1
|
Zhang MJ, Wan X, Shi M, Yu Y, Ou R, Ge RS. Curcuminoids WM03 inhibits ovarian cancer cisplatin-resistant cells proliferation and reverses cisplatin resistance by targeting DYRK2. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 142:156632. [PMID: 40315643 DOI: 10.1016/j.phymed.2025.156632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 02/20/2025] [Accepted: 03/08/2025] [Indexed: 05/04/2025]
Abstract
PURPOSE Cisplatin is a common chemotherapy agent used to treat ovarian cancer and cisplatin resistance is the most common consequence after its treatment. Curcumin has been shown to effectively inhibit the proliferation and invasion of ovarian cancer cells but its bioavailability restricts its application. The objective of this study was to develop the novel curcumin derivatives with high efficacy and synergic effects with cisplatin to inhibit cisplatin resistant ovarian cancers. STUDY DESIGN AND METHODS Colony formation assay and growth curve assay Were used to detect cell proliferation. Transwell and cell scratch assay Were used to detect cell invasion and migration. Western blot (WB), Immunohistochemistry (IHC) and Immunofluorescence (IF) Were used to detect the expression levels of related molecules. qPCR was used to detect mRNA levels of related molecules. Kinase profile sequencing was used to analyze kinase activity. RNA seq was used to analyze significant signaling pathways. The ability of Surface plasmon resonance (SPR), Isothermal titration calorimetry (ITC) and Cellular Thermal Shift Assay (CESTA), molecular docking to analyze the binding of drugs and molecules; Co-Immunoprecipitation (Co-IP) and confocal are used to analyze intermolecular interactions. Ubiquitination is used to detect ubiquitin levels of related molecules; Animal experiments are used to simulate clinical validation RESULTS: Four curcumin derivatives Were synthesized and evaluated to treat ovarian cancers. Curcumin derivative WM03 was the most effective to inhibit A2780DR and HO8910PMDR cell proliferation with about 8-12 times more potent than curcumin. WM03 inhibited A2780DR and HO8910PMDR cell proliferation, migration, and invasion with a synergic effect of cisplatin for cisplatin resistant ovarian cells. RNA-seq results showed that the PI3K-Akt pathway differentially changed. Kinotome analysis showed that WM03 specifically targeted 4 kinases of 50 curcumin-effective kinases and dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 2 (DYRK2) was the most significant kinase, The IC50 of WM03 on DYRK2 activity is 4.58 μM, and the strong binding ability of WM03 to DYRK2 was confirmed in cell-free systems such as SPR, ITC and CESTA. Docking analysis showed that WM03 bound to the ATP pocket of DYRK2 similarly to curcumin. Further analysis showed that WM03 significantly inhibited ovarian cell proliferation and invasion via DYRK2-Akt/ATP7A/CTR1 axis. Tumor inoculation in nude mice demonstrated that WM03 at 5 mg/kg every 2 days for 16 days was effective to reduce tumor size. CONCLUSION WM03 specifically targets DYRK2 and is more potent than curcumin to inhibit cisplatin resistant ovarian cancer cells, being a promising new drug candidate for ovarian cancers.
Collapse
Affiliation(s)
- Min-Jie Zhang
- Department of Anaesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Xiaoxi Wan
- The First Clinical College, China Medical University, Shenyang 110000, China
| | - Mengna Shi
- Department of Anaesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yang Yu
- Department of Anaesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Rongying Ou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Ren-Shan Ge
- Department of Anaesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province and Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Zhejiang 325000, China.
| |
Collapse
|
2
|
Zhang Q, Yu J, You Q, Wang L. Modulating Phosphorylation by Proximity-Inducing Modalities for Cancer Therapy. J Med Chem 2024; 67:21695-21716. [PMID: 39648992 DOI: 10.1021/acs.jmedchem.4c02624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
Abnormal phosphorylation of proteins can lead to various diseases, particularly cancer. Therefore, the development of small molecules for precise regulation of protein phosphorylation holds great potential for drug design. While the traditional kinase/phosphatase small-molecule modulators have shown some success, achieving precise phosphorylation regulation has proven to be challenging. The emergence of heterobifunctional molecules, such as phosphorylation-inducing chimeric small molecules (PHICSs) and phosphatase recruiting chimeras (PHORCs), with proximity-inducing modalities is expected to lead to a breakthrough by specifically recruiting kinase or phosphatase to the protein of interest. Herein, we summarize the drug targets with aberrant phosphorylation in cancer and underscore the potential of correcting phosphorylation in cancer therapy. Through reported cases of heterobifunctional molecules targeting phosphorylation regulation, we highlight the current design strategies and features of these molecules. We also provide a systematic elaboration of the link between aberrantly phosphorylated targets and cancer as well as the existing challenges and future research directions for developing heterobifunctional molecular drugs for phosphorylation regulation.
Collapse
Affiliation(s)
- Qiuyue Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jia Yu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qidong You
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Lei Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
3
|
Harada E, Yoshida S, Imaizumi Y, Kawamura A, Ohtsuka T, Yoshida K. Dual-specificity tyrosine-regulated kinase 2 exerts anti-tumor effects by induction of G1 arrest in lung adenocarcinoma. Biochim Biophys Acta Gen Subj 2024; 1868:130600. [PMID: 38508285 DOI: 10.1016/j.bbagen.2024.130600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 03/22/2024]
Abstract
OBJECTIVES Lung cancer is a leading cause of cancer-related mortality and remains one of the most poorly prognosed disease worldwide. Therefore, it is necessary to identify novel molecular markers with potential therapeutic effects. Recent findings have suggested that dual-specificity tyrosine-regulated kinase 2 (DYRK2) plays a tumor suppressive role in colorectal, breast, and hepatic cancers; however, its effect and mechanism in lung cancer remain poorly understood. Therefore, this study aimed to investigate the tumor-suppressive role and molecular mechanism of DYRK2 in lung adenocarcinoma (LUAD) by in vitro experiments and xenograft models. MATERIALS AND METHODS The evaluation of DYRK2 expression was carried out using lung cancer cell lines and normal bronchial epithelial cells. Overexpression of DYRK2 was induced by an adenovirus vector, and cell proliferation was assessed through MTS assay and Colony Formation Assay. Cell cycle analysis was performed using flow cytometry. Additionally, proliferative capacity was evaluated in a xenograft model by subcutaneously implanting A549 cells into SCID mice (C·B17/Icr-scidjcl-scid/scid). RESULTS Immunoblotting assays showed that DYRK2 was downregulated in most LUAD cell lines. DYRK2 overexpression using adenovirus vectors significantly suppressed cell proliferation compared with that in the control group. Additionally, DYRK2 overexpression suppressed tumor growth in a murine subcutaneous xenograft model. Mechanistically, DYRK2 overexpression inhibited the proliferation of LUAD cells via p21-mediated G1 arrest, which was contingent on p53. CONCLUSION Taken together, these findings suggest that DYRK2 may serve as potential prognostic biomarker and therapeutic target for LUAD.
Collapse
Affiliation(s)
- Eriko Harada
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo, Japan; Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Saishu Yoshida
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo, Japan
| | - Yuta Imaizumi
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Akira Kawamura
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo, Japan
| | - Takashi Ohtsuka
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Kiyotsugu Yoshida
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo, Japan.
| |
Collapse
|
4
|
Ramella M, Ribolla LM, Surini S, Sala K, Tonoli D, Cioni JM, Rai AK, Pelkmans L, de Curtis I. Dual specificity kinase DYRK3 regulates cell migration by influencing the stability of protrusions. iScience 2024; 27:109440. [PMID: 38510137 PMCID: PMC10952033 DOI: 10.1016/j.isci.2024.109440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/25/2024] [Accepted: 03/04/2024] [Indexed: 03/22/2024] Open
Abstract
Plasma membrane-associated platforms (PMAPs) form at specific sites of plasma membrane by scaffolds including ERC1 and Liprin-α1. We identify a mechanism regulating PMAPs assembly, with consequences on motility/invasion. Silencing Ser/Thr kinase DYRK3 in invasive breast cancer cells inhibits their motility and invasive capacity. Similar effects on motility were observed by increasing DYRK3 levels, while kinase-dead DYRK3 had limited effects. DYRK3 overexpression inhibits PMAPs formation and has negative effects on stability of lamellipodia and adhesions in migrating cells. Liprin-α1 depletion results in unstable lamellipodia and impaired cell motility. DYRK3 causes increased Liprin-α1 phosphorylation. Increasing levels of Liprin-α1 rescue the inhibitory effects of DYRK3 on cell spreading, suggesting that an equilibrium between Liprin-α1 and DYRK3 levels is required for lamellipodia stability and tumor cell motility. Our results show that DYRK3 is relevant to tumor cell motility, and identify a PMAP target of the kinase, highlighting a new mechanism regulating cell edge dynamics.
