1
|
Frascogna C, Mottareale R, La Verde G, Arrichiello C, Muto P, Netti PA, Pugliese M, Panzetta V. Role of the mechanical microenvironment on CD-44 expression of breast adenocarcinoma in response to radiotherapy. Sci Rep 2024; 14:391. [PMID: 38172135 PMCID: PMC10764959 DOI: 10.1038/s41598-023-50473-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024] Open
Abstract
The biological effects of ionizing radiation are exploited in the clinical practice of radiotherapy to destroy tumour cells while sparing the surrounding normal tissue. While most of the radiotherapy research focused on DNA damage and repair, recently a great attention is going to cells' interactions with the mechanical microenvironment of both malignant and healthy tissues after exposure. In fact, the stiffness of the extracellular matrix can modify cells' motility and spreading through the modulation of transmembrane proteins and surface receptors' expression, such as CD-44. CD-44 receptor has held much interest also in targeted-therapy due to its affinity with hyaluronic acid, which can be used to functionalize biodegradable nanoparticles loaded with chemotherapy drugs for targeted therapy. We evaluated changes in CD-44 expression in two mammary carcinoma cell lines (MCF10A and MDA-MB-231) after exposure to X-ray (2 or 10 Gy). To explore the role of the mechanical microenvironment, we mimicked tissues' stiffness with polyacrylamide's substrates producing two different elastic modulus values (0.5 and 15 kPa). We measured a dose dependent increase in CD-44 relative expression in tumour cells cultured in a stiffer microenvironment. These findings highlight a crucial connection between the mechanical properties of the cell's surroundings and the post-radiotherapy expression of surface receptors.
Collapse
Affiliation(s)
- Crescenzo Frascogna
- Center for Advanced Biomaterials for Healthcare @CRIB, Italian Institute of Technology, Largo Barsanti e Matteucci 53, 80125, Naples, Italy
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale Vincenzo Tecchio, 80125, Naples, Italy
| | - Rocco Mottareale
- Department of Physics "E. Pancini", University of Naples Federico II, Via Cinthia, 80126, Naples, Italy
| | - Giuseppe La Verde
- Department of Physics "E. Pancini", University of Naples Federico II, Via Cinthia, 80126, Naples, Italy
- Istituto Nazionale di Fisica Nucleare, INFN Sezione di Napoli, Via Cinthia Ed. 6, 80126, Naples, Italy
| | - Cecilia Arrichiello
- Radiotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione "G. Pascale", Via Semmola, 53, 80131, Naples, Italy
| | - Paolo Muto
- Radiotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione "G. Pascale", Via Semmola, 53, 80131, Naples, Italy
| | - Paolo A Netti
- Center for Advanced Biomaterials for Healthcare @CRIB, Italian Institute of Technology, Largo Barsanti e Matteucci 53, 80125, Naples, Italy
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale Vincenzo Tecchio, 80125, Naples, Italy
- Interdisciplinary Research Centre On Biomaterials CRIB, University of Naples Federico II, Piazzale Vincenzo Tecchio, 80125, Naples, Italy
| | - Mariagabriella Pugliese
- Department of Physics "E. Pancini", University of Naples Federico II, Via Cinthia, 80126, Naples, Italy.
- Istituto Nazionale di Fisica Nucleare, INFN Sezione di Napoli, Via Cinthia Ed. 6, 80126, Naples, Italy.
| | - Valeria Panzetta
- Center for Advanced Biomaterials for Healthcare @CRIB, Italian Institute of Technology, Largo Barsanti e Matteucci 53, 80125, Naples, Italy
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale Vincenzo Tecchio, 80125, Naples, Italy
- Interdisciplinary Research Centre On Biomaterials CRIB, University of Naples Federico II, Piazzale Vincenzo Tecchio, 80125, Naples, Italy
| |
Collapse
|
2
|
Nishino M, Imaizumi H, Yokoyama Y, Katahira J, Kimura H, Matsuura N, Matsumura M. Histone methyltransferase SUV39H1 regulates the Golgi complex via the nuclear envelope-spanning LINC complex. PLoS One 2023; 18:e0283490. [PMID: 37437070 DOI: 10.1371/journal.pone.0283490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/27/2023] [Indexed: 07/14/2023] Open
Abstract
Cell motility is related to the higher-order structure of chromatin. Stimuli that induce cell migration change chromatin organization; such stimuli include elevated histone H3 lysine 9 trimethylation (H3K9me3). We previously showed that depletion of histone H3 lysine 9 methyltransferase, SUV39H1, suppresses directional cell migration. However, the molecular mechanism underlying this association between chromatin and cell migration remains elusive. The Golgi apparatus is a cell organelle essential for cell motility. In this study, we show that loss of H3K9 methyltransferase SUV39H1 but not SETDB1 or SETDB2 causes dispersion of the Golgi apparatus throughout the cytoplasm. The Golgi dispersion triggered by SUV39H1 depletion is independent of transcription, centrosomes, and microtubule organization, but is suppressed by depletion of any of the following three proteins: LINC complex components SUN2, nesprin-2, or microtubule plus-end-directed kinesin-like protein KIF20A. In addition, SUN2 is closely localized to H3K9me3, and SUV39H1 affects the mobility of SUN2 in the nuclear envelope. Further, inhibition of cell motility caused by SUV39H1 depletion is restored by suppression of SUN2, nesprin-2, or KIF20A. In summary, these results show the functional association between chromatin organization and cell motility via the Golgi organization regulated by the LINC complex.
