
| |
Collapse
|
38
|
Miller HC, Frampton AE, Malczewska A, Ottaviani S, Stronach EA, Flora R, Kaemmerer D, Schwach G, Pfragner R, Faiz O, Kos-Kudła B, Hanna GB, Stebbing J, Castellano L, Frilling A. MicroRNAs associated with small bowel neuroendocrine tumours and their metastases. Endocr Relat Cancer 2016; 23:711-26. [PMID: 27353039 DOI: 10.1530/erc-16-0044] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 06/27/2016] [Indexed: 12/17/2022]
Abstract
Novel molecular analytes are needed in small bowel neuroendocrine tumours (SBNETs) to better determine disease aggressiveness and predict treatment response. In this study, we aimed to profile the global miRNome of SBNETs, and identify microRNAs (miRNAs) involved in tumour progression for use as potential biomarkers. Two independent miRNA profiling experiments were performed (n=90), including primary SBNETs (n=28), adjacent normal small bowel (NSB; n=14), matched lymph node (LN) metastases (n=24), normal LNs (n=7), normal liver (n=2) and liver metastases (n=15). We then evaluated potentially targeted genes by performing integrated computational analyses. We discovered 39 miRNAs significantly deregulated in SBNETs compared with adjacent NSB. The most upregulated (miR-204-5p, miR-7-5p and miR-375) were confirmed by qRT-PCR. Two miRNAs (miR-1 and miR-143-3p) were significantly downregulated in LN and liver metastases compared with primary tumours. Furthermore, we identified upregulated gene targets for miR-1 and miR-143-3p in an existing SBNET dataset, which could contribute to disease progression, and show that these miRNAs directly regulate FOSB and NUAK2 oncogenes. Our study represents the largest global miRNA profiling of SBNETs using matched primary tumour and metastatic samples. We revealed novel miRNAs deregulated during SBNET disease progression, and important miRNA-mRNA interactions. These miRNAs have the potential to act as biomarkers for patient stratification and may also be able to guide treatment decisions. Further experiments to define molecular mechanisms and validate these miRNAs in larger tissue cohorts and in biofluids are now warranted.
Collapse
Affiliation(s)
- Helen C Miller
- Department of Surgery and CancerImperial College, Hammersmith Hospital Campus, London, UK
| | - Adam E Frampton
- Department of Surgery and CancerImperial College, Hammersmith Hospital Campus, London, UK
| | - Anna Malczewska
- Department of Surgery and CancerImperial College, Hammersmith Hospital Campus, London, UK Department of Pathophysiology and EndocrinologySchool of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Silvia Ottaviani
- Department of Surgery and CancerImperial College, Hammersmith Hospital Campus, London, UK
| | - Euan A Stronach
- Department of Surgery and CancerImperial College, Hammersmith Hospital Campus, London, UK
| | - Rashpal Flora
- Department of HistopathologyImperial College Healthcare NHS Trust, Hammersmith Hospital, London, UK
| | - Daniel Kaemmerer
- Zentralklinik Bad Berka GmbHRobert-Koch-Allee, Bad Berka, Germany
| | - Gert Schwach
- Institute of PathophysiologyCenter for Molecular Medicine, Medical University of Graz, Graz, Austria
| | - Roswitha Pfragner
- Institute of PathophysiologyCenter for Molecular Medicine, Medical University of Graz, Graz, Austria
| | | | - Beata Kos-Kudła
- Department of Pathophysiology and EndocrinologySchool of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Katowice, Poland
| | - George B Hanna
- Academic Surgical UnitDepartment of Surgery and Cancer, Imperial College, St Mary's Campus, London, UK
| | - Justin Stebbing
- Department of Pathophysiology and EndocrinologySchool of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Leandro Castellano
- Department of Pathophysiology and EndocrinologySchool of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Andrea Frilling
- Department of Surgery and CancerImperial College, Hammersmith Hospital Campus, London, UK
| |
Collapse
|
39
|
Zhang D, Wang Y, Ji Z, Wang Z. Identification and differential expression of microRNAs associated with fat deposition in the liver of Wistar rats with nonalcoholic fatty liver disease. Gene 2016; 585:1-8. [PMID: 26971813 DOI: 10.1016/j.gene.2016.03.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 02/16/2016] [Accepted: 03/08/2016] [Indexed: 01/01/2023]
Abstract
The exact mechanism underlying hepatic steatosis in nonalcoholic fatty liver disease (NAFLD) is not clear. Clarifying the full repertoire of microRNAs (miRNAs) in NAFLD rat liver would enhance our understanding of NAFLD pathogenesis. In this study, miRNA expression levels were analyzed in liver tissue from NAFLD Wistar rats, with normal Wistar rats as negative controls. Small RNA libraries were constructed for each sample. A total of 173 conservative miRNAs and 68 potential miRNA candidates were identified. Significant differences in the expression levels of 101 conserved miRNAs were identified between the two groups. The results of GO annotation and KEGG pathway analysis revealed that some miRNAs were likely involved in the process of liver fat deposition. This study represents the first global miRNA profiling of NAFLD Wistar rat livers, and expands the miRNA repertoire for normal livers. Our findings suggest that miRNAs play important roles in liver fat deposition.