Collapse
Affiliation(s)
- Martina Ramella
- Università Vita-Salute San Raffaele, 20132 Milan, Italy
- Cell Adhesion Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Lucrezia Maria Ribolla
- Università Vita-Salute San Raffaele, 20132 Milan, Italy
- Cell Adhesion Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Sara Surini
- Università Vita-Salute San Raffaele, 20132 Milan, Italy
- Cell Adhesion Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Kristyna Sala
- Università Vita-Salute San Raffaele, 20132 Milan, Italy
- Cell Adhesion Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Diletta Tonoli
- Cell Adhesion Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Jean-Michel Cioni
- RNA Biology of the Neuron Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Arpan Kumar Rai
- Department of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | - Lucas Pelkmans
- Department of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | - Ivan de Curtis
- Università Vita-Salute San Raffaele, 20132 Milan, Italy
- Cell Adhesion Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| |
Collapse
|
5
|
Moon DO. Curcumin in Cancer and Inflammation: An In-Depth Exploration of Molecular Interactions, Therapeutic Potentials, and the Role in Disease Management. Int J Mol Sci 2024; 25:2911. [PMID: 38474160 DOI: 10.3390/ijms25052911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
This paper delves into the diverse and significant roles of curcumin, a polyphenolic compound from the Curcuma longa plant, in the context of cancer and inflammatory diseases. Distinguished by its unique molecular structure, curcumin exhibits potent biological activities including anti-inflammatory, antioxidant, and potential anticancer effects. The research comprehensively investigates curcumin's molecular interactions with key proteins involved in cancer progression and the inflammatory response, primarily through molecular docking studies. In cancer, curcumin's effectiveness is determined by examining its interaction with pivotal proteins like CDK2, CK2α, GSK3β, DYRK2, and EGFR, among others. These interactions suggest curcumin's potential role in impeding cancer cell proliferation and survival. Additionally, the paper highlights curcumin's impact on inflammation by examining its influence on proteins such as COX-2, CRP, PDE4, and MD-2, which are central to the inflammatory pathway. In vitro and clinical studies are extensively reviewed, shedding light on curcumin's binding mechanisms, pharmacological impacts, and therapeutic application in various cancers and inflammatory conditions. These studies are pivotal in understanding curcumin's functionality and its potential as a therapeutic agent. Conclusively, this review emphasizes the therapeutic promise of curcumin in treating a wide range of health issues, attributed to its complex chemistry and broad pharmacological properties. The research points towards curcumin's growing importance as a multi-faceted natural compound in the medical and scientific community.
Collapse
Affiliation(s)
- Dong-Oh Moon
- Department of Biology Education, Daegu University, 201, Daegudae-ro, Gyeongsan-si 38453, Gyeongsangbuk-do, Republic of Korea
| |
Collapse
|
6
|
Sadat Kalaki N, Ahmadzadeh M, Najafi M, Mobasheri M, Ajdarkosh H, Karbalaie Niya MH. Systems biology approach to identify biomarkers and therapeutic targets for colorectal cancer. Biochem Biophys Rep 2024; 37:101633. [PMID: 38283191 PMCID: PMC10821538 DOI: 10.1016/j.bbrep.2023.101633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/24/2023] [Accepted: 12/27/2023] [Indexed: 01/30/2024] Open
Abstract
Background Colorectal cancer (CRC), is the third most prevalent cancer across the globe, and is often detected at advanced stage. Late diagnosis of CRC, leave the chemotherapy and radiotherapy as the main options for the possible treatment of the disease which are associated with severe side effects. In the present study, we seek to explore CRC gene expression data using a systems biology framework to identify potential biomarkers and therapeutic targets for earlier diagnosis and treatment of the disease. Methods The expression data was retrieved from the gene expression omnibus (GEO). Differential gene expression analysis was conducted using R/Bioconductor package. The PPI network was reconstructed by the STRING. Cystoscope and Gephi software packages were used for visualization and centrality analysis of the PPI network. Clustering analysis of the PPI network was carried out using k-mean algorithm. Gene-set enrichment based on Gene Ontology (GO) and KEGG pathway databases was carried out to identify the biological functions and pathways associated with gene groups. Prognostic value of the selected identified hub genes was examined by survival analysis, using GEPIA. Results A total of 848 differentially expressed genes were identified. Centrality analysis of the PPI network resulted in identification of 99 hubs genes. Clustering analysis dissected the PPI network into seven interactive modules. While several DEGs and the central genes in each module have already reported to contribute to CRC progression, survival analysis confirmed high expression of central genes, CCNA2, CD44, and ACAN contribute to poor prognosis of CRC patients. In addition, high expression of TUBA8, AMPD3, TRPC1, ARHGAP6, JPH3, DYRK1A and ACTA1 was found to associate with decreased survival rate. Conclusion Our results identified several genes with high centrality in PPI network that contribute to progression of CRC. The fact that several of the identified genes have already been reported to be relevant to diagnosis and treatment of CRC, other highlighted genes with limited literature information may hold potential to be explored in the context of CRC biomarker and drug target discovery.
Collapse
Affiliation(s)
- Niloufar Sadat Kalaki
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
- International Institute of New Sciences (IINS), Tehran, Iran
| | - Mozhgan Ahmadzadeh
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Mohammad Najafi
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Meysam Mobasheri
- Department of Biotechnology, Faculty of Advanced Sciences and Technology, Tehran Islamic Azad University of Medical Sciences, Tehran, Iran
- International Institute of New Sciences (IINS), Tehran, Iran
| | - Hossein Ajdarkosh
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hadi Karbalaie Niya
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Qiao R, Zhu Q, Di F, Liu C, Song Y, Zhang J, Xu T, Wang Y, Dai L, Gu W, Han B, Yang R. Hypomethylation of DYRK4 in peripheral blood is associated with increased lung cancer risk. Mol Carcinog 2023; 62:1745-1754. [PMID: 37530470 DOI: 10.1002/mc.23612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 06/01/2023] [Accepted: 07/19/2023] [Indexed: 08/03/2023]
Abstract
Lung cancer (LC) is the leading cause of cancer-related deaths worldwide. It is urgent to identify new biomarkers for the early detection of LC. DNA methylation in peripheral blood has been reported to be associated with cancers. We conducted two independent case-control studies and a nested case-control study (168 LC cases and 167 controls in study Ⅰ, 677 LC cases and 833 controls in study Ⅱ, 147 precancers and 21 controls in the nested case-control study). The methylation levels of DYRK4 CpG sites were measured using mass spectrometry and their correlations with LC were analyzed by logistic regression and nonparametric tests. Bonferroni correction was used for the multiple comparisons. LC-related decreased DYRK4 methylation was discovered in Study I and validated in Study II (the odds ratios [ORs] for the lowest vs. highest quartile of all three DYRK4 CpG sites ranged from 1.64 to 2.09, all p < 0.001). Combining the two studies, hypomethylation of DYRK4 was observed in stage I cases (ORs per -10% methylation ranged from 1.16 to 1.38, all p < 5.9E-04), and could be enhanced by male gender (ORs ranged from 1.77 to 4.17 via interquartile analyses, all p < 0.017). Hypomethylation of DYRK4_A_CpG_2 was significantly correlated with tumor size, length, and stage (p = 0.034, 0.002, and 0.002, respectively) in LC cases. Our study disclosed the association between DYRK4 hypomethylation in peripheral blood and LC, suggesting the feasibility of blood-based DNA methylation as new biomarker for LC detection.
Collapse
Affiliation(s)
- Rong Qiao
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Qiang Zhu
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Feifei Di
- Nanjing TANTICA Biotechnology Co. Ltd., Nanjing, China
| | - Chunlan Liu
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yakang Song
- Nanjing TANTICA Biotechnology Co. Ltd., Nanjing, China
| | - Jin Zhang
- Nanjing TANTICA Biotechnology Co. Ltd., Nanjing, China
| | - Tian Xu
- Department of Clinical Laboratory, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Yue Wang
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Liping Dai
- Henan Institute of Medical and Pharmaceutical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Wanjian Gu
- Department of Clinical Laboratory, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Baohui Han
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Rongxi Yang
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
- Nanjing TANTICA Biotechnology Co. Ltd., Nanjing, China
| |
Collapse
|
8
|
Mochimaru Y, Yoshida K. Functional Roles of DYRK2 as a Tumor Regulator. Curr Issues Mol Biol 2023; 45:8539-8551. [PMID: 37886981 PMCID: PMC10605165 DOI: 10.3390/cimb45100538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/23/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023] Open
Abstract
The dual-specificity tyrosine phosphorylation-regulated kinase 2 (DYRK2) regulates the induction of apoptosis and DNA repair, metastasis inhibition, cell cycle G1/S transition, protein scaffold stability for E3 ligase complexes, and embryogenesis. Owing to these functions, DYRK2 is thought to regulate tumorigenesis, and its function in cancer has been investigated. Notably, DYRK2 has been reported to function as a tumor suppressor; however, it has also been reported to act as an oncogene in some cancers. This discrepancy makes it difficult to elucidate the conserved functions of DYRK2 in cancer. Here, we reviewed the functions of DYRK2 in various cancers. Patient tissue samples were evaluated for each cancer type. Although some studies have used cell lines and/or xenografts to elucidate the mechanism of DYRK2 function, these studies are not sufficient to understand the role of DYRK2 in cancers. In particular, studies using genetically modified mice would help us to understand the reported functional duality of DYRK2 in cancer.