Collapse
Affiliation(s)
- Miyu Nishino
- Graduate School of Health Sciences, Ehime Prefectural University of Health Sciences, Ehime, Japan
| | - Hiromasa Imaizumi
- Graduate School of Medicine and Health Science, Osaka University, Osaka, Japan
- Department of Radiological Technology, Faculty of Health Science and Technology, Kawasaki University of Medical Welfare, Okayama, Japan
| | - Yuhki Yokoyama
- Graduate School of Medicine and Health Science, Osaka University, Osaka, Japan
| | - Jun Katahira
- Laboratories of Cellular Molecular Biology, Graduate School of Veterinary Sciences, Osaka Metropolitan University, Osaka, Japan
| | - Hiroshi Kimura
- Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Nariaki Matsuura
- Graduate School of Medicine and Health Science, Osaka University, Osaka, Japan
- Osaka International Cancer Institute, Osaka, Japan
| | - Miki Matsumura
- Graduate School of Health Sciences, Ehime Prefectural University of Health Sciences, Ehime, Japan
- Graduate School of Medicine and Health Science, Osaka University, Osaka, Japan
| |
Collapse
|
3
|
Imaizumi H, Minami K, Hieda M, Narihiro N, Koizumi M. The linker of nucleoskeleton and cytoskeleton complex is required for X-ray-induced epithelial-mesenchymal transition. JOURNAL OF RADIATION RESEARCH 2023; 64:358-368. [PMID: 36694940 PMCID: PMC10036107 DOI: 10.1093/jrr/rrac104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 11/13/2022] [Indexed: 06/17/2023]
Abstract
The linker of nucleoskeleton and cytoskeleton (LINC) complex has been implicated in various functions of the nuclear envelope, including nuclear migration, mechanotransduction and DNA repair. We previously revealed that the LINC complex component Sad1 and UNC84 domain containing 1 (SUN1) is required for sublethal-dose X-ray-enhanced cell migration and invasion. This study focused on epithelial-mesenchymal transition (EMT), which contributes to cell migration. Hence, the present study aimed to examine whether sublethal-dose X-irradiation induces EMT and whether LINC complex component SUN1 is involved in low-dose X-ray-induced EMT. This study showed that low-dose (0.5 Gy or 2 Gy) X-irradiation induced EMT in human breast cancer MDA-MB-231 cells. Additionally, X-irradiation increased the expression of SUN1. Therefore, SUN1 was depleted using siRNA. In SUN1-depleted cells, low-dose X-irradiation did not induce EMT. In addition, although the SUN1 splicing variant SUN1_916-depleted cells (containing 916 amino acids [AA] of SUN1) were induced EMT by low-dose X-irradiation like as non-transfected control cells, SUN1_888-depleted cells (which encodes 888 AA) were not induced EMT by low-dose X-irradiation. Moreover, since the Wnt/β-catenin signaling pathway regulates E-cadherin expression via the expression of the E-cadherin repressor Snail, the expression of β-catenin after X-irradiation was examined. After 24 hours of irradiation, β-catenin expression increased in non-transfected cells or SUN1_916-depleted cells, whereas β-catenin expression remained unchanged and did not increase in SUN1- or SUN1_888-depleted cells. Therefore, in this study, we found that low-dose X-irradiation induces EMT, and LINC complex component SUN1, especially SUN1_888, is required for X-ray-induced EMT via activation of the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Hiromasa Imaizumi
- Corresponding author. Department of Radiological Technology, Faculty of Health Science and Technology, Kawasaki University of Medical Welfare, 288 Matsushima, Kurashiki, Okayama 701-0193, Japan. E-mail: ; Tel: +81-86-462-1111; Fax: +81-86-464-1109
| | - Kazumasa Minami
- Department of Medical Physics and Engineering, Graduate School of Medicine and Health Science, Osaka University, 1-7 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Miki Hieda
- Graduate School of Health Sciences, Ehime Prefectural University of Health Sciences, 543 Takoda, Tobe-cho, Iyo-gun, Ehime 791-2101, Japan
| | - Naomasa Narihiro
- Department of Radiological Technology, Faculty of Health Science and Technology, Kawasaki University of Medical Welfare, 288 Matsushima, Kurashiki, Okayama 701-0193, Japan
| | - Masahiko Koizumi
- Department of Medical Physics and Engineering, Graduate School of Medicine and Health Science, Osaka University, 1-7 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
4
|
Bute B, Alkis ME. Anticancer activity of methotrexate in electrochemotherapy and electrochemotherapy plus ionizing radiation treatments in human breast cancer cells. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 40:28. [PMID: 36459220 DOI: 10.1007/s12032-022-01891-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/08/2022] [Indexed: 12/03/2022]
Abstract
Traditional cancer treatments, such as chemotherapy and radiotherapy have several limitations. Therefore, their performance must be enhanced with combined methods. The purpose of this study is to investigate both the efficacy of electroporation (EP) on the activity of methotrexate (MTX) and the combined treatment of electrochemotherapy (ECT) + ionizing radiation (IR) in MCF-7 cancer cells. Different treatment techniques, such as EP, MTX, MTX + EP (ECT), 140 kV X-ray alone (IR_140kV), 500 kV X-ray alone (IR_500kV), ECT + IR_140kV and ECT + IR_500kV, were applied to cancer cells. Eight electric pulse trains with square wave (800 V/cm, 100 µs and 1 Hz) were used in EP and ECT applications. The MTT assay was used to assess the efficacy of the therapies used. When the EP, MTX, ECT, IR_140kV, and IR_500kV treatment groups were compared to the control group, there was a significant reduction in MCF-7 cancer cells viability (p < 0.05). ECT was the most effective of these treatments, decreasing viability of cancer cells to 58.78%. The ECT + IR_140kV and ECT + IR_500kV groups were compared to the ECT group to examine the impact of X-ray radiation on ECT treatment. When compared to the ECT alone group, both groups that exposed to X-rays after ECT had a significant decrease in cell viability (p < 0.05). Furthermore, viability of MCF-7 cells reduced to 46.38% in the ECT + IR_140kV group and 35.89% in the ECT + IR_500kV group. In conclusion, the study shows that the cytotoxicity of MTX is significantly increased in ECT treatment compared to standard chemotherapy (p < 0.05). In addition, ECT + IR combined therapy application is much more effective than MTX or ECT treatments alone.