Collapse
Affiliation(s)
- Deqing Zhang
- Shandong Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Taian 271018, PR China; Laboratory Department, Taian Central Hospital, Taian 271000, PR China
| | - Yuqian Wang
- Shandong Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Taian 271018, PR China
| | - Zhibin Ji
- Shandong Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Taian 271018, PR China
| | - Zhonghua Wang
- Shandong Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Taian 271018, PR China.
| |
Collapse
|
40
|
Cekaite L, Eide PW, Lind GE, Skotheim RI, Lothe RA. MicroRNAs as growth regulators, their function and biomarker status in colorectal cancer. Oncotarget 2016; 7:6476-505. [PMID: 26623728 PMCID: PMC4872728 DOI: 10.18632/oncotarget.6390] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 11/16/2015] [Indexed: 02/07/2023] Open
Abstract
Gene expression is in part regulated by microRNAs (miRNAs). This review summarizes the current knowledge of miRNAs in colorectal cancer (CRC); their role as growth regulators, the mechanisms that regulate the miRNAs themselves and the potential of miRNAs as biomarkers. Although thousands of tissue samples and bodily fluids from CRC patients have been investigated for biomarker potential of miRNAs (>160 papers presented in a comprehensive tables), none single miRNA nor miRNA expression signatures are in clinical use for this disease. More than 500 miRNA-target pairs have been identified in CRC and we discuss how these regulatory nodes interconnect and affect signaling pathways in CRC progression.
Collapse
Affiliation(s)
- Lina Cekaite
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- K.G.Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway
| | - Peter W. Eide
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- K.G.Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway
| | - Guro E. Lind
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- K.G.Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway
| | - Rolf I. Skotheim
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- K.G.Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway
| | - Ragnhild A. Lothe
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- K.G.Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
41
|
Zhang J, Shi H, Xue M, Yu Q, Yang L, Zheng S, Zhou C. An insertion/deletion polymorphism in the interleukin-1A 3'untranslated region confers risk for gastric cancer. Cancer Biomark 2016; 16:359-365. [PMID: 26889982 DOI: 10.3233/cbm-160574] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE The aim of the study was to evaluate whether the insertion/deletion polymorphism (rs3783553) locating in the 3' untranslated region (3'UTRs) of IL-1A was related to the risk of gastric cancer (GC) in a Chinese population and explore the possible molecular mechanism. METHODS Genomic DNA was extracted from peripheral venous blood of 519 GC patients and 536 healthy control individuals. The IL-1A rs3783553 polymorphism was genotyped by using a polymerase chain reaction assay. The vectors containing the insertion or deletion allele were constructed, and luciferase assay was used to detect the effect of the polymorphism on the transcriptional activity of IL-1A. RESULTS Strong evidence of association was observed between the IL-1A rs3783553 polymorphism and susceptibility to GC in the study. In addition, the `TTCA' insertion allele of rs3783553 disrupts the binding site for miR-122 and miR-378, thereby increasing transcription of IL-1α in vitro. CONCLUSION These findings suggest that functional polymorphism rs3783553 in IL-1A could contribute to GC susceptibility, possibly or at least partially through affecting the transcriptional activity of IL-1A.