Collapse
Affiliation(s)
| | - Kiyotsugu Yoshida
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo 105-8461, Japan;
| |
Collapse
|
9
|
Kamioka H, Yogosawa S, Oikawa T, Aizawa D, Ueda K, Saeki C, Haruki K, Shimoda M, Ikegami T, Nishikawa Y, Saruta M, Yoshida K. Dyrk2 gene transfer suppresses hepatocarcinogenesis by promoting the degradation of Myc and Hras. JHEP Rep 2023; 5:100759. [PMID: 37333975 PMCID: PMC10275997 DOI: 10.1016/j.jhepr.2023.100759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 03/06/2023] [Accepted: 03/21/2023] [Indexed: 06/20/2023] Open
Abstract
Background & Aims Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide, and has a poor prognosis. However, the molecular mechanisms underlying hepatocarcinogenesis and progression remain unknown. In vitro gain- and loss-of-function analyses in cell lines and xenografts revealed that dual-specificity tyrosine-regulated kinase 2 (DYRK2) influences tumour growth in HCC. Methods To investigate the role of Dyrk2 during hepatocarcinogenesis, we developed liver-specific Dyrk2 conditional knockout mice and an in vivo gene delivery system with a hydrodynamic tail vein injection and the Sleeping Beauty transposon. The antitumour effects of Dyrk2 gene transfer were investigated in a murine autologous carcinogenesis model. Results Dyrk2 expression was reduced in tumours, and that its downregulation was induced before hepatocarcinogenesis. Dyrk2 gene transfer significantly suppressed carcinogenesis. It also suppresses Myc-induced de-differentiation and metabolic reprogramming, which favours proliferative, and malignant potential by altering gene profiles. Dyrk2 overexpression caused Myc and Hras degradation at the protein level rather than at the mRNA level, and this degradation mechanism was regulated by the proteasome. Immunohistochemical analyses revealed a negative correlation between DYRK2 expression and MYC and longer survival in patients with HCC with high-DYRK2 and low-MYC expressions. Conclusions Dyrk2 protects the liver from carcinogenesis by promoting Myc and Hras degradation. Our findings would pave the way for a novel therapeutic approach using DYRK2 gene transfer. Impact and Implications Hepatocellular carcinoma (HCC) is one of the most common cancers, with a poor prognosis. Hence, identifying molecules that can become promising targets for therapies is essential to improve mortality. No studies have clarified the association between DYRK2 and carcinogenesis, although DYRK2 is involved in tumour growth in various cancer cells. This is the first study to show that Dyrk2 expression decreases during hepatocarcinogenesis and that Dyrk2 gene transfer is an attractive approach with tumour suppressive activity against HCC by suppressing Myc-mediated de-differentiation and metabolic reprogramming that favours proliferative and malignant potential via Myc and Hras degradation.
Collapse
Affiliation(s)
- Hiroshi Kamioka
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo, Japan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Satomi Yogosawa
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo, Japan
| | - Tsunekazu Oikawa
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Daisuke Aizawa
- Department of Pathology, The Jikei University School of Medicine, Tokyo, Japan
| | - Kaoru Ueda
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Chisato Saeki
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Koichiro Haruki
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Masayuki Shimoda
- Department of Pathology, The Jikei University School of Medicine, Tokyo, Japan
| | - Toru Ikegami
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Yuji Nishikawa
- Division of Tumor Pathology, Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Masayuki Saruta
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Kiyotsugu Yoshida
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
10
|
Wu C, Sun G, Wang F, Chen J, Zhan F, Lian X, Wang J, Weng F, Li B, Tang W, Quan J, Xiang D. DYRK2 downregulation in colorectal cancer leads to epithelial-mesenchymal transition induction and chemoresistance. Sci Rep 2022; 12:22496. [PMID: 36577753 PMCID: PMC9797492 DOI: 10.1038/s41598-022-25053-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 11/23/2022] [Indexed: 12/29/2022] Open
Abstract
Colorectal cancer (CRC) is among the most prominent causes of cancer-associated mortality in the world, with chemoresistance representing one of the leading causes of treatment failure. However, the mechanisms governing such chemoresistance remain incompletely understood. In this study, the role of DYRK2 as a mediator of CRC cell drug resistance and the associated molecular mechanisms were assessed by evaluating human tumor tissue samples, CRC cell lines, and animal model systems. Initial analyses of The Cancer Genome Atlas database and clinical tissue microarrays revealed significant DYRK2 downregulation in CRC in a manner correlated with poor prognosis. We further generated LoVo CRC cells that were resistant to the chemotherapeutic drug 5-FU, and found that such chemoresistance was associated with the downregulation of DYRK2 and a more aggressive mesenchymal phenotype. When DYRK2 was overexpressed in these cells, their proliferative, migratory, and invasive activities were reduced and they were more prone to apoptotic death. DYRK2 overexpression was also associated with enhanced chemosensitivity and the inhibition of epithelial-mesenchymal transition (EMT) induction in these LoVo 5-FUR cells. Co-immunoprecipitation assays revealed that DYRK2 bound to Twist and promoted its proteasomal degradation. In vivo studies further confirmed that the overexpression of DYRK2 inhibited human CRC xenograft tumor growth with concomitant Twist downregulation. Overall, these results thus highlight DYRK2 as a promising therapeutic target in CRC worthy of further investigation.
Collapse
Affiliation(s)
- Chunrong Wu
- grid.190737.b0000 0001 0154 0904Department of Oncology, Chongqing University Jiangjin Hospital, School of Medicine, Chongqing University, Chongqing, 402260 China ,grid.452506.0Department of Oncology, Jiangjin Central Hospital of Chongqing, Chongqing, 402260 China
| | - Guiyin Sun
- grid.190737.b0000 0001 0154 0904Department of Oncology, Chongqing University Jiangjin Hospital, School of Medicine, Chongqing University, Chongqing, 402260 China ,grid.452506.0Department of Oncology, Jiangjin Central Hospital of Chongqing, Chongqing, 402260 China
| | - Fan Wang
- grid.190737.b0000 0001 0154 0904Department of Oncology, Chongqing University Jiangjin Hospital, School of Medicine, Chongqing University, Chongqing, 402260 China ,grid.452506.0Department of Oncology, Jiangjin Central Hospital of Chongqing, Chongqing, 402260 China
| | - Jiangyan Chen
- grid.190737.b0000 0001 0154 0904Department of Oncology, Chongqing University Jiangjin Hospital, School of Medicine, Chongqing University, Chongqing, 402260 China ,grid.452506.0Department of Oncology, Jiangjin Central Hospital of Chongqing, Chongqing, 402260 China
| | - Fangbiao Zhan
- grid.190737.b0000 0001 0154 0904Department of Orthopedics, Chongqing University, Three Gorges Hospital, Wanzhou, Chongqing, 404000 China
| | - Xiaojuan Lian
- grid.190737.b0000 0001 0154 0904Department of Oncology, Chongqing University Jiangjin Hospital, School of Medicine, Chongqing University, Chongqing, 402260 China ,grid.452506.0Department of Oncology, Jiangjin Central Hospital of Chongqing, Chongqing, 402260 China
| | - Jie Wang
- grid.190737.b0000 0001 0154 0904Department of Oncology, Chongqing University Jiangjin Hospital, School of Medicine, Chongqing University, Chongqing, 402260 China ,grid.452506.0Department of Oncology, Jiangjin Central Hospital of Chongqing, Chongqing, 402260 China
| | - Fanbin Weng
- grid.190737.b0000 0001 0154 0904Department of Oncology, Chongqing University Jiangjin Hospital, School of Medicine, Chongqing University, Chongqing, 402260 China ,grid.452506.0Department of Oncology, Jiangjin Central Hospital of Chongqing, Chongqing, 402260 China
| | - Bo Li
- grid.190737.b0000 0001 0154 0904Department of Cardiology, Chongqing University Jiangjin Hospital, School of Medicine, Chongqing University, Chongqing, 402260 China
| | - Weijun Tang
- grid.190737.b0000 0001 0154 0904Department of Oncology, Chongqing University Jiangjin Hospital, School of Medicine, Chongqing University, Chongqing, 402260 China ,grid.452506.0Department of Oncology, Jiangjin Central Hospital of Chongqing, Chongqing, 402260 China
| | - Jin Quan
- grid.190737.b0000 0001 0154 0904Department of Oncology, Chongqing University Jiangjin Hospital, School of Medicine, Chongqing University, Chongqing, 402260 China ,grid.452506.0Department of Oncology, Jiangjin Central Hospital of Chongqing, Chongqing, 402260 China
| | - Debing Xiang
- grid.190737.b0000 0001 0154 0904Department of Oncology, Chongqing University Jiangjin Hospital, School of Medicine, Chongqing University, Chongqing, 402260 China ,grid.452506.0Department of Oncology, Jiangjin Central Hospital of Chongqing, Chongqing, 402260 China
| |
Collapse
|
11
|