Collapse
Affiliation(s)
- Burcu Bute
- Department of Nuclear Energy and Energy Systems, Faculty of Engineering and Architecture, Muş Alparslan University, Muş, Turkey
| | - Mehmet Esref Alkis
- Department of Occupational Health and Safety, Faculty of Health Sciences, Muş Alparslan University, Guzeltepe, 49250, Muş, Turkey.
| |
Collapse
|
5
|
Ueda N, Maekawa M, Matsui TS, Deguchi S, Takata T, Katahira J, Higashiyama S, Hieda M. Inner Nuclear Membrane Protein, SUN1, is Required for Cytoskeletal Force Generation and Focal Adhesion Maturation. Front Cell Dev Biol 2022; 10:885859. [PMID: 35663386 PMCID: PMC9157646 DOI: 10.3389/fcell.2022.885859] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/02/2022] [Indexed: 12/20/2022] Open
Abstract
The linker of nucleoskeleton and cytoskeleton (LINC) complex is composed of the inner nuclear membrane-spanning SUN proteins and the outer nuclear membrane-spanning nesprin proteins. The LINC complex physically connects the nucleus and plasma membrane via the actin cytoskeleton to perform diverse functions including mechanotransduction from the extracellular environment to the nucleus. Mammalian somatic cells express two principal SUN proteins, namely SUN1 and SUN2. We have previously reported that SUN1, but not SUN2, is essential for directional cell migration; however, the underlying mechanism remains elusive. Because the balance between adhesive force and traction force is critical for cell migration, in the present study, we focused on focal adhesions (FAs) and the actin cytoskeleton. We observed that siRNA-mediated SUN1 depletion did not affect the recruitment of integrin β1, one of the ubiquitously expressed focal adhesion molecules, to the plasma membrane. Consistently, SUN1-depleted cells normally adhered to extracellular matrix proteins, including collagen, fibronectin, laminin, and vitronectin. In contrast, SUN1 depletion reduced the activation of integrin β1. Strikingly, the depletion of SUN1 interfered with the incorporation of vinculin into the focal adhesions, whereas no significant differences in the expression of vinculin were observed between wild-type and SUN1-depleted cells. In addition, SUN1 depletion suppressed the recruitment of zyxin to nascent focal adhesions. These data indicate that SUN1 is involved in the maturation of focal adhesions. Moreover, disruption of the SUN1-containing LINC complex abrogates the actin cytoskeleton and generation of intracellular traction force, despite the presence of SUN2. Thus, a physical link between the nucleus and cytoskeleton through SUN1 is required for the proper organization of actin, thereby suppressing the incorporation of vinculin and zyxin into focal adhesions and the activation of integrin β1, both of which are dependent on traction force. This study provides insights into a previously unappreciated signaling pathway from the nucleus to the cytoskeleton, which is in the opposite direction to the well-known mechanotransduction pathways from the extracellular matrix to the nucleus.
Collapse
Affiliation(s)
- Nanami Ueda
- Department of Medical Technology, Ehime Prefectural University of Health Sciences, Tobe, Japan
| | - Masashi Maekawa
- Division of Cell Growth and Tumor Regulation, Proteo-Science Center (PROS), Ehime University, Matsuyama, Japan
- Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Toon, Japan
- Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, Tokyo, Japan
| | | | - Shinji Deguchi
- Division of Bioengineering, Osaka University, Toyonaka, Japan
| | - Tomoyo Takata
- Department of Medical Technology, Ehime Prefectural University of Health Sciences, Tobe, Japan
| | - Jun Katahira
- Department of Veterinary Sciences, Osaka Prefecture University, Sakai, Japan
| | - Shigeki Higashiyama
- Division of Cell Growth and Tumor Regulation, Proteo-Science Center (PROS), Ehime University, Matsuyama, Japan
- Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Toon, Japan
- Department of Oncogenesis and Growth Regulation, Osaka International Cancer Institute, Osaka, Japan
| | - Miki Hieda
- Department of Medical Technology, Ehime Prefectural University of Health Sciences, Tobe, Japan
- *Correspondence: Miki Hieda,
| |
Collapse
|
6
|
Ionizing radiation-induced DNA damage responses affect cell compressibility. Biochem Biophys Res Commun 2022; 603:116-122. [DOI: 10.1016/j.bbrc.2022.03.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/02/2022] [Accepted: 03/06/2022] [Indexed: 12/14/2022]
|
7
|
Adachi T, Zhao W, Minami K, Yokoyama Y, Okuzaki D, Kondo R, Takahashi Y, Tamari K, Seo Y, Isohashi F, Yamamoto H, Koizumi M, Ogawa K. Chk1 suppression leads to a reduction in the enhanced radiation-induced invasive capability on breast cancer cells. JOURNAL OF RADIATION RESEARCH 2021; 62:764-772. [PMID: 34124754 PMCID: PMC8438270 DOI: 10.1093/jrr/rrab049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/10/2021] [Indexed: 05/29/2023]
Abstract
Radiation therapy is generally effective for treating breast cancers. However, approximately 30% of patients with breast cancer experience occasional post-treatment local and distant metastasis. Low-dose (0.5 Gy) irradiation is a risk factor that promotes the invasiveness of breast cancers. Although an inhibitor of checkpoint kinase 1 (Chk1) suppresses the growth and motility of breast cancer cell lines, no study has investigated the effects of the combined use of a Chk1 inhibitor and radiation on cancer metastasis. Here, we addressed this question by treating the human breast cancer cell line MDA-MB-231 (in vitro) and mouse mammary tumor cell line 4 T1 (in vitro and in vivo) with γ-irradiation and the Chk1 inhibitor PD407824. Low-dose γ-irradiation promoted invasiveness, which was suppressed by PD407824. Comprehensive gene expression analysis revealed that low-dose γ-irradiation upregulated the mRNA and protein levels of S100A4, the both of which were downregulated by PD407824. We conclude that PD407824 suppresses the expression of S100A4. As the result, γ-irradiation-induced cell invasiveness were inhibited.