Collapse
|
42
|
Igarashi H, Kurihara H, Mitsuhashi K, Ito M, Okuda H, Kanno S, Naito T, Yoshii S, Takahashi H, Kusumi T, Hasegawa T, Sukawa Y, Adachi Y, Okita K, Hirata K, Imamura Y, Baba Y, Imai K, Suzuki H, Yamamoto H, Nosho K, Shinomura Y. Association of MicroRNA-31-5p with Clinical Efficacy of Anti-EGFR Therapy in Patients with Metastatic Colorectal Cancer. Ann Surg Oncol 2015; 22:2640-2648. [PMID: 25472647 DOI: 10.1245/s10434-014-4264-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Indexed: 12/14/2022]
Abstract
BACKGROUND Gene mutations in the pathway downstream of epidermal growth factor receptor (EGFR) are considered to induce resistance to anti-EGFR therapy in colorectal cancer (CRC). We recently reported that microRNA-31 (miR-31)-5p may regulate BRAF activation and play a role in the signaling pathway downstream of EGFR in CRC. Therefore, we hypothesized that miR-31-5p can be a useful biomarker for anti-EGFR therapy in CRC. METHODS We evaluated miR-31-5p expression and gene mutations [KRAS (codon 61 or 146), NRAS (codon 12, 13, or 61), and BRAF (V600E)] in the EGFR downstream pathway in 102 CRC patients harboring KRAS (codon 12 or 13) wild-type who were treated with anti-EGFR therapeutics. Progression-free survival (PFS) and overall survival (OS) were evaluated. RESULTS KRAS (codon 61 or 146), NRAS, and BRAF mutations were detected in 6.9, 6.9, and 5.9 % patients, respectively. Compared with CRCs with at least one mutation (n = 20), significantly better PFS (P = 0.0003) but insignificantly better OS were observed in CRCs harboring all wild-type genes (KRAS, NRAS, and BRAF). High miR-31-5p expression was identified in 11 % (n = 11) patients and was significantly associated with shorter PFS (P = 0.003). In CRCs carrying all wild-type genes, high miR-31-5p was associated with shorter PFS (P = 0.027). CONCLUSIONS High miR-31-5p expression was associated with shorter PFS in patients with CRC treated with anti-EGFR therapeutics. Moreover, in CRCs carrying all wild-type genes, high miR-31-5p was associated with shorter PFS, suggesting that it may be a useful and additional prognostic biomarker for anti-EGFR therapy.
Collapse
Affiliation(s)
- Hisayoshi Igarashi
- Department of Gastroenterology, Rheumatology and Clinical Immunology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Wang J, Du Y, Liu X, Cho WC, Yang Y. MicroRNAs as Regulator of Signaling Networks in Metastatic Colon Cancer. BIOMED RESEARCH INTERNATIONAL 2015; 2015:823620. [PMID: 26064956 PMCID: PMC4438141 DOI: 10.1155/2015/823620] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 04/06/2015] [Accepted: 04/06/2015] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) are a class of small, noncoding RNA molecules capable of regulating gene expression translationally and/or transcriptionally. A large number of evidence have demonstrated that miRNAs have a functional role in both physiological and pathological processes by regulating the expression of their target genes. Recently, the functionalities of miRNAs in the initiation, progression, angiogenesis, metastasis, and chemoresistance of tumors have gained increasing attentions. Particularly, the alteration of miRNA profiles has been correlated with the transformation and metastasis of various cancers, including colon cancer. This paper reports the latest findings on miRNAs involved in different signaling networks leading to colon cancer metastasis, mainly focusing on miRNA profiling and their roles in PTEN/PI3K, EGFR, TGFβ, and p53 signaling pathways of metastatic colon cancer. The potential of miRNAs used as biomarkers in the diagnosis, prognosis, and therapeutic targets in colon cancer is also discussed.
