1
|
Demir T, Moloney C, Mahalingam D. Threading the Needle: Navigating Novel Immunotherapeutics in Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2025; 17:715. [PMID: 40075563 PMCID: PMC11898821 DOI: 10.3390/cancers17050715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/08/2025] [Accepted: 02/17/2025] [Indexed: 03/14/2025] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy with a poor prognosis. Currently, chemotherapy is the only option for most patients with advanced-stage PDAC. Further, conventional immunotherapies and targeted therapies improve survival outcomes only in rare PDAC patient subgroups. To date, combinatory immunotherapeutic strategies to overcome the immune-hostile PDAC tumor microenvironment (TME) have resulted in limited efficacy in clinical studies. However, efforts are ongoing to develop new treatment strategies for patients with PDAC with the evolving knowledge of the TME, molecular characterization, and immune resistance mechanisms. Further, the growing arsenal of various immunotherapeutic agents, including novel classes of immune checkpoint inhibitors and oncolytic, chimeric antigen receptor T cell, and vaccine therapies, reinforces these efforts. This review will focus on the place of immunotherapy and future possible strategies in PDAC.
Collapse
Affiliation(s)
| | | | - Devalingam Mahalingam
- Developmental Therapeutics, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; (T.D.); (C.M.)
| |
Collapse
|
2
|
Poyia F, Neophytou CM, Christodoulou MI, Papageorgis P. The Role of Tumor Microenvironment in Pancreatic Cancer Immunotherapy: Current Status and Future Perspectives. Int J Mol Sci 2024; 25:9555. [PMID: 39273502 PMCID: PMC11395109 DOI: 10.3390/ijms25179555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
Pancreatic cancer comprises different subtypes, where most cases include ductal adenocarcinoma (PDAC). It is one of the deadliest tumor types, with a poor prognosis. In the majority of patients, the disease has already spread by the time of diagnosis, making full recovery unlikely and increasing mortality risk. Despite developments in its detection and management, including chemotherapy, radiotherapy, and targeted therapies as well as advances in immunotherapy, only in about 13% of PDAC patients does the overall survival exceed 5 years. This may be attributed, at least in part, to the highly desmoplastic tumor microenvironment (TME) that acts as a barrier limiting perfusion, drug delivery, and immune cell infiltration and contributes to the establishment of immunologically 'cold' conditions. Therefore, there is an urgent need to unravel the complexity of the TME that promotes PDAC progression and decipher the mechanisms of pancreatic tumors' resistance to immunotherapy. In this review, we provide an overview of the major cellular and non-cellular components of PDAC TME, as well as their biological interplays. We also discuss the current state of PDAC therapeutic treatments and focus on ongoing and future immunotherapy efforts and multimodal treatments aiming at remodeling the TME to improve therapeutic efficacy.
Collapse
Affiliation(s)
- Fotini Poyia
- Tumor Microenvironment, Metastasis and Experimental Therapeutics Laboratory, Basic and Translational Cancer Research Center, Department of Life Sciences, European University Cyprus, Nicosia 2404, Cyprus
| | - Christiana M Neophytou
- Apoptosis and Cancer Chemoresistance Laboratory, Basic and Translational Cancer Research Center, Department of Life Sciences, European University Cyprus, Nicosia 2404, Cyprus
| | - Maria-Ioanna Christodoulou
- Tumor Immunology and Biomarkers Laboratory, Basic and Translational Cancer Research Center, Department of Life Sciences, European University Cyprus, Nicosia 2404, Cyprus
| | - Panagiotis Papageorgis
- Tumor Microenvironment, Metastasis and Experimental Therapeutics Laboratory, Basic and Translational Cancer Research Center, Department of Life Sciences, European University Cyprus, Nicosia 2404, Cyprus
| |
Collapse
|
3
|
Sarfraz Z, Sarfraz A, Farooq MD, Khalid M, Cheema K, Javad F, Khan T, Pervaiz Z, Sarfraz M, Jaan A, Sadiq S, Anwar J. The Current Landscape of Clinical Trials for Immunotherapy in Pancreatic Cancer: A State-of-the-Art Review. J Gastrointest Cancer 2024; 55:1026-1057. [PMID: 38976079 DOI: 10.1007/s12029-024-01078-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2024] [Indexed: 07/09/2024]
Abstract
BACKGROUND Pancreatic cancer remains a lethal malignancy with a 5-year survival rate below 6% and about 500,000 deaths annually worldwide. Pancreatic adenocarcinoma, the most prevalent form, is commonly associated with diabetes, chronic pancreatitis, obesity, and smoking, mainly affecting individuals aged 60 to 80 years. This systematic review aims to evaluate the efficacy of immunotherapeutic approaches in the treatment of pancreatic cancer. METHODS A systematic search was conducted to identify clinical trials (Phases I-III) assessing immunotherapy in pancreatic cancer in PubMed/Medline, CINAHL, Scopus, and Web of Science, adhering to PRISMA Statement 2020 guidelines. The final search was completed on May 25, 2024. Ongoing trials were sourced from ClinicalTrials.gov and the World Health Organization's International Clinical Trials Registry Platform (ICTRP). Keywords such as "pancreatic," "immunotherapy," "cancer," and "clinical trial" were used across databases. Gray literature was excluded. RESULTS Phase I trials, involving 337 patients, reported a median overall survival (OS) of 13.6 months (IQR: 5-62.5 months) and a median progression-free survival (PFS) of 5.1 months (IQR: 1.9-11.7 months). Phase II/III trials pooled in a total of 1463 participants had a median OS of 12.2 months (IQR: 2.5-35.55 months) and a median PFS of 8.8 months (IQR: 1.4-33.51 months). CONCLUSIONS Immunotherapy shows potential for extending survival among pancreatic cancer patients, though results vary. The immunosuppressive nature of the tumor microenvironment and diverse patient responses underline the need for further research to optimize these therapeutic strategies.
Collapse
Affiliation(s)
- Zouina Sarfraz
- Department of Medicine, Fatima Jinnah Medical University, Queen's Road, Mozang Chungi, Lahore, Pakistan.
| | | | | | - Musfira Khalid
- Department of Medicine, Fatima Jinnah Medical University, Queen's Road, Mozang Chungi, Lahore, Pakistan
| | | | | | - Taleah Khan
- CMH Lahore Medical College and Institute of Dentistry, Lahore, Pakistan
| | - Zainab Pervaiz
- CMH Lahore Medical College and Institute of Dentistry, Lahore, Pakistan
| | | | - Ali Jaan
- Rochester General Hospital, Rochester, NY, USA
| | | | - Junaid Anwar
- Baptist Hospitals of Southeast Texas, Beaumont, TX, USA
| |
Collapse
|
4
|
Phan T, Fan D, Melstrom LG. Developing Vaccines in Pancreatic Adenocarcinoma: Trials and Tribulations. Curr Oncol 2024; 31:4855-4884. [PMID: 39329989 PMCID: PMC11430674 DOI: 10.3390/curroncol31090361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/13/2024] [Accepted: 08/21/2024] [Indexed: 09/28/2024] Open
Abstract
Pancreatic adenocarcinoma represents one of the most challenging malignancies to treat, with dismal survival rates despite advances in therapeutic modalities. Immunotherapy, particularly vaccines, has emerged as a promising strategy to harness the body's immune system in combating this aggressive cancer. This abstract reviews the trials and tribulations encountered in the development of vaccines targeting pancreatic adenocarcinoma. Key challenges include the immunosuppressive tumor microenvironment, the heterogeneity of tumor antigens, and a limited understanding of immune evasion mechanisms employed by pancreatic cancer cells. Various vaccine platforms, including peptide-based, dendritic cell-based, and viral vector-based vaccines, have been explored in preclinical and clinical settings. However, translating promising results from preclinical models to clinical efficacy has proven elusive. In recent years, mRNA vaccines have emerged as a promising immunotherapeutic strategy in the fight against various cancers, including pancreatic adenocarcinoma. We will discuss the potential applications, opportunities, and challenges associated with mRNA vaccines in pancreatic cancer treatment.
Collapse
Affiliation(s)
- Thuy Phan
- Department of Surgery, City of Hope National Medical Center, Duarte, CA 91010, USA;
| | - Darrell Fan
- Department of Surgical Oncology, City of Hope National Medical Center, Duarte, CA 91010, USA;
| | - Laleh G. Melstrom
- Department of Surgical Oncology, City of Hope National Medical Center, Duarte, CA 91010, USA;
| |
Collapse
|
5
|
Mahaki H, Ravari H, Kazemzadeh G, Lotfian E, Daddost RA, Avan A, Manoochehri H, Sheykhhasan M, Mahmoudian RA, Tanzadehpanah H. Pro-inflammatory responses after peptide-based cancer immunotherapy. Heliyon 2024; 10:e32249. [PMID: 38912474 PMCID: PMC11190603 DOI: 10.1016/j.heliyon.2024.e32249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 06/25/2024] Open
Abstract
Therapeutic vaccinations are designed to prevent cancer by inducing immune responses against tumor antigens. in cancer cells, tumor-associated antigens (TAA) or tumor-specific (mutated) derived peptides are presented within the clefts of main histocompatibility complex (MHC) class I or class II molecules, they either activate cytotoxic T-lymphocytes (CTLs), CD4+ T or CD8+ T lymphocytes, which release cytokines that can suppress tumor cells growth. In cancer immunotherapies, CD8+ T lymphocytes are a major mediator of tumor repression. The effect of peptide-based vaccinations on cytokines in the activating CD8+ T cell against targeted tumor antigens is the subject of this review. It is believed that peptide-based vaccines increased IFN-γ, TNF-α, IL-2, and IL-12, secreting CTL line by interacting with dendritic cell (DC), supposed to stimulate immune system. Additionally, mechanisms of CTL activation and dysfunction were also studied. According to most of the data resulted from in vivo and in vitro research works, it is assumed that peptide-based vaccines increased IFN-γ, TNF-α, IL-2, and IL-12.
Collapse
Affiliation(s)
- Hanie Mahaki
- Vascular and Endovascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hassan Ravari
- Vascular and Endovascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gholamhossein Kazemzadeh
- Vascular and Endovascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elham Lotfian
- Vascular and Endovascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamed Manoochehri
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mohsen Sheykhhasan
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| | - Reihaneh Alsadat Mahmoudian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Tanzadehpanah
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
6
|
Farhangnia P, Khorramdelazad H, Nickho H, Delbandi AA. Current and future immunotherapeutic approaches in pancreatic cancer treatment. J Hematol Oncol 2024; 17:40. [PMID: 38835055 PMCID: PMC11151541 DOI: 10.1186/s13045-024-01561-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/28/2024] [Indexed: 06/06/2024] Open
Abstract
Pancreatic cancer is a major cause of cancer-related death, but despondently, the outlook and prognosis for this resistant type of tumor have remained grim for a long time. Currently, it is extremely challenging to prevent or detect it early enough for effective treatment because patients rarely exhibit symptoms and there are no reliable indicators for detection. Most patients have advanced or spreading cancer that is difficult to treat, and treatments like chemotherapy and radiotherapy can only slightly prolong their life by a few months. Immunotherapy has revolutionized the treatment of pancreatic cancer, yet its effectiveness is limited by the tumor's immunosuppressive and hard-to-reach microenvironment. First, this article explains the immunosuppressive microenvironment of pancreatic cancer and highlights a wide range of immunotherapy options, including therapies involving oncolytic viruses, modified T cells (T-cell receptor [TCR]-engineered and chimeric antigen receptor [CAR] T-cell therapy), CAR natural killer cell therapy, cytokine-induced killer cells, immune checkpoint inhibitors, immunomodulators, cancer vaccines, and strategies targeting myeloid cells in the context of contemporary knowledge and future trends. Lastly, it discusses the main challenges ahead of pancreatic cancer immunotherapy.
Collapse
Affiliation(s)
- Pooya Farhangnia
- Reproductive Sciences and Technology Research Center, Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Board for Transplantation and Cell-Based Therapeutics (ImmunoTACT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Hamid Nickho
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali-Akbar Delbandi
- Reproductive Sciences and Technology Research Center, Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Singh G, Kutcher D, Lally R, Rai V. Targeting Neoantigens in Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2024; 16:2101. [PMID: 38893220 PMCID: PMC11171042 DOI: 10.3390/cancers16112101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/23/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most common type of pancreatic cancer and is currently the third leading cause of cancer-related death in the United States after lung and colon cancer. PDAC is estimated to be the second leading cause of cancer-related death by 2030. The diagnosis at a late stage is the underlying cause for higher mortality and poor prognosis after surgery. Treatment resistance to chemotherapy and immunotherapy results in recurrence after surgery and poor prognosis. Neoantigen burden and CD8+ T-cell infiltration are associated with clinical outcomes in PDAC and paucity of neoantigen-reactive tumor-infiltrating lymphocytes may be the underlying cause for treatment resistance for immunotherapy. This suggests a need to identify additional neoantigens and therapies targeting these neoantigens to improve clinical outcomes in PDAC. In this review, we focus on describing the pathophysiology, current treatment strategies, and treatment resistance in PDAC followed by the need to target neoantigens in PDAC.