Kawamura A, Yoshida S, Aoki K, Shimoyama Y, Yamada K, Yoshida K. DYRK2 maintains genome stability via neddylation of cullins in response to DNA damage. J Cell Sci 2022; 135:jcs259514. [PMID: 35582972 DOI: 10.1242/jcs.259514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 05/03/2022] [Indexed: 11/20/2022] Open
Abstract
Neural precursor cell-expressed developmentally down-regulated 8 (NEDD8), an ubiquitin-like protein, is an essential regulator of the DNA damage response. Numerous studies have shown that neddylation (conjugation of NEDD8 to target proteins) dysfunction causes several human diseases, such as cancer. Hence clarifying the regulatory mechanism of neddylation could provide insight into the mechanism of genome stability underlying the DNA damage response (DDR) and carcinogenesis. Here, we demonstrate that dual-specificity tyrosine-regulated kinase 2 (DYRK2) is a novel regulator of neddylation and maintains genome stability. Deletion of DYRK2 leads to persistent DNA double-strand breaks (DSBs) and subsequent genome instability. Mechanistically, DYRK2 promotes neddylation through forming a complex with NAE1, which is a component of NEDD8-activating enzyme E1, and maintaining its protein level by suppressing polyubiquitylation. The present study is the first to demonstrate that DYRK2 controls neddylation and is necessary for maintaining genome stability. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Akira Kawamura
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
| | - Saishu Yoshida
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
| | - Katsuhiko Aoki
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
| | - Yuya Shimoyama
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
- Department of Surgery, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
| | - Kohji Yamada
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
| | - Kiyotsugu Yoshida
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
| |
Collapse
|
12
|
A Bioinformatics Evaluation of the Role of Dual-Specificity Tyrosine-Regulated Kinases in Colorectal Cancer. Cancers (Basel) 2022; 14:cancers14082034. [PMID: 35454940 PMCID: PMC9025863 DOI: 10.3390/cancers14082034] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/09/2022] [Accepted: 04/12/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary The dual-specificity tyrosine-regulated kinase (DYRK) family has been implicated in various diseases, including cancer. However, its role in colorectal cancer has not been elucidated. In this research, we used publicly available web-based tools to investigate DYRKs status in colorectal cancer. Our results showed that among DYRKs, only DYRK1A was upregulated significantly in late tumor stages, and it is associated with poor prognosis for colorectal cancer patients. These finding comprehensively characterized DYRK1A as a potential new therapeutic approach in CRC, especially in late tumor stages. Abstract Colorectal cancer (CRC) is the third most common cancer worldwide and has an increasing incidence in younger populations. The dual-specificity tyrosine-regulated kinase (DYRK) family has been implicated in various diseases, including cancer. However, the role and contribution of the distinct family members in regulating CRC tumorigenesis has not been addressed yet. Herein, we used publicly available CRC patient datasets (TCGA RNA sequence) and several bioinformatics webtools to perform in silico analysis (GTEx, GENT2, GEPIA2, cBioPortal, GSCALite, TIMER2, and UALCAN). We aimed to investigate the DYRK family member expression pattern, prognostic value, and oncological roles in CRC. This study shed light on the role of distinct DYRK family members in CRC and their potential outcome predictive value. Based on mRNA level, DYRK1A is upregulated in late tumor stages, with lymph node and distant metastasis. All DYRKs were found to be implicated in cancer-associated pathways, indicating their key role in CRC pathogenesis. No significant DYRK mutations were identified, suggesting that DYRK expression variation in normal vs. tumor samples is likely linked to epigenetic regulation. The expression of DYRK1A and DYRK3 expression correlated with immune-infiltrating cells in the tumor microenvironment and was upregulated in MSI subtypes, pointing to their potential role as biomarkers for immunotherapy. This comprehensive bioinformatics analysis will set directions for future biological studies to further exploit the molecular basis of these findings and explore the potential of DYRK1A modulation as a novel targeted therapy for CRC.
Collapse
|
13
|
Yamaguchi M, Ohbayashi S, Ooka A, Yamashita H, Motohashi N, Kaneko YK, Kimura T, Saito SY, Ishikawa T. Harmine suppresses collagen production in hepatic stellate cells by inhibiting DYRK1B. Biochem Biophys Res Commun 2022; 600:136-141. [PMID: 35219102 DOI: 10.1016/j.bbrc.2022.02.054] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 02/15/2022] [Indexed: 12/12/2022]
Abstract
Liver fibrosis is a major consequence of chronic liver disease, where excess extracellular matrix is deposited, due caused by the activation of hepatic stellate cells (HSCs). The suppression of collagen production in HSCs is therefore regarded as a therapeutic target of liver fibrosis. The present study investigated effects of harmine, which is a β-carboline alkaloid and known as an inhibitor of dual-specificity tyrosine-regulated kinases (DYRKs), on the production of collagen in HSCs. LX-2 cells, a human HSC cell line, were treated with harmine (0-10 μM) for 48 h in the presence or absence of TGF-β1 (5 ng/ml). The expression of collagen type I α1 (COL1A1) and DYRK isoforms was investigated by Western blotting, quantitative RT-PCR, or immunofluorescence. The influence of knockdown of each DYRK isoform on the COL1A1 expression was further investigated. The expression of COL1A1 was markedly increased by treating with TGF-β1 for 48 h in LX-2 cells. Harmine (10 μM) significantly inhibited the increased expression of COL1A1. LX-2 cells expressed mRNAs of DYRK1A, DYRK1B, DYRK2, and DYRK4, although the expression of DYRK4 was much lower than the others. Knockdown of DYRK1B, but not DYRK1A or DYRK2, with siRNA significantly suppressed TGF-β1-induced increase in COL1A1 expression. These results suggest that harmine suppresses COL1A1 expression via inhibiting DYRK1B in HSCs and therefore might be effective for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Momoka Yamaguchi
- Department of Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka City, Shizuoka, 422-8526, Japan.
| | - Saya Ohbayashi
- Department of Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka City, Shizuoka, 422-8526, Japan
| | - Akira Ooka
- Department of Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka City, Shizuoka, 422-8526, Japan
| | - Hinako Yamashita
- Department of Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka City, Shizuoka, 422-8526, Japan
| | - Nanami Motohashi
- Department of Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka City, Shizuoka, 422-8526, Japan
| | - Yukiko K Kaneko
- Department of Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka City, Shizuoka, 422-8526, Japan
| | - Toshihide Kimura
- Department of Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka City, Shizuoka, 422-8526, Japan
| | - Shin-Ya Saito
- Department of Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka City, Shizuoka, 422-8526, Japan; Faculty of Veterinary Medicine, Okayama University of Science, 1-3 Ikoinooka, Imabari City, Ehime, 794-8555, Japan
| | - Tomohisa Ishikawa
- Department of Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka City, Shizuoka, 422-8526, Japan
| |
Collapse
|
14
|
Imaizumi Y, Yoshida S, Kanegae Y, Eto K, Yoshida K. Enforced dual-specificity tyrosine-regulated kinase 2 expression by adenovirus-mediated gene transfer inhibits tumor growth and metastasis of colorectal cancer. Cancer Sci 2022; 113:960-970. [PMID: 34932844 PMCID: PMC8898707 DOI: 10.1111/cas.15247] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 12/06/2021] [Accepted: 12/14/2021] [Indexed: 11/30/2022] Open
Abstract
Colorectal cancer is one of the most common gastrointestinal tumors with good outcomes; however, with distant metastasis, the outcomes are poor. Novel treatment methods are urgently needed. Our in vitro studies indicate that dual-specificity tyrosine-regulated kinase 2 (DYRK2) functions as a tumor suppressor in colorectal cancer by regulating cell survival, proliferation, and apoptosis induction. In addition, DYRK2 expression is decreased in tumor tissues compared to nontumor tissues in colorectal cancer, indicating a correlation with clinical prognosis. In this context, we devised a novel therapeutic strategy to overexpress DYRK2 in tumors by adenovirus-mediated gene transfer. The present study shows that overexpression of DYRK2 in colon cancer cell lines by adenovirus inhibits cell proliferation and induces apoptosis in vitro. Furthermore, in mouse subcutaneous xenograft and liver metastasis models, enforced expression of DYRK2 by direct or intravenous injection of adenovirus to the tumor significantly inhibits tumor growth. Taken together, these findings show that adenovirus-based overexpression of DYRK2 could be a novel gene therapy for liver metastasis of colorectal cancer.