Collapse
MESH Headings
- Animals
- Breast Neoplasms/drug therapy
- Breast Neoplasms/pathology
- Carbazoles/pharmacology
- Carbazoles/therapeutic use
- Cell Line, Tumor
- Checkpoint Kinase 1/antagonists & inhibitors
- Checkpoint Kinase 1/physiology
- Dose-Response Relationship, Radiation
- Female
- Gamma Rays/adverse effects
- Humans
- Mammary Neoplasms, Experimental/drug therapy
- Mammary Neoplasms, Experimental/pathology
- Mice
- Mice, Inbred BALB C
- Neoplasm Invasiveness/prevention & control
- Neoplasm Metastasis/prevention & control
- Neoplasm Proteins/antagonists & inhibitors
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- Neoplasm Proteins/physiology
- RNA Interference
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- RNA, Neoplasm/biosynthesis
- RNA, Neoplasm/genetics
- RNA, Small Interfering/genetics
- S100 Calcium-Binding Protein A4/biosynthesis
- S100 Calcium-Binding Protein A4/genetics
- Wound Healing/drug effects
- Wound Healing/radiation effects
Collapse
Affiliation(s)
| | | | - Kazumasa Minami
- Corresponding author. Department of Radiation Oncology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka Suita, Osaka 565-0871, Japan. Tel: +81-6-6879-3482; Fax: +81-6-6879-3489; E-mail:
| | - Yuhki Yokoyama
- Department of Molecular Pathology, Osaka University Graduate School of Medicine, 1-7 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Daisuke Okuzaki
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University Graduate School of Medicine, 3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Rika Kondo
- Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, 1-7 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yutaka Takahashi
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Keisuke Tamari
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yuji Seo
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Fumiaki Isohashi
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hirofumi Yamamoto
- Department of Molecular Pathology, Osaka University Graduate School of Medicine, 1-7 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Masahiko Koizumi
- Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, 1-7 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kazuhiko Ogawa
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
8
|
Cytoskeleton Response to Ionizing Radiation: A Brief Review on Adhesion and Migration Effects. Biomedicines 2021; 9:biomedicines9091102. [PMID: 34572287 PMCID: PMC8465203 DOI: 10.3390/biomedicines9091102] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/18/2021] [Accepted: 08/24/2021] [Indexed: 12/27/2022] Open
Abstract
The cytoskeleton is involved in several biological processes, including adhesion, motility, and intracellular transport. Alterations in the cytoskeletal components (actin filaments, intermediate filaments, and microtubules) are strictly correlated to several diseases, such as cancer. Furthermore, alterations in the cytoskeletal structure can lead to anomalies in cells’ properties and increase their invasiveness. This review aims to analyse several studies which have examined the alteration of the cell cytoskeleton induced by ionizing radiations. In particular, the radiation effects on the actin cytoskeleton, cell adhesion, and migration have been considered to gain a deeper knowledge of the biophysical properties of the cell. In fact, the results found in the analysed works can not only aid in developing new diagnostic tools but also improve the current cancer treatments.