Collapse
Affiliation(s)
- Jian Wang
- Human Stem Cell Institute of the General Hospital, Ningxia Medical University, Yinchuan 750004, China
- Department of Colorectal Surgery, The General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Yong Du
- Human Stem Cell Institute of the General Hospital, Ningxia Medical University, Yinchuan 750004, China
- Department of Colorectal Surgery, The General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Xiaoming Liu
- Human Stem Cell Institute of the General Hospital, Ningxia Medical University, Yinchuan 750004, China
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| | - Yinxue Yang
- Human Stem Cell Institute of the General Hospital, Ningxia Medical University, Yinchuan 750004, China
- Department of Colorectal Surgery, The General Hospital of Ningxia Medical University, Yinchuan 750004, China
| |
Collapse
|
44
|
Kanwar JR, Mahidhara G, Roy K, Sasidharan S, Krishnakumar S, Prasad N, Sehgal R, Kanwar RK. Fe-bLf nanoformulation targets survivin to kill colon cancer stem cells and maintains absorption of iron, calcium and zinc. Nanomedicine (Lond) 2015; 10:35-55. [DOI: 10.2217/nnm.14.132] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Aim: To validate the anticancer efficacy of alginate-enclosed, chitosan-conjugated, calcium phosphate, iron-saturated bovine lactoferrin (Fe-bLf) nanocarriers/nanocapsules (NCs) with improved sustained release and ability to induce apoptosis by downregulating survivin, as well as cancer stem cells. Materials & methods: The stability, nanotoxicity of the modified nanoformulation was evaluated and their anticancer efficacy was re-examined. Their mechanism of internalization was studied and we identified the role of various miRNAs in absorption of these NCs/iron in various body parts of mice. We determined the effect of these NCs on survivin, stem cell markers, red blood cell count, iron, calcium and zinc concentration in mice, determined the antiangiogenic properties of these NCs and studied their effect on cancer stem-like cells. Results: Spherical NCs (396.1 ± 27.2 nm) exceedingly reduced viability of Caco-2 cells (32 ± 2.83%). The NCs also showed effective internalization and reduction of cancer stem cell markers in triple-positive CD133, survivin and CD44 cancer stem-like cells. Mice treated with the NCs showed no nanotoxicity and did not develop any tumors in xenograft colon cancer models. We found that the serum iron, zinc and calcium absorption were increased. DMT1, LRP, transferrin and lactoferrin receptors were responsible for internalization of the NCs. Different miRNAs were responsible for iron regulation in different organs. Interestingly, NCs inhibited survivin and its different isoforms. Conclusion: Our results confirmed that NCs internalized and changed the expression of selected miRNAs that further enhanced their uptake. The NCs activated both extrinsic, as well as intrinsic apoptotic pathways to induce apoptosis by targeting survivin in cancer cells and cancer stem cells, without inducing any nonspecific nanotoxicity. Apart from inhibiting angiogenesis and stem cell markers, NCs also maintained iron and calcium levels. Original submitted 4 May 2014; Revised submitted 25 June 2014
Collapse
Affiliation(s)
- Jagat R Kanwar
- Nanomedicine, Laboratory of Immunology & Molecular Biomedical Research (LIMBR), School of Medicine (SoM), Faculty of Health, Deakin University, Waurn Ponds, Victoria 3217, Australia
| | - Ganesh Mahidhara
- Nanomedicine, Laboratory of Immunology & Molecular Biomedical Research (LIMBR), School of Medicine (SoM), Faculty of Health, Deakin University, Waurn Ponds, Victoria 3217, Australia
| | - Kislay Roy
- Nanomedicine, Laboratory of Immunology & Molecular Biomedical Research (LIMBR), School of Medicine (SoM), Faculty of Health, Deakin University, Waurn Ponds, Victoria 3217, Australia
| | - Sreenivasan Sasidharan
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800 Pulau Pinang, Malaysia
| | - Subramanian Krishnakumar
- Department of Nanobiotechnology, Vision Research Foundation, Kamalnayan Bajaj Institute for Research in Vision & Ophthalmology, Chennai, India
| | - Neerati Prasad
- Department of Pharmacology, Drug Metabolism & Pharmacokinetics Division (DMPK), University College of Pharmaceutical Science, Kakatiya University, Warangal, Andhra Pradesh, 506009, India
| | - Rakesh Sehgal
- Department of Medical Parasitology, Postgraduate Institute of Medical Education & Research, Chandigarh, 160012 India
| | - Rupinder K Kanwar
- Nanomedicine, Laboratory of Immunology & Molecular Biomedical Research (LIMBR), School of Medicine (SoM), Faculty of Health, Deakin University, Waurn Ponds, Victoria 3217, Australia
| |
Collapse
|
45
|
Ion channel expression as promising cancer biomarker. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1848:2685-702. [PMID: 25542783 DOI: 10.1016/j.bbamem.2014.12.016] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 12/10/2014] [Accepted: 12/16/2014] [Indexed: 12/11/2022]
Abstract
Cancer is a disease with marked heterogeneity in both response to therapy and survival. Clinical and histopathological characteristics have long determined prognosis and therapy. The introduction of molecular diagnostics has heralded an explosion in new prognostic factors. Overall, histopathology, immunohistochemistry and molecular biology techniques have described important new prognostic subgroups in the different cancer categories. Ion channels and transporters (ICT) are a new class of membrane proteins which are aberrantly expressed in several types of human cancers. Besides regulating different aspect of cancer cell behavior, ICT can now represent novel cancer biomarkers. A summary of the data obtained so far and relative to breast, prostate, lung, colorectal, esophagus, pancreatic and gastric cancers are reported. Special emphasis is given to those studies aimed at relating specific ICT or a peculiar ICT profile with current diagnostic methods. Overall, we are close to exploit ICTs for diagnostic, prognostic or predictive purposes in cancer. This article is part of a Special Issue entitled: Membrane channels and transporters in cancers.