Collapse
Affiliation(s)
| | | | | | - Vikrant Rai
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA; (G.S.); (D.K.); (R.L.)
| |
Collapse
|
8
|
Endo Y, Kitago M, Kitagawa Y. Evidence and Future Perspectives for Neoadjuvant Therapy for Resectable and Borderline Resectable Pancreatic Cancer: A Scoping Review. Cancers (Basel) 2024; 16:1632. [PMID: 38730584 PMCID: PMC11083108 DOI: 10.3390/cancers16091632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Pancreatic cancer (PC) is a lethal disease that requires innovative therapeutic approaches to enhance the survival outcomes. Neoadjuvant treatment (NAT) has gained attention for resectable and borderline resectable PC, offering improved resection rates and enabling early intervention and patient selection. Several retrospective studies have validated its efficacy. However, previous studies have lacked intention-to-treat analyses and appropriate resectability classifications. Randomized comparative trials may help to enhance the clinical applicability of evidence. Therefore, after searching the MEDLINE database, this scoping review presents a comprehensive summary of the evidence from published (n = 14) and ongoing (n = 12) randomized Phase II and III trials. Diverse regimens and their outcomes were explored for both resectable and borderline resectable PC. While some trials have supported the efficacy of NAT, others have demonstrated no clear survival benefits for patients with resectable PC. The utility of NAT has been confirmed in patients with borderline resectable PC, but the optimal regimens remain debatable. Ongoing trials are investigating novel regimens, including immunotherapy, thereby highlighting the dynamic landscape of PC treatment. Studies should focus on biomarker identification, which may enable precision in oncology. Future endeavors aim to refine treatment strategies, guided by precision oncology.
Collapse
Affiliation(s)
| | - Minoru Kitago
- Department of Surgery, Keio University School of Medicine, Shinanomachi 35, Shinjuku, Tokyo 160-8582, Japan; (Y.E.); (Y.K.)
| | | |
Collapse
|
9
|
Gugulothu KN, Anvesh Sai P, Suraparaju S, Karuturi SP, Pendli G, Kamma RB, Nimmagadda K, Modepalli A, Mamilla M, Vashist S. WT1 Cancer Vaccine in Advanced Pancreatic Cancer: A Systematic Review. Cureus 2024; 16:e56934. [PMID: 38665761 PMCID: PMC11043900 DOI: 10.7759/cureus.56934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Advanced pancreatic cancer is one of the prominent contributors to cancer-related mortality globally. Chemotherapy, especially gemcitabine, is generally used for the treatment of advanced pancreatic cancer. Despite the treatment, the fatality rate for advanced pancreatic cancer is alarmingly high. Thus, the dire need for better treatment alternatives has drawn focus to cancer vaccinations. The Wilms tumor gene (WT1), typically associated with Wilms tumor, is found to be excessively expressed in some cancers, such as pancreatic cancer. This characteristic feature is harvested to develop cancer vaccines against WT1. This review aims to systematically summarize the clinical trials investigating the efficacy and safety of WT1 vaccines in patients with advanced pancreatic cancer. An extensive literature search was conducted on databases Medline, Web of Science, ScienceDirect, and Google Scholar using the keywords "Advanced pancreatic cancer," "Cancer vaccines," "WT1 vaccines," and "Pulsed DC vaccines," and the results were exclusively studied to construct this review. WT1 vaccines work by introducing peptides from the WT1 protein to trigger an immune response involving cytotoxic T lymphocytes via antigen-presenting cells. Upon activation, these lymphocytes induce apoptosis in cancer cells by specifically targeting those with increased WT1 levels. WT1 vaccinations, which are usually given in addition to chemotherapy, have demonstrated clinically positive results and minimal side effects. However, there are several challenges to their widespread use, such as the immunosuppressive nature of tumors and heterogeneity in expression. Despite these limitations, the risk-benefit profile of cancer vaccines is encouraging, especially for the WT1 vaccine in the treatment of advanced pancreatic cancer. Considering the fledgling status of their development, large multicentric, variables-matched, extensive analysis across diverse demographics is considered essential.
Collapse
Affiliation(s)
| | | | - Sonika Suraparaju
- Internal Medicine, Sri Padmavathi Medical College for Women, Tirupati, IND
| | | | - Ganesh Pendli
- Internal Medicine, PES Institute of Medical Sciences and Research, Kuppam, IND
| | - Ravi Babu Kamma
- Internal Medicine, Sri Venkata Sai (SVS) Medical College, Mahabubnagar, IND
| | | | - Alekhya Modepalli
- Internal Medicine, Sri Padmavathi Medical College for Women, Tirupati, IND
| | - Mahesh Mamilla
- Internal Medicine, Sri Venkateswara Medical College, Tirupati, IND
| | | |
Collapse
|
10
|
Dabiri R, Rashid MU, Khan OS, Jehanzeb S, Alomari M, Zafar H, Zahid E, Rahman AU, Karam A, Ahmad S. Immune modulators for pancreatic ductal adenocarcinoma therapy. IMMUNE LANDSCAPE OF PANCREATIC CANCER DEVELOPMENT AND DRUG RESISTANCE 2024:103-129. [DOI: 10.1016/b978-0-443-23523-8.00021-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
11
|
Chouari T, La Costa FS, Merali N, Jessel MD, Sivakumar S, Annels N, Frampton AE. Advances in Immunotherapeutics in Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2023; 15:4265. [PMID: 37686543 PMCID: PMC10486452 DOI: 10.3390/cancers15174265] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) accounts for up to 95% of all pancreatic cancer cases and is the seventh-leading cause of cancer death. Poor prognosis is a result of late presentation, a lack of screening tests and the fact some patients develop resistance to chemotherapy and radiotherapy. Novel therapies like immunotherapeutics have been of recent interest in pancreatic cancer. However, this field remains in its infancy with much to unravel. Immunotherapy and other targeted therapies have yet to yield significant progress in treating PDAC, primarily due to our limited understanding of the disease immune mechanisms and its intricate interactions with the tumour microenvironment (TME). In this review we provide an overview of current novel immunotherapies which have been studied in the field of pancreatic cancer. We discuss their mechanisms, evidence available in pancreatic cancer as well as the limitations of such therapies. We showcase the potential role of combining novel therapies in PDAC, postulate their potential clinical implications and the hurdles associated with their use in PDAC. Therapies discussed with include programmed death checkpoint inhibitors, Cytotoxic T-lymphocyte-associated protein 4, Chimeric Antigen Receptor-T cell therapy, oncolytic viral therapy and vaccine therapies including KRAS vaccines, Telomerase vaccines, Gastrin Vaccines, Survivin-targeting vaccines, Heat-shock protein (HSP) peptide complex-based vaccines, MUC-1 targeting vaccines, Listeria based vaccines and Dendritic cell-based vaccines.
Collapse
Affiliation(s)
- Tarak Chouari
- Hepato-Pancreato-Biliary Department, Royal Surrey NHS Foundation Trust, Guildford GU2 7XX, UK; (T.C.); (F.S.L.C.); (N.M.)
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7WG, UK; (M.-D.J.); (N.A.)
| | - Francesca Soraya La Costa
- Hepato-Pancreato-Biliary Department, Royal Surrey NHS Foundation Trust, Guildford GU2 7XX, UK; (T.C.); (F.S.L.C.); (N.M.)
| | - Nabeel Merali
- Hepato-Pancreato-Biliary Department, Royal Surrey NHS Foundation Trust, Guildford GU2 7XX, UK; (T.C.); (F.S.L.C.); (N.M.)
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7WG, UK; (M.-D.J.); (N.A.)
- The Minimal Access Therapy Training Unit, University of Surrey, Guildford GU2 7WG, UK
| | - Maria-Danae Jessel
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7WG, UK; (M.-D.J.); (N.A.)
| | - Shivan Sivakumar
- Oncology Department and Institute of Immunology and Immunotherapy, Birmingham Medical School, University of Birmingham, Birmingham B15 2TT, UK;
| | - Nicola Annels
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7WG, UK; (M.-D.J.); (N.A.)
| | - Adam E. Frampton
- Hepato-Pancreato-Biliary Department, Royal Surrey NHS Foundation Trust, Guildford GU2 7XX, UK; (T.C.); (F.S.L.C.); (N.M.)
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7WG, UK; (M.-D.J.); (N.A.)
- The Minimal Access Therapy Training Unit, University of Surrey, Guildford GU2 7WG, UK
| |
Collapse
|
12
|
Herpels M, Ishihara J, Sadanandam A. The clinical terrain of immunotherapies in heterogeneous pancreatic cancer: unravelling challenges and opportunities. J Pathol 2023; 260:533-550. [PMID: 37550956 DOI: 10.1002/path.6171] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 08/09/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most common and aggressive type of pancreatic cancer and has abysmal survival rates. In the past two decades, immunotherapeutic agents with success in other cancer types have gradually been trialled against PDACs at different stages of cancer progression, either as a monotherapy or in combination with chemotherapy. Unfortunately, to this day, chemotherapy still prolongs the survival rates the most and is prescribed in clinics despite the severe side effects in other cancer types. The low success rates of immunotherapy against PDAC have been attributed most frequently to its complex and multi-faceted tumour microenvironment (TME) and low mutational burden. In this review, we give a comprehensive overview of the immunotherapies tested in PDAC clinical trials thus far, their limitations, and potential explanations for their failure. We also discuss the existing classification of heterogenous PDACs into cancer, cancer-associated fibroblast, and immune subtypes and their potential opportunity in patient selection as a form of personalisation of PDAC immunotherapy. © 2023 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Melanie Herpels
- Division of Molecular Pathology, Institute of Cancer Research, London, UK
- Department of Bioengineering, Imperial College London, London, UK
| | - Jun Ishihara
- Department of Bioengineering, Imperial College London, London, UK
| | - Anguraj Sadanandam
- Division of Molecular Pathology, Institute of Cancer Research, London, UK
- Centre for Global Oncology, Division of Molecular Pathology, Institute of Cancer Research, London, UK
- Centre for Translational Immunotherapy, Division of Radiotherapy and Imaging, Institute of Cancer Research, London, UK
| |
Collapse
|
13
|
Li Y, Xiang S, Pan W, Wang J, Zhan H, Liu S. Targeting tumor immunosuppressive microenvironment for pancreatic cancer immunotherapy: Current research and future perspective. Front Oncol 2023; 13:1166860. [PMID: 37064113 PMCID: PMC10090519 DOI: 10.3389/fonc.2023.1166860] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/20/2023] [Indexed: 03/31/2023] Open
Abstract
Pancreatic cancer is one of the most malignant tumors with increased incidence rate. The effect of surgery combined with chemoradiotherapy on survival of patients is unsatisfactory. New treatment strategy such as immunotherapy need to be investigated. The accumulation of desmoplastic stroma, infiltration of immunosuppressive cells including myeloid derived suppressor cells (MDSCs), tumor associated macrophages (TAMs), cancer‐associated fibroblasts (CAFs), and regulatory T cells (Tregs), as well as tumor associated cytokine such as TGF-β, IL-10, IL-35, CCL5 and CXCL12 construct an immunosuppressive microenvironment of pancreatic cancer, which presents challenges for immunotherapy. In this review article, we explore the roles and mechanism of immunosuppressive cells and lymphocytes in establishing an immunosuppressive tumor microenvironment in pancreatic cancer. In addition, immunotherapy strategies for pancreatic cancer based on tumor microenvironment including immune checkpoint inhibitors, targeting extracellular matrix (ECM), interfering with stromal cells or cytokines in TME, cancer vaccines and extracellular vesicles (EVs) are also discussed. It is necessary to identify an approach of immunotherapy in combination with other modalities to produce a synergistic effect with increased response rates in pancreatic cancer therapy.
Collapse
Affiliation(s)
- Ying Li
- Department of Blood Transfusion, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shuai Xiang
- Department of Gastrointestinal Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wenjun Pan
- Department of Gastrointestinal Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jing Wang
- Department of Operating Room, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hanxiang Zhan
- Department of General Surgery, Qilu hospital, Shandong University, Jinan, Shandong, China
- *Correspondence: Shanglong Liu, ; Hanxiang Zhan,
| | - Shanglong Liu
- Department of Gastrointestinal Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Shanglong Liu, ; Hanxiang Zhan,
| |
Collapse
|
14
|
Zhang X, Xu Z, Dai X, Zhang X, Wang X. Research progress of neoantigen-based dendritic cell vaccines in pancreatic cancer. Front Immunol 2023; 14:1104860. [PMID: 36761724 PMCID: PMC9905145 DOI: 10.3389/fimmu.2023.1104860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/04/2023] [Indexed: 01/26/2023] Open
Abstract
The mutation of the crucial genes such as tumor suppressors or oncogenes plays an important role in the initiation and development of tumors. The non-synonymous mutations in the tumor cell genome will produce non-autologous proteins (neoantigen) to activate the immune system by activating CD4+ and CD8+ T cells. Neoantigen-based peptide vaccines have exhibited exciting therapeutic effects in treating various cancers alone or in combination with other therapeutic strategies. Furthermore, antigen-loaded DC vaccines are more powerful in inducing stronger immune responses than vaccines generated by antigens and adjuvants. Therefore, neoantigen-based dendritic cell (DC) vaccines could achieve promising effects in combating some malignant tumors. In this review, we summarized and discussed the recent research progresses of the neoantigen, neoantigen-based vaccines, and DC-based vaccine in pancreatic cancers (PCs). The combination of the neoantigen and DC-based vaccine in PC was also highlighted. Therefore, our work will provide more detailed evidence and novel opinions to promote the development of a personalized neoantigen-based DC vaccine for PC.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Pathology, China-Japan Union Hospital, Jilin University, Changchun, Jilin, China
| | - Zheng Xu
- Department of Pathology, China-Japan Union Hospital, Jilin University, Changchun, Jilin, China
| | - Xiangpeng Dai
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital of Jilin University, Changchun, China,National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital of Jilin University, Changchun, China
| | - Xiaoling Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital of Jilin University, Changchun, China,National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital of Jilin University, Changchun, China
| | - Xueju Wang
- Department of Pathology, China-Japan Union Hospital, Jilin University, Changchun, Jilin, China,*Correspondence: Xueju Wang,
| |
Collapse
|
15
|
Peng J, Madduri S, Clontz AD, Stewart DA. Clinical trial-identified inflammatory biomarkers in breast and pancreatic cancers. Front Endocrinol (Lausanne) 2023; 14:1106520. [PMID: 37181043 PMCID: PMC10173309 DOI: 10.3389/fendo.2023.1106520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/04/2023] [Indexed: 05/16/2023] Open
Abstract
Breast cancer and pancreatic cancer are two common cancer types characterized by high prevalence and high mortality rates, respectively. However, breast cancer has been more well-studied than pancreatic cancer. This narrative review curated inflammation-associated biomarkers from clinical studies that were systematically selected for both breast and pancreatic cancers and discusses some of the common and unique elements between the two endocrine-regulated malignant diseases. Finding common ground between the two cancer types and specifically analyzing breast cancer study results, we hoped to explore potential feasible methods and biomarkers that may be useful also in diagnosing and treating pancreatic cancer. A PubMed MEDLINE search was used to identify articles that were published between 2015-2022 of different kinds of clinical trials that measured immune-modulatory biomarkers and biomarker changes of inflammation defined in diagnosis and treatment of breast cancer and pancreatic cancer patients. A total of 105 papers (pancreatic cancer 23, breast cancer 82) were input into Covidence for the title and abstract screening. The final number of articles included in this review was 73 (pancreatic cancer 19, breast cancer 54). The results showed some of the frequently cited inflammatory biomarkers for breast and pancreatic cancers included IL-6, IL-8, CCL2, CD8+ T cells and VEGF. Regarding unique markers, CA15-3 and TNF-alpha were two of several breast cancer-specific, and CA19 and IL-18 were pancreatic cancer-specific. Moreover, we discussed leptin and MMPs as emerging biomarker targets with potential use for managing pancreatic cancer based on breast cancer studies in the future, based on inflammatory mechanisms. Overall, the similarity in how both types of cancers respond to or result in further disruptive inflammatory signaling, and that point to a list of markers that have been shown useful in diagnosis and/or treatment method response or efficacy in managing breast cancer could potentially provide insights into developing the same or more useful diagnostic and treatment measurement inflammatory biomarkers for pancreatic cancer. More research is needed to investigate the relationship and associated inflammatory markers between the similar immune-associated biological mechanisms that contribute to breast and pancreatic cancer etiology, drive disease progression or that impact treatment response and reflect survival outcomes.
Collapse
Affiliation(s)
- Jing Peng
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Supradeep Madduri
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC, United States
| | - Angela D. Clontz
- Department of Nutrition, Meredith College, Raleigh, NC, United States
| | - Delisha A. Stewart
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC, United States
- *Correspondence: Delisha A. Stewart,
| |
Collapse
|
16
|
Yin C, Alqahtani A, Noel MS. The Next Frontier in Pancreatic Cancer: Targeting the Tumor Immune Milieu and Molecular Pathways. Cancers (Basel) 2022; 14:2619. [PMID: 35681599 PMCID: PMC9179513 DOI: 10.3390/cancers14112619] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/13/2022] [Accepted: 05/19/2022] [Indexed: 12/11/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer with abysmal prognosis. It is currently the third most common cause of cancer-related mortality, despite being the 11th most common cancer. Chemotherapy is standard of care in all stages of pancreatic cancer, yet survival, particularly in the advanced stages, often remains under one year. We are turning to immunotherapies and targeted therapies in PDAC in order to directly attack the core features that make PDAC notoriously resistant to chemotherapy. While the initial studies of these agents in PDAC have generally been disappointing, we find optimism in recent preclinical and early clinical research. We find that despite the immunosuppressive effects of the PDAC tumor microenvironment, new strategies, such as combining immune checkpoint inhibitors with vaccine therapy or chemokine receptor antagonists, help elicit strong immune responses. We also expand on principles of DNA homologous recombination repair and highlight opportunities to use agents, such as PARP inhibitors, that exploit deficiencies in DNA repair pathways. Lastly, we describe advances in direct targeting of driver mutations and metabolic pathways and highlight some technological achievements such as novel KRAS inhibitors.
Collapse
Affiliation(s)
| | | | - Marcus S. Noel
- Ruesch Center for the Cure of Gastrointestinal Cancers, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20007, USA; (C.Y.); (A.A.)
| |
Collapse
|
17
|
Hung YH, Chen LT, Hung WC. The Trinity: Interplay among Cancer Cells, Fibroblasts, and Immune Cells in Pancreatic Cancer and Implication of CD8 + T Cell-Orientated Therapy. Biomedicines 2022; 10:biomedicines10040926. [PMID: 35453676 PMCID: PMC9026398 DOI: 10.3390/biomedicines10040926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/15/2022] [Accepted: 04/17/2022] [Indexed: 02/01/2023] Open
Abstract
The microenvironment in tumors is complicated and is constituted by different cell types and stromal proteins. Among the cell types, the abundance of cancer cells, fibroblasts, and immune cells is high and these cells work as the “Trinity” in promoting tumorigenesis. Although unidirectional or bidirectional crosstalk between two independent cell types has been well characterized, the multi-directional interplays between cancer cells, fibroblasts, and immune cells in vitro and in vivo are still unclear. We summarize recent studies in addressing the interaction of the “Trinity” members in the tumor microenvironment and propose a functional network for how these members communicate with each other. In addition, we discuss the underlying mechanisms mediating the interplay. Moreover, correlations of the alterations in the distribution and functionality of cancer cells, fibroblasts, and immune cells under different circumstances are reviewed. Finally, we point out the future application of CD8+ T cell-oriented therapy in the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Yu-Hsuan Hung
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan;
| | - Li-Tzong Chen
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan;
- Division of Hematology & Oncology, Department of Internal Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 804, Taiwan
- Center for Cancer Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Correspondence: (L.-T.C.); (W.-C.H.)
| | - Wen-Chun Hung
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan;
- Correspondence: (L.-T.C.); (W.-C.H.)
| |
Collapse
|
18
|
Li Y, Wang J, Wang H, Zhang S, Wei Y, Liu S. The Interplay Between Inflammation and Stromal Components in Pancreatic Cancer. Front Immunol 2022; 13:850093. [PMID: 35493517 PMCID: PMC9046560 DOI: 10.3389/fimmu.2022.850093] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/24/2022] [Indexed: 01/18/2023] Open
Abstract
Inflammation involves interactions between various immune cells, inflammatory cells, chemokines and cytokines in pancreatic cancer. Cancer cells as well as surrounding stromal and inflammatory cells establish an inflammatory tumor microenvironment (TME). Inflammation is closely associated with immunity. Meanwhile, immune cells are involved in both inflammation and immune response. Tumor-promoting inflammation and tumor-suppressive immunity are two main characteristics of the tumor microenvironment in pancreatic cancer. Yet, the mechanism of inflammation and immune response in pancreatic cancer development is still unclear due to the dual role of some cytokines and the complicated crosstalk between tumor and stromal components in TME. In this review, we outline the principal cytokines and stromal cells in the pancreatic TME that are involved in the tumor-promoting and immunosuppressive effects of inflammation, and discuss the interaction between inflammation and stromal components in pancreatic cancer progression. Moreover, the clinical approaches based on targeting TME in pancreatic cancer are also summarized. Defining the mechanisms of interplay between inflammation and stromal components will be essential for further development of anti-cancer therapies.
Collapse
Affiliation(s)
- Ying Li
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jing Wang
- Department of Operating Room, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Haiyan Wang
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shaoqiang Zhang
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yingxin Wei
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Shanglong Liu
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
19
|
Current Limitations and Novel Perspectives in Pancreatic Cancer Treatment. Cancers (Basel) 2022; 14:cancers14040985. [PMID: 35205732 PMCID: PMC8870068 DOI: 10.3390/cancers14040985] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/03/2022] [Accepted: 02/14/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary This review article presents a synopsis of the key clinical developments, their limitations, and future perspectives in the treatment of pancreatic cancer. In the first part, we summarize the available treatments for pancreatic cancer patients according to tumor stage, as well as the most relevant clinical trials over the past two decades. Despite this progress, there is still much to be improved in terms of patient survival. Therefore, in the second part, we consider various components of the tumor microenvironment in pancreatic cancer, looking for the key drivers of therapy resistance and tumor progression, which may lead to the discovery of new potential targets. We also discuss the most prominent molecules targeting the stroma and immune compartment that are being investigated in either preclinical or clinical trials. Finally, we also outline interesting venues for further research, such as possible combinations of therapies that may have the potential for clinical application. Abstract Pancreatic cancer is one of the deadliest cancers worldwide, largely due to its aggressive development. Consequently, treatment options are often palliative, as only one-fifth of patients present with potentially curable tumors. The only available treatment with curative intent is surgery followed by adjuvant chemotherapy. However, even for patients that are eligible for surgery, the 5-year OS remains below 10%. Hence, there is an urgent need to find new therapeutic regimens. In the first part of this review, we discuss the tumor staging method and its impact on the corresponding current standard-of-care treatments for PDAC. We also consider the key clinical trials over the last 20 years that have improved patient survival. In the second part, we provide an overview of the major components and cell types involved in PDAC, as well as their respective roles and interactions with each other. A deeper knowledge of the interactions taking place in the TME may lead to the discovery of potential new therapeutic targets. Finally, we discuss promising treatment strategies targeting specific components of the TME and potential combinations thereof. Overall, this review provides an overview of the current challenges and future perspectives in the treatment of pancreatic cancer.
Collapse
|
20
|
Ota S, Miyashita M, Yamagishi Y, Ogasawara M. Baseline immunity predicts prognosis of pancreatic cancer patients treated with WT1 and/or MUC1 peptide-loaded dendritic cell vaccination and a standard chemotherapy. Hum Vaccin Immunother 2021; 17:5563-5572. [PMID: 34919493 PMCID: PMC8903979 DOI: 10.1080/21645515.2021.2003645] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 10/15/2021] [Accepted: 11/04/2021] [Indexed: 12/15/2022] Open
Abstract
The prognosis of patients with advanced pancreatic cancer is poor despite the recent introduction of immune checkpoint inhibitors. Therefore, the development of new therapeutic approaches is urgently required. In the present phase I/II study, we have evaluated the safety, the efficacy and the prognostic factors of Wilms' tumor 1 (WT1) and/or mucin 1 (MUC1) peptide-loaded dendritic cell (DC) vaccination in combination with a chemotherapy employing gemcitabine plus nab-paclitaxel or a combination chemotherapy regimen consisting of oxaliplatin, irinotecan, fluorouracil and leucovorin (FOLFIRINOX) in patients with advanced or relapsed pancreatic ductal adenocarcinoma (PDAC). Forty-eight eligible patients were enrolled and received the vaccinations approximately every 2-4 weeks at least seven times. No severe adverse events related to the vaccinations were observed. Median progression free survival and overall survival were 8.1 months and 15.1 months, respectively. DC vaccinations augmented tumor specific immunity which might be related to clinical outcome. The multivariate analyses demonstrated that WT1 or MUC1-specific interferonɤ enzyme-linked immunospot number prior to DC vaccination was an independent prognostic factor related to overall survival. These results indicate that DC-based immunotherapy combined with a conventional chemotherapy is safe and has clinical benefits for patients in advanced stage of PDAC. The precise evaluation of the baseline antitumor specific immunity is critical to predict clinical outcome.
Collapse
Affiliation(s)
- Shuichi Ota
- Department of Internal Medicine, Sapporo Hokuyu Hospital, Sapporo, Japan
| | - Mamiko Miyashita
- Institute for Artificial Organ, Transplantation and Cell Therapy, Sapporo Hokuyu Hospital, Sapporo, Japan
| | - Yuka Yamagishi
- Cell Processing Center, Sapporo Hokuyu Hospital, Sapporo, Japan
| | - Masahiro Ogasawara
- Department of Internal Medicine, Sapporo Hokuyu Hospital, Sapporo, Japan
- Institute for Artificial Organ, Transplantation and Cell Therapy, Sapporo Hokuyu Hospital, Sapporo, Japan
| |
Collapse
|
21
|
Wang J, Loeuillard E, Gores GJ, Ilyas SI. Cholangiocarcinoma: what are the most valuable therapeutic targets - cancer-associated fibroblasts, immune cells, or beyond T cells? Expert Opin Ther Targets 2021; 25:835-845. [PMID: 34806500 DOI: 10.1080/14728222.2021.2010046] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION CCAs are dense and desmoplastic tumors with an abundant tumor microenviroment (TME). The evolving TME is characterized by reciprocal interactions between cancer cells and their environment and is essential in facilitating tumor progression. The TME has nonimmune and immune components. Nonimmune cell types include cancer-associated fibroblasts (CAFs) and endothelial cells accompanying tumor angiogenesis. Immune cell types include elements of the innate and adaptive immune response, and can have pro-tumor or antitumor roles. The TME can shape treatment response and resistance. Therefore, elements of the TME are attractive therapeutic targets. TME targeting therapies have been evaluated in preclinical and clinical studies but only a small subset of patients has a meaningful response. AREAS COVERED We discuss the TME components and potential TME targeting strategies. Literature search was performed on PubMed and ClinicalTrials.gov until October 2021. EXPERT OPINION Elucidating the CCA TME is essential for developing effective treatment strategies. Preclinical models that recapitulate the disease (such as organoids) are important tools in uncovering the intricate cross talk in the CCA TME. Characterization of patient-derived specimens using multi-omic and single-omic technologies can dissect the cellular interplay in the CCA TME, which can guide development of effective treatment strategies and identify biomarkers for patient stratification.
Collapse
Affiliation(s)
- Juan Wang
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Emilien Loeuillard
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Gregory J Gores
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Sumera I Ilyas
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
22
|
Pancreatic Cancer and Immunotherapy: A Clinical Overview. Cancers (Basel) 2021; 13:cancers13164138. [PMID: 34439292 PMCID: PMC8393975 DOI: 10.3390/cancers13164138] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease with high mortality. The vast majority of patients present with unresectable, advanced stage disease, for whom standard of care chemo(radio)therapy may improve survival by several months. Immunotherapy has led to a fundamental shift in the treatment of several advanced cancers. However, its efficacy in PDAC in terms of clinical benefit is limited, possibly owing to the immunosuppressive, inaccessible tumor microenvironment. Still, various immunotherapies have demonstrated the capacity to initiate local and systemic immune responses, suggesting an immune potentiating effect. In this review, we address PDAC's immunosuppressive tumor microenvironment and immune evasion methods and discuss a wide range of immunotherapies, including immunomodulators (i.e., immune checkpoint inhibitors, immune stimulatory agonists, cytokines and adjuvants), oncolytic viruses, adoptive cell therapies (i.e., T cells and natural killer cells) and cancer vaccines. We provide a general introduction to their working mechanism as well as evidence of their clinical efficacy and immune potentiating abilities in PDAC. The key to successful implementation of immunotherapy in this disease may rely on exploitation of synergistic effects between treatment combinations. Accordingly, future treatment approaches should aim to incorporate diverse and novel immunotherapeutic strategies coupled with cytotoxic drugs and/or local ablative treatment, targeting a wide array of tumor-induced immune escape mechanisms.
Collapse
|
23
|
The Role of Peptide-Based Tumor Vaccines on Cytokines of Adaptive Immunity: A Review. Int J Pept Res Ther 2021. [DOI: 10.1007/s10989-021-10270-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Ogasawara M, Miyashita M, Yamagishi Y, Ota S. Dendritic cell vaccination combined with a conventional chemotherapy for patients with relapsed or advanced pancreatic ductal adenocarcinoma: a single-center phase I/II trial. Ther Apher Dial 2021; 25:415-424. [PMID: 33886156 DOI: 10.1111/1744-9987.13659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/01/2021] [Indexed: 01/29/2023]
Abstract
The prognosis of patients with advanced pancreatic cancer is poor. In the present phase I/II study, we have evaluated the safety and the feasibility of Wilms' tumor 1 (WT1) and/or mucin1 (MUC1) peptide-pulsed dendritic cell (DC) vaccination in combination with chemotherapy in patients with advanced or relapsed pancreatic ductal adenocarcinoma (PDAC). Sixty-five eligible patients were enrolled. No severe adverse events related to the vaccinations were observed. Objective response rate and disease control rate was 12.3% and 50.8%, respectively. Median progression-free survival and overall survival were 4.9 and 9.6 months, respectively. DC vaccinations augmented WT1- and MUC1-specific immunity which might be related to clinical outcome. These results indicate that DC-based immunotherapy combined with a conventional chemotherapy is safe and feasible for patients in advanced stage of PDAC.
Collapse
Affiliation(s)
- Masahiro Ogasawara
- Department of Internal Medicine, Sapporo Hokuyu Hospital, Sapporo, Japan.,Institute for Artificial Organ, Transplantation and Cell Therapy, Sapporo Hokuyu Hospital, Sapporo, Japan
| | - Mamiko Miyashita
- Institute for Artificial Organ, Transplantation and Cell Therapy, Sapporo Hokuyu Hospital, Sapporo, Japan
| | - Yuka Yamagishi
- Cell Processing Center, Sapporo Hokuyu Hospital, Sapporo, Japan
| | - Shuichi Ota
- Department of Internal Medicine, Sapporo Hokuyu Hospital, Sapporo, Japan
| |
Collapse
|
25
|
Role of targeted immunotherapy for pancreatic ductal adenocarcinoma (PDAC) treatment: An overview. Int Immunopharmacol 2021; 95:107508. [PMID: 33725635 DOI: 10.1016/j.intimp.2021.107508] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/18/2021] [Accepted: 02/12/2021] [Indexed: 12/15/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest solid tumors with a high mortality rate and poor survival rate. Depending on the tumor stage, PDAC is either treated by resection surgery, chemotherapies, or radiotherapies. Various chemotherapeutic agents have been used to treat PDAC, alone or in combination. Despite the combinations, chemotherapy exhibits many side-effects leading to an increase in the toxicity profile amongst the PDAC patients. Additionally, these standard chemotherapeutic agents have only a modest impact on patient survival due to their limited efficacy. PDAC was previously considered as an immunologically silent malignancy, but recent findings have demonstrated that effective immune-mediated tumor cell death can be used for its treatment. PDAC is characterized by an immunosuppressive tumor microenvironment accompanied by the major expression of myeloid-derived suppressor cells (MDSC) and M2 tumor-associated macrophages. In contrast, the expression of CD8+ T cells is significantly low. Additionally, infiltration of mast cells in PDAC correlates with the poor prognosis. Immunotherapeutic agents target the immunity mediators and empower them to suppress the tumor and effectively treat PDAC. Different targets are studied and exploited to induce an antitumor immune response in PDAC patients. In recent times, site-specific delivery of immunotherapeutics also gained attention among researchers to effectively treat PDAC. In the present review, existing immunotherapies for PDAC treatment along with their limitations are addressed in detail. The review also includes the pathophysiology, traditional strategies and significance of targeted immunotherapies to combat PDAC effectively. Separately, the identification of ideal targets for the targeted therapy of PDAC is also reviewed exhaustively. Additionally, the review also addresses the applications of targeted immunotherapeutics like checkpoint inhibitors, adoptive T-cell therapy etc.
Collapse
|
26
|
Mucciolo G, Roux C, Scagliotti A, Brugiapaglia S, Novelli F, Cappello P. The dark side of immunotherapy: pancreatic cancer. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2020; 3:491-520. [PMID: 35582441 PMCID: PMC8992483 DOI: 10.20517/cdr.2020.13] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/23/2020] [Accepted: 04/07/2020] [Indexed: 12/13/2022]
Abstract
Since the journal Science deemed cancer immunotherapy as the "breakthrough of the year" in 2014, there has been an explosion of clinical trials involving immunotherapeutic approaches that, in the last decade - thanks also to the renaissance of the immunosurveillance theory (renamed the three Es theory) - have been continuously and successfully developed. In the latest update of the development of the immuno-oncology drug pipeline, published last November by Nature Review Drug Discovery, it was clearly reported that the immunoactive drugs under study almost doubled in just two years. Of the different classes of passive and active immunotherapies, "cell therapy" is the fastest growing. The aim of this review is to discuss the preclinical and clinical studies that have focused on different immuno-oncology approaches applied to pancreatic cancer, which we assign to the "dark side" of immunotherapy, in the sense that it represents one of the solid tumors showing less response to this type of therapeutic strategy.
Collapse
Affiliation(s)
- Gianluca Mucciolo
- Center for Experimental Research and Medical Studies (CERMS), Città della Salute e della Scienza di Torino, Turin 10126, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin 10126, Italy
- The two authors contributed equally
| | - Cecilia Roux
- Center for Experimental Research and Medical Studies (CERMS), Città della Salute e della Scienza di Torino, Turin 10126, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin 10126, Italy
- The two authors contributed equally
| | - Alessandro Scagliotti
- Center for Experimental Research and Medical Studies (CERMS), Città della Salute e della Scienza di Torino, Turin 10126, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin 10126, Italy
| | - Silvia Brugiapaglia
- Center for Experimental Research and Medical Studies (CERMS), Città della Salute e della Scienza di Torino, Turin 10126, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin 10126, Italy
| | - Francesco Novelli
- Center for Experimental Research and Medical Studies (CERMS), Città della Salute e della Scienza di Torino, Turin 10126, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin 10126, Italy
- Molecular Biotechnology Center, University of Turin, Turin 10126, Italy
| | - Paola Cappello
- Center for Experimental Research and Medical Studies (CERMS), Città della Salute e della Scienza di Torino, Turin 10126, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin 10126, Italy
- Molecular Biotechnology Center, University of Turin, Turin 10126, Italy
| |
Collapse
|
27
|
Bazzichetto C, Conciatori F, Luchini C, Simionato F, Santoro R, Vaccaro V, Corbo V, Falcone I, Ferretti G, Cognetti F, Melisi D, Scarpa A, Ciuffreda L, Milella M. From Genetic Alterations to Tumor Microenvironment: The Ariadne's String in Pancreatic Cancer. Cells 2020; 9:309. [PMID: 32012917 PMCID: PMC7072496 DOI: 10.3390/cells9020309] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/18/2020] [Accepted: 01/23/2020] [Indexed: 02/06/2023] Open
Abstract
The threatening notoriety of pancreatic cancer mainly arises from its negligible early diagnosis, highly aggressive progression, failure of conventional therapeutic options and consequent very poor prognosis. The most important driver genes of pancreatic cancer are the oncogene KRAS and the tumor suppressors TP53, CDKN2A, and SMAD4. Although the presence of few drivers, several signaling pathways are involved in the oncogenesis of this cancer type, some of them with promising targets for precision oncology. Pancreatic cancer is recognized as one of immunosuppressive phenotype cancer: it is characterized by a fibrotic-desmoplastic stroma, in which there is an intensive cross-talk between several cellular (e.g., fibroblasts, myeloid cells, lymphocytes, endothelial, and myeloid cells) and acellular (collagen, fibronectin, and soluble factors) components. In this review; we aim to describe the current knowledge of the genetic/biological landscape of pancreatic cancer and the composition of its tumor microenvironment; in order to better direct in the intrinsic labyrinth of this complex tumor type. Indeed; disentangling the genetic and molecular characteristics of cancer cells and the environment in which they evolve may represent the crucial step towards more effective therapeutic strategies.
Collapse
Affiliation(s)
- Chiara Bazzichetto
- Medical Oncology 1, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (C.B.); (V.V.); (I.F.); (G.F.); (F.C.)
| | - Fabiana Conciatori
- Medical Oncology 1, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (C.B.); (V.V.); (I.F.); (G.F.); (F.C.)
| | - Claudio Luchini
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, 37134 Verona, Italy;
| | - Francesca Simionato
- Division of Oncology, University of Verona, 37126 Verona, Italy; (F.S.); (M.M.)
| | - Raffaela Santoro
- Medicine-Digestive Molecular Clinical Oncology Research Unit, University of Verona, 37126 Verona, Italy; (R.S.); (D.M.)
| | - Vanja Vaccaro
- Medical Oncology 1, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (C.B.); (V.V.); (I.F.); (G.F.); (F.C.)
| | - Vincenzo Corbo
- ARC-Net Research Centre, University and Hospital Trust of Verona, 37126 Verona, Italy; (V.C.); (A.S.)
| | - Italia Falcone
- Medical Oncology 1, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (C.B.); (V.V.); (I.F.); (G.F.); (F.C.)
| | - Gianluigi Ferretti
- Medical Oncology 1, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (C.B.); (V.V.); (I.F.); (G.F.); (F.C.)
| | - Francesco Cognetti
- Medical Oncology 1, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (C.B.); (V.V.); (I.F.); (G.F.); (F.C.)
| | - Davide Melisi
- Medicine-Digestive Molecular Clinical Oncology Research Unit, University of Verona, 37126 Verona, Italy; (R.S.); (D.M.)
| | - Aldo Scarpa
- ARC-Net Research Centre, University and Hospital Trust of Verona, 37126 Verona, Italy; (V.C.); (A.S.)
| | - Ludovica Ciuffreda
- SAFU, Department of Research, Advanced Diagnostics, and Technological Innovation, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy;
| | - Michele Milella
- Division of Oncology, University of Verona, 37126 Verona, Italy; (F.S.); (M.M.)
| |
Collapse
|
28
|
Deftereos G, Sandoval A, Furtado LV, Bronner M, Matynia AP. Successful lung cancer EGFR sequencing from DNA extracted from TTF-1 immunohistochemistry slides: a new means to extend insufficient tissue. Hum Pathol 2020; 97:52-59. [PMID: 31978505 DOI: 10.1016/j.humpath.2019.12.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 11/20/2019] [Accepted: 12/31/2019] [Indexed: 12/22/2022]
Abstract
Lung cancer biopsy material is limited and is used for morphologic diagnosis and immunohistochemical and molecular testing. This can lead to tissue exhaustion, resulting in repeat biopsies (when clinically possible), delayed testing, and increased risks. Consequently, there is a need to optimize preanalytical specimen use for molecular testing. Although hematoxylin/eosin can be used for as a DNA source for molecular testing, little is known regarding the potential use of immunohistochemistry (IHC) slides, as these are subject to harsh conditions that can lead to DNA degradation. Our aim was to evaluate whether DNA extracted from TTF-1 IHC slides, a common stain for lung adenocarcinoma, can be tested for EGFR mutations. Twenty-two lung adenocarcinoma samples (11 EGFR wild type and 11 mutated) were selected. Slides were stained for TTF-1 IHC. Following TTF-1 staining, tissue underwent DNA extraction. Pyrosequencing for mutations in exons 18, 19, 20, and 21 of EGFR was performed, and results were compared to clinical EGFR testing data. All 22 TTF-1 samples produced successful results, and 21 were concordant. Of the 11 originally EGFR-mutated cases, 10 TTF-1 samples showed identical mutations in all exons of interest. One case with an L858R mutation on original testing was negative on sequencing of the TTF-1 sample, possibly due to lower tumor burden on the TTF-1 stained slide. All 11 originally EGFR wild-type cases showed identical results on the TTF-1 samples. TTF-1 IHC slides can be a viable DNA source for molecular testing, especially important in lung biopsies with insufficient material following diagnostic evaluation.
Collapse
Affiliation(s)
- Georgios Deftereos
- University of Utah, Department of Pathology, Salt Lake City, UT 84108, USA; ARUP Institute for Clinical and Experimental Pathology, ARUP Laboratories, Salt Lake City, UT 84108, USA.
| | - Amy Sandoval
- ARUP Institute for Clinical and Experimental Pathology, ARUP Laboratories, Salt Lake City, UT 84108, USA.
| | - Larissa V Furtado
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, 38105.
| | - Mary Bronner
- ARUP Institute for Clinical and Experimental Pathology, ARUP Laboratories, Salt Lake City, UT 84108, USA; University of Utah, Department of Pathology, Salt Lake City, UT 84112, USA.
| | - Anna P Matynia
- University of Utah, Department of Pathology, Salt Lake City, UT 84108, USA; ARUP Institute for Clinical and Experimental Pathology, ARUP Laboratories, Salt Lake City, UT 84108, USA.
| |
Collapse
|
29
|
Yang J, Shangguan J, Eresen A, Li Y, Wang J, Zhang Z. Dendritic cells in pancreatic cancer immunotherapy: Vaccines and combination immunotherapies. Pathol Res Pract 2019; 215:152691. [PMID: 31676092 DOI: 10.1016/j.prp.2019.152691] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/04/2019] [Accepted: 10/09/2019] [Indexed: 02/06/2023]
Abstract
Despite significant advances over the past decades of research, pancreatic cancer (PC) continues to have the worst 5-year survival of any malignancy. Dendritic cells (DCs) are the most potent professional antigen-presenting cells and are involved in the induction and regulation of antitumor immune responses. DC-based immunotherapy has been used in clinical trials for PC. Although safety, efficacy, and immune activation were reported in patients with PC, DC vaccines have not yet fulfilled their promise. Additional strategies for combinatorial approaches aimed to augment and sustain the antitumor specific immune response elicited by DC vaccines are currently being investigated. Here, we will discuss DC vaccination immunotherapies that are currently under preclinical and clinical investigation and potential combination approaches for treating and improving the survival of PC patients.
Collapse
Affiliation(s)
- Jia Yang
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Junjie Shangguan
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Aydin Eresen
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Yu Li
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Department of General Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Jian Wang
- Department of Radiology, Southwest Hospital, Chongqing, China.
| | - Zhuoli Zhang
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
30
|
Bassani-Sternberg M, Digklia A, Huber F, Wagner D, Sempoux C, Stevenson BJ, Thierry AC, Michaux J, Pak H, Racle J, Boudousquie C, Balint K, Coukos G, Gfeller D, Martin Lluesma S, Harari A, Demartines N, Kandalaft LE. A Phase Ib Study of the Combination of Personalized Autologous Dendritic Cell Vaccine, Aspirin, and Standard of Care Adjuvant Chemotherapy Followed by Nivolumab for Resected Pancreatic Adenocarcinoma-A Proof of Antigen Discovery Feasibility in Three Patients. Front Immunol 2019; 10:1832. [PMID: 31440238 PMCID: PMC6694698 DOI: 10.3389/fimmu.2019.01832] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/19/2019] [Indexed: 12/24/2022] Open
Abstract
Despite the promising therapeutic effects of immune checkpoint blockade (ICB), most patients with solid tumors treated with anti-PD-1/PD-L1 monotherapy do not achieve objective responses, with most tumor regressions being partial rather than complete. It is hypothesized that the absence of pre-existing antitumor immunity and/or the presence of additional tumor immune suppressive factors at the tumor microenvironment are responsible for such therapeutic failures. It is therefore clear that in order to fully exploit the potential of PD-1 blockade therapy, antitumor immune response should be amplified, while tumor immune suppression should be further attenuated. Cancer vaccines may prime patients for treatments with ICB by inducing effective anti-tumor immunity, especially in patients lacking tumor-infiltrating T-cells. These "non-inflamed" non-permissive tumors that are resistant to ICB could be rendered sensitive and transformed into "inflamed" tumor by vaccination. In this article we describe a clinical study where we use pancreatic cancer as a model, and we hypothesize that effective vaccination in pancreatic cancer patients, along with interventions that can reprogram important immunosuppressive factors in the tumor microenvironment, can enhance tumor immune recognition, thus enhancing response to PD-1/PD-L1 blockade. We incorporate into the schedule of standard of care (SOC) chemotherapy adjuvant setting a vaccine platform comprised of autologous dendritic cells loaded with personalized neoantigen peptides (PEP-DC) identified through our own proteo-genomics antigen discovery pipeline. Furthermore, we add nivolumab, an antibody against PD-1, to boost and maintain the vaccine's effect. We also demonstrate the feasibility of identifying personalized neoantigens in three pancreatic ductal adenocarcinoma (PDAC) patients, and we describe their optimal incorporation into long peptides for manufacturing into vaccine products. We finally discuss the advantages as well as the scientific and logistic challenges of such an exploratory vaccine clinical trial, and we highlight its novelty.
Collapse
Affiliation(s)
- Michal Bassani-Sternberg
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Antonia Digklia
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Florian Huber
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Dorothea Wagner
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Christine Sempoux
- Institute of Pathology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | | | - Anne-Christine Thierry
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Justine Michaux
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - HuiSong Pak
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Julien Racle
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Caroline Boudousquie
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Klara Balint
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - George Coukos
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - David Gfeller
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Silvia Martin Lluesma
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Alexandre Harari
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Nicolas Demartines
- Department of Visceral Surgery, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Lana E. Kandalaft
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
31
|
Katsuda M, Miyazawa M, Ojima T, Katanuma A, Hakamada K, Sudo K, Asahara S, Endo I, Ueno M, Hara K, Yamada S, Fujii T, Satoi S, Ioka T, Ohira M, Akahori T, Kitano M, Nagano H, Furukawa M, Adachi T, Yamaue H. A double-blind randomized comparative clinical trial to evaluate the safety and efficacy of dendritic cell vaccine loaded with WT1 peptides (TLP0-001) in combination with S-1 in patients with advanced pancreatic cancer refractory to standard chemotherapy. Trials 2019; 20:242. [PMID: 31029154 PMCID: PMC6486956 DOI: 10.1186/s13063-019-3332-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/25/2019] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Pancreatic cancer is a refractory malignancy, and the development of a new effective treatment strategy is needed. We generated a dendritic cell vaccine by culturing monocytes obtained by apheresis of blood from each patient, inducing their differentiation into dendritic cells, and pulsing with tumor antigen peptides. However, the clinical efficacy of the vaccine has not been established. We therefore decided to conduct an exploratory clinical trial of dendritic cell vaccine loaded with Wilms' tumor gene 1 peptides (TLP0-001) as a potential new treatment for patients with advanced pancreatic cancer refractory to standard chemotherapy. METHODS This is an investigator-initiated, double-blind, comparative trial. The patients were allocated to two groups in a 1:1 ratio through a central registration by dynamic allocation. A total of 185 patients with inoperable or metastatic pancreatic cancer who were refractory or intolerant to standard primary chemotherapy with gemcitabine plus nab-paclitaxel will be allocated to secondary treatment either with placebo in combination with S-1 (the control group) or TLP0-001 in combination with S-1 (the investigational product group). The primary objective of this trial is to evaluate the safety and efficacy (as measured by overall survival) of the investigational product by comparing the two groups. This clinical trial will be performed in accordance with Japanese Good Clinical Practice guidelines. DISCUSSION Clinical trials of the standard regimen, including gemcitabine, for advanced pancreatic cancer are ongoing worldwide. However, a strategy for after the primary treatment has not been established. We therefore decided to conduct this study to evaluate the safety and efficacy of TLP0-001 as a secondary treatment for pancreatic cancer in anticipation of the approval of this new drug in Japan. This trial is conducted with full consideration of safety, as it is the first-in-human clinical trial of TLP0-001; thus, the trial will be conducted only at the Second Department of Surgery at Wakayama Medical University until the safety is confirmed by interim analysis. We plan to conduct a multicenter trial at 18 institutions in Japan after confirmation of the safety. TRIAL REGISTRATION University Hospital Medical Information Network Clinical Trials Registry, UMIN000027179 . Registered on 9 April 2017.
Collapse
Affiliation(s)
- Masahiro Katsuda
- Second Department of Surgery, Wakayama Medical University, School of Medicine, 811-1, Kimiidera, Wakayama, 641-8510, Japan
| | - Motoki Miyazawa
- Second Department of Surgery, Wakayama Medical University, School of Medicine, 811-1, Kimiidera, Wakayama, 641-8510, Japan
| | - Toshiyasu Ojima
- Second Department of Surgery, Wakayama Medical University, School of Medicine, 811-1, Kimiidera, Wakayama, 641-8510, Japan
| | - Akio Katanuma
- Center for Gastroenterology, Teine-Keijinkai Hospital, Sapporo, Japan
| | - Kenichi Hakamada
- Department of Gastroenterological Surgery, Hirosaki University, Graduate School of Medicine, Aomori, Japan
| | - Kentaro Sudo
- Division of Gastroenterology, Chiba Cancer Center, Chiba, Japan
| | - Shingo Asahara
- Department of Gastroenterology, Chiba Tokushukai Hospital, Chiba, Japan
| | - Itaru Endo
- Department of Gastroenterological Surgery, Yokohama City University, Graduate School of Medicine, Yokohama, Japan
| | - Makoto Ueno
- Department of Gastroenterology, Hepatobiliary and Pancreatic Medical Oncology Division, Kanagawa Cancer Center, Yokohama, Japan
| | - Kazuo Hara
- Department of Gastroenterology, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Suguru Yamada
- Department of Gastroenterological Surgery (Surgery II), Nagoya University, Graduate School of Medicine, Nagoya, Japan
| | - Tsutomu Fujii
- Department of Surgery and Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Sohei Satoi
- Department of Surgery, Kansai Medical University, Hirakata, Japan
| | - Tatsuya Ioka
- Department of Cancer Survey and Gastrointestinal Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Masaichi Ohira
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | | | - Masayuki Kitano
- Second Department of Internal Medicine, Wakayama Medical University, School of Medicine, Wakayama, Japan
| | - Hiroaki Nagano
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University, Graduate School of Medicine, Ube, Japan
| | - Masayuki Furukawa
- Department of Hepato-Biliary-Pancreatology, Kyushu Cancer Center, Fukuoka, Japan
| | - Tomohiko Adachi
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Hiroki Yamaue
- Second Department of Surgery, Wakayama Medical University, School of Medicine, 811-1, Kimiidera, Wakayama, 641-8510, Japan.
| |
Collapse
|
32
|
Maletzki C, Wiegele L, Nassar I, Stenzel J, Junghanss C. Chemo-immunotherapy improves long-term survival in a preclinical model of MMR-D-related cancer. J Immunother Cancer 2019; 7:8. [PMID: 30630527 PMCID: PMC6329128 DOI: 10.1186/s40425-018-0476-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 12/06/2018] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Mismatch Repair Deficiency (MMR-D)-related tumors are highly immunogenic and constitute ideal vaccination targets. In a proof-of-concept study delayed tumorigenesis and prolonged survival has been shown in a clinically-relevant mouse model for MMR-D-related diseases (=MLH1 knock out mice). To refine this approach, vaccination was combined with immune modulatory low-dose chemotherapy to polarize immune regulatory subtypes. METHODS Mice (prophylactic: 8-10 weeks; therapeutic: > 36 weeks) received a single injection of cyclophosphamide (CPX, 120 mg/kg bw, i.p.) or gemcitabine (GEM, 100 mg/kg bw, i.p.) prior to vaccination (lysate of a gastrointestinal tumor allograft, 10 mg/kg bw, n = 9 mice/group). The vaccine was given repetitively (10 mg/kg bw, s.c., 4 x / once a week, followed by monthly boosts) until tumor formation or progression. Tumor growth ([18F] FDG PET/CT imaging) and immune responses were monitored (flow cytometry, IFNγ ELISpot). The microenvironment was analyzed by immunofluorescence. RESULTS Prophylactic application of GEM + lysate delayed tumorigenesis compared to lysate monotherapy and CPX-pre-treatment (median time of onset: 53 vs. 47 vs. 48 weeks). 33% of mice even remained tumor-free until the experimental endpoint (= 65 weeks). This was accompanied by long-term effect on cytokine plasma levels; splenic myeloid derived suppressor cells (MDSC) as well as regulatory T cell numbers. Assessment of tumor microenvironment from GEM + lysate treated mice revealed low numbers of MDSCs, but enhanced T cell infiltration, in some cases co-expressing PD-L1. Therapeutic chemo-immunotherapy (GEM + lysate) had minor impact on overall survival (median time: 12 (GEM + lysate) vs. 11.5 (lysate) vs. 3 weeks (control)), but induced complete remission in one case. Dendritic and T cell infiltrates increased in both treatment groups. Reactive T cells specifically recognized MLH1-/- tumor cells in IFNγ ELISpot, but lacked response towards NK cell targets YAC-1. CONCLUSIONS Combined chemo-immunotherapy impairs tumor onset and growth likely attributable to modulation of immune responses. Depleting or 're-educating' immunosuppressive cell types, such as MDSC, may help moving a step closer to combat cancer.
Collapse
Affiliation(s)
- Claudia Maletzki
- Department of Medicine, Clinic III - Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, Ernst-Heydemann-Str. 6, 18057, Rostock, Germany.
| | - Leonie Wiegele
- Department of Medicine, Clinic III - Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, Ernst-Heydemann-Str. 6, 18057, Rostock, Germany
| | - Ingy Nassar
- Department of Medicine, Clinic III - Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, Ernst-Heydemann-Str. 6, 18057, Rostock, Germany
| | - Jan Stenzel
- Core Facility Multimodal Small Animal Imaging, Rostock University Medical Center, Schillingallee 69a, 18057, Rostock, Germany
| | - Christian Junghanss
- Department of Medicine, Clinic III - Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, Ernst-Heydemann-Str. 6, 18057, Rostock, Germany
| |
Collapse
|
33
|
Zhang W, Lu X, Cui P, Piao C, Xiao M, Liu X, Wang Y, Wu X, Liu J, Yang L. Phase I/II clinical trial of a Wilms' tumor 1-targeted dendritic cell vaccination-based immunotherapy in patients with advanced cancer. Cancer Immunol Immunother 2019; 68:121-130. [PMID: 30306202 PMCID: PMC11028035 DOI: 10.1007/s00262-018-2257-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 10/04/2018] [Indexed: 12/22/2022]
Abstract
Dendritic cell (DC)-based immunotherapies have been created for a broad expanse of cancers, and DC vaccines prepared with Wilms' tumor protein 1 (WT1) peptides have shown great therapeutic efficacy in these diseases. In this paper, we report the results of a phase I/II study of a DC-based vaccination for advanced breast, ovarian, and gastric cancers, and we offer evidence that patients can be effectively vaccinated with autologous DCs pulsed with WT1 peptide. There were ten patients who took part in this clinical study; they were treated biweekly with a WT1 peptide-pulsed DC vaccination, with toxicity and clinical and immunological responses as the principal endpoints. All of the adverse events to DC vaccinations were tolerable under an adjuvant setting. The clinical response was stable disease in seven patients. Karnofsky Performance Scale scores were enhanced, and computed tomography scans revealed tumor shrinkage in three of seven patients. Human leukocyte antigen (HLA)/WT1-tetramer and cytoplasmic IFN-γ assays were used to examine the induction of a WT-1-specific immune response. The immunological responses to DC vaccination were significantly correlated with fewer myeloid-derived suppressor cells (P = 0.045) in the pretreated peripheral blood. These outcomes offered initial clinical evidence that the WT1 peptide-pulsed DC vaccination is a potential treatment for advanced cancer.
Collapse
Affiliation(s)
- Wen Zhang
- Department of Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 South Lane, Panjiayuan, Chaoyang District, Beijing, 100021, China
| | - Xu Lu
- Department of Oncology, Beijing Biohealthcare Biotechnology Co.,Ltd, FL2, Building 3, Park B, Shunyi District Airport High Tech Zoon, Beijing, 101300, China
| | - Peilin Cui
- Department of Gastroenterology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050, China
| | - Chunmei Piao
- Department of Oncology, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Anzhen Hospital Affiliated to the Capital Medical University, Beijing, 100029, China
| | - Man Xiao
- Department of Biochemistry and Molecular Biology, Hainan Medical College, Haikou, 571199, China
| | - Xuesong Liu
- Department of Oncology, Beijing Biohealthcare Biotechnology Co.,Ltd, FL2, Building 3, Park B, Shunyi District Airport High Tech Zoon, Beijing, 101300, China
| | - Yue Wang
- Department of Oncology, Beijing Biohealthcare Biotechnology Co.,Ltd, FL2, Building 3, Park B, Shunyi District Airport High Tech Zoon, Beijing, 101300, China
| | - Xuan Wu
- Department of Oncology, Beijing Biohealthcare Biotechnology Co.,Ltd, FL2, Building 3, Park B, Shunyi District Airport High Tech Zoon, Beijing, 101300, China
| | - Jingwei Liu
- Department of Oncology, Beijing Biohealthcare Biotechnology Co.,Ltd, FL2, Building 3, Park B, Shunyi District Airport High Tech Zoon, Beijing, 101300, China.
| | - Lin Yang
- Department of Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 South Lane, Panjiayuan, Chaoyang District, Beijing, 100021, China.
| |
Collapse
|
34
|
Lybaert L, Vermaelen K, De Geest BG, Nuhn L. Immunoengineering through cancer vaccines – A personalized and multi-step vaccine approach towards precise cancer immunity. J Control Release 2018; 289:125-145. [DOI: 10.1016/j.jconrel.2018.09.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 09/11/2018] [Accepted: 09/12/2018] [Indexed: 02/07/2023]
|
35
|
Empowering dendritic cell cancer vaccination: the role of combinatorial strategies. Cytotherapy 2018; 20:1309-1323. [PMID: 30360963 DOI: 10.1016/j.jcyt.2018.09.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/18/2018] [Accepted: 09/19/2018] [Indexed: 01/22/2023]
Abstract
Dendritic cells (DCs) are bone marrow-derived immune cells that play a crucial role in inducing the adaptive immunity and supporting the innate immune response independently from T cells. In the last decade, DCs have become a hopeful instrument for cancer vaccines that aims at re-educating the immune system, leading to a potent anti-cancer immune response able to overcome the immunosuppressive tumor microenvironment (TME). Although several studies have indicated that DC-based vaccines are feasible and safe, the clinical advantages of DC vaccination as monotherapy for most of the neoplasms remain a distant target. Recently, many reports and clinical trials have widely used innovative combinatorial therapeutic strategies to normalize the immune function in the TME and synergistically enhance DC function. This review will describe the most relevant and updated evidence of the anti-cancer combinatorial approaches to boost the clinical potency of DC-based vaccines.
Collapse
|
36
|
Matsui H, Hazama S, Shindo Y, Nagano H. Combination treatment of advanced pancreatic cancer using novel vaccine and traditional therapies. Expert Rev Anticancer Ther 2018; 18:1205-1217. [DOI: 10.1080/14737140.2018.1531707] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Hiroto Matsui
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Shoichi Hazama
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Japan
- Department of Translational Research and Developmental Therapeutics against Cancer, Yamaguchi University School of Medicine, Yamaguchi, Japan
| | - Yoshitaro Shindo
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Hiroaki Nagano
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Japan
| |
Collapse
|
37
|
Mohamed SIA, Jantan I, Nafiah MA, Seyed MA, Chan KM. Dendritic cells pulsed with generated tumor cell lysate from Phyllanthus amarus Schum. & Thonn. induces anti-tumor immune response. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 18:232. [PMID: 30081891 PMCID: PMC6080389 DOI: 10.1186/s12906-018-2296-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 07/24/2018] [Indexed: 01/02/2023]
Abstract
Background Dendritic cells (DCs) are unique antigen presenting cells (APC) which play a pivotal role in immunotherapy and induction of an effective immune response against tumors. In the present study, 80% ethanol extract of Phyllanthus amarus was used to generate tumor lysate (TLY) derived from HCT 116 and MCF-7 cancer cell lines via induction of apoptosis. Monocyte-derived DCs were generated ex vivo from the adherent population of peripheral blood mononuclear cells (PBMCs). The generated TLY were used to impulse DCs to investigate its effect on their cellular immune functions including antigen presentation capacity, phagocytic activity, chemotaxis capacity, T-cell proliferation and cytokines release. Methods The effect of P. amarus-generated TLY on DCs maturation was evaluated by determination of MHC class I, II and CD 11c expression as well as the co-stimulatory molecules CD 83 and 86 by using flow cytometry. The phagocytic capacity of TLY-pulsed DCs was investigated through FITC-dextran uptake by using flow cytometry. The effect on the cytokines release including IL-12, IL-6 and IL-10 was elucidated by using ELISA. The migration capacity and T cell proliferation activity of pulsed DCs were measured. The relative gene expression levels of cytokines were determined by using qRT-PCR. The major constituents of P. amarus extract were qualitatively and quantitatively analyzed by using validated reversed-phase high performance liquid chromatography (HPLC) methods. Results P. amarus-generated TLY significantly up-regulated the expression levels of MHC class I, CD 11 c, CD 83 and 86 in pulsed DCs. The release of interleukin IL-12 and IL-6 was enhanced by TLY-DCs at a ratio of 1 DC: 3 tumor apoptotic bodies (APO), however, the release of IL-10 was suppressed. The migration ability as well as allogeneic T-cell proliferation activities of loaded DCs were significantly enhanced, but their phagocytic capacity was highly attenuated. The gene expression profiles for IL-12 and IL-6 of DCs showed increase in their mRNA gene expression in TLY pulsed DCs versus unloaded and LPS-treated only DCs. Conclusion The effect of P. amarus-generated TLY on the immune effector mechanisms of DCs verified its potential to induce an in vitro anti-tumor immune response against the recognized tumor antigen.
Collapse
|
38
|
Effect of dendritic cell-based immunotherapy on hepatocellular carcinoma: A systematic review and meta-analysis. Cytotherapy 2018; 20:975-989. [PMID: 30072299 DOI: 10.1016/j.jcyt.2018.06.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/17/2018] [Accepted: 06/07/2018] [Indexed: 01/30/2023]
Abstract
BACKGROUND AIMS Dendritic cell (DC)-based immunotherapy has recently been reported frequently in the treatment of hepatocellular carcinoma (HCC); however, its efficacy remains controversial. In this study, we aimed to evaluate the clinical efficacy of DC-based immunotherapy on HCC by conducting a systematic review and meta-analysis. METHODS PubMed, Cochrane Library, Embase and Web of Science were searched to identify clinical trials on DC-based immunotherapy for HCC published up to January 31, 2018. The articles were selected according to pre-established inclusion criteria and methodologic quality, and publication bias were evaluated. RESULTS A total of 1276 cases from 19 clinical trials were included. Compared with traditional treatment, further DC-based therapy enhanced the CD4+ T/CD8+ T ratio (standardized mean difference: 0.68, 95% confidence interval [CI] 0.46-0.89, P < 0.001); increased the 1-year, 18-month and 5-year progression-free survival (PFS) rate and the 1-year, 18-month and 2-year overall survival (OS) rate (relative risk > 1, P < 0.05), prolonged the median PFS time (median survival ratio [MSR]: 1.98, 95% CI: 1.60-2.46, P < 0.001) and median OS time (MSR: 1.72, 95% CI: 1.51-1.96, P < 0.001). Adverse reactions were mild. CONCLUSIONS DC-based therapy not only enhanced anti-tumor immunity, improved the survival rate and prolonged the survival time of HCC patients, but it was also safe. These findings will provide encouraging information for further development of DC-based immunotherapy as an adjuvant treatment for HCC. However, the results must be interpreted with caution because of the small study numbers, publication bias and the various of study designs, pre-treatment and therapeutic processes of DCs.
Collapse
|
39
|
Kanai T, Ito Z, Oji Y, Suka M, Nishida S, Takakura K, Kajihara M, Saruta M, Fujioka S, Misawa T, Akiba T, Yanagisawa H, Shimodaira S, Okamoto M, Sugiyama H, Koido S. Prognostic significance of Wilms' tumor 1 expression in patients with pancreatic ductal adenocarcinoma. Oncol Lett 2018; 16:2682-2692. [PMID: 30008944 DOI: 10.3892/ol.2018.8961] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 05/16/2018] [Indexed: 02/07/2023] Open
Abstract
The only current curative treatment for patients with pancreatic ductal adenocarcinoma (PDA) is surgical resection, and certain patients still succumb to disease shortly after complete surgical resection. Wilms' tumor 1 (WT1) serves an oncogenic role in various types of tumors; therefore, in the present study, WT1 protein expression in patients with PDA was analyzed and the association with overall survival (OS) and disease-free survival (DFS) time in patients with PDA was assessed following surgical resection. A total of 50 consecutive patients with PDA who received surgical resection between January 2005 and December 2015 at the Jikei University Kashiwa Hospital (Kashiwa, Chiba, Japan) were enrolled. WT1 protein expression in PDA tissue was measured using immunohistochemical staining. Furthermore, laboratory parameters were measured within 2 weeks of surgery, and systemic inflammatory response markers were evaluated. WT1 protein expression was detected in the nucleus and cytoplasm of all PDA cells and in tumor vessels. WT1 exhibited weak staining in the nuclei of all PDA cells; however, the cytoplasmic expression of WT1 levels was classified into four groups: Negative (n=0), weak (n=19), moderate (n=23) and strong (n=8). In patients with PDA, it was demonstrated that the OS and DFS times of patients with weak cytoplasmic WT1 expression were significantly prolonged compared with those of patients with moderate-to-strong cytoplasmic WT1 expression, as determined by log-rank test (P=0.0005 and P=0.0001, respectively). Furthermore, an association between the density of WT1-expressing tumor vessels and worse OS/DFS times was detected. Multivariate analysis also indicated a significant association between the overexpression of WT1 in PDA tissue and worse OS/DFS times. To the best of our knowledge, the present study is the first to demonstrate that moderate-to-strong overexpression of WT1 in the cytoplasm of PDA cells is significantly associated with worse OS/DFS times. Therefore, overexpression of WT1 in the cytoplasm of PDA cells may impact the recurrence and prognosis of patients with PDA following surgical resection. The results further support the development of WT1-targeted therapies to prolong survival in all patients with PDA.
Collapse
Affiliation(s)
- Tomoya Kanai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Kashiwa Hospital, Kashiwa, Chiba 277-8567, Japan
| | - Zensho Ito
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Kashiwa Hospital, Kashiwa, Chiba 277-8567, Japan
| | - Yusuke Oji
- Department of Functional Diagnostic Science, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Machi Suka
- Department of Public Health and Environmental Medicine, The Jikei University School of Medicine, Tokyo 105-8571, Japan
| | - Sumiyuki Nishida
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Kazuki Takakura
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Kashiwa Hospital, Kashiwa, Chiba 277-8567, Japan
| | - Mikio Kajihara
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Kashiwa Hospital, Kashiwa, Chiba 277-8567, Japan
| | - Masayuki Saruta
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo 105-8571, Japan
| | - Shuichi Fujioka
- Department of Surgery, The Jikei University School of Medicine, Kashiwa Hospital, Kashiwa, Chiba 277-8567, Japan
| | - Takeyuki Misawa
- Department of Surgery, The Jikei University School of Medicine, Kashiwa Hospital, Kashiwa, Chiba 277-8567, Japan
| | - Tadashi Akiba
- Department of Surgery, The Jikei University School of Medicine, Kashiwa Hospital, Kashiwa, Chiba 277-8567, Japan
| | - Hiroyuki Yanagisawa
- Department of Public Health and Environmental Medicine, The Jikei University School of Medicine, Tokyo 105-8571, Japan
| | - Shigetaka Shimodaira
- Department of Regenerative Medicine, Kanazawa Medical University, Ishikawa 920-0293, Japan
| | - Masato Okamoto
- Department of Advanced Immunotherapeutics, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Haruo Sugiyama
- Department of Cancer Immunology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Shigeo Koido
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Kashiwa Hospital, Kashiwa, Chiba 277-8567, Japan.,Institute of Clinical Medicine and Research, The Jikei University School of Medicine, Kashiwa, Chiba 277-8567, Japan
| |
Collapse
|
40
|
Deicher A, Andersson R, Tingstedt B, Lindell G, Bauden M, Ansari D. Targeting dendritic cells in pancreatic ductal adenocarcinoma. Cancer Cell Int 2018; 18:85. [PMID: 29946224 PMCID: PMC6006559 DOI: 10.1186/s12935-018-0585-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 06/12/2018] [Indexed: 12/11/2022] Open
Abstract
Dendritic cells (DC) are an integral part of the tumor microenvironment. Pancreatic cancer is characterized by reduced number and function of DCs, which impacts antigen presentation and contributes to immune tolerance. Recent data suggest that exosomes can mediate communication between pancreatic cancer cells and DCs. Furthermore, levels of DCs may serve as prognostic factors. There is also growing evidence for the effectiveness of vaccination with DCs pulsed with tumor antigens to initiate adaptive cytolytic immune responses via T cells. Most experience with DC-based vaccination has been gathered for MUC1 and WT1 antigens, where clinical studies in advanced pancreatic cancer have provided encouraging results. In this review, we highlight the role of DC in the course, prognosis and treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Anton Deicher
- Department of Surgery, Clinical Sciences Lund, Lund University and Skåne University Hospital, 221 85 Lund, Sweden
- Faculty of Medicine, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
| | - Roland Andersson
- Department of Surgery, Clinical Sciences Lund, Lund University and Skåne University Hospital, 221 85 Lund, Sweden
| | - Bobby Tingstedt
- Department of Surgery, Clinical Sciences Lund, Lund University and Skåne University Hospital, 221 85 Lund, Sweden
| | - Gert Lindell
- Department of Surgery, Clinical Sciences Lund, Lund University and Skåne University Hospital, 221 85 Lund, Sweden
| | - Monika Bauden
- Department of Surgery, Clinical Sciences Lund, Lund University and Skåne University Hospital, 221 85 Lund, Sweden
| | - Daniel Ansari
- Department of Surgery, Clinical Sciences Lund, Lund University and Skåne University Hospital, 221 85 Lund, Sweden
| |
Collapse
|
41
|
Morrison AH, Byrne KT, Vonderheide RH. Immunotherapy and Prevention of Pancreatic Cancer. Trends Cancer 2018; 4:418-428. [PMID: 29860986 PMCID: PMC6028935 DOI: 10.1016/j.trecan.2018.04.001] [Citation(s) in RCA: 323] [Impact Index Per Article: 46.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/30/2018] [Accepted: 04/03/2018] [Indexed: 12/16/2022]
Abstract
Pancreatic cancer is the third-leading cause of cancer mortality in the USA, recently surpassing breast cancer. A key component of pancreatic cancer's lethality is its acquired immune privilege, which is driven by an immunosuppressive microenvironment, poor T cell infiltration, and a low mutational burden. Although immunotherapies such as checkpoint blockade or engineered T cells have yet to demonstrate efficacy, a growing body of evidence suggests that orthogonal combinations of these and other strategies could unlock immunotherapy in pancreatic cancer. In this Review article, we discuss promising immunotherapies currently under investigation in pancreatic cancer and provide a roadmap for the development of prevention vaccines for this and other cancers.
Collapse
Affiliation(s)
- Alexander H Morrison
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19014, USA
| | - Katelyn T Byrne
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19014, USA; Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA 19014, USA
| | - Robert H Vonderheide
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19014, USA; Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA 19014, USA; Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19014, USA.
| |
Collapse
|
42
|
Matsuda T, Takeuchi H, Sakurai T, Mayanagi S, Booka E, Fujita T, Higuchi H, Taguchi J, Hamamoto Y, Takaishi H, Kawakubo H, Okamoto M, Sunamura M, Kawakami Y, Kitagawa Y. Pilot study of WT1 peptide-pulsed dendritic cell vaccination with docetaxel in esophageal cancer. Oncol Lett 2018; 16:1348-1356. [PMID: 29963201 DOI: 10.3892/ol.2018.8734] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 05/04/2018] [Indexed: 12/20/2022] Open
Abstract
In the present study, the immune response to Wilms tumor gene 1 (WT1) peptide-pulsed dendritic cell (DC) vaccination combined with docetaxel (DCDOC) in advanced esophageal cancer patients who had already received first-line chemotherapy was investigated. Ten HLA-A*2402 patients were treated with docetaxel (50 mg/m2) on day 1 and WT1 peptide-pulsed DC vaccination (1×107 cells) on days 15 and 22 (repeated every 4 weeks for 3 cycles). The delayed-type hypersensitivity skin test, HLA tetramer assay and interferon-γ enzyme-linked immunospot (ELISPOT) assay were used to evaluate the induction of a WT1-specific immune response. Median overall survival was 5 months (range, 1.1-11.6). The clinical effect of DCDOC therapy was not observed and only 1 patient could complete the protocol therapy. Disease progression was observed in 9 patients and 1 patient succumbed to fatality during the second cycle of therapy. As a pilot study, it was not possible to evaluate the safety of WT1 peptide-pulsed DCDOC therapy for esophageal squamous cell cancer. However, a WT1-specific response in 6 patients, as indicated by the ELISPOT or HLA/WT1-tetramer assay, was demonstrated. The results suggested that the positive immune response had significant relevance on the low percentage of CD11b+ and CD66b+ granulocytic myeloid-derived suppressor cells in CD15+ cells. Furthermore, DCDOC elicited a WT1-specific immune response regardless of the myelosuppression associated with docetaxel. The present findings support future studies and further work to assess DCDOC as an adjuvant therapy for esophageal cancer will be performed. The present clinical trial was registered in the University Hospital Medical Information Network (UMIN) Clinical Trials Registry on November 11th, 2011, no. UMIN000006704.
Collapse
Affiliation(s)
- Tatsuo Matsuda
- Department of Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Hiroya Takeuchi
- Department of Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan.,Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
| | - Toshiharu Sakurai
- Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Shuhei Mayanagi
- Department of Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Eisuke Booka
- Department of Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Tomonobu Fujita
- Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Hajime Higuchi
- Department of Gastroenterological Chemotherapy, International University of Health and Welfare, Mita Hospital, Tokyo 108-8329, Japan
| | - Junichi Taguchi
- Tokyo Midtown Clinic, Midtown Tower 6F, Tokyo 107-6206, Japan
| | - Yasuo Hamamoto
- Keio Cancer Center, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Hiromasa Takaishi
- Keio Cancer Center, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Hirofumi Kawakubo
- Department of Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Masato Okamoto
- Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Makoto Sunamura
- Department of Digestive Tract Surgery and Transplantation Surgery, Hachioji Medical Center, Tokyo Medical University, Tokyo 193-0998, Japan
| | - Yutaka Kawakami
- Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Yuko Kitagawa
- Department of Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
| |
Collapse
|
43
|
Peptide-pulsed dendritic cell vaccine in combination with carboplatin and paclitaxel chemotherapy for stage IV melanoma. Melanoma Res 2018; 27:326-334. [PMID: 28263240 DOI: 10.1097/cmr.0000000000000342] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In this study, we aimed to evaluate the feasibility and efficacy of peptide-pulsed dendritic cell (DC) vaccine in combination with carboplatin and paclitaxel chemotherapy (DCCP) for patients with stage IV melanoma previously treated with dacarbazine-containing regimen. Six HLA-A24 and 3 HLA-A02 patients were treated with carboplatin (area under the curve 5) and paclitaxel (175 mg/m) on day 1 and DCs (2×10 cells) pulsed with Wilms tumor gene 1 (WT1), gp100, tyrosinase, and either MAGE-A3 (for HLA-A24) or MAGE-A2 (for HLA-A02) peptides on days 8 and 22 in 28-day cycle for up to three cycles. DCCP was well tolerated, and median progression-free survival and median overall survival were 2.3 and 12.0 months, respectively. In four of nine patients, a WT1-specific immune response (WT1-IR) was detected using the interferon-γ enzyme-linked ImmunoSpot assay and WT1/HLA tetramer assay. DCCP was more likely to elicit a WT1-IR in patients who received DCs pulsed with the HLA-A24-restricted peptide (75%) compared with patients who received DCs pulsed with the HLA-A02-restricted peptide (0%, P=0.058). Furthermore, three (75%) of four patients with a WT1-IR survived longer than 12 months, whereas only one (20%) of five patients without a WT1-IR who received the BRAF inhibitor after DCCP survived longer than 12 months. These results suggest that DCCP may be beneficial for HLA-A24 melanoma patients with a WT1-IR.
Collapse
|
44
|
Targeted therapies in the management of locally advanced and metastatic pancreatic cancer: a systematic review. Oncotarget 2018; 9:21613-21627. [PMID: 29765563 PMCID: PMC5940404 DOI: 10.18632/oncotarget.25085] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 03/12/2018] [Indexed: 12/14/2022] Open
Abstract
Pancreatic cancer has a dismal prognosis particularly in patients presenting with unresectable tumors. We performed a bibliometric analysis of clinical trials for pancreatic cancer conducted between 2014-2016 focusing on patients that presented with unresectable (locally advanced or metastatic) tumors. We discuss a range of studies that employed FOLFIRINOX, the gemcitabine + nab-paclitaxel combination and studies that used molecularly-targeted therapy. Major areas of focus have been dual targeting of EGFR and VEGFR, immunotherapy or a multimodal approach – combining chemotherapy with radiotherapy. We also point out the need for molecular selection for low prevalence subtypes. Key insights sourced from these pivotal trials should improve clinical outcomes for this devastating cancer.
Collapse
|
45
|
Li W, Song X, Yu H, Zhang M, Li F, Cao C, Jiang Q. Dendritic cell-based cancer immunotherapy for pancreatic cancer. Arab J Gastroenterol 2018. [PMID: 29526540 DOI: 10.1016/j.ajg.2017.05.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Pancreatic cancer (PC) is a lethal disease and remains one of the most resistant cancers to traditional therapies. New therapeutic modalities are urgently needed, particularly immunotherapy, which has shown promise in numerous animal model studies. Dendritic cell (DC)-based immunotherapy has been used in clinical trials for various cancers, including PC, because DCs are the most potent antigen-presenting cell (APC), which are capable of priming naive T cells and stimulating memory T cells to generate antigen-specific responses. In this paper, we review the preclinical and clinical efforts towards the application of DCs for PC.
Collapse
Affiliation(s)
- Wei Li
- Laboratory of Nuclear and Radiation Damage, The General Hospital of The PLA Rocket Force, Beijing 100088, China
| | - Xiujun Song
- Laboratory of Nuclear and Radiation Damage, The General Hospital of The PLA Rocket Force, Beijing 100088, China
| | - Huijie Yu
- Laboratory of Nuclear and Radiation Damage, The General Hospital of The PLA Rocket Force, Beijing 100088, China
| | - Manze Zhang
- Laboratory of Nuclear and Radiation Damage, The General Hospital of The PLA Rocket Force, Beijing 100088, China
| | - Fengsheng Li
- Laboratory of Nuclear and Radiation Damage, The General Hospital of The PLA Rocket Force, Beijing 100088, China
| | - Cheng Cao
- Beijing Institute of Biotechnology, Beijing 100850, China.
| | - Qisheng Jiang
- Laboratory of Nuclear and Radiation Damage, The General Hospital of The PLA Rocket Force, Beijing 100088, China.
| |
Collapse
|
46
|
Gravett AM, Trautwein N, Stevanović S, Dalgleish AG, Copier J. Gemcitabine alters the proteasome composition and immunopeptidome of tumour cells. Oncoimmunology 2018; 7:e1438107. [PMID: 29930882 PMCID: PMC5990974 DOI: 10.1080/2162402x.2018.1438107] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 01/30/2018] [Accepted: 02/02/2018] [Indexed: 01/05/2023] Open
Abstract
The antigenic makeup of tumour cells can have a profound effect on the progression of cancer and success of immunotherapies. Therefore, one strategy to improve the efficacy of cancer treatments is to augment the antigens displayed by tumours. The present study explores how the recognition of tumour cells may be altered by non-cytotoxic concentrations of gemcitabine (GEM). Testing a panel of chemotherapeutics in human cancer cell lines in vitro, it was found that GEM increased surface expression of HLA-A,B,C and that underlying this were specific increases in β-2-microglobulin and immunoproteasome subunit proteins. Furthermore, the peptide antigen repertoire displayed on HLA class I was altered, revealing a number of novel antigens, many of which that were derived from proteins involved in the DNA-damage response. Changes in the nature of the peptide antigens eluted from HLA-A,B,C after GEM treatment consisted of amino acid anchor-residue modifications and changes in peptide length which rendered peptides likely to favour alternative HLA-alleles and increased their predicted immunogenicity. Signalling through the MAPK/ERK and NFκB/RelB pathways was associated with these changes. These data may explain observations made in previous in vivo studies, advise as to which antigens should be used in future vaccination protocols and reinforce the idea that chemotherapy and immunotherapy could be used in combination.
Collapse
Affiliation(s)
- A M Gravett
- Institute for infection and immunity, St George's, University of London, London, UK
| | - N Trautwein
- Department of Immunology, Institute of Cell Biology, University of Tübingen, Tübingen, Germany
| | - S Stevanović
- Department of Immunology, Institute of Cell Biology, University of Tübingen, Tübingen, Germany
| | - A G Dalgleish
- Institute for infection and immunity, St George's, University of London, London, UK
| | - J Copier
- Institute for infection and immunity, St George's, University of London, London, UK
| |
Collapse
|
47
|
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease with a devastating 5-year overall survival of only approximately 7%. Although just 4% of all malignant diseases are accounted to PDAC, it will become the second leading cause of cancer-related deaths before 2030. Immunotherapy has proven to be a promising therapeutic option in various malignancies such as melanoma, non-small cell lung cancer (NSCLC), microsatellite instability-high gastrointestinal cancer, urinary tract cancer, kidney cancer, and others. In this review, we summarize recent findings about immunological aspects of PDAC with the focus on the proposed model of the "cancer immunity cycle". By this model, a deeper understanding of the underlying mechanism in achieving a T-cell response against cancer cells is provided. There is currently great interest in the field around designing novel immunotherapy combination studies for PDAC based on a sound understanding of the underlying immunobiology.
Collapse
|
48
|
Nishida S, Ishikawa T, Egawa S, Koido S, Yanagimoto H, Ishii J, Kanno Y, Kokura S, Yasuda H, Oba MS, Sato M, Morimoto S, Fujiki F, Eguchi H, Nagano H, Kumanogoh A, Unno M, Kon M, Shimada H, Ito K, Homma S, Oka Y, Morita S, Sugiyama H. Combination Gemcitabine and WT1 Peptide Vaccination Improves Progression-Free Survival in Advanced Pancreatic Ductal Adenocarcinoma: A Phase II Randomized Study. Cancer Immunol Res 2018; 6:320-331. [PMID: 29358173 DOI: 10.1158/2326-6066.cir-17-0386] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 10/17/2017] [Accepted: 01/09/2018] [Indexed: 11/16/2022]
Abstract
We investigated the efficacy of a Wilms' tumor gene 1 (WT1) vaccine combined with gemcitabine (GEMWT1) and compared it with gemcitabine (GEM) monotherapy for advanced pancreatic ductal adenocarcinoma (PDAC) in a randomized phase II study. We randomly assigned HLA-A*02:01- or HLA-A*24:02-positive patients with advanced PDAC to receive GEMWT1 or GEM. We assessed WT1-specific immune responses via delayed-type hypersensitivity (DTH) to the WT1 peptide and a tetramer assay to detect WT1-specific cytotoxic T lymphocytes (WT1-CTL). Of 91 patients enrolled, 85 were evaluable (GEMWT1: n = 42; GEM: n = 43). GEMWT1 prolonged progression-free survival [PFS; hazard ratio (HR), 0.66; P = 0.084] and improved overall survival rate at 1 year (1-year OS%; GEMWT1: 35.7%; GEM: 20.9%). However, the difference in OS was not significant (HR: 0.82; P = 0.363). These effects were particularly evident in metastatic PDAC (PFS: HR 0.51, P = 0.0017; 1-year OS%: GEMWT1 27.3%; GEM 11.8%). The combination was well tolerated, with no unexpected serious adverse events. In patients with metastatic PDAC, PFS in the DTH-positive GEMWT1 group was significantly prolonged, with a better HR of 0.27 compared with the GEM group, whereas PFS in the DTH-negative GEMWT1 group was similar to that in the GEM group (HR 0.86; P = 0.001). DTH positivity was associated with an increase in WT1-CTLs induced by the WT1 vaccine. GEM plus the WT1 vaccine prolonged PFS and may improve 1-year OS% in advanced PDAC. These clinical effects were associated with the induction of WT1-specific immune responses. Cancer Immunol Res; 6(3); 320-31. ©2018 AACR.
Collapse
Affiliation(s)
- Sumiyuki Nishida
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Osaka, Japan.
| | - Takeshi Ishikawa
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Shinichi Egawa
- Division of International Cooperation for Disaster Medicine, International Research Institute of Disaster Science, Tohoku University, Sendai, Japan
| | - Shigeo Koido
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | | | - Jun Ishii
- Division of General and Gastroenterological Surgery, Department of Surgery, Toho University Faculty of Medicine, Tokyo, Japan
| | - Yoshihide Kanno
- Department of Gastroenterology, Sendai City Medical Center, Sendai, Japan
| | - Satoshi Kokura
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hiroaki Yasuda
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Mari Saito Oba
- Department of Biostatistics, Yokohama City University, Yokohama, Japan
| | - Maho Sato
- Department of Biostatistics, Yokohama City University, Yokohama, Japan
| | - Soyoko Morimoto
- Department of Cancer Immunotherapy, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Fumihiro Fujiki
- Department of Cancer Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hiroaki Nagano
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Osaka, Japan.,Department of Immunopathology, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Michiaki Unno
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masanori Kon
- Department of Surgery, Kansai Medical University, Hirakata, Japan
| | - Hideaki Shimada
- Division of General and Gastroenterological Surgery, Department of Surgery, Toho University Faculty of Medicine, Tokyo, Japan
| | - Kei Ito
- Department of Gastroenterology, Sendai City Medical Center, Sendai, Japan
| | - Sadamu Homma
- Division of Oncology, Research Center for Medical Science, The Jikei University School of Medicine, Tokyo, Japan
| | - Yoshihiro Oka
- Department of Immunopathology, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan.,Department of Cancer Stem Cell Biology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Satoshi Morita
- Department of Biomedical Statistics and Bioinformatics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Haruo Sugiyama
- Department of Cancer Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
49
|
Hirooka Y, Kawashima H, Ohno E, Ishikawa T, Kamigaki T, Goto S, Takahara M, Goto H. Comprehensive immunotherapy combined with intratumoral injection of zoledronate-pulsed dendritic cells, intravenous adoptive activated T lymphocyte and gemcitabine in unresectable locally advanced pancreatic carcinoma: a phase I/II trial. Oncotarget 2018; 9:2838-2847. [PMID: 29416816 PMCID: PMC5788684 DOI: 10.18632/oncotarget.22974] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 11/15/2017] [Indexed: 02/06/2023] Open
Abstract
Dendritic cell (DC)-based vaccines prepared using various antigen loading methods have been studied for cancer immunotherapy. The in vivo provocation of immunity by the direct injection of DCs without using tumor-specific antigens into tumors after apoptosis-inducing chemotherapy is more applicable. We previously reported that zoledronate-pulsed DCs (Zol-DCs) may induce tumor-antigen-specific CD8+ T cells by activating Vγ9γδT cells. In this report, we studied the feasibility, safety, and efficacy of a comprehensive immunotherapy involving the combined intratumoral injection of Zol-DC, gemcitabine (GEM) and αβT cells in locally advanced pancreatic carcinoma. Seven of 15 patients showed a stable disease (SD) and most of the patients showed long-term clinical responses. The FACT-BRM score was significantly higher in the patients with SD. Additionally the CD8+/Treg ratio significantly increased in SD patients after treatment. The median over-all survival and progression-free-survival of 15 patients were 12.0 months and 5.5 months, respectively. Patients with a pretreatment neutrophil/lymphocyte ratio (NLR) lower than 5.0 showed significantly longer survival. Even in an analysis limited to the patients with an NLR lower than 5.0, the patients whose CD8+/Treg ratio increased more than twofold tended to survive longer. In conclusion, the comprehensive immunotherapy using Zol-DCs, systemic αβT cells, and GEM may synergistically show a therapeutic effect on locally advanced pancreatic carcinoma. By using appropriate and precise biomarkers, such as NLR and CD8+/Treg ratio, the present comprehensive immunotherapy could be more beneficial for patients with pancreatic carcinoma.
Collapse
Affiliation(s)
- Yoshiki Hirooka
- Department of Endoscopy, Nagoya University Hospital, Nagoya, Japan
| | - Hiroki Kawashima
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Eizaburo Ohno
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takuya Ishikawa
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takashi Kamigaki
- Seta Clinic, Tokyo, Japan
- Department of Next Generation Cell and Immune Therapy, Juntendo University School of Medicine, Tokyo, Japan
| | | | | | - Hidemi Goto
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
50
|
Markov OV, Mironova NL, Vlassov VV, Zenkova MA. Antitumor Vaccines Based on Dendritic Cells: From Experiments using Animal Tumor Models to Clinical Trials. Acta Naturae 2017; 9:27-38. [PMID: 29104773 PMCID: PMC5662271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Indexed: 11/07/2022] Open
Abstract
The routine methods used to treat oncological diseases have a number of drawbacks, including non-specific action and severe side effects for patients. Furthermore, tumor diseases are associated with a suppression of the immune system that often leads to the inefficiency of standard treatment methods. The development of novel immunotherapeutic approaches having specific antitumor action and that activate the immune system is of crucial importance. Vaccines based on dendritic cells (DCs) loaded with tumor antigens ex vivo that can activate antitumor cytotoxic T-cell responses stand out among different antitumor immunotherapeutic approaches. This review is focused on analyzing different methods of DC-based vaccine preparation and current research in antitumor DC-based vaccines using animal tumor models and in clinical trials.
Collapse
Affiliation(s)
- O. V. Markov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentieva Ave. 8, Novosibirsk, 630090 , Russia
| | - N. L. Mironova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentieva Ave. 8, Novosibirsk, 630090 , Russia
| | - V. V. Vlassov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentieva Ave. 8, Novosibirsk, 630090 , Russia
| | - M. A. Zenkova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentieva Ave. 8, Novosibirsk, 630090 , Russia
| |
Collapse
|