1
|
Xu T, Hu Y, Zhao Y, Qi Y, Zhang S, Li P. Hsa_circ_0046534 accelerates esophageal squamous cell carcinoma proliferation and metastasis via regulating MMP2 expression by sponging miR-339-5p. Cell Signal 2023; 112:110906. [PMID: 37748540 DOI: 10.1016/j.cellsig.2023.110906] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023]
Abstract
Esophageal cancer is one of the most malignant gastrointestinal malignancies. Esophageal squamous cell carcinoma (ESCC) is the most common type of esophageal cancer in China. In recent years, with developments in basic medicine, it has been demonstrated that the abnormal expression of circular RNA (circRNA) plays an important role in the progression and prognosis of ESCC. This study explored the role and downstream molecular mechanisms of circ_0046534 in ESCC. We identified circ_0046534, which was found to be highly expressed in ESCC tissues and cells. Moreover, the downregulation of circ_0046534 inhibited the proliferation, migration and invasion of ESCC cells and the growth and metastasis of ESCC tumours in vivo. Dual-luciferase reporter assays showed that circ_0046534 sponged miR-339-5p and inhibited the expression of miR-339-5p. Furthermore, MMP2 was identified to be a direct target of miR-339-5p through bioinformatics analysis. In addition, the knockdown of circ_0046534 inhibited the expression of the downstream target gene matrix metalloproteinase 2 (MMP2) by releasing the adsorption of miR-339-5p. Taken together, this study demonstrated that silencing circ_0046534 inhibited the growth and metastasis of ESCC through the miR-339-5p/MMP2 pathway. Circ_0046534 is expected to serve as a new biomarker and target for ESCC and provide a new direction for its diagnosis and treatment.
Collapse
Affiliation(s)
- Tingting Xu
- Department of Pathophysiology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; Department of Pathology, Henan Provincial People's Hospital, Zhengzhou 450001, China
| | - Yanglin Hu
- Department of Pathophysiology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yanyan Zhao
- Department of Pathophysiology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yanan Qi
- Department of Pathophysiology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Shanfeng Zhang
- Department of Basic Medical Experimental Center, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Pei Li
- Department of Pathophysiology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; Department of Basic Medical Experimental Center, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
2
|
Xu Y, Xiong Q, Yang Y, Weng N, Li J, Liu J, Yang X, Zeng Z, Zhang Z, Zhu Q. Serum Nardilysin as a Prognostic Biomarker in Pancreatic Ductal Adenocarcinoma. J Clin Med 2022; 11:jcm11113101. [PMID: 35683488 PMCID: PMC9181681 DOI: 10.3390/jcm11113101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/20/2022] [Accepted: 05/25/2022] [Indexed: 11/29/2022] Open
Abstract
Background: Nardilysin, (N-arginine dibasic convertase, NRDC) has been reported to play an important role in cancer progression, and is associated with tumor proliferation signals and inflammatory signals, such as tumor necrosis factor-a (TNF-a) and heparin-binding epidermal growth factor-like growth factor (HB-EGF), through the activation of disintegrin and metalloproteinase (ADAM) proteases. NRDC has recently been revealed to be involved in the tumorigenesis of various types of cancer, including intrahepatic cholangiocarcinoma, malignant cerebral infarction, esophageal squamous cell carcinoma, and gastric cancer. However, the expression profiles and biological relevance of NRDC in pancreatic ductal adenocarcinoma have rarely been reported. Methods: We analyzed the NRDC expression profile in pancreatic ductal adenocarcinoma by enzyme-linked immunosorbent assay (ELISA) and identified NRDC as a circulating biomarker in the serum of 112 pancreatic ductal adenocarcinoma patients. The diagnostic value of NRDC was analyzed by the area under the curve (AUC) and the receiver operating characteristic (ROC) test. Results: Our results demonstrated that the clinical prognosis significance of NRDC with the clinical characteristics in pancreatic ductal adenocarcinoma (PDAC). NRDC was notably decreased in PDAC patient serum compared with the control group (p < 0.001). Furthermore, the present study found that the NRDC expression level was correlated with T grade (p < 0.001), metastasis(p < 0.001), differentiation(p < 0.001), and TNM stage (p = 0.011). Further bioinformatics analysis revealed that NRDC correlated with proliferation and migration pathways; in particular, it mediated cell-matrix adhesion-dependent activation in pancreatic ductal adenocarcinoma. Conclusions: Serum NRDC may play a useful diagnostic biomarker to evaluate the aggressive clinical features in PAAD patients.
Collapse
|
3
|
Kodama M, Shimura H, Tien JC, Newberg JY, Kodama T, Wei Z, Rangel R, Yoshihara K, Kuruma A, Nakae A, Hashimoto K, Sawada K, Kimura T, Jenkins NA, Copeland NG. Sleeping Beauty Transposon Mutagenesis Identifies Genes Driving the Initiation and Metastasis of Uterine Leiomyosarcoma. Cancer Res 2021; 81:5413-5424. [PMID: 34475109 DOI: 10.1158/0008-5472.can-21-0356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 07/29/2021] [Accepted: 09/01/2021] [Indexed: 11/16/2022]
Abstract
Uterine leiomyosarcoma (ULMS) is a malignancy, which arises from the uterine smooth muscle. Because of its rarity, aggressive nature, and extremely poor prognosis, the molecular mechanisms driving ULMS remain elusive. To identify candidate cancer genes (CCG) driving ULMS, we conducted an in vivo Sleeping Beauty (SB) transposon mutagenesis screen in uterine myometrium-specific, PTEN knockout, KRAS mutant (PTEN KO/KRAS) mice. ULMS quickly developed in SB PTEN KO/KRAS mice, but not in PTEN KO/KRAS mice, demonstrating the critical importance of SB mutagenesis for driving ULMS in this model. Subsequent sequencing of SB insertion sites in these tumors identified 19 ULMS CCGs that were significantly enriched in known cancer genes. Among them, Zfp217 and Sfmbt2 functioned at early stages of tumor initiation and appeared to be oncogenes. Expression of ZNF217, the human homolog of ZFP217, was shown to be elevated in human ULMS compared with paired normal uterine smooth muscle, where it negatively correlated with patient prognosis. Inhibition of ZNF217 suppressed, whereas overexpression induced, proliferation, survival, migration, and stemness of human ULMS. In a second ex vivo ULMS SB metastasis screen, three CCGs were identified that may drive ULMS metastasis to the lung. One of these CCGs, Nrd1 (NRDC in humans), showed stronger expression in human metastatic tumors compared with primary ULMS and negatively associated with patient survival. NRDC knockdown impaired migration and adhesion without affecting cell proliferation, whereas overexpression had the opposite effect. Together, these results reveal novel mechanism driving ULMS tumorigenesis and metastasis and identify ZNF217 and NRDC as potential targets for ULMS therapy. SIGNIFICANCE: An in vivo Sleeping Beauty transposon mutagenesis screen identifies candidate cancer genes that drive initiation and progression of uterine leiomyosarcoma and may serve as therapeutic targets.