Collapse
Affiliation(s)
- Yuta Imaizumi
- Department of BiochemistryThe Jikei University School of MedicineTokyoJapan
- Department of SurgeryThe Jikei University School of MedicineTokyoJapan
| | - Saishu Yoshida
- Department of BiochemistryThe Jikei University School of MedicineTokyoJapan
| | - Yumi Kanegae
- Core Research Facilities for Basic ScienceResearch Center for Medical ScienceThe Jikei University School of MedicineTokyoJapan
| | - Ken Eto
- Department of SurgeryThe Jikei University School of MedicineTokyoJapan
| | - Kiyotsugu Yoshida
- Department of BiochemistryThe Jikei University School of MedicineTokyoJapan
| |
Collapse
|
15
|
New insights into the roles for DYRK family in mammalian development and congenital diseases. Genes Dis 2022. [DOI: 10.1016/j.gendis.2021.12.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
16
|
Zhang X, Xiao R, Lu B, Wu H, Jiang C, Li P, Huang J. Kinase DYRK2 acts as a regulator of autophagy and an indicator of favorable prognosis in gastric carcinoma. Colloids Surf B Biointerfaces 2021; 209:112182. [PMID: 34749023 DOI: 10.1016/j.colsurfb.2021.112182] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/20/2021] [Accepted: 10/23/2021] [Indexed: 01/22/2023]
Abstract
Gastric cancer (GC) is the third leading cause of cancer-related death worldwide; therefore, new and more specific molecules for GC are needed. Here, we found that dual specificity tyrosine phosphorylation regulated kinase 2 (DYRK2) may be a specific marker for GC. Immunohistochemistry (IHC) and statistical and bioinformatics analyses were conducted to detect DYRK2 expression in stomach tissues. The role of DYRK2 in GC was analyzed with a nude mouse model and CCK-8, wound healing and Transwell assays. Western blotting and immunofluorescence experiments were also performed to elucidate the relationship between DYRK2 expression and both epithelial-mesenchymal transition (EMT) and autophagy progression. We found that DYRK2 expression in GC tissues was lower than that in benign or normal tissues, and patients with high DYRK2 expression had a good prognosis. The in vitro results showed that DYRK2 expression inhibited the tumorigenic activities of GC, including proliferation, migration, and invasion. By analyzing the expression of EMT markers after altering DYRK2 expression, we observed that DYRK2 inhibits the occurrence of EMT. The nude mouse model revealed that DYRK2 inhibits tumor growth. Finally, we used Western blotting and immunofluorescence assays and found that DYRK2 promotes autophagy. Based on these data, DYRK2 may be a good reference indicator for the clinical diagnosis of GC.
Collapse
Affiliation(s)
- Xiaojing Zhang
- Department of Clinical Biobank & Institute of Oncology, Nantong University Affiliated Hospital, Nantong 226001, China
| | - Runze Xiao
- Clinical Medicine, Xuzhou Medical University, Xuzhou 221000, China
| | - Bing Lu
- Department of Clinical Biobank & Institute of Oncology, Nantong University Affiliated Hospital, Nantong 226001, China
| | - Han Wu
- Department of General Surgery, Nantong University Affiliated Hospital, Nantong 226001, China
| | - Chunyi Jiang
- Department of Pathology, Nantong University Affiliated Hospital, Nantong 226001, China
| | - Peng Li
- Department of General Surgery, Nantong University Affiliated Hospital, Nantong 226001, China
| | - Jianfei Huang
- Department of Clinical Biobank & Institute of Oncology, Nantong University Affiliated Hospital, Nantong 226001, China.
| |
Collapse
|
17
|
Yogosawa S, Ohkido M, Horii T, Okazaki Y, Nakayama J, Yoshida S, Toyokuni S, Hatada I, Morimoto M, Yoshida K. Mice lacking DYRK2 exhibit congenital malformations with lung hypoplasia and altered Foxf1 expression gradient. Commun Biol 2021; 4:1204. [PMID: 34671097 PMCID: PMC8528819 DOI: 10.1038/s42003-021-02734-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 09/28/2021] [Indexed: 12/19/2022] Open
Abstract
Congenital malformations cause life-threatening diseases in pediatrics, yet the molecular mechanism of organogenesis is poorly understood. Here we show that Dyrk2-deficient mice display congenital malformations in multiple organs. Transcriptome analysis reveals molecular pathology of Dyrk2-deficient mice, particularly with respect to Foxf1 reduction. Mutant pups exhibit sudden death soon after birth due to respiratory failure. Detailed analyses of primordial lungs at the early developmental stage demonstrate that Dyrk2 deficiency leads to altered airway branching and insufficient alveolar development. Furthermore, the Foxf1 expression gradient in mutant lung mesenchyme is disrupted, reducing Foxf1 target genes, which are necessary for proper airway and alveolar development. In ex vivo lung culture system, we rescue the expression of Foxf1 and its target genes in Dyrk2-deficient lung by restoring Shh signaling activity. Taken together, we demonstrate that Dyrk2 is essential for embryogenesis and its disruption results in congenital malformation.
Collapse
Affiliation(s)
- Satomi Yogosawa
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo, Japan
| | - Makiko Ohkido
- Department of Molecular Biology, The Jikei University School of Medicine, Tokyo, Japan
| | - Takuro Horii
- Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
| | - Yasumasa Okazaki
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Jun Nakayama
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Saishu Yoshida
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo, Japan
| | - Shinya Toyokuni
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Izuho Hatada
- Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
- Viral Vector Core, Gunma University Initiative for Advanced Research (GIAR), Maebashi, Gunma, Japan
| | - Mitsuru Morimoto
- Laboratory for Lung Development and Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Kiyotsugu Yoshida
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo, Japan.
| |
Collapse
|
18
|
Zheng W, Wu F, Fu K, Sun G, Sun G, Li X, Jiang W, Cao H, Wang H, Tang W. Emerging Mechanisms and Treatment Progress on Liver Metastasis of Colorectal Cancer. Onco Targets Ther 2021; 14:3013-3036. [PMID: 33986602 PMCID: PMC8110277 DOI: 10.2147/ott.s301371] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 03/24/2021] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer is currently the third largest malignant tumor in the world, with high new cases and high mortality. Metastasis is one of the most common causes of death of colorectal cancer, of which liver metastasis is the most fatal. Since the beginning of the Human Genome Project in 2001, people have gradually recognized the 3 billion base pairs that make up the human genome, of which only about 1.5% of the nucleic acid sequences are used for protein coding, including proto-oncogenes and tumor suppressor genes. A large number of differences in the expression of proto-oncogenes and tumor suppressor genes have also been found in the study of colorectal cancer, which proves that they are also actively involved in the progression of colorectal cancer and promote the occurrence of liver metastasis. Except for 1.5% of the coding sequence, the rest of the nucleic acid sequence does not encode any protein, which is called non-coding RNA. With the deepening of research, genome sequences without protein coding potential that were originally considered “junk sequences” may have important biological functions. Many years of studies have found that a large number of abnormal expression of ncRNA in colorectal cancer liver metastasis, indicating that ncRNA plays an important role in it. To explore the role and mechanism of these coding sequences and non-coding RNA in liver metastasis of colorectal cancer is very important for the early diagnosis and treatment of liver metastasis of colorectal cancer. This article reviews the coding genes and ncRNA that have been found in the study of liver metastasis of colorectal cancer in recent years, as well as the mechanisms that have been identified or are still under study, as well as the clinical treatment of liver metastasis of colorectal cancer.
Collapse
Affiliation(s)
- Wubin Zheng
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Fan Wu
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Kai Fu
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Guangshun Sun
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Guoqiang Sun
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Xiao Li
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Wei Jiang
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Hongyong Cao
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Hanjin Wang
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Weiwei Tang
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Transplantation, Chinese Academy of Medical Sciences, Nanjing, People's Republic of China
| |
Collapse
|
19
|
Moreno R, Banerjee S, Jackson AW, Quinn J, Baillie G, Dixon JE, Dinkova-Kostova AT, Edwards J, de la Vega L. The stress-responsive kinase DYRK2 activates heat shock factor 1 promoting resistance to proteotoxic stress. Cell Death Differ 2021; 28:1563-1578. [PMID: 33268814 PMCID: PMC8166837 DOI: 10.1038/s41418-020-00686-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/23/2022] Open
Abstract
To survive proteotoxic stress, cancer cells activate the proteotoxic-stress response pathway, which is controlled by the transcription factor heat shock factor 1 (HSF1). This pathway supports cancer initiation, cancer progression and chemoresistance and thus is an attractive therapeutic target. As developing inhibitors against transcriptional regulators, such as HSF1 is challenging, the identification and targeting of upstream regulators of HSF1 present a tractable alternative strategy. Here we demonstrate that in triple-negative breast cancer (TNBC) cells, the dual specificity tyrosine-regulated kinase 2 (DYRK2) phosphorylates HSF1, promoting its nuclear stability and transcriptional activity. DYRK2 depletion reduces HSF1 activity and sensitises TNBC cells to proteotoxic stress. Importantly, in tumours from TNBC patients, DYRK2 levels positively correlate with active HSF1 and associates with poor prognosis, suggesting that DYRK2 could be promoting TNBC. These findings identify DYRK2 as a key modulator of the HSF1 transcriptional programme and a potential therapeutic target.