Collapse
|
9
|
Liu L, Li SW, Yuan W, Tang J, Sang Y. Downregulation of SUN2 promotes metastasis of colon cancer by activating BDNF/TrkB signalling by interacting with SIRT1. J Pathol 2021; 254:531-542. [PMID: 33931868 DOI: 10.1002/path.5697] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 04/10/2021] [Accepted: 04/27/2021] [Indexed: 12/21/2022]
Abstract
Distant metastasis is the major cause of colon cancer (CC) treatment failure. SAD1/UNC84 domain protein-2 (SUN2) is a key component of linker of the nucleoskeleton and cytoskeleton (LINC) complexes that may be relevant for metastasis in several cancers. Here, we first confirmed that SUN2 levels were significantly lower in primary CC tissues and distant metastasis than in normal colon tissues, and high SUN2 expression predicted good overall survival. Overexpression of SUN2 or knockdown of SUN2 inhibited or promoted cell migration and invasion in vitro, respectively. Moreover, silencing of SUN2 promoted metastasis in vivo. Mechanistically, we showed that SUN2 exerts its tumour suppressor functions by decreasing the expression of brain derived neurotrophic factor (BDNF) to inhibit BDNF/tropomyosin-related kinase B (TrkB) signalling. Additionally, SUN2 associated with SIRT1 and increased the acetylation of methyl-CpG binding protein 2 (MeCP2) to increase its occupancy at the BDNF promoter. Taken together, our findings indicate that SUN2 is a key component in CC progression that acts by inhibiting metastasis and that novel SUN2-SIRT1-MeCP2-BDNF signalling may prove to be useful for the development of new strategies for treating patients with CC. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Lijuan Liu
- Department of Pharmacy, Jiangxi Cancer Hospital, Nanchang, PR China
| | - Si-Wei Li
- Department of Oncology, Tongji Huangzhou Hospital of Huazhong University of Science and Technology, Hubei, PR China
| | - Wenxin Yuan
- Department of Ultrasonography, The First Affiliated Hospital, Nanchang University, Nanchang, PR China
| | - Jianjun Tang
- Department of Ultrasonography, The First Affiliated Hospital, Nanchang University, Nanchang, PR China
| | - Yi Sang
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, The Third Affiliated Hospital of Nanchang University, Nanchang, PR China
| |
Collapse
|
10
|
Feghhi M, Rezaie J, Mostafanezhad K, Jabbari N. Bystander effects induced by electron beam-irradiated MCF-7 cells: a potential mechanism of therapy resistance. Breast Cancer Res Treat 2021; 187:657-671. [PMID: 34043123 DOI: 10.1007/s10549-021-06250-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 05/04/2021] [Indexed: 12/09/2022]
Abstract
PURPOSE The distinct direct and non-targeting effects of electron beam radiation on MCF-7 cells remain obscure. We aimed to investigate the effect of electron beam irradiation (EBI) and conditioned media (CM) of the irradiated MCF-7 cells on MCF-7 cells. The cytotoxic effects of CM from irradiated MCF-7 cells on the mesenchymal stem cells and human umbilical vein endothelial cells (HUVECs) were also examined. METHODS Cell viability and apoptosis were assayed via MTT and flow cytometry analysis, respectively. The production of ROS (reactive oxygen species) was evaluated by the chemical fluorometric method, while the amount of extracellular vesicles was detected via acetylcholinesterase activity assay. Expression of genes involved in apoptosis, including caspase-3, -8, -9, and stemness such as Sox-2 and Oct-4, were calculated through qPCR. The wound healing rate of cells was monitored via in vitro scratch assay. RESULTS Compared to the control group, EBI groups showed decreased cell viability but increased apoptosis and ROS as well as acetylcholinesterase activity dose-dependently (P < 0.05). Concurrently with increasing the dose of the electron beam, the transcript levels of apoptotic genes (caspase-3, -8, -9) and stemness-related genes (Sox-2 and Oct-4) were up-regulated following EBI. The wound healing rate of irradiated MCF-7 cells increased dose-dependently (P < 0.05). Similar results were observed after treatment with CM from irradiated MCF-7 cells. Additionally, CM from irradiated MCF-7 cells decreased the viability of MCF-7 cells, mesenchymal stem cells, and HUVECs (P < 0.05). CONCLUSION MCF-7 cells treated with an electron beam and CMs from irradiated MCF-7 cells exhibit an up-regulation in both genes involved in the apoptosis pathway and stemness. As a result, EBI can affect apoptosis and stemness in MCF-7 cells in direct and bystander manners. However, specific signaling pathways require careful evaluation to provide an understanding of the mechanisms involved in the EBI-induced alternation in tumor cell dynamics.
Collapse
Affiliation(s)
- Maryam Feghhi
- Department of Medical Physics, Urmia University of Medical Sciences, Urmia, Iran
| | - Jafar Rezaie
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | | | - Nasrollah Jabbari
- Department of Medical Physics and Imaging, Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
11
|
Satomi E, Ueda M, Katahira J, Hieda M. The SUN1 splicing variants SUN1_888 and SUN1_916 differentially regulate nucleolar structure. Genes Cells 2020; 25:730-740. [PMID: 32931086 DOI: 10.1111/gtc.12807] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/27/2020] [Accepted: 09/07/2020] [Indexed: 12/22/2022]
Abstract
The nucleolar structure is highly dynamic and strictly regulated in response to internal cues, such as metabolic rates, and to external cues, such as mechanical forces applied to cells. Although the multilayered nucleolar structure is largely determined by the liquid-like properties of RNA and proteins, the mechanisms regulating the morphology and number of nucleoli remain elusive. The linker of the nucleoskeleton and cytoskeleton (LINC) complex comprises inner nuclear membrane Sad1/UNC-84 (SUN) proteins and outer nuclear membrane-localized nesprins. We previously showed that the depletion of SUN1 proteins affects nucleolar morphologies. This study focuses on the function of SUN1 splicing variants in determining nucleolar morphology. An RNA interference strategy showed that the predominantly expressed variants, SUN1_888 and SUN1_916, were crucial for nucleolar morphology but functionally distinct. In addition, the depletion of either SUN1_888 or SUN1_916 altered the chromatin structure and affected the distribution of histone modifications. Based on these results, we propose a model in which the LINC complex plays a role in modulating nucleolar morphology and numbers via chromatin.