Collapse
Affiliation(s)
- Michiko Kodama
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas. .,Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hiroko Shimura
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Jean C Tien
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas.,Department of Pathology, Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan
| | - Justin Y Newberg
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas
| | - Takahiro Kodama
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas.,Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Zhubo Wei
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas.,Center for Genomic and Precision Medicine, Institute of Biosciences and Technology, Texas A&M University, Houston, Texas
| | - Roberto Rangel
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas.,Department of Head and Neck Surgery, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kosuke Yoshihara
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Airi Kuruma
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Aya Nakae
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kae Hashimoto
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kenjiro Sawada
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tadashi Kimura
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Nancy A Jenkins
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas.,Genetics Department, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Neal G Copeland
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas. .,Genetics Department, University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
4
|
Miao Y, Wang X, Lai Y, Lin W, Huang Y, Yin H, Hou R, Zhang F. Mitochondrial calcium uniporter promotes cell proliferation and migration in esophageal cancer. Oncol Lett 2021; 22:686. [PMID: 34434285 PMCID: PMC8335723 DOI: 10.3892/ol.2021.12947] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 06/14/2021] [Indexed: 12/20/2022] Open
Abstract
Increasing evidence has suggested that mitochondrial calcium uniporter (MCU) is involved in various types of cancer. However, its functions remain unclear in esophageal cancer. The aim of the present study was to explore its abnormal expression and clinical implications in esophageal cancer. A total of 110 patients with esophageal cancer were enrolled in the study. Western blotting was performed to examine the protein expression levels of MCU in 8 pairs of esophageal cancer and adjacent normal tissues. Using immunochemistry, a total of 110 esophageal cancer specimens were analyzed to identify the association between MCU expression and clinicopathological features of patients with esophageal cancer. Furthermore, immunofluorescence of MCU was performed. Pearson's correlation analysis was performed between MCU and hypoxia inducible factor (HIF)-1α/VEGF/E-cadherin/Vimentin expression based on western blotting. After KYSE-150 and TE-1 cells were treated with the MCU agonist Spermine and a small interfering RNA against MCU (si-MCU), a series of functional assays were performed, including Cell Counting Kit-8, colony formation and Transwell assays. The results revealed that, compared with in adjacent normal tissues, MCU was highly expressed in esophageal cancer tissues. MCU expression was significantly associated with depth of invasion, lymph node metastasis, TNM stage and distant metastasis. Moreover, MCU was significantly correlated with HIF-1α/VEGF/E-cadherin/Vimentin in esophageal cancer tissues. MCU overexpression promoted VEGF, MMP2, Vimentin and N-cadherin expression, while it inhibited E-cadherin expression in KYSE-150 and TE-1 cells, and opposite results were observed after transfection with si-MCU. Furthermore, MCU overexpression accelerated the proliferation and migration of KYSE-150 and TE-1 cells. Thus, the current findings suggested that high MCU expression may participate in cell proliferation, migration and epithelial-mesenchymal transition in esophageal cancer.
Collapse
Affiliation(s)
- Yu Miao
- Department of Gastroenterology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750000, P.R. China
| | - Xiaofei Wang
- Department of Pathology, North China University of Science and Technology Affiliated Hospital, Tangshan, Hebei 063000, P.R. China
| | - Yafang Lai
- Department of Gastroenterology, Ordos Center Hospital, Ordos, Inner Mongolia 017000, P.R. China
| | - Wan Lin
- Department of Gastroenterology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750000, P.R. China
| | - Ying Huang
- Department of Gastroenterology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750000, P.R. China
| | - Hua Yin
- Department of Gastroenterology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750000, P.R. China
| | - Ruirui Hou
- Department of Gastroenterology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750000, P.R. China
| | - Feixiong Zhang
- Department of Gastroenterology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750000, P.R. China
| |
Collapse
|
5
|
Preeclampsia-Associated lncRNA INHBA-AS1 Regulates the Proliferation, Invasion, and Migration of Placental Trophoblast Cells. MOLECULAR THERAPY-NUCLEIC ACIDS 2020; 22:684-695. [PMID: 33230466 PMCID: PMC7585871 DOI: 10.1016/j.omtn.2020.09.033] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 09/25/2020] [Indexed: 02/06/2023]
Abstract
Preeclampsia is believed to be caused by impaired placentation with insufficient trophoblast invasion, leading to impaired uterine spiral artery remodeling and angiogenesis. However, the underlying molecular mechanism remains unknown. We recently carried out transcriptome profiling of placental long noncoding RNAs (lncRNAs) and identified 383 differentially expressed lncRNAs in early-onset severe preeclampsia. Here, we are reporting our identification of lncRNA INHBA-AS1 as a potential causal factor of preeclampsia and its downstream pathways that may be involved in placentation. We found that INHBA-AS1 was upregulated in patients and positively correlated with clinical severity. We systematically searched for potential INHBA-AS1-binding transcription factors and their targets in databases and found that the targets were enriched with differentially expressed genes in the placentae of patients. We further demonstrated that the lncRNA INHBA-AS1 inhibited the invasion and migration of trophoblast cells through restraining the transcription factor CENPB from binding to the promoter of TNF receptor-associated factor 1 (TRAF1). Therefore, we have identified the dysregulated pathway "INHBA-AS1-CENPB-TRAF1" as a contributor to the pathogenesis of preeclampsia through prohibiting the proliferation, invasion, and migration of trophoblasts during placentation.
Collapse
|
6
|
Weng NQ, Chi J, Wen J, Mai SJ, Zhang MY, Huang L, Liu J, Yang XZ, Xu GL, Fu JH, Wang HY. The prognostic value of a seven-lncRNA signature in patients with esophageal squamous cell carcinoma: a lncRNA expression analysis. J Transl Med 2020; 18:47. [PMID: 32005248 PMCID: PMC6995134 DOI: 10.1186/s12967-020-02224-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 01/10/2020] [Indexed: 12/15/2022] Open
Abstract
Background Long non-coding RNAs (lncRNAs) have been reported to be prognostic biomarkers in many types of cancer. We aimed to identify a lncRNA signature that can predict the prognosis in patients with esophageal squamous cell carcinoma (ESCC). Methods Using a custom microarray, we retrospectively analyzed lncRNA expression profiles in 141 samples of ESCC and 81 paired non-cancer specimens from Sun Yat-Sen University Cancer Center (Guangzhou, China), which were used as a training cohort to identify a signature associated with clinical outcomes. Then we conducted quantitative RT-PCR in another 103 samples of ESCC from the same cancer center as an independent cohort to verify the signature. Results Microarray analysis showed that there were 338 lncRNAs significantly differentially expressed between ESCC and non-cancer esophagus tissues in the training cohort. From these differentially expressed lncRNAs, we found 16 lncRNAs associated with overall survival (OS) of ESCC patients using Cox regression analysis. Then a 7-lncRNA signature for predicting survival was identified from the 16 lncRNAs, which classified ESCC patients into high-risk and low-risk groups. Patients with high-risk have shorter OS (HR: 3.555, 95% CI 2.195–5.757, p < 0.001) and disease-free survival (DFS) (HR: 2.537, 95% CI 1.646–3.909, p < 0.001) when compared with patients with low-risk in the training cohort. In the independent cohort, the 7 lncRNAs were detected by qRT-PCR and used to compute risk score for the patients. The result indicates that patients with high risk also have significantly worse OS (HR = 2.662, 95% CI 1.588–4.464, p < 0.001) and DFS (HR 2.389, 95% CI 1.447–3.946, p < 0.001). The univariate and multivariate Cox regression analyses indicate that the signature is an independent factor for predicting survival of patients with ESCC. Combination of the signature and TNM staging was more powerful in predicting OS than TNM staging alone in both the training (AUC: 0.772 vs 0.681, p = 0.002) and independent cohorts (AUC: 0.772 vs 0.660, p = 0.003). Conclusions The 7-lncRNA signature is a potential prognostic biomarker in patients with ESCC and may help in treatment decision when combined with the TNM staging system.