Collapse
Affiliation(s)
- Rita Moreno
- Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee, Scotland, UK
| | - Sourav Banerjee
- Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee, Scotland, UK
- Department of Pharmacology, University of California San Diego, La Jolla, CA, 92093-0721, USA
| | - Angus W Jackson
- Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee, Scotland, UK
| | - Jean Quinn
- Unit of Gastrointestinal Oncology and Molecular Pathology, Institute of Cancer Sciences, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, UK
| | - Gregg Baillie
- Unit of Gastrointestinal Oncology and Molecular Pathology, Institute of Cancer Sciences, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, UK
| | - Jack E Dixon
- Department of Pharmacology, University of California San Diego, La Jolla, CA, 92093-0721, USA
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92093, USA
| | | | - Joanne Edwards
- Unit of Gastrointestinal Oncology and Molecular Pathology, Institute of Cancer Sciences, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, UK
| | - Laureano de la Vega
- Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee, Scotland, UK.
| |
Collapse
|
20
|
Yogosawa S, Nakayama J, Nishi M, Ryo A, Yoshida K. Carbonic anhydrase 13 suppresses bone metastasis in breast cancer. Cancer Treat Res Commun 2021; 27:100332. [PMID: 33588197 DOI: 10.1016/j.ctarc.2021.100332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/02/2021] [Accepted: 02/05/2021] [Indexed: 02/08/2023]
Abstract
Metastatic progression is the leading cause of mortality in breast cancer. However, molecular mechanisms that govern this process remain unclear. In this study, we found that carbonic anhydrase 13 (CA13) plays a potential role in suppressing bone metastasis. iRFP713-labeled iCSCL-10A (iRFP-iCSCL-10A) breast cancer cells, which exhibit the hallmarks of cancer stem cells, exerted the ability of bone metastasis in hind legs after 5-week injections, whereas no metastasis was observed in control iRFP713-labeled MCF-10A (iRFP-MCF10A) cells. Transcriptome analysis indicated that the expression of several genes, including metabolism-related CA13, was reduced in bone metastatic iRFP-iCSCL-10A cells. In vitro and in vivo analyses demonstrated that overexpression of CA13 in iRFP-iCSCL-10A cells suppressed migration, invasion, and bone metastasis, together with the reduction of VEGF-A and M-CSF expression. Furthermore, we found that breast cancer patients with a low CA13 expression had significantly shorter overall survival and disease-free survival rates compared to those with higher CA13 expression. These findings suggest that CA13 may act as a novel prognostic biomarker and would be a therapeutic candidate for the prevention of bone metastasis in breast cancer.
Collapse
Affiliation(s)
- Satomi Yogosawa
- Department of Biochemistry, The Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Jun Nakayama
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Mayuko Nishi
- Department of Microbiology, Yokohama City University School of Medicine, Yokohama, Japan
| | - Akihide Ryo
- Department of Microbiology, Yokohama City University School of Medicine, Yokohama, Japan
| | - Kiyotsugu Yoshida
- Department of Biochemistry, The Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo 105-8461, Japan.
| |
Collapse
|
21
|
Tandon V, de la Vega L, Banerjee S. Emerging roles of DYRK2 in cancer. J Biol Chem 2021; 296:100233. [PMID: 33376136 PMCID: PMC7948649 DOI: 10.1074/jbc.rev120.015217] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 12/14/2022] Open
Abstract
Over the last decade, the CMGC kinase DYRK2 has been reported as a tumor suppressor across various cancers triggering major antitumor and proapoptotic signals in breast, colon, liver, ovary, brain, and lung cancers, with lower DYRK2 expression correlated with poorer prognosis in patients. Contrary to this, various medicinal chemistry studies reported robust antiproliferative properties of DYRK2 inhibitors, whereas unbiased 'omics' and genome-wide association study-based studies identified DYRK2 as a highly overexpressed kinase in various patient tumor samples. A major paradigm shift occurred in the last 4 years when DYRK2 was found to regulate proteostasis in cancer via a two-pronged mechanism. DYRK2 phosphorylated and activated the 26S proteasome to enhance degradation of misfolded/tumor-suppressor proteins while also promoting the nuclear stability and transcriptional activity of its substrate, heat-shock factor 1 triggering protein folding. Together, DYRK2 regulates proteostasis and promotes protumorigenic survival for specific cancers. Indeed, potent and selective small-molecule inhibitors of DYRK2 exhibit in vitro and in vivo anti-tumor activity in triple-negative breast cancer and myeloma models. However, with conflicting and contradictory reports across different cancers, the overarching role of DYRK2 remains enigmatic. Specific cancer (sub)types coupled to spatiotemporal interactions with substrates could decide the procancer or anticancer role of DYRK2. The current review aims to provide a balanced and critical appreciation of the literature to date, highlighting top substrates such as p53, c-Myc, c-Jun, heat-shock factor 1, proteasome, or NOTCH1, to discuss DYRK2 inhibitors available to the scientific community and to shed light on this duality of protumorigenic and antitumorigenic roles of DYRK2.
Collapse
Affiliation(s)
- Vasudha Tandon
- Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Laureano de la Vega
- Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Sourav Banerjee
- Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee, United Kingdom.
| |
Collapse
|
22
|
Correa-Sáez A, Jiménez-Izquierdo R, Garrido-Rodríguez M, Morrugares R, Muñoz E, Calzado MA. Updating dual-specificity tyrosine-phosphorylation-regulated kinase 2 (DYRK2): molecular basis, functions and role in diseases. Cell Mol Life Sci 2020; 77:4747-4763. [PMID: 32462403 PMCID: PMC7658070 DOI: 10.1007/s00018-020-03556-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 05/15/2020] [Accepted: 05/18/2020] [Indexed: 12/15/2022]
Abstract
Members of the dual-specificity tyrosine-regulated kinase (DYRKs) subfamily possess a distinctive capacity to phosphorylate tyrosine, serine, and threonine residues. Among the DYRK class II members, DYRK2 is considered a unique protein due to its role in disease. According to the post-transcriptional and post-translational modifications, DYRK2 expression greatly differs among human tissues. Regarding its mechanism of action, this kinase performs direct phosphorylation on its substrates or acts as a priming kinase, enabling subsequent substrate phosphorylation by GSK3β. Moreover, DYRK2 acts as a scaffold for the EDVP E3 ligase complex during the G2/M phase of cell cycle. DYRK2 functions such as cell survival, cell development, cell differentiation, proteasome regulation, and microtubules were studied in complete detail in this review. We have also gathered available information from different bioinformatic resources to show DYRK2 interactome, normal and tumoral tissue expression, and recurrent cancer mutations. Then, here we present an innovative approach to clarify DYRK2 functionality and importance. DYRK2 roles in diseases have been studied in detail, highlighting this kinase as a key protein in cancer development. First, DYRK2 regulation of c-Jun, c-Myc, Rpt3, TERT, and katanin p60 reveals the implication of this kinase in cell-cycle-mediated cancer development. Additionally, depletion of this kinase correlated with reduced apoptosis, with consequences on cancer patient response to chemotherapy. Other functions like cancer stem cell formation and epithelial-mesenchymal transition regulation are also controlled by DYRK2. Furthermore, the pharmacological modulation of this protein by different inhibitors (harmine, curcumine, LDN192960, and ID-8) has enabled to clarify DYRK2 functionality.
Collapse
Affiliation(s)
- Alejandro Correa-Sáez
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Avda. Menéndez Pidal s/n., 14004, Córdoba, Spain
- Departamento de Biología Celular, Fisiología E Inmunología, Universidad de Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Rafael Jiménez-Izquierdo
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Avda. Menéndez Pidal s/n., 14004, Córdoba, Spain
- Departamento de Biología Celular, Fisiología E Inmunología, Universidad de Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Martín Garrido-Rodríguez
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Avda. Menéndez Pidal s/n., 14004, Córdoba, Spain
- Departamento de Biología Celular, Fisiología E Inmunología, Universidad de Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Rosario Morrugares
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Avda. Menéndez Pidal s/n., 14004, Córdoba, Spain
- Departamento de Biología Celular, Fisiología E Inmunología, Universidad de Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Eduardo Muñoz
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Avda. Menéndez Pidal s/n., 14004, Córdoba, Spain
- Departamento de Biología Celular, Fisiología E Inmunología, Universidad de Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Marco A Calzado
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Avda. Menéndez Pidal s/n., 14004, Córdoba, Spain.
- Departamento de Biología Celular, Fisiología E Inmunología, Universidad de Córdoba, Córdoba, Spain.
- Hospital Universitario Reina Sofía, Córdoba, Spain.
| |
Collapse
|
23
|
Dastmalchi N, Safaralizadeh R, Nargesi MM. LncRNAs: Potential Novel Prognostic and Diagnostic Biomarkers in Colorectal Cancer. Curr Med Chem 2020; 27:5067-5077. [PMID: 30827228 DOI: 10.2174/0929867326666190227230024] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/31/2019] [Accepted: 02/18/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs), a type of regulatory RNAs, play a key role in numerous cellular pathways. Ectopic expression of this group of non-coding RNAs has been specified to be involved in numerous diseases. Moreover, the role of lncRNAs in the initiation and development of cancers including colorectal cancer (CRC) has been acknowledged. OBJECTIVE In the present review, the role of lncRNAs as prognostic and diagnostic biomarkers in CRC as well as the molecular mechanisms of their contribution to development of CRC has been addressed. RESULTS The presented studies have indicated the ectopic expression of various lncRNAs in CRC. Some lncRNAs which were considered as tumor suppressors were downregulated in the colorectal cancerous tissues compared with healthy controls; however, some with oncogenic effects were upregulated. LncRNAs contribute to tumor development via various molecular mechanisms such as epigenetically controlling the expression of target genes, interacting with miRNAs as their sponge, etc. Conclusion: LncRNAs that have been recognized as prognostic biomarkers may pave the way for clinical management to offer adjuvant treatments for patients with CRC.