Collapse
Affiliation(s)
- Erina Satomi
- Graduate School of Health Sciences, Ehime Prefectural University of Health Sciences, Ehime, Japan
| | - Masako Ueda
- Graduate School of Health Sciences, Ehime Prefectural University of Health Sciences, Ehime, Japan
| | - Jun Katahira
- Department of Veterinary Sciences, Osaka Prefecture University, Osaka, Japan
| | - Miki Hieda
- Graduate School of Health Sciences, Ehime Prefectural University of Health Sciences, Ehime, Japan
| |
Collapse
|
12
|
Panzetta V, La Verde G, Pugliese M, Artiola V, Arrichiello C, Muto P, La Commara M, Netti PA, Fusco S. Adhesion and Migration Response to Radiation Therapy of Mammary Epithelial and Adenocarcinoma Cells Interacting with Different Stiffness Substrates. Cancers (Basel) 2020; 12:E1170. [PMID: 32384675 PMCID: PMC7281676 DOI: 10.3390/cancers12051170] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/27/2020] [Accepted: 05/04/2020] [Indexed: 12/14/2022] Open
Abstract
The structural and mechanical properties of the microenvironmental context have a profound impact on cancer cell motility, tumor invasion, and metastasis formation. In fact, cells react to their mechanical environment modulating their adhesion, cytoskeleton organization, changes of shape, and, consequently, the dynamics of their motility. In order to elucidate the role of extracellular matrix stiffness as a driving force in cancer cell motility/invasion and the effects of ionizing radiations on these processes, we evaluated adhesion and migration as biophysical properties of two different mammary cell lines, over a range of pathophysiological stiffness (1-13 kPa) in a control condition and after the exposure to two different X-ray doses (2 and 10 Gy, photon beams). We concluded that the microenvironment mimicking the normal mechanics of healthy tissue has a radioprotective role on both cell lines, preventing cell motility and invasion. Supraphysiological extracellular matrix stiffness promoted tumor cell motility instead, but also had a normalizing effect on the response to radiation of tumor cells, lowering their migratory capability. This work lays the foundation for exploiting the extracellular matrix-mediated mechanism underlying the response of healthy and tumor cells to radiation treatments and opens new frontiers in the diagnostic and therapeutic use of radiotherapy.
Collapse
Affiliation(s)
- Valeria Panzetta
- Centro di Ricerca Interdipartimentale sui Biomateriali, Università degli Studi di Napoli Federico II, Piazzale Tecchio 80, 80125 Napoli, Italy;
- Centre for Advanced Biomaterial for Health Care, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125 Napoli, Italy
| | - Giuseppe La Verde
- Istituto Nazionale di Fisica Nucleare, INFN sezione di Napoli, Via Cinthia ed. 6, 80126 Napoli, Italy; (G.L.V.); (M.P.); (M.L.C.)
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via Montesano 49, 80131 Napoli, Italy
| | - Mariagabriella Pugliese
- Istituto Nazionale di Fisica Nucleare, INFN sezione di Napoli, Via Cinthia ed. 6, 80126 Napoli, Italy; (G.L.V.); (M.P.); (M.L.C.)
- Dipartimento di Fisica “Ettore Pancini”, Università degli Studi di Napoli Federico II, Via Cinthia ed. 6, 80126 Napoli, Italy;
| | - Valeria Artiola
- Dipartimento di Fisica “Ettore Pancini”, Università degli Studi di Napoli Federico II, Via Cinthia ed. 6, 80126 Napoli, Italy;
| | - Cecilia Arrichiello
- Radiotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione “G. Pascale”, Via Semmola, 53, 80131 Naples, Italy; (C.A.); (P.M.)
| | - Paolo Muto
- Radiotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione “G. Pascale”, Via Semmola, 53, 80131 Naples, Italy; (C.A.); (P.M.)
| | - Marco La Commara
- Istituto Nazionale di Fisica Nucleare, INFN sezione di Napoli, Via Cinthia ed. 6, 80126 Napoli, Italy; (G.L.V.); (M.P.); (M.L.C.)
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via Montesano 49, 80131 Napoli, Italy
| | - Paolo A. Netti
- Centro di Ricerca Interdipartimentale sui Biomateriali, Università degli Studi di Napoli Federico II, Piazzale Tecchio 80, 80125 Napoli, Italy;
- Centre for Advanced Biomaterial for Health Care, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125 Napoli, Italy
| | - Sabato Fusco
- Centro di Ricerca Interdipartimentale sui Biomateriali, Università degli Studi di Napoli Federico II, Piazzale Tecchio 80, 80125 Napoli, Italy;
- Centre for Advanced Biomaterial for Health Care, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125 Napoli, Italy
| |
Collapse
|
13
|
Carbon ion radiation therapy in breast cancer: a new frontier. Breast Cancer Res Treat 2020; 181:291-296. [PMID: 32318954 DOI: 10.1007/s10549-020-05641-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 04/10/2020] [Indexed: 12/21/2022]
Abstract
PURPOSE Breast cancer is the most commonly diagnosed cancer in women, with many efforts aimed at reducing acute and late toxicity given the generally favorable clinical outcomes with the current standard of care. Carbon ion radiation therapy is an emerging technique that may reduce dose to adjacent organs at risk while allowing dose escalation to the target. Given the efficacy of the standard treatments for breast cancer, there have been few prospective studies to date investigating carbon ion radiation therapy in breast cancer. METHODS PubMed/Medline, Ebsco, Cochrane, and Scopus were systematically reviewed using the search terms "carbon ion" and "breast" in November 2019. Out of the 76 articles screened, 26 articles were included. RESULTS This comprehensive review describes the physical and biological properties of carbon ion radiation therapy, with an emphasis on how these properties can be applied in the setting of breast cancer. Studies investigating the role of carbon ion radiation therapy in early stage breast cancers are reviewed. Additionally, the use of carbon ion radiation therapy in locally advanced disease, recurrent disease, and radiation-induced angiosarcoma are discussed. CONCLUSION Although the data is limited, the early clinical results are promising. Further clinical trials are needed, especially in the setting of locally advanced and recurrent disease, to fully define the potential role of carbon ion radiation therapy in the treatment of breast cancer.