Collapse
Affiliation(s)
- Nuo-Qing Weng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, Building 2, Room 704, Guzngzhou, 510060, China.,Guangdong Esophageal Cancer Institute, Guangzhou, 510060, China
| | - Jun Chi
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, Building 2, Room 704, Guzngzhou, 510060, China.,Guangdong Esophageal Cancer Institute, Guangzhou, 510060, China.,Department of Endoscopy and Laser, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Jing Wen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, Building 2, Room 704, Guzngzhou, 510060, China.,Guangdong Esophageal Cancer Institute, Guangzhou, 510060, China.,Department of Thoracic Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Shi-Juan Mai
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, Building 2, Room 704, Guzngzhou, 510060, China.,Guangdong Esophageal Cancer Institute, Guangzhou, 510060, China
| | - Mei-Yin Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, Building 2, Room 704, Guzngzhou, 510060, China.,Guangdong Esophageal Cancer Institute, Guangzhou, 510060, China
| | - Long Huang
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ji Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, Building 2, Room 704, Guzngzhou, 510060, China.,Guangdong Esophageal Cancer Institute, Guangzhou, 510060, China
| | - Xian-Zi Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, Building 2, Room 704, Guzngzhou, 510060, China.,Guangdong Esophageal Cancer Institute, Guangzhou, 510060, China
| | - Guo-Liang Xu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, Building 2, Room 704, Guzngzhou, 510060, China. .,Guangdong Esophageal Cancer Institute, Guangzhou, 510060, China. .,Department of Endoscopy and Laser, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.
| | - Jian-Hua Fu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, Building 2, Room 704, Guzngzhou, 510060, China. .,Guangdong Esophageal Cancer Institute, Guangzhou, 510060, China. .,Department of Thoracic Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.
| | - Hui-Yun Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, Building 2, Room 704, Guzngzhou, 510060, China. .,Guangdong Esophageal Cancer Institute, Guangzhou, 510060, China.
| |
Collapse
|
7
|
Yu Y, Li Z, Huang C, Fang H, Zhao F, Zhou Y, Pan X, Li Q, Zhuang Y, Chen L, Xu J, Wang W. Integrated analysis of genomic and transcriptomic profiles identified a prognostic immunohistochemistry panel for esophageal squamous cell cancer. Cancer Med 2019; 9:575-585. [PMID: 31793228 PMCID: PMC6970036 DOI: 10.1002/cam4.2744] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/26/2019] [Accepted: 11/15/2019] [Indexed: 12/21/2022] Open
Abstract
Background The poor outcome of patients with esophageal squamous cell carcinoma (ESCC) highlights the importance of the identification of novel effective prognostic biomarkers. We aimed to identify a clinically applicable prognostic immunohistochemistry (IHC) panel for ESCC. Methods An integrated analysis was performed to screen and establish a prognostic panel using exome sequencing profile from 81 pairs of ESCC samples and RNA expression microarray data from 119 ESCC subjects. Two independent ESCC cohorts were recruited as training and validation groups to test the prognostic value. Results Three genes were selected, namely, ANO1, GAL, and MMP3, which were aberrantly expressed in ESCC tumor tissues (P < .001). Among them, ANO1 and MMP3 were reserved for the construction of the prognostic panel due to their significant association with the prognosis of ESCC patients (P = .015 and P < .001). Patients with both ANO1+ and MMP3+ had a poorer prognosis than that with ANO1−/MMP3+, ANO1+/MMP3−, or ANO1−/MMP3 − in both the training set and validation set (P < .001). Receiver operating characteristic analysis showed that the combination of IHC panel and eighth American Joint Commission on Cancer staging yielded a better prognostic predictive efficacy compared with the two indexes alone (P < .001, area under curve: 0.752). Finally, a nomogram was created by integrating the IHC markers and clinicopathological risk factors to predict prognosis with a C‐index of 0.695 (95% confidence interval: 0.657‐0.734). Conclusion Using an integrated multistage screening strategy, we identified and validated a valuable prognostic IHC panel for ESCC.
Collapse
Affiliation(s)
- Yue Yu
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Department of Thoracic Surgery, Chinese Academy of Medical Sciences Cancer Institute and Hospital, Beijing, China
| | - Zhihua Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Chenjun Huang
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Haisheng Fang
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Fei Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yue Zhou
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xianglong Pan
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qifan Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yu Zhuang
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Liang Chen
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jing Xu
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Wang
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
8
|
Ikuta K, Fukuda A, Ogawa S, Masuo K, Goto N, Hiramatsu Y, Tsuda M, Kimura Y, Matsumoto Y, Kimura Y, Maruno T, Kanda K, Nishi K, Takaori K, Uemoto S, Takaishi S, Chiba T, Nishi E, Seno H. Nardilysin inhibits pancreatitis and suppresses pancreatic ductal adenocarcinoma initiation in mice. Gut 2019; 68:882-892. [PMID: 29798841 DOI: 10.1136/gutjnl-2017-315425] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 04/26/2018] [Accepted: 04/27/2018] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Nardilysin (NRDC), a zinc peptidase, exhibits multiple localisation-dependent functions including as an enhancer of ectodomain shedding in the extracellular space and a transcriptional coregulator in the nucleus. In this study, we investigated its functional role in exocrine pancreatic development, homeostasis and the formation of pancreatic ductal adenocarcinoma (PDA). DESIGN We analysed Ptf1a-Cre; Nrdcflox/flox mice to investigate the impact of Nrdc deletion. Pancreatic acinar cells were isolated from Nrdcflox/flox mice and infected with adenovirus expressing Cre recombinase to examine the impact of Nrdc inactivation. Global gene expression in Nrdc-cKO pancreas was analysed compared with wild-type pancreas by microarray analysis. We also analysed Ptf1a-Cre; KrasG12D; Nrdcflox/flox mice to investigate the impact of Nrdc deletion in the context of oncogenic Kras. A total of 51 human samples of pancreatic intraepithelial lesions (PanIN) and PDA were examined by immunohistochemistry for NRDC. RESULTS We found that pancreatic deletion of Nrdc leads to spontaneous chronic pancreatitis concomitant with acinar-to-ductal conversion, increased apoptosis and atrophic pancreas in mice. Acinar-to-ductal conversion was observed mainly through a non-cell autonomous mechanism, and the expression of several chemokines was significantly increased in Nrdc-null pancreatic acinar cells. Furthermore, pancreatic deletion of Nrdc dramatically accelerated KrasG12D -driven PanIN and subsequent PDA formation in mice. These data demonstrate a previously unappreciated anti-inflammatory and tumour suppressive functions of Nrdc in the pancreas in mice. Finally, absence of NRDC expression was observed in a subset of human PanIN and PDA. CONCLUSION Nrdc inhibits pancreatitis and suppresses PDA initiation in mice.
Collapse
Affiliation(s)
- Kozo Ikuta
- Department of Gastoenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Akihisa Fukuda
- Department of Gastoenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Satoshi Ogawa
- Department of Gastoenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kenji Masuo
- Department of Gastoenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Norihiro Goto
- Department of Gastoenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yukiko Hiramatsu
- Department of Gastoenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Motoyuki Tsuda
- Department of Gastoenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yoshito Kimura
- Department of Gastoenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yoshihide Matsumoto
- Department of Gastoenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yuto Kimura
- Department of Gastoenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takahisa Maruno
- Department of Gastoenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Keitaro Kanda
- Department of Gastoenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kiyoto Nishi
- Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kyoichi Takaori
- Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Department of Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Shinji Uemoto
- Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Department of Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Shigeo Takaishi
- Laboratory for Malignancy Control Research (DSK project), Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | - Eiichiro Nishi
- Department of Pharmacology, Shiga University of Medical Science, Shiga, Japan
| | - Hiroshi Seno
- Department of Gastoenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
9
|
Li H, Yang F, Chai L, Zhang L, Li S, Xu Z, Kong L. CCAAT/Enhancer Binding Protein β-Mediated MMP3 Upregulation Promotes Esophageal Squamous Cell Cancer Invasion In Vitro and Is Associated with Metastasis in Human Patients. Genet Test Mol Biomarkers 2019; 23:304-309. [PMID: 30969151 DOI: 10.1089/gtmb.2018.0291] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Aims: Metastasis is a significant obstacle to curing esophageal squamous cell carcinoma (ESCC). The CCAAT/enhancer binding protein β (C/EBPβ) and matrix metalloproteinase 3 (MMP3) are thought to play key roles in cancer invasion and metastasis. In this study, we aimed to detect whether C/EBPβ-mediated tumor invasion was dependent on MMP3. In addition, we determined whether C/EBPβ upregulation was associated with MMP3 levels and metastatic status in patients with ESCC. Materials and Methods: A total of 126 patients with ESCC were recruited for this study. The mRNA and protein levels of C/EBPβ and MMP3 in ESCC cell lines and specimens from ESCC patient were determined by reverse transcription-polymerase chain reaction and western blot, respectively. Tumor cell invasion was analyzed using an in vitro Matrigel Invasion Assay. The correlation between C/EBPβ and MMP3 expression was determined by Pearson's correlation analysis. Results: Both mRNA and protein levels of MMP3 were upregulated by C/EBPβ overexpression and downregulated by C/EBPβ siRNA in KYSE150 cell cultures. The promotion of ESCC cell invasion through C/EBPβ was inhibited by MMP3 siRNA. The level of C/EBPβ was correlated with MMP3 and metastatic status in patients with ESCC. Conclusions: C/EBPβ upregulation promoted tumor cell invasion in an MMP3-dependent manner in vitro and was associated with metastatic status in ESCC.
Collapse
Affiliation(s)
- Hong Li
- 1 Department of Oncology, Henan Cancer Hospital, Zhengzhou University, Zhengzhou, Henan Province, People's Republic of China
| | - Fan Yang
- 2 Department of Computer Science, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Li Chai
- 3 Department of Clinical Laboratory, Tongxu County People's Hospital, Tongxu, Henan Province, People's Republic of China
| | - Liguo Zhang
- 4 Department of Thoracic Surgery, Xinxiang City Center Hospital, Xinxiang, Henan Province, People's Republic of China
| | - Sha Li
- 5 Department of Molecular Laboratory, Zhengzhou Haipu Medical Laboratory, Zhengzhou, People's Republic of China
| | - Ziguang Xu
- 6 Department of Pathology, Henan Provincial People's Hospital, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Lingfei Kong
- 6 Department of Pathology, Henan Provincial People's Hospital, Zhengzhou University, Zhengzhou, People's Republic of China
| |
Collapse
|
10
|
Yoh T, Hatano E, Kasai Y, Fuji H, Nishi K, Toriguchi K, Sueoka H, Ohno M, Seo S, Iwaisako K, Taura K, Yamaguchi R, Kurokawa M, Fujimoto J, Kimura T, Uemoto S, Nishi E. Serum Nardilysin, a Surrogate Marker for Epithelial-Mesenchymal Transition, Predicts Prognosis of Intrahepatic Cholangiocarcinoma after Surgical Resection. Clin Cancer Res 2019; 25:619-628. [PMID: 30352908 DOI: 10.1158/1078-0432.ccr-18-0124] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 07/21/2018] [Accepted: 10/19/2018] [Indexed: 11/16/2022]
Abstract
PURPOSE Few studies have investigated prognostic biomarkers in patients with intrahepatic cholangiocarcinoma (ICC). Nardilysin (NRDC), a metalloendopeptidase of the M16 family, has been suggested to play important roles in inflammation and several cancer types. We herein examined the clinical significance and biological function of NRDC in ICC.Experimental Design: We measured serum NRDC levels in 98 patients with ICC who underwent surgical resection in two independent cohorts to assess its prognostic impact. We also analyzed NRDC mRNA levels in cancerous tissue specimens from 43 patients with ICC. We investigated the roles of NRDC in cell proliferation, migration, gemcitabine sensitivity, and gene expression in ICC cell lines using gene silencing. RESULTS High serum NRDC levels were associated with shorter overall survival and disease-free survival in the primary (n = 79) and validation (n = 19) cohorts. A correlation was observed between serum protein levels and cancerous tissue mRNA levels of NRDC (Spearman ρ = 0.413; P = 0.006). The gene knockdown of NRDC in ICC cell lines attenuated cell proliferation, migration, and tumor growth in xenografts, and increased sensitivity to gemcitabine. The gene knockdown of NRDC was also accompanied by significant changes in the expression of several epithelial-mesenchymal transition (EMT)-related genes. Strong correlations were observed between the mRNA levels of NRDC and EMT-inducing transcription factors, ZEB1 and SNAI1, in surgical specimens from patients with ICC. CONCLUSIONS Serum NRDC, a possible surrogate marker reflecting the EMT state in primary tumors, predicts the outcome of ICC after surgical resection.
Collapse
Affiliation(s)
- Tomoaki Yoh
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Etsuro Hatano
- Department of Surgery, Hyogo College of Medicine, Nishinomiya, Japan.
| | - Yosuke Kasai
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroaki Fuji
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kiyoto Nishi
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kan Toriguchi
- Department of Surgery, Hyogo College of Medicine, Nishinomiya, Japan
| | - Hideaki Sueoka
- Department of Surgery, Hyogo College of Medicine, Nishinomiya, Japan
| | - Mikiko Ohno
- Department of Pharmacology, Shiga University of Medical Science, Otsu, Japan
| | - Satoru Seo
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Keiko Iwaisako
- Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Kojiro Taura
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | - Jiro Fujimoto
- Department of Surgery, Hyogo College of Medicine, Nishinomiya, Japan
| | - Takeshi Kimura
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shinji Uemoto
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Eiichiro Nishi
- Department of Pharmacology, Shiga University of Medical Science, Otsu, Japan.
| |
Collapse
|
11
|
Li Y, Li J, Luo M, Zhou C, Shi X, Yang W, Lu Z, Chen Z, Sun N, He J. Novel long noncoding RNA NMR promotes tumor progression via NSUN2 and BPTF in esophageal squamous cell carcinoma. Cancer Lett 2018; 430:57-66. [PMID: 29763634 DOI: 10.1016/j.canlet.2018.05.013] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 05/05/2018] [Accepted: 05/10/2018] [Indexed: 01/20/2023]
Abstract
Long noncoding RNAs (lncRNA) have been implicated in cancer but most of them remain largely unstudied. Here, we identified a novel NSUN2 methylated lncRNA (NMR), which was significantly upregulated in esophageal squamous cell carcinoma (ESCC), functioned as a key regulator of ESCC tumor metastasis and drug resistance. Upregulation of NMR correlated with tumor metastasis and indicated poor overall survival in ESCC patients. Functionally, NMR could promote tumor cell migration and invasion, inhibit cisplatin-induced apoptosis and increase drug resistance in ESCC cells. Mechanistically, transcription of NMR could be upregulated by NF-κB activation after IL-1β and TNF-α treatment. NMR was methylated by NSUN2 and might competitively inhibit methylation of potential mRNAs. NMR could directly bind to chromatin regulator BPTF, and potentially promote MMP3 and MMP10 expression by ERK1/2 pathway through recruiting BPTF to chromatin. Taken together, NMR functions as an oncogenic gene and may serve as new biomarker and therapeutic target in ESCC.
Collapse
Affiliation(s)
- Yuan Li
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jiagen Li
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Mei Luo
- Central Laboratory, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Chengcheng Zhou
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xuejiao Shi
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Wenhui Yang
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi, 030001, China; Tumor Hospital of Shanxi Province, Taiyuan, Shanxi, 030013, China
| | - Zhiliang Lu
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zhaoli Chen
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Nan Sun
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
12
|
Zhang S, Zhang H, Yu L. HMGA2 promotes glioma invasion and poor prognosis via a long-range chromatin interaction. Cancer Med 2018; 7:3226-3239. [PMID: 29733521 PMCID: PMC6051173 DOI: 10.1002/cam4.1534] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 02/27/2018] [Accepted: 04/09/2018] [Indexed: 12/15/2022] Open
Abstract
To identify the function and underlying mechanisms of HMGA2 on the prognosis and invasion of gliomas, HMGA2 was detected by immunohistochemistry. The Kaplan‐Meier and Cox's regression analysis results showed that higher HMGA2 level predicted the poorer outcomes of glioma patients. ChIP‐qPCR, DNA electrophoretic mobility shift assay, chromosome conformation capture, and co‐immunoprecipitation were applied to identify HMGA2‐activated target sites, which were further verified by mRNA and protein expression detection. Transwell and orthotopic implantation were used to investigate the roles of HMGA2 in glioma cells. HMGA2 shRNA transfection inhibited glioblastoma invasion. Mechanistically, we first discovered that HMGA2, together with GCN5, facilitated the invasion of glioma cells via inducing chromatin conformational remodeling of the MMP2 gene promoter and epigenetically activating MMP2 gene transcription. Our results indicated that HMGA2, as a novel GCN5 recognition partner and histone acetylation modulator, may be novel prognostic indicator and promising glioma treatment target.
Collapse
Affiliation(s)
- Shanshan Zhang
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Huibian Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Lin Yu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| |
Collapse
|
13
|
Kanda K, Sakamoto J, Matsumoto Y, Ikuta K, Goto N, Morita Y, Ohno M, Nishi K, Eto K, Kimura Y, Nakanishi Y, Ikegami K, Yoshikawa T, Fukuda A, Kawada K, Sakai Y, Ito A, Yoshida M, Kimura T, Chiba T, Nishi E, Seno H. Nardilysin controls intestinal tumorigenesis through HDAC1/p53-dependent transcriptional regulation. JCI Insight 2018; 3:91316. [PMID: 29669932 DOI: 10.1172/jci.insight.91316] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 03/20/2018] [Indexed: 02/06/2023] Open
Abstract
Colon cancer is a complex disease affected by a combination of genetic and epigenetic factors. Here we demonstrate that nardilysin (N-arginine dibasic convertase; NRDC), a metalloendopeptidase of the M16 family, regulates intestinal tumorigenesis via its nuclear functions. NRDC is highly expressed in human colorectal cancers. Deletion of the Nrdc gene in ApcMin mice crucially suppressed intestinal tumor development. In ApcMin mice, epithelial cell-specific deletion of Nrdc recapitulated the tumor suppression observed in Nrdc-null mice. Moreover, epithelial cell-specific overexpression of Nrdc significantly enhanced tumor formation in ApcMin mice. Notably, epithelial NRDC controlled cell apoptosis in a gene dosage-dependent manner. In human colon cancer cells, nuclear NRDC directly associated with HDAC1, and controlled both acetylation and stabilization of p53, with alterations of p53 target apoptotic factors. These findings demonstrate that NRDC is critically involved in intestinal tumorigenesis through its epigenetic regulatory function, and targeting NRDC may lead to a novel prevention or therapeutic strategy against colon cancer.
Collapse
Affiliation(s)
| | - Jiro Sakamoto
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | - Kozo Ikuta
- Department of Gastroenterology and Hepatology, and
| | | | - Yusuke Morita
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Mikiko Ohno
- Department of Pharmacology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Kiyoto Nishi
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Koji Eto
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto, Japan
| | - Yuto Kimura
- Department of Gastroenterology and Hepatology, and
| | | | | | | | | | - Kenji Kawada
- Department of Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yoshiharu Sakai
- Department of Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Akihiro Ito
- Chemical Genetics Laboratory, RIKEN, Wako, Saitama, Japan.,Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, Saitama, Japan
| | - Minoru Yoshida
- Chemical Genetics Laboratory, RIKEN, Wako, Saitama, Japan.,Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, Saitama, Japan
| | - Takeshi Kimura
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | - Eiichiro Nishi
- Department of Pharmacology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Hiroshi Seno
- Department of Gastroenterology and Hepatology, and
| |
Collapse
|
14
|
Guan SP, Lam ATL, Newman JP, Chua KLM, Kok CYL, Chong ST, Chua MLK, Lam PYP. Matrix metalloproteinase-1 facilitates MSC migration via cleavage of IGF-2/IGFBP2 complex. FEBS Open Bio 2017; 8:15-26. [PMID: 29321953 PMCID: PMC5757182 DOI: 10.1002/2211-5463.12330] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 09/26/2017] [Accepted: 09/28/2017] [Indexed: 12/16/2022] Open
Abstract
The specific mechanism underlying the tumor tropism of human mesenchymal stem cells (MSCs) for cancer is not well defined. We previously showed that the migration potential of MSCs correlated with the expression and protease activity of matrix metalloproteinase (MMP)‐1. Furthermore, highly tumor‐tropic MSCs expressed higher levels of MMP‐1 and insulin‐like growth factor (IGF)‐2 than poorly migrating MSCs. In this study, we examined the functional roles of IGF‐2 and MMP‐1 in mediating the tumor tropism of MSCs. Exogenous addition of either recombinant IGF‐2 or MMP‐1 could stimulate MSC migration. The correlation between IGF‐2, MMP‐1 expression, and MSC migration suggests that MMP‐1 may play a role in regulating MSC migration via the IGF‐2 signaling cascade. High concentrations of IGF binding proteins (IGFBPs) can inhibit IGF‐stimulated functions by blocking its binding to its receptors and proteolysis of IGFBP is an important mechanism for the regulation of IGF signaling. We thus hypothesized that MMP‐1 acts as an IGFBP2 proteinase, resulting in the cleavage of IGF‐2/IGFBP2 complex and extracellular release of free IGF‐2. Indeed, our results showed that conditioned media from highly migrating MSCs, which expressed high levels of MMP‐1, cleaved the IGF‐2/IGFBP2 complex. Taken together, these results showed that the MMP‐1 secreted by highly tumor‐tropic MSCs cleaved IGF‐2/IGFBP2 complex. Free IGF‐2 released from the complex may facilitate MSC migration toward tumor.
Collapse
Affiliation(s)
- Shou P Guan
- Laboratory of Cancer Gene Therapy, Cellular and Molecular Research Division Humphrey Oei Institute of Cancer Research National Cancer Center Singapore Singapore
| | - Alan T L Lam
- Laboratory of Cancer Gene Therapy, Cellular and Molecular Research Division Humphrey Oei Institute of Cancer Research National Cancer Center Singapore Singapore.,Present address: BTIASTAR Centros Singapore
| | - Jennifer P Newman
- Laboratory of Cancer Gene Therapy, Cellular and Molecular Research Division Humphrey Oei Institute of Cancer Research National Cancer Center Singapore Singapore.,Present address: Lonza Biologics Tuas Pte Ltd Singapore
| | - Kevin L M Chua
- Division of Radiation Oncology National Cancer Center Singapore Singapore
| | - Catherine Y L Kok
- Laboratory of Cancer Gene Therapy, Cellular and Molecular Research Division Humphrey Oei Institute of Cancer Research National Cancer Center Singapore Singapore
| | - Siao T Chong
- Laboratory of Cancer Gene Therapy, Cellular and Molecular Research Division Humphrey Oei Institute of Cancer Research National Cancer Center Singapore Singapore
| | - Melvin L K Chua
- Division of Radiation Oncology National Cancer Center Singapore Singapore.,Oncology Academic Program Duke-NUS Graduate Medical School Singapore Singapore
| | - Paula Y P Lam
- Laboratory of Cancer Gene Therapy, Cellular and Molecular Research Division Humphrey Oei Institute of Cancer Research National Cancer Center Singapore Singapore.,Cancer and Stem Cells Biology Program Duke-NUS Graduate Medical School Singapore Singapore.,Department of Physiology Yong Loo Lin School of Medicine National University of Singapore Singapore
| |
Collapse
|
15
|
Morita Y, Ohno M, Nishi K, Hiraoka Y, Saijo S, Matsuda S, Kita T, Kimura T, Nishi E. Genome-wide profiling of nardilysin target genes reveals its role in epigenetic regulation and cell cycle progression. Sci Rep 2017; 7:14801. [PMID: 29093577 PMCID: PMC5665917 DOI: 10.1038/s41598-017-14942-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 10/18/2017] [Indexed: 11/28/2022] Open
Abstract
Post-translational histone modifications, such as acetylation and methylation, are prerequisites for transcriptional regulation. The metalloendopeptidase nardilysin (Nrdc) is a H3K4me2-binding protein that controls thermoregulation and β-cell functions through its transcriptional coregulator function. We herein combined high-throughput ChIP-seq and RNA-seq to achieve the first genome-wide identification of Nrdc target genes. A ChIP-seq analysis of immortalized mouse embryo fibroblasts (iMEF) identified 4053 Nrdc-binding sites, most of which were located in proximal promoter sites (2587 Nrdc-binding genes). Global H3K4me2 levels at Nrdc-binding promoters slightly increased, while H3K9ac levels decreased in the absence of Nrdc. Among Nrdc-binding genes, a comparative RNA-seq analysis identified 448 candidates for Nrdc target genes, among which cell cycle-related genes were significantly enriched. We confirmed decreased mRNA and H3K9ac levels at the promoters of individual genes in Nrdc-deficient iMEF, which were restored by the ectopic introduction of Nrdc. Reduced mRNA levels, but not H3K9ac levels were fully restored by the reintroduction of the peptidase-dead mutant of Nrdc. Furthermore, Nrdc promoted cell cycle progression at multiple stages, which enhanced cell proliferation in vivo. Collectively, our integrative studies emphasize the importance of Nrdc for maintaining a proper epigenetic status and cell growth.
Collapse
Affiliation(s)
- Yusuke Morita
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Mikiko Ohno
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan.,Department of Pharmacology, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, 520-2192, Japan
| | - Kiyoto Nishi
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Yoshinori Hiraoka
- Division of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Kobe Gakuin University, Chuo-ku, Kobe, 650-8586, Japan
| | - Sayaka Saijo
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Shintaro Matsuda
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Toru Kita
- Kobe Home Medical and Nursing Care Promotion Foundation, 14-1 Naka Ichiriyama, Kami Aza, Shimotani, Yamada-cho, Kita-ku, Kobe, 651-1102, Japan
| | - Takeshi Kimura
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Eiichiro Nishi
- Department of Pharmacology, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, 520-2192, Japan.
| |
Collapse
|
16
|
Kasai Y, Toriguchi K, Hatano E, Nishi K, Ohno M, Yoh T, Fukuyama K, Nishio T, Okuno M, Iwaisako K, Seo S, Taura K, Kurokawa M, Kunichika M, Uemoto S, Nishi E. Nardilysin promotes hepatocellular carcinoma through activation of signal transducer and activator of transcription 3. Cancer Sci 2017; 108:910-917. [PMID: 28207963 PMCID: PMC5448622 DOI: 10.1111/cas.13204] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 02/06/2017] [Accepted: 02/12/2017] [Indexed: 12/13/2022] Open
Abstract
Nardilysin (NRDC) is a metalloendopeptidase of the M16 family. We previously showed that NRDC activates inflammatory cytokine signaling, including interleukin‐6‐signal transducer and activator of transcription 3 (STAT3) signaling. NRDC has been implicated in the promotion of breast, gastric and esophageal cancer, as well as the development of liver fibrosis. In this study, we investigated the role of NRDC in the promotion of hepatocellular carcinoma (HCC), both clinically and experimentally. We found that NRDC expression was upregulated threefold in HCC tissue compared to the adjacent non‐tumor liver tissue, which was confirmed by immunohistochemistry and western blotting. We also found that high serum NRDC was associated with large tumor size (>3 cm, P = 0.016) and poor prognosis after hepatectomy (median survival time 32.0 vs 73.9 months, P = 0.003) in patients with hepatitis C (n = 120). Diethylnitrosamine‐induced hepatocarcinogenesis was suppressed in heterozygous NRDC‐deficient mice compared to their wild‐type littermates. Gene silencing of NRDC with miRNA diminished the growth of Huh‐7 and Hep3B spheroids in vitro. Notably, phosphorylation of STAT3 was decreased in NRDC‐depleted Huh‐7 spheroids compared to control spheroids. The effect of a STAT3 inhibitor (S3I‐201) on the growth of Huh‐7 spheroids was reduced in NRDC‐depleted cells relative to controls. Our results show that NRDC is a promising prognostic marker for HCC in patients with hepatitis C, and that NRDC promotes tumor growth through activation of STAT3.
Collapse
Affiliation(s)
- Yosuke Kasai
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kan Toriguchi
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California, USA
| | - Etsuro Hatano
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Surgery, Hyogo College of Medicine, Nishinomiya, Japan
| | - Kiyoto Nishi
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Mikiko Ohno
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tomoaki Yoh
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Keita Fukuyama
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takahiro Nishio
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masayuki Okuno
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Keiko Iwaisako
- Department of Target Therapy and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Satoru Seo
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kojiro Taura
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | - Shinji Uemoto
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Eiichiro Nishi
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Pharmacology, Shiga University of Medical Science, Otsu, Japan
| |
Collapse
|
17
|
Segretain D, Gilleron J, Bacro JN, Di Marco M, Carette D, Pointis G. Ultrastructural localization and distribution of Nardilysin in mammalian male germ cells. Basic Clin Androl 2016; 26:5. [PMID: 27051521 PMCID: PMC4820967 DOI: 10.1186/s12610-016-0032-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 03/10/2016] [Indexed: 11/16/2022] Open
Abstract
Background NRD convertase, also termed Nardilysin, is a Zn++ metalloendopeptidase that specifically cleaves the N-terminus of arginine and lysine residues into dibasic moieties. Although this enzyme was found located within the testis, its function in male reproduction is largely unknown. In addition, the precise distribution of this enzyme within germ cells remains to be determined. Methods To answer these questions, we developed an immuno-gold electron microscopy analysis to detect Nardilysin at ultrastructural level in mice. In addition, we performed a quantitative analysis of these gold particles to statistically estimate the distribution of Nardilysin in the different subcellular compartments of differentiating late spermatids/spermatozoa. Results Expression of Nardilysin in wild-type mice was restricted to germ cells and markedly increased during the last steps of spermiogenesis. In elongated spermatids, we found the enzyme mainly localized in the cytoplasm, more precisely associated with two microtubular structures, the manchette and the axoneme. No labelling was detected over the membranous organelles of the spermatids. To test whether this localization is dependent of the functional microtubules organization of the flagella, we analysed the localization into a specific mouse mutant ebo/ebo (ébouriffé) known to be sterile due to an impairment of the final organization of the flagellum. In the ebo/ebo, the enzyme was still localized over the microtubules of the axoneme and over the isolated cytoplasmic microtubules doublets. Quantification of gold particles in wild-type and mutant flagella revealed the specific association of the enzyme within the microtubular area of the axoneme. Conclusions The strong and specific accumulation of Nardilysin in the manchette and axoneme suggests that the enzyme probably contributes either to the establishment of these specific microtubular structures and/or to their functional properties.
Collapse
Affiliation(s)
- D Segretain
- UMR S 1147 Université Paris Descartes, 45 rue des Saint-Pères, 75006 Paris, France ; Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Versailles, 78000 France
| | - J Gilleron
- INSERM U 1065, Université Nice Sophia-Antipolis, 151 route Saint-Antoine de Ginestière BP 2 3194, 06204, Nice, cedex 3 France
| | - J N Bacro
- Institut de Mathématiques et de Modélisation de Montpellier (I3M), UMR CNRS 5149 Université Montpellier, CC 51; 4 place Eugène Bataillon 34095, Montpellier, cedex 5 France
| | - M Di Marco
- UMR S 1147 Université Paris Descartes, 45 rue des Saint-Pères, 75006 Paris, France ; Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Versailles, 78000 France
| | - D Carette
- UMR S 1147 Université Paris Descartes, 45 rue des Saint-Pères, 75006 Paris, France ; Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Versailles, 78000 France
| | - G Pointis
- INSERM U 1065, Université Nice Sophia-Antipolis, 151 route Saint-Antoine de Ginestière BP 2 3194, 06204, Nice, cedex 3 France
| |
Collapse
|
18
|
Warnecke-Eberz U, Metzger R, Hölscher AH, Drebber U, Bollschweiler E. Diagnostic marker signature for esophageal cancer from transcriptome analysis. Tumour Biol 2015; 37:6349-58. [PMID: 26631031 DOI: 10.1007/s13277-015-4400-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 11/05/2015] [Indexed: 12/12/2022] Open
Abstract
Esophageal cancer is often diagnosed at an advanced stage. Diagnostic markers are needed for achieving a cure in esophageal cancer detecting and treating tumor cells earlier. In patients with locally advanced squamous cell carcinoma of the esophagus (ESCC), we profiled the gene expression of ESCC compared to corresponding normal biopsies for diagnostic markers by genome microarrays. Profiling of gene expression identified 4844 genes differentially expressed, 2122 upregulated and 2722 downregulated in ESCC. Twenty-three overexpressed candidates with best scores from significance analysis have been selected for further analysis by TaqMan low-density array-technique using a validation cohort of 40 patients. The verification rate was 100 % for ESCC. Twenty-two markers were additionally overexpressed in adenocarcinoma of the esophagus (EAC). The markers significantly overexpressed already in earlier tumor stages (pT1-2) of both histological subtypes (n = 19) have been clustered in a "diagnostic signature": PLA2G7, PRAME, MMP1, MMP3, MMP12, LIlRB2, TREM2, CHST2, IGFBP2, IGFBP7, KCNJ8, EMILIN2, CTHRC1, EMR2, WDR72, LPCAT1, COL4A2, CCL4, and SNX10. The marker signature will be translated to clinical practice to prove its diagnostic impact. This diagnostic signature may contribute to the earlier detection of tumor cells, with the aim to complement clinical techniques resulting in the development of better detection of concepts of esophageal cancer for earlier therapy and more favorite prognosis.
Collapse
Affiliation(s)
- Ute Warnecke-Eberz
- Laboratory for Molecular Oncology, General, Visceral and Cancer Surgery, University Hospital of Cologne (CIO), Kerpener Straße 62, 50937, Cologne, Germany.
| | - Ralf Metzger
- Caritasklinikum Saarbrücken, Rheinstraße 2, 66113, Saarbrücken, Germany
| | - Arnulf H Hölscher
- General, Visceral and Cancer Surgery, University Hospital of Cologne (CIO), Kerpener Straße 62, 50937, Cologne, Germany
| | - Uta Drebber
- Institute for Pathology, University Hospital of Cologne, Center for Integrated Oncology (CIO), Kerpener Straße 62, 50937, Cologne, Germany
| | - Elfriede Bollschweiler
- General, Visceral and Cancer Surgery, University Hospital of Cologne (CIO), Kerpener Straße 62, 50937, Cologne, Germany
| |
Collapse
|
19
|
Proteomic Study to Survey the CIGB-552 Antitumor Effect. BIOMED RESEARCH INTERNATIONAL 2015; 2015:124082. [PMID: 26576414 PMCID: PMC4630370 DOI: 10.1155/2015/124082] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 08/26/2015] [Indexed: 11/17/2022]
Abstract
CIGB-552 is a cell-penetrating peptide that exerts in vitro and in vivo antitumor effect on cancer cells. In the present work, the mechanism involved in such anticancer activity was studied using chemical proteomics and expression-based proteomics in culture cancer cell lines. CIGB-552 interacts with at least 55 proteins, as determined by chemical proteomics. A temporal differential proteomics based on iTRAQ quantification method was performed to identify CIGB-552 modulated proteins. The proteomic profile includes 72 differentially expressed proteins in response to CIGB-552 treatment. Proteins related to cell proliferation and apoptosis were identified by both approaches. In line with previous findings, proteomic data revealed that CIGB-552 triggers the inhibition of NF-κB signaling pathway. Furthermore, proteins related to cell invasion were differentially modulated by CIGB-552 treatment suggesting new potentialities of CIGB-552 as anticancer agent. Overall, the current study contributes to a better understanding of the antitumor action mechanism of CIGB-552.
Collapse
|
20
|
Comprehensive network analysis of genes expressed in human oropharyngeal cancer. Am J Otolaryngol 2015; 36:235-41. [PMID: 25484365 DOI: 10.1016/j.amjoto.2014.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 11/13/2014] [Indexed: 01/02/2023]
Abstract
PURPOSE Oropharyngeal cancer (OPC) is the eighth most common cancer worldwide, however the genes involved in the development of OPC have been reported few. We constructed a co-expression network to extend knowledge of the molecular biomarkers in OPC development. MATERIALS AND METHODS Microarray data of HPV-active, -inactive, -negative OPC and normal benign tissue (uvula, tonsil) (Series GSE55550) were retrieved from NCBI GEO DataSets. We performed co-expression analysis of OPC transcriptome data by the Pearson correlation coefficient (PCC) method with the mutual rank (MR)-based cut-off using 13 guide genes. RESULTS The OPC subnetwork contained three clusters: cell cycle (62 node genes and 125 edge genes), immune system (44 node genes and 70 edge genes) and organ morphogenesis (128 node gene and 215 edge genes) process separately. CONCLUSION Our co-expression analysis includes separated transcriptomes of OPC, which is a useful resource for OPC researchers to elucidate important and complex biological events, to prevent and to predict cancer.
Collapse
|
21
|
Zhang Y, Pan T, Zhong X, Cheng C. Androgen receptor promotes esophageal cancer cell migration and proliferation via matrix metalloproteinase 2. Tumour Biol 2015; 36:5859-64. [PMID: 25724186 DOI: 10.1007/s13277-015-3257-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 02/11/2015] [Indexed: 11/30/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most common malignancies worldwide. Androgen receptor (AR) plays an important role in many kinds of cancers. However, the molecular mechanisms of AR in ESCC are poorly characterized. In the present study, Western blot analysis and real-time quantitative PCR were performed to identify differentially expressed AR in 40 ESCC tissue samples, which revealed that the messenger RNA (mRNA) and protein expression of AR is upregulated in the ESCC tissue samples. AR overexpression induced increases in ESCC cell invasion and proliferation in vitro. Silencing of AR inhibited the proliferation of KYSE450 cells which have a relatively high level of AR, and the invasion of KYSE450 cells was distinctly suppressed. Furthermore, AR knockdown led to substantial reductions in matrix metalloproteinase 2 (MMP2) and p-AKT levels in ESCC cell lines, but no significant change in AKT and MMP9 expression. These results suggest that AR is involved in tumor progression, and thus, AR could represent selective targets for the molecularly targeted treatments of ESCC.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Surgery, The Third Affiliated Hospital of Jianghan University, Wuhan, China
| | | | | | | |
Collapse
|
22
|
Zheng PC, Chen X, Zhu HW, Zheng W, Mao LH, Lin C, Liu JN, Zheng M. Capn4 is a marker of poor clinical outcomes and promotes nasopharyngeal carcinoma metastasis via nuclear factor-κB-induced matrix metalloproteinase 2 expression. Cancer Sci 2014; 105:630-8. [PMID: 24703594 PMCID: PMC4317905 DOI: 10.1111/cas.12416] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 03/10/2014] [Accepted: 04/03/2014] [Indexed: 12/15/2022] Open
Abstract
Calpain small subunit 1 (Capn4) plays a key role in tumor migration or invasion. In this study, expression and function of Capn4 was investigated in human nasopharyngeal carcinoma (NPC). Here we report that both mRNA and protein levels of Capn4 were elevated in NPC tissues when compared to normal NP tissues. Similarly, Capn4 was also highly expressed in multiple NPC cell lines, compared to immortalized human nasopharyngeal epithelial cell line NP69. Moreover, expression of Capn4 was significantly correlated with Epstein-Barr virus infection, advanced stages, and lymph node or distant metastasis (P < 0.001). The patients with NPC displaying higher Capn4 had a significantly shorter overall survival (P = 0.002) and progression-free survival (P = 0.003). Furthermore, siRNA knockdown of Capn4 suppressed cell migration and invasion in vitro and in vivo. These events resulted from Capn4 downregulation were associated with reduced expression of matrix metalloproteinase 2 (MMP2), Snail, and Vimentin. Finally, we demonstrated that Capn4 upregulated MMP2 via nuclear factor-κB (NF-κB) activation, manifested by increased phosphorylation of p65, a subunit of NF-κB. Together, these findings argue a novel function of Capn4 in invasion and metastasis of NPC, and thereby suggest that Capn4 may represent an independent prognostic factor and a potential therapeutic target in NPC.
Collapse
Affiliation(s)
- Pei-Chan Zheng
- Department of Anatomy, School of Basic Medical Sciences, Fujian Medical UniversityFuzhou, China
| | - Xiong Chen
- Department of Oncology, Fuzhou General Hospital of Nanjing Military CommandFuzhou, China
| | - Hong-Wu Zhu
- Department of Gastroenterology, Guangzhou General Hospital of Guangzhou Military CommandGuangzhou, China
| | - Wei Zheng
- Department of Pharmacy, Fujian Provincial Cancer HospitalFuzhou, China
| | - Li-Hua Mao
- Department of Obstetrics and Gynecology, Fuzhou General Hospital of Nanjing Military CommandFuzhou, China
| | - Cheng Lin
- Department of Oncology, Fuzong Clinical College, Fujian Medical UniversityFuzhou, China
| | - Jing-Nan Liu
- Department of Oncology, Fuzong Clinical College, Fujian Medical UniversityFuzhou, China
| | - Ming Zheng
- Department of Anatomy, School of Basic Medical Sciences, Fujian Medical UniversityFuzhou, China
| |
Collapse
|