Collapse
Affiliation(s)
- Narges Dastmalchi
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Reza Safaralizadeh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Mirsaed Miri Nargesi
- Molecular Virology Section, Department of Virology and Immunology, LabPLUS, Auckland District Health Board (ADHB), Auckland, New Zealand
| |
Collapse
|
24
|
Boni J, Rubio-Perez C, López-Bigas N, Fillat C, de la Luna S. The DYRK Family of Kinases in Cancer: Molecular Functions and Therapeutic Opportunities. Cancers (Basel) 2020; 12:cancers12082106. [PMID: 32751160 PMCID: PMC7465136 DOI: 10.3390/cancers12082106] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 12/15/2022] Open
Abstract
DYRK (dual-specificity tyrosine-regulated kinases) are an evolutionary conserved family of protein kinases with members from yeast to humans. In humans, DYRKs are pleiotropic factors that phosphorylate a broad set of proteins involved in many different cellular processes. These include factors that have been associated with all the hallmarks of cancer, from genomic instability to increased proliferation and resistance, programmed cell death, or signaling pathways whose dysfunction is relevant to tumor onset and progression. In accordance with an involvement of DYRK kinases in the regulation of tumorigenic processes, an increasing number of research studies have been published in recent years showing either alterations of DYRK gene expression in tumor samples and/or providing evidence of DYRK-dependent mechanisms that contribute to tumor initiation and/or progression. In the present article, we will review the current understanding of the role of DYRK family members in cancer initiation and progression, providing an overview of the small molecules that act as DYRK inhibitors and discussing the clinical implications and therapeutic opportunities currently available.
Collapse
Affiliation(s)
- Jacopo Boni
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Dr Aiguader 88, 08003 Barcelona, Spain;
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), 28029 Madrid, Spain
| | - Carlota Rubio-Perez
- Cancer Science Programme, Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, 08028 Barcelona, Spain; (C.R.-P.); (N.L.-B.)
| | - Nuria López-Bigas
- Cancer Science Programme, Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, 08028 Barcelona, Spain; (C.R.-P.); (N.L.-B.)
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, 08010 Barcelona, Spain
| | - Cristina Fillat
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), 28029 Madrid, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Rosselló 149-153, 08036 Barcelona, Spain;
| | - Susana de la Luna
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Dr Aiguader 88, 08003 Barcelona, Spain;
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), 28029 Madrid, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, 08010 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Dr Aiguader 88, 08003 Barcelona, Spain
- Correspondence: ; Tel.: +34-933-160-144
| |
Collapse
|
25
|
Kumamoto T, Yamada K, Yoshida S, Aoki K, Hirooka S, Eto K, Yanaga K, Yoshida K. Impairment of DYRK2 by DNMT1‑mediated transcription augments carcinogenesis in human colorectal cancer. Int J Oncol 2020; 56:1529-1539. [PMID: 32236621 DOI: 10.3892/ijo.2020.5020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 02/21/2020] [Indexed: 12/24/2022] Open
Abstract
Dual specificity tyrosine‑phosphorylation‑regulated kinase 2 (DYRK2) is a protein kinase that functions as a novel tumor suppressor. Previous studies have reported that DYRK2 expression is decreased in colorectal cancer compared with adjacent non‑tumor tissues. However, the regulatory mechanisms by which the expression of DYRK2 is diminished remain unknown. The aim of the present study was to determine the regulatory mechanisms of DYRK2 expression. The present study identified the promoter regions of the DYRK2 gene and demonstrated that they contained CpG islands in human cancer cells. In addition, the DYRK2 promoter region exhibited a higher level of methylation in colorectal cancer tissues compared with healthy tissues from clinical samples. DYRK2 expression was increased at the mRNA and protein level in colorectal cancer cell lines by treatment with 5‑Azacytidine, a demethylating agent. The results further demonstrated that knockdown of DNA methyltransferase (DNMT) 1 elevated DYRK2 expression in colorectal cancer cell lines. A colitis‑related mouse carcinogenesis model also exhibited a lower DYRK2 level in colorectal cancer tissues compared with adjacent non‑tumor tissues. In this model, nuclear staining of DNMT1 was detected in colorectal cancer cells, whereas a cytoplastic distribution pattern of DNMT1 staining was exhibited in healthy tissue. Overall, these findings suggested that DYRK2 expression was downregulated via transcriptional regulation by DNMT1 to elevate the proliferation of colorectal cancer cells.
Collapse
Affiliation(s)
- Tomotaka Kumamoto
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo 105‑8461, Japan
| | - Kohji Yamada
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo 105‑8461, Japan
| | - Saishu Yoshida
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo 105‑8461, Japan
| | - Katsuhiko Aoki
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo 105‑8461, Japan
| | - Shinichi Hirooka
- Department of Pathology, The Jikei University School of Medicine, Tokyo 105‑8461, Japan
| | - Ken Eto
- Department of Surgery, The Jikei University School of Medicine, Tokyo 105‑8461, Japan
| | - Katsuhiko Yanaga
- Department of Surgery, The Jikei University School of Medicine, Tokyo 105‑8461, Japan
| | - Kiyotsugu Yoshida
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo 105‑8461, Japan
| |
Collapse
|
26
|
Yokoyama-Mashima S, Yogosawa S, Kanegae Y, Hirooka S, Yoshida S, Horiuchi T, Ohashi T, Yanaga K, Saruta M, Oikawa T, Yoshida K. Forced expression of DYRK2 exerts anti-tumor effects via apoptotic induction in liver cancer. Cancer Lett 2019; 451:100-109. [PMID: 30851422 DOI: 10.1016/j.canlet.2019.02.046] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/10/2019] [Accepted: 02/19/2019] [Indexed: 11/20/2022]
Abstract
Liver cancer is highly aggressive and globally exhibits a poor prognosis. Therefore, the identification of novel molecules that can become targets for future therapies is urgently required. We have reported that dual-specificity tyrosine-regulated kinase 2 (DYRK2) functions as a tumor suppressor by regulating cell survival, differentiation, proliferation and apoptosis. However, the research into its clinical application as a molecular target has remained to be explored. Here we showed that DYRK2 knockdown enhanced tumor growth of liver cancer cells. Conversely and more importantly, adenovirus-mediated overexpression of DYRK2 resulted in inhibition of cell proliferation and tumor growth, and induction of apoptosis both in vitro and in vivo. Furthermore, we found that liver cancer patients with low DYRK2 expression had a significantly shorter overall survival. Given the findings that DYRK2 regulates proliferation and apoptosis of cancer cells, DYRK2 expression could be a promising predictive marker of the prognosis in liver cancer. Stabilized or forced expression of DYRK2 may become thus a potential target for novel gene therapy against liver cancer.
Collapse
Affiliation(s)
- Shiho Yokoyama-Mashima
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo, Japan; Department of Gastroenterology and Hepatology, The Jikei University School of Medicine, Tokyo, Japan
| | - Satomi Yogosawa
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo, Japan
| | - Yumi Kanegae
- Core Research Facilities for Basic Science (Division of Molecular Genetics), Research Center for Medical Science, The Jikei University School of Medicine, Tokyo, Japan
| | - Shinichi Hirooka
- Department of Pathology, The Jikei University School of Medicine, Tokyo, Japan
| | - Saishu Yoshida
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo, Japan
| | - Takashi Horiuchi
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Toya Ohashi
- Division of Gene Therapy, Research Center for Medical Science, The Jikei University School of Medicine, Tokyo, Japan
| | - Katsuhiko Yanaga
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Masayuki Saruta
- Department of Gastroenterology and Hepatology, The Jikei University School of Medicine, Tokyo, Japan
| | - Tsunekazu Oikawa
- Department of Gastroenterology and Hepatology, The Jikei University School of Medicine, Tokyo, Japan
| | - Kiyotsugu Yoshida
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo, Japan.
| |
Collapse
|
27
|
Yogosawa S, Yoshida K. Tumor suppressive role for kinases phosphorylating p53 in DNA damage-induced apoptosis. Cancer Sci 2018; 109:3376-3382. [PMID: 30191640 PMCID: PMC6215896 DOI: 10.1111/cas.13792] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/23/2018] [Accepted: 09/02/2018] [Indexed: 12/20/2022] Open
Abstract
Tumor suppressor p53 plays an important role in cancer prevention. Under normal conditions, p53 is maintained at a low level. However, in response to various cellular stresses, p53 is stabilized and activated, which, in turn, initiates DNA repair, cell-cycle arrest, senescence and apoptosis. Post-translational modifications of p53 including phosphorylation, ubiquitination, and acetylation at multiple sites are important to regulate its activation and subsequent transcriptional gene expression. Particularly, phosphorylation of p53 plays a critical role in modulating its activation to induce apoptosis in cancer cells. In this context, previous studies show that several serine/threonine kinases regulate p53 phosphorylation and downstream gene expression. The molecular basis by which p53 and its kinases induce apoptosis for cancer prevention has been extensively studied. However, the relationship between p53 phosphorylation and its kinases and how the activity of kinases is controlled are still largely unclear; hence, they need to be investigated. In this review, we discuss various roles for p53 phosphorylation and its responsible kinases to induce apoptosis and a new therapeutic approach in a broad range of cancers.