Collapse
|
46
|
Okugawa Y, Toiyama Y, Goel A. An update on microRNAs as colorectal cancer biomarkers: where are we and what's next? Expert Rev Mol Diagn 2014; 14:999-1021. [PMID: 25163355 PMCID: PMC4374444 DOI: 10.1586/14737159.2014.946907] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
miRNAs are abundant classes of small, endogenous non-coding RNAs, which inhibit the expression of target gene via post-transcriptional regulation. In addition to an important functional role miRNAs play in carcinogenesis, emerging evidence has demonstrated their feasibility as robust cancer biomarkers. In particular, the recent discovery of miRNAs in the body fluids provides an attractive opportunity for the development of non-invasive biomarkers for the diagnosis, prognosis and predictive response to cancer therapy. Colorectal cancer (CRC) is one of the most common cancers worldwide, and accumulating data provides a compelling case for the potential exploitation of miRNAs as CRC-biomarkers. This review summarizes the current state of literature in the field, focusing on the clinical relevance of miRNAs as potential biomarkers for CRC treatment and discussing the forthcoming challenges to further advance this exciting field of 'academic research' into 'bedside clinical care' of patients suffering from CRC.
Collapse
Affiliation(s)
- Yoshinaga Okugawa
- Gastrointestinal Cancer Research Laboratory, Division of Gastroenterology, Department of Internal Medicine, Charles A. Sammons Cancer Center and Baylor Research Institute, Baylor University Medical Center, Dallas, Texas 75246-2017, USA
| | - Yuji Toiyama
- Gastrointestinal Cancer Research Laboratory, Division of Gastroenterology, Department of Internal Medicine, Charles A. Sammons Cancer Center and Baylor Research Institute, Baylor University Medical Center, Dallas, Texas 75246-2017, USA
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Graduate School of Medicine, Mie University, Mie 514-8507, Japan
| | - Ajay Goel
- Gastrointestinal Cancer Research Laboratory, Division of Gastroenterology, Department of Internal Medicine, Charles A. Sammons Cancer Center and Baylor Research Institute, Baylor University Medical Center, Dallas, Texas 75246-2017, USA
| |
Collapse
|
47
|
Tan Y, Pan T, Ye Y, Ge G, Chen L, Wen D, Zou S. Serum microRNAs as potential biomarkers of primary biliary cirrhosis. PLoS One 2014; 9:e111424. [PMID: 25347847 PMCID: PMC4210265 DOI: 10.1371/journal.pone.0111424] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 09/25/2014] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Circulating microRNAs (miRNAs), which are extremely stable and protected from RNAse-mediated degradation in body fluids, have emerged as candidate biomarkers for many diseases. The present study aimed to identify a serum microRNA (miRNA) expression profile that could serve as a novel diagnostic biomarker for primary biliary cirrhosis (PBC). METHODS Serum miRNA expression was investigated using four cohorts comprising 380 participants (healthy controls and patients with PBC) recruited between August 2010 and June 2013. miRNA expression was initially analyzed by Illumina sequencing using serum samples pooled from 3 patients and 3 controls. Quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) was then used to evaluate the expression of selected miRNAs in a screening set (n = 40). A logistic regression model was then constructed using a training cohort (n = 192) and validated using another cohort (n = 142). The area under the receiver operating characteristic curve (AUC) was used to evaluate diagnostic accuracy. RESULTS We identified a miRNA panel (hsa-miR-122-5p, hsa-miR-141-3p, and hsa-miR-26b-5p) with a high diagnostic accuracy for PBC (AUC = 0.905, 95% confidence interval (CI) = 0.857 to 0.953; sensitivity = 80.5%, specificity = 88.3%). There was a significant difference between AUC values of the miRNA panel and those of alkaline phosphatase (ALP) (AUC = 0.537, difference between areas = 0.314, 95% CI = 0.195 to 0.434, P<0.001), and those of antinuclear antibody (ANA) (AUC = 0.739, difference between areas = 0.112, 95% CI = 0.012 to 0.213, P = 0.0282). CONCLUSION We identified a serum microRNA panel with considerable clinical value in PBC diagnosis. The results indicate that the miRNA panel is a more sensitive and specific biomarker for PBC than ALP and ANA.