Collapse
|
14
|
Minami K. [13. The Biological Effect of Photon and Particle Beam]. Nihon Hoshasen Gijutsu Gakkai Zasshi 2019; 75:195-200. [PMID: 30787226 DOI: 10.6009/jjrt.2019_jsrt_75.2.195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Affiliation(s)
- Kazumasa Minami
- Department of radiation oncology, Osaka University graduate school of medicine
| |
Collapse
|
15
|
Abstract
Pancreatic cancer is an aggressive and intractable malignancy with high mortality. This is due in part to a high resistance to chemotherapeutics and radiation treatment conferred by diverse regulatory mechanisms. Among these, constituents of the nuclear envelope play a significant role in regulating oncogenesis and pancreatic tumor biology, and this review focuses on three specific components and their roles in cancer. The LINC complex is a nuclear envelope component formed by proteins with SUN and KASH domains that interact in the periplasmic space of the nuclear envelope. These interactions functionally and structurally couple the cytoskeleton to chromatin and facilitates gene regulation informed by cytoplasmic activity. Furthermore, cancer cell invasiveness is impacted by LINC complex biology. The nuclear lamina is adjacent to the inner nuclear membrane of the nuclear envelope and can actively regulate chromatin in addition to providing structural integrity to the nucleus. A disrupted lamina can impart biophysical compromise to nuclear structure and function, as well as form dysfunctional micronuclei that may lead to genomic instability and chromothripsis. In close relationship to the nuclear lamina is the nuclear pore complex, a large megadalton structure that spans both outer and inner membranes of the nuclear envelope. The nuclear pore complex mediates bidirectional nucleocytoplasmic transport and is comprised of specialized proteins called nucleoporins that are overexpressed in many cancers and are diagnostic markers for oncogenesis. Furthermore, recent demonstration of gene regulatory functions for discrete nucleoporins independent of their nuclear trafficking function suggests that these proteins may contribute more to malignant phenotypes beyond serving as biomarkers. The nuclear envelope is thus a complex, intricate regulator of cell signaling, with roles in pancreatic tumorigenesis and general oncogenic transformation.
Collapse
Affiliation(s)
| | - Randolph S. Faustino
- Genetics and Genomics, Sanford Research, Sioux Falls, SD 57104, USA
- Department of Pediatrics, Sanford School of Medicine of the University of South Dakota, Sioux Falls, SD 57105, USA
| |
Collapse
|
16
|
Yu D, Li Y, Ming Z, Wang H, Dong Z, Qiu L, Wang T. Comprehensive circular RNA expression profile in radiation-treated HeLa cells and analysis of radioresistance-related circRNAs. PeerJ 2018; 6:e5011. [PMID: 29922514 PMCID: PMC6005163 DOI: 10.7717/peerj.5011] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 05/28/2018] [Indexed: 12/17/2022] Open
Abstract
Background Cervical cancer is one of the most common cancers in women worldwide. Malignant tumors develop resistance mechanisms and are less sensitive to or do not respond to irradiation. With the development of high-throughput sequencing technologies, circular RNA (circRNA) has been identified in an increasing number of diseases, especially cancers. It has been reported that circRNA can compete with microRNAs (miRNAs) to change the stability or translation of target RNAs, thus regulating gene expression at the transcriptional level. However, the role of circRNAs in cervical cancer and the radioresistance mechanisms of HeLa cells are unknown. The objective of this study is to investigate the role of circRNAs in radioresistance in HeLa cells. Methods High-throughput sequencing and bioinformatics analysis of irradiated and sham-irradiated HeLa cells. The reliability of high-throughput RNA sequencing was validated using quantitative real-time polymerase chain reaction. The most significant circRNA functions and pathways were selected by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. A circRNA–miRNA–target gene interaction network was used to find circRNAs associated with radioresistance. Moreover, a protein–protein interaction network was constructed to identify radioresistance-related hub proteins. Results High-throughput sequencing allowed the identification of 16,893 circRNAs involved in the response of HeLa cells to radiation. Compared with the control group, there were 153 differentially expressed circRNAs, of which 76 were up-regulated and 77 were down-regulated. GO covered three domains: biological process (BP), cellular component (CC) and molecular function (MF). The terms assigned to the BP domain were peptidyl-tyrosine dephosphorylation and regulation of cell migration. The identified CC terms were cell–cell adherens junction, nucleoplasm and cytosol, and the identified MF terms were protein binding and protein tyrosine phosphatase activity. The top five KEGG pathways were MAPK signaling pathway, endocytosis, axon guidance, neurotrophin signaling pathway, and SNARE interactions in vesicular transport. The protein–protein interaction analysis indicated that 19 proteins might be hub proteins. Conclusions CircRNAs may play a major role in the response to radiation. These findings may improve our understanding of the role of circRNAs in radioresistance in HeLa cells and allow the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Duo Yu