Collapse
Affiliation(s)
- Satomi Yogosawa
- Department of Biochemistry, Jikei University School of Medicine, Tokyo, Japan
| | - Kiyotsugu Yoshida
- Department of Biochemistry, Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
28
|
Molecular and Immunohistochemical Markers with Prognostic and Predictive Significance in Liver Metastases from Colorectal Carcinoma. Int J Mol Sci 2018; 19:ijms19103014. [PMID: 30282914 PMCID: PMC6213422 DOI: 10.3390/ijms19103014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 09/28/2018] [Accepted: 10/01/2018] [Indexed: 12/17/2022] Open
Abstract
Despite the significant recent achievements in the diagnosis and treatment of colorectal cancer (CRC), the prognosis of these patients has currently plateaued. During the past few years, the opportunity to consider multiple treatment modalities (including surgery and other locoregional treatments, systemic therapy, and targeted therapy) led to the research of novel prognostic and predictive biomarkers in CRC liver metastases (CRCLM) patients. In this review, we seek to describe the current state of knowledge of CRCLM biomarkers and to outline impending clinical perspectives, in particular focusing on the cutting-edge tools available for their characterization.
Collapse
|
29
|
Zou Y, Yao S, Chen X, Liu D, Wang J, Yuan X, Rao J, Xiong H, Yu S, Yuan X, Zhu F, Hu G, Wang Y, Xiong H. LncRNA OIP5-AS1 regulates radioresistance by targeting DYRK1A through miR-369-3p in colorectal cancer cells. Eur J Cell Biol 2018; 97:369-378. [PMID: 29773344 DOI: 10.1016/j.ejcb.2018.04.005] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 03/30/2018] [Accepted: 04/10/2018] [Indexed: 01/12/2023] Open
Abstract
OBJECT This study aimed to investigate the role of lncRNA OIP5-AS1 in regulating radioresistance of colorectal cancer (CRC) cells. METHODS Microarray analysis was used to screen out lncRNAs differentially expressed in radio-resistant CRC cell lines. Expression levels of OIP5-AS1, miR-369-3p and DYRK1A in CRC cell lines were measured by qRT-PCR. Protein expression of DYRK1A was determined by western blot. The target relationships among OIP5-AS1, miR-369-3p and DYRK1A were validated by dual luciferase reporter assay. Impacts of OIP5-AS1 or DYRK1A on CRC cellular activity and apoptosis were investigated by MTT assay, clonogenic survival assay and flow cytometry to analyze OIP5-AS1 or DYRK1A's effect on radioresistance of CRC cells. RESULTS LncRNA OIP5-AS1 and DYRK1A were down-regulated in radio-resistant CRC cell lines. OIP5-AS1 suppressed the expression of miR-369-3p, thus up-regulating DYRK1A, the downstream gene of miR-369-3p. OIP5-AS1 and DYRK1A impaired cell clonogenic survival and promoted cell apoptosis after irradiation, improving radiosensitivity of CRC cells. CONCLUSION LncRNA OIP5-AS1 suppressed cell viability, promoted radio-induced apoptosis, and enhanced the radiosensitivity of CRC cells by regulating DYRK1A expression through miR-369-3p.
Collapse
Affiliation(s)
- Yanmei Zou
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Shuo Yao
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Xiuqiong Chen
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Dian Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Jianhua Wang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Xun Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Jie Rao
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Huihua Xiong
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Shiying Yu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Feng Zhu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Guohong Hu
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological, Shanghai, 200031, China
| | - Yihua Wang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China; Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton SO171BJ, UK
| | - Hua Xiong
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| |
Collapse
|
30
|
Imawari Y, Mimoto R, Hirooka S, Morikawa T, Takeyama H, Yoshida K. Downregulation of dual-specificity tyrosine-regulated kinase 2 promotes tumor cell proliferation and invasion by enhancing cyclin-dependent kinase 14 expression in breast cancer. Cancer Sci 2018; 109:363-372. [PMID: 29193658 PMCID: PMC5797831 DOI: 10.1111/cas.13459] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 11/17/2017] [Accepted: 11/21/2017] [Indexed: 01/16/2023] Open
Abstract
Tumor progression is the main cause of death in patients with breast cancer. Accumulating evidence suggests that dual-specificity tyrosine-regulated kinase 2 (DYRK2) functions as a tumor suppressor by regulating cell survival, differentiation, proliferation and apoptosis. However, little is known about the mechanisms of transcriptional regulation by DYRK2 in cancer progression, particularly with respect to cancer proliferation and invasion. Here, using a comprehensive expression profiling approach, we show that cyclin-dependent kinase 14 (CDK14) is a target of DYRK2. We found that reduced DYRK2 expression increases CDK14 expression, which promotes cancer cell proliferation and invasion in vitro, in addition to tumorigenicity in vivo. CDK14 and DYRK2 expression inversely correlated in human breast cancer tissues. We further identified androgen receptor (AR) as a candidate of DYRK2-dependent transcription factors regulating CDK14. Taken together, our findings suggest a mechanism by which DYRK2 controls CDK14 expression to regulate tumor cell proliferation and invasion in breast cancer. Targeting of this pathway may be a promising therapeutic strategy for treating breast cancer.
Collapse
Affiliation(s)
- Yoshimi Imawari
- Department of BiochemistryJikei University School of MedicineTokyoJapan
- Department of SurgeryJikei University School of MedicineTokyoJapan
| | - Rei Mimoto
- Department of SurgeryJikei University School of MedicineTokyoJapan
| | - Shinichi Hirooka
- Department of PathologyJikei University School of MedicineTokyoJapan
| | | | - Hiroshi Takeyama
- Department of SurgeryJikei University School of MedicineTokyoJapan
| | - Kiyotsugu Yoshida
- Department of BiochemistryJikei University School of MedicineTokyoJapan
| |
Collapse
|
31
|
Ito D, Yogosawa S, Mimoto R, Hirooka S, Horiuchi T, Eto K, Yanaga K, Yoshida K. Dual-specificity tyrosine-regulated kinase 2 is a suppressor and potential prognostic marker for liver metastasis of colorectal cancer. Cancer Sci 2017; 108:1565-1573. [PMID: 28502078 PMCID: PMC5543514 DOI: 10.1111/cas.13280] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 05/01/2017] [Accepted: 05/09/2017] [Indexed: 01/25/2023] Open
Abstract
Colorectal cancer is a common cancer and a leading cause of cancer-related death worldwide. The liver is a dominant metastatic site for patients with colorectal cancer. Molecular mechanisms that allow colorectal cancer cells to form liver metastases are largely unknown. Activation of epithelial-mesenchymal transition is the key step for metastasis of cancer cells. We recently reported that dual-specificity tyrosine-regulated kinase 2 (DYRK2) controls epithelial-mesenchymal transition in breast cancer and ovarian serous adenocarcinoma. The aim of this study is to clarify whether DYRK2 regulates liver metastases of colorectal cancer. We show that the ability of cell invasion and migration was abrogated in DYRK2-overexpressing cells. In an in vivo xenograft model, liver metastatic lesions were markedly diminished by ectopic expression of DYRK2. Furthermore, we found that patients whose liver metastases expressed low DYRK2 levels had significantly worse overall and disease-free survival. Given the findings that DYRK2 regulates cancer cell metastasis, we concluded that the expression status of DYRK2 could be a predictive marker for liver metastases of colorectal cancer.
Collapse
Affiliation(s)
- Daisuke Ito
- Department of BiochemistryJikei University School of MedicineTokyoJapan
- Department of SurgeryJikei University School of MedicineTokyoJapan
| | - Satomi Yogosawa
- Department of BiochemistryJikei University School of MedicineTokyoJapan
| | - Rei Mimoto
- Department of BiochemistryJikei University School of MedicineTokyoJapan
- Department of SurgeryJikei University School of MedicineTokyoJapan
| | - Shinichi Hirooka
- Department of PathologyJikei University School of MedicineTokyoJapan
| | - Takashi Horiuchi
- Department of SurgeryJikei University School of MedicineTokyoJapan
| | - Ken Eto
- Department of SurgeryJikei University School of MedicineTokyoJapan
| | - Katsuhiko Yanaga
- Department of SurgeryJikei University School of MedicineTokyoJapan
| | - Kiyotsugu Yoshida
- Department of BiochemistryJikei University School of MedicineTokyoJapan
| |
Collapse
|