Collapse
Affiliation(s)
- Youwen Tan
- Department of Hepatosis, The Third Hospital of Zhenjiang Affiliated Jiangsu University, Zhenjiang, China
| | - Tengli Pan
- Department of Infection, The People’s Hospital of Bozhou, Bozhou, China
| | - Yun Ye
- Department of Hepatosis, The Third Hospital of Zhenjiang Affiliated Jiangsu University, Zhenjiang, China
| | - Guohong Ge
- Department of Hepatosis, The Third Hospital of Zhenjiang Affiliated Jiangsu University, Zhenjiang, China
| | - Li Chen
- Department of Hepatosis, The Third Hospital of Zhenjiang Affiliated Jiangsu University, Zhenjiang, China
| | - Danfeng Wen
- Department of Hepatosis, The Third Hospital of Zhenjiang Affiliated Jiangsu University, Zhenjiang, China
| | - Shengqiang Zou
- Department of Hepatosis, The Third Hospital of Zhenjiang Affiliated Jiangsu University, Zhenjiang, China
| |
Collapse
|
48
|
Tan Y, Ge G, Pan T, Wen D, Gan J. A pilot study of serum microRNAs panel as potential biomarkers for diagnosis of nonalcoholic fatty liver disease. PLoS One 2014; 9:e105192. [PMID: 25141008 PMCID: PMC4139327 DOI: 10.1371/journal.pone.0105192] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 07/19/2014] [Indexed: 12/12/2022] Open
Abstract
Background The invasive nature of liver biopsy makes the histopathological diagnosis of non-alcoholic fatty liver disease (NAFLD) difficult and its diagnostic performance unsatisfactory. The present study aimed to identify a serum microRNA (miRNA) expression profile that could serve as a novel diagnostic biomarker for NAFLD. Methods Serum miRNA expression was investigated using three cohorts comprising 465 participants (healthy controls and NAFLD patients) recruited between August 2010 and June 2013. miRNA expression was initially screened by Illumina sequencing using serum samples pooled from 20 patients and 20 controls. Quantitative reverse transcriptase polymerase chain reaction assay was then used to evaluate the expression of selected miRNAs. A logistic regression model was constructed using a training cohort (n = 242) and validated using another cohort (n = 183). The area under the receiver operating characteristic curve (AUC) was used to evaluate diagnostic accuracy. Results We identified an miRNA panel (hsa-miR-122-5p, hsa-miR-1290, hsa-miR-27b-3p, and hsa-miR-192-5p) with a high diagnostic accuracy for NAFLD. The satisfactory diagnostic performance of the miRNA panel remained regardless of the NAFLD activity score (NAS) status. There was significant difference between the AUC values of the miRNA panel and those of ALT (AUC = 0.786, 95% CI = 0.717–0.855; P = 0.142) and FIB-4 (AUC = 0.795, 95% CI = 0.730–0.860; sensitivity = 69.9%, specificity = 83.7%. Conclusion We identified a serum microRNA panel with considerable clinical value in NAFLD diagnosis. The results indicate that the miRNA panel is a more sensitive and specific biomarker for NAFLD than ALT and FIB-4.