- Radiotherapy Department, 2nd Hospital Affiliated to Jilin University, Changchun, China
| | - Yunfeng Li
- Radiotherapy Department, 2nd Hospital Affiliated to Jilin University, Changchun, China
| | - Zhihui Ming
- Stomatology Department, 1st Hospital Affiliated to Jilin University, Changchun, China
| | - Hongyong Wang
- Radiotherapy Department, 2nd Hospital Affiliated to Jilin University, Changchun, China
| | - Zhuo Dong
- College of Public Medicine, Key Laboratory of Radiobiology, Ministry of Health, Jilin University, Changchun, China
| | - Ling Qiu
- Radiotherapy Department, 2nd Hospital Affiliated to Jilin University, Changchun, China
| | - Tiejun Wang
- Radiotherapy Department, 2nd Hospital Affiliated to Jilin University, Changchun, China
| |
Collapse
|
17
|
Durante M, Formenti SC. Radiation-Induced Chromosomal Aberrations and Immunotherapy: Micronuclei, Cytosolic DNA, and Interferon-Production Pathway. Front Oncol 2018; 8:192. [PMID: 29911071 PMCID: PMC5992419 DOI: 10.3389/fonc.2018.00192] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 05/14/2018] [Indexed: 11/13/2022] Open
Abstract
Radiation-induced chromosomal aberrations represent an early marker of late effects, including cell killing and transformation. The measurement of cytogenetic damage in tissues, generally in blood lymphocytes, from patients treated with radiotherapy has been studied for many years to predict individual sensitivity and late morbidity. Acentric fragments are lost during mitosis and create micronuclei (MN), which are well correlated to cell killing. Immunotherapy is rapidly becoming a most promising new strategy for metastatic tumors, and combination with radiotherapy is explored in several pre-clinical studies and clinical trials. Recent evidence has shown that the presence of cytosolic DNA activates immune response via the cyclic GMP-AMP synthase/stimulator of interferon genes pathway, which induces type I interferon transcription. Cytosolic DNA can be found after exposure to ionizing radiation either as MN or as small fragments leaking through nuclear envelope ruptures. The study of the dependence of cytosolic DNA and MN on dose and radiation quality can guide the optimal combination of radiotherapy and immunotherapy. The role of densely ionizing charged particles is under active investigation to define their impact on the activation of the interferon pathway.
Collapse
Affiliation(s)
- Marco Durante
- Trento Institute for Fundamental and Applied Physics (TIFPA), National Institute for Nuclear Physics (INFN), University of Trento, Trento, Italy
| | - Silvia C. Formenti
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, United States
| |
Collapse
|
18
|
Imaizumi H, Sato K, Nishihara A, Minami K, Koizumi M, Matsuura N, Hieda M. X-ray-enhanced cancer cell migration requires the linker of nucleoskeleton and cytoskeleton complex. Cancer Sci 2018; 109:1158-1165. [PMID: 29465769 PMCID: PMC5891189 DOI: 10.1111/cas.13545] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/05/2018] [Accepted: 02/12/2018] [Indexed: 01/21/2023] Open
Abstract
The linker of nucleoskeleton and cytoskeleton (LINC) complex is a multifunctional protein complex that is involved in various processes at the nuclear envelope, including nuclear migration, mechanotransduction, chromatin tethering and DNA damage response. We recently showed that a nuclear envelope protein, Sad1 and UNC84 domain protein 1 (SUN1), a component of the LINC complex, has a critical function in cell migration. Although ionizing radiation activates cell migration and invasion in vivo and in vitro, the underlying molecular mechanism remains unknown. Here, we examined the involvement of the LINC complex in radiation‐enhanced cell migration and invasion. A sublethal dose of X‐ray radiation promoted human breast cancer MDA‐MB‐231 cell migration and invasion, whereas carbon ion beam radiation suppressed these processes in a dose‐dependent manner. Depletion of SUN1 and SUN2 significantly suppressed X‐ray‐enhanced cell migration and invasion. Moreover, depletion or overexpression of each SUN1 splicing variant revealed that SUN1_888 containing 888 amino acids of SUN1 but not SUN1_916 was required for X‐ray‐enhanced migration and invasion. In addition, the results suggested that X‐ray irradiation affected the expression level of SUN1 splicing variants and a SUN protein binding partner, nesprins. Taken together, our findings supported that the LINC complex contributed to photon‐enhanced cell migration and invasion.
Collapse
Affiliation(s)
- Hiromasa Imaizumi
- Graduate School of Medicine and Health Science, Osaka University, Osaka, Japan
| | - Katsutoshi Sato
- Cancer Metastasis Research Team, Advanced Radiation Biology Research Program, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba, Japan
| | - Asuka Nishihara
- Graduate School of Medicine and Health Science, Osaka University, Osaka, Japan
| | - Kazumasa Minami
- Graduate School of Medicine and Health Science, Osaka University, Osaka, Japan
| | - Masahiko Koizumi
- Graduate School of Medicine and Health Science, Osaka University, Osaka, Japan
| | - Nariaki Matsuura
- Graduate School of Medicine and Health Science, Osaka University, Osaka, Japan
| | - Miki Hieda
- Graduate School of Medicine and Health Science, Osaka University, Osaka, Japan.,Graduate School of Health Sciences, Ehime Prefectural University of Health Sciences, Ehime, Japan
| |
Collapse
|