1
|
Roy S, Ghosh MK. Ubiquitin proteasome system (UPS): a crucial determinant of the epigenetic landscape in cancer. Epigenomics 2025:1-20. [PMID: 40337853 DOI: 10.1080/17501911.2025.2501524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 04/29/2025] [Indexed: 05/09/2025] Open
Abstract
The ubiquitin proteasome system (UPS), comprising of ubiquitinases, deubiquitinases and 26S proteasome plays a significant role in directly or indirectly regulating epigenetic players. DNA-templated processes like replication, repair and transcription require chromatin decondensation to allow access to specific DNA sequence. A thorough survey of literary articles in PubMed database revealed that the UPS functions as a key regulator, determining the precise state of open and closed chromatin by influencing histones and histone modifiers through proteolytic or non-proteolytic means. However, a comprehensive understanding of how specific UPS components affect particular epigenetic pathways in response to environmental cues remains underexplored. This axis holds substantial potential for deciphering mechanisms of tumorigenesis. Although our current knowledge is limited, it can still guide the development of novel therapeutic strategies that can potentially bridge the gap between cancer chemotherapeutics in bench and bedside.
Collapse
Affiliation(s)
- Srija Roy
- Academy of Scientific and Innovative Research, Ghaziabad, India
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), Kolkata, India
| | - Mrinal K Ghosh
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), Kolkata, India
| |
Collapse
|
2
|
Kim Y, Ghil S. Negative regulation of cannabinoid receptor 2‑induced tumorigenic effect by sphingosine‑1‑phosphate receptor 5 activation. Oncol Rep 2025; 53:41. [PMID: 39918009 DOI: 10.3892/or.2025.8874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 10/21/2024] [Indexed: 05/08/2025] Open
Abstract
G protein‑coupled receptors (GPCR), also known as seven‑transmembrane proteins, serve a role in transmitting extracellular information into the cellular environment. Type 2 cannabinoid receptors (CB2) and type 5 sphingosine‑1‑phosphate receptor (S1P5) are GPCRs that are activated by biolipids and involved in tumor progression in various cancer types. At present, effects of crosstalk between CB2 and S1P5 receptors on tumor cell proliferation and migration in gliomas are not fully understood. The present study screened S1Ps for potential interactions with CB2 using bioluminescence resonance energy transfer analysis. S1P5 interacted strongly and specifically with CB2. 293T cells were transfected with CB2 tagged with Venus and S1P5 tagged with mCherry to investigate the cellular localization of both receptors. After 24 h, Confocal microscopy analysis revealed that, in the absence of agonists, both receptors were predominantly localized at the plasma membrane. Notably, both receptors were co‑internalized from the membrane to the cytoplasm upon individual and combined activation. The effects of co‑activation of both receptors on tumor progression were investigated using U‑87 MG, the human glioblastoma cell line. Activation of CB2 induced an increase in cell migration and proliferation, which were downregulated following the co‑activation of S1P5. Furthermore, activation of S1P5 significantly attenuated the upregulation of tumor progression‑related genes, including zinc finger protein 91, activating transcription factor 3, Ki67, basic transcription factor 3, and p21, induced by CB2 activation. This suggests that S1P5 exerts a negative regulatory effect on CB2‑mediated tumor progression. The present findings provide evidence of the crosstalk between CB2 and S1P5.
Collapse
MESH Headings
- Humans
- Receptor, Cannabinoid, CB2/metabolism
- Receptor, Cannabinoid, CB2/genetics
- Receptor, Cannabinoid, CB2/agonists
- Cell Proliferation
- Cell Movement/drug effects
- Sphingosine-1-Phosphate Receptors/metabolism
- Cell Line, Tumor
- HEK293 Cells
- Glioblastoma/pathology
- Glioblastoma/metabolism
- Glioblastoma/genetics
- Gene Expression Regulation, Neoplastic
- Receptors, Lysosphingolipid/metabolism
- Receptors, Lysosphingolipid/genetics
- Carcinogenesis/genetics
Collapse
Affiliation(s)
- Yuna Kim
- Department of Life Science, Kyonggi University, Suwon, Gyeonggi 16227, Republic of Korea
| | - Sungho Ghil
- Department of Life Science, Kyonggi University, Suwon, Gyeonggi 16227, Republic of Korea
| |
Collapse
|
3
|
Shaalan F, Ballout N, Chamoun WT. Insights Into the Role of Bmi-1 Deregulation in Promoting Stemness and Therapy Resistance in Glioblastoma: A Narrative Review. Cancer Med 2025; 14:e70566. [PMID: 39791545 PMCID: PMC11719125 DOI: 10.1002/cam4.70566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/25/2024] [Accepted: 12/20/2024] [Indexed: 01/12/2025] Open
Abstract
BACKGROUND Glioblastoma (GBM) is the most common primary brain tumor in adults and has a median survival of less than 15 months. Advancements in the field of epigenetics have expanded our understanding of cancer biology and helped explain the molecular heterogeneity of these tumors. B-cell-specific Moloney murine leukemia virus insertion site-1 (Bmi-1) is a member of the highly conserved polycomb group (PcG) protein family that acts as a transcriptional repressor of multiple genes, including those that determine cell proliferation and differentiation. We hereby aim to explore the specific involvement of Bmi-1 in glioma pathogenesis. METHODS A comprehensive narrative review was employed using "PubMed". Articles were screened for relevance specific keywords and medical subject headings (MeSH) terms related to the topic combined with Boolean operators (AND, OR). Keywords and MeSH terms included the following: "glioma", "polycomb repressive complex 1", and "Bmi1". RESULTS In GBMs, several reports have shown that Bmi-1 is overexpressed and might serve as a prognostic biomarker. We find that Bmi-1 participates in regulating the gene expression and chromatin structure of several tumor suppressor genes or cell cycle inhibitors. Bmi-1 has a critical role in modulating the tumor microenvironment to support the plasticity of GBM stem cells.We explore Bmi-1's involvement in maintaining glioma stem cell (GSC) proliferation and senescence evasion upon regulating the chromatin structure of several tumor suppressor genes, cell cycle inhibitors, or stem cell genes in tumor cells. Additionally, we analyze Bmi-1's involvement in modulating the DNA repair machinery or activating anti-apoptotic pathways to confer therapy resistance. Importantly, our research discusses the importance of targeting Bmi-1 that could be a promising therapeutic target for GBM treatment. Bmi-1 activates and interacts with NF-κB to promote angiogenesis and invasion, regulates the INK4a-ARF locus, and interacts with various microRNAs to influence tumor progression and proliferation. In addition, Bmi-1 confers radioresistance and chemotherapy by promoting cell senescence evasion and DNA repair. CONCLUSION Bmi-1 regulates self-renewal, proliferation, and differentiation of GBM cells, promoting stemness and therapy resistance. Targeting Bmi-1 could be a promising novel therapeutic strategy for GBM treatment.
Collapse
Affiliation(s)
- Fatima Shaalan
- Faculty of Medical Sciences, Neuroscience Research CenterLebanese UniversityHadathLebanon
| | - Nissrine Ballout
- Faculty of Medical Sciences, Neuroscience Research CenterLebanese UniversityHadathLebanon
| | - Wafaa Takash Chamoun
- Faculty of Medical Sciences, Neuroscience Research CenterLebanese UniversityHadathLebanon
| |
Collapse
|
4
|
Sun H, Meng Y, Yao L, Du S, Li Y, Zhou Q, Liu Y, Dian Y, Sun Y, Wang X, Liang X, Deng G, Chen X, Zeng F. Ubiquitin-specific protease 22 controls melanoma metastasis and vulnerability to ferroptosis through targeting SIRT1/PTEN/PI3K signaling. MedComm (Beijing) 2024; 5:e684. [PMID: 39135915 PMCID: PMC11318338 DOI: 10.1002/mco2.684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 06/24/2024] [Accepted: 06/28/2024] [Indexed: 08/15/2024] Open
Abstract
Metastasis is a major contributing factor that affects the prognosis of melanoma patients. Nevertheless, the underlying molecular mechanisms involved in melanoma metastasis are not yet entirely understood. Here, we identified ubiquitin-specific protease 22 (USP22) as a pro-oncogenic protein in melanoma through screening the survival profiles of 52 ubiquitin-specific proteases (USPs). USP22 demonstrates a strong association with poor clinical outcomes and is significantly overexpressed in melanoma. Ablation of USP22 expression remarkably attenuates melanoma migration, invasion, and epithelial-mesenchymal transition in vitro and suppresses melanoma metastasis in vivo. Mechanistically, USP22 controls melanoma metastasis through the SIRT1/PTEN/PI3K pathway. In addition, we conducted an United States Food and Drug Administration-approved drug library screening and identified topotecan as a clinically applicable USP22-targeting molecule by promoting proteasomal degradation of USP22. Finally, we found that both pharmacological and genetic silence of USP22 sensitize RSL3-induced ferroptosis through suppressing the PI3K/Akt/mTOR pathway and its downstream SCD, and ferroptosis inhibitor could partly rescued the decreased lung metastasis by topotecan in vivo. Overall, our findings reveal a prometastatic role of USP22 and identify topotecan as a potent USP22-targeting drug to limit melanoma metastasis.
Collapse
Affiliation(s)
- Huiyan Sun
- Department of DermatologyXiangya Hospital Central South UniversityChangshaChina
- National Engineering Research Center of Personalized Diagnostic and Therapeutic TechnologyChangshaChina
- Furong LaboratoryChangshaChina
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital Central South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital)ChangshaChina
- Department of Breast ReconstructionTianjin Medical UniversityCancer Institute and HospitalTianjinChina
| | - Yu Meng
- Department of DermatologyXiangya Hospital Central South UniversityChangshaChina
- National Engineering Research Center of Personalized Diagnostic and Therapeutic TechnologyChangshaChina
- Furong LaboratoryChangshaChina
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital Central South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital)ChangshaChina
| | - Lei Yao
- Department of Liver SurgeryXiangya Hospital Central South UniversityChangshaChina
| | - Songtao Du
- Department of Colorectal Surgical OncologyThe Tumor Hospital of Harbin Medical UniversityHarbinChina
| | - Yayun Li
- Department of DermatologyThe Third Xiangya Hospital Central South UniversityChangshaChina
| | - Qian Zhou
- Department of DermatologyXiangya Hospital Central South UniversityChangshaChina
- National Engineering Research Center of Personalized Diagnostic and Therapeutic TechnologyChangshaChina
- Furong LaboratoryChangshaChina
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital Central South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital)ChangshaChina
| | - Yihuang Liu
- Department of DermatologyXiangya Hospital Central South UniversityChangshaChina
- National Engineering Research Center of Personalized Diagnostic and Therapeutic TechnologyChangshaChina
- Furong LaboratoryChangshaChina
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital Central South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital)ChangshaChina
| | - Yating Dian
- Department of DermatologyXiangya Hospital Central South UniversityChangshaChina
- National Engineering Research Center of Personalized Diagnostic and Therapeutic TechnologyChangshaChina
- Furong LaboratoryChangshaChina
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital Central South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital)ChangshaChina
| | - Yuming Sun
- Department of Plastic and Cosmetic SurgeryXiangya Hospital Central South UniversityChangshaChina
| | - Xiaomin Wang
- Department of Breast SurgeryXiangya Hospital Central South UniversityChangshaChina
| | - Xiao‐wei Liang
- Department of DermatologyXiangya Hospital Central South UniversityChangshaChina
- National Engineering Research Center of Personalized Diagnostic and Therapeutic TechnologyChangshaChina
- Furong LaboratoryChangshaChina
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital Central South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital)ChangshaChina
| | - Guangtong Deng
- Department of DermatologyXiangya Hospital Central South UniversityChangshaChina
- National Engineering Research Center of Personalized Diagnostic and Therapeutic TechnologyChangshaChina
- Furong LaboratoryChangshaChina
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital Central South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital)ChangshaChina
| | - Xiang Chen
- Department of DermatologyXiangya Hospital Central South UniversityChangshaChina
- National Engineering Research Center of Personalized Diagnostic and Therapeutic TechnologyChangshaChina
- Furong LaboratoryChangshaChina
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital Central South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital)ChangshaChina
| | - Furong Zeng
- Department of OncologyXiangya Hospital Central South UniversityChangshaChina
| |
Collapse
|
5
|
Kohyanagi N, Kitamura N, Ikeda S, Shibutani S, Sato K, Ohama T. PP2A inhibitor SET promotes mTORC1 and Bmi1 signaling through Akt activation and maintains the colony-formation ability of cancer cells. J Biol Chem 2024; 300:105584. [PMID: 38141761 PMCID: PMC10826185 DOI: 10.1016/j.jbc.2023.105584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 11/19/2023] [Accepted: 12/07/2023] [Indexed: 12/25/2023] Open
Abstract
Protein phosphatase 2A (PP2A) is an essential tumor suppressor, with its activity often hindered in cancer cells by endogenous PP2A inhibitory proteins like SE translocation (SET). SET/PP2A axis plays a pivotal role in the colony-formation ability of cancer cells and the stabilization of c-Myc and E2F1 proteins implicated in this process. However, in osteosarcoma cell line HOS, SET knock-down (KD) suppresses the colony-formation ability without affecting c-Myc and E2F1. This study aimed to unravel the molecular mechanism through which SET enhances the colony-formation ability of HOS cells and determine if it is generalized to other cancer cells. Transcriptome analysis unveiled that SET KD suppressed mTORC1 signaling. SET KD inhibited Akt phosphorylation, an upstream kinase for mTORC1. PP2A inhibitor blocked SET KD-mediated decrease in phosphorylation of Akt and a mTORC1 substrate p70S6K. A constitutively active Akt restored decreased colony-formation ability by SET KD, indicating the SET/PP2A/Akt/mTORC1 axis. Additionally, enrichment analysis highlighted that Bmi-1, a polycomb group protein, is affected by SET KD. SET KD decreased Bmi-1 protein by Akt inhibition but not by mTORC1 inhibition, and exogenous Bmi-1 expression rescued the reduced colony formation by SET KD. Four out of eight cancer cell lines exhibited decreased Bmi-1 by SET KD. Further analysis of these cell lines revealed that Myc activity plays a role in SET KD-mediated Bmi-1 degradation. These findings provide new insights into the molecular mechanism of SET-regulated colony-formation ability, which involved Akt-mediated activation of mTORC1/p70S6K and Bmi-1 signaling.
Collapse
Affiliation(s)
- Naoki Kohyanagi
- Laboratory of Veterinary Pharmacology, Yamaguchi University Joint Graduate School of Veterinary Medicine, Yamaguchi, Japan
| | - Nao Kitamura
- Laboratory of Veterinary Pharmacology, Yamaguchi University Joint Graduate School of Veterinary Medicine, Yamaguchi, Japan
| | - Shunta Ikeda
- Laboratory of Veterinary Pharmacology, Yamaguchi University Joint Graduate School of Veterinary Medicine, Yamaguchi, Japan
| | - Shusaku