Collapse
Affiliation(s)
- Youwen Tan
- Department of Infectious Diseases, The First Affiliated Hospital of Soochow University, Suzhou, China
- Department of Hepatosis, The Third Hospital of Zhenjiang Affiliated Jiangsu University, Zhenjiang, China
| | - Guohong Ge
- Department of Hepatosis, The Third Hospital of Zhenjiang Affiliated Jiangsu University, Zhenjiang, China
| | - Tengli Pan
- Department of Hepatosis, The Third Hospital of Zhenjiang Affiliated Jiangsu University, Zhenjiang, China
| | - Danfeng Wen
- Department of Hepatosis, The Third Hospital of Zhenjiang Affiliated Jiangsu University, Zhenjiang, China
| | - Jianhe Gan
- Department of Infectious Diseases, The First Affiliated Hospital of Soochow University, Suzhou, China
- * E-mail:
| |
Collapse
|
49
|
Chen Q, Ge X, Zhang Y, Xia H, Yuan D, Tang Q, Chen L, Pang X, Leng W, Bi F. Plasma miR-122 and miR-192 as potential novel biomarkers for the early detection of distant metastasis of gastric cancer. Oncol Rep 2014; 31:1863-70. [PMID: 24481716 DOI: 10.3892/or.2014.3004] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 12/30/2013] [Indexed: 02/05/2023] Open
Abstract
The aim of the present study was to ascertain whether plasma levels of specific microRNAs (miRNAs) are associated with distant metastasis (DM) in gastric cancer (GC). miRNA profiling was performed on 12 pairs of samples of gastric cancer with distant metastasis (GC/DM) and gastric cancer with no distant metastasis (GC/NDM); 14 differentially expressed miRNAs were identified for further inspection. Validation of these 14 miRNAs using quantitative reverse transcription PCR (qRT-PCR) on an independent validation set identified 2 differentially expressed miRNAs (miR-122 and miR-192). further validation of these two candidate miRNAs was conducted in a disease control set, a self-paired plasma set and finally in gastric cell lines in vitro. The results revealed that when compared with GC/NDM and healthy controls (HCs), plasma levels of miR-122 were significantly lower and plasma levels of miR-192 were significantly higher in GC/DM samples (both P<0.01). The plasma miR-122 level was again lower and the plasma miR-192-level was again higher in patients with GC/DM than in patients with benign gastric ulcer (BGC) and chronic gastritis (CG) (P<0.01). Compared to the level in patients with pre-distant metastases, miR-122 was significantly decreased while miR-192 was markedly elevated in patients with post-distant metastases (P<0.01). In CTC105 and CTC141 cells, miR-122 levels were moderately lower and miR-192 levels were markedly higher when compared to the levels in the GES-1 cells. ROC analyses showed that the AUC for plasma miR-122 was 0.808 (95% CI, 0.712-0.905; P<0.01), and the AUC for plasma miR-192 was 0.732 (95% CI, 0.623-0.841; P<0.01) for distinguishing GC/DM from GC/NDM. High expression of miR-122 in plasma independently contributed to a more favorable prognosis for GC (hazard ratio, 0.262; 95% CI, 0.164-0.816; P=0.038; Cox regression analysis), whereas the miR-192 level was not associated with the overall survival time. Our results demonstrated that assessment of decreased circulating miR-122 and elevated circulating miR-192 levels has the potential to improve early detection of DM in GC. Higher plasma levels of miR-122 in GC may indicate a favorable prognosis.
Collapse
Affiliation(s)
- Qingjuan Chen
- Department of Medical Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xiaojun Ge
- Laboratory of Signal Transduction and Molecular Targeted Therapy, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yuchen Zhang
- Laboratory of Signal Transduction and Molecular Targeted Therapy, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Hongwei Xia
- Laboratory of Signal Transduction and Molecular Targeted Therapy, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Dandan Yuan
- Department of Medical Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Qiulin Tang
- Laboratory of Signal Transduction and Molecular Targeted Therapy, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Liang Chen
- Laboratory of Signal Transduction and Molecular Targeted Therapy, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xiaohui Pang
- Department of Medical Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Weibing Leng
- Department of Medical Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Feng Bi
- Department of Medical Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
50
|
Ding XM. MicroRNAs: regulators of cancer metastasis and epithelial-mesenchymal transition (EMT). CHINESE JOURNAL OF CANCER 2013; 33:140-7. [PMID: 24016392 PMCID: PMC3966144 DOI: 10.5732/cjc.013.10094] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Tumor metastasis is the main cause of death in patients with solid tumors. The epithelial-mesenchymal transition (EMT) process, in which epithelial cells are converted into mesenchymal cells, is frequently activated during cancer invasion and metastasis. MicroRNAs (miRNAs) are small, non-coding RNAs that provide widespread expressional control by repressing mRNA translation and inducing mRNA degradation. The fundamental roles of miRNAs in tumor growth and metastasis have been increasingly well recognized. A growing number of miRNAs are reported to regulate tumor invasion/metastasis through EMT-related and/or non-EMT- related mechanisms. In this review, we discuss the functional role and molecular mechanism of miRNAs in regulating cancer metastasis and EMT.
Collapse
Affiliation(s)
- Xiang-Ming Ding
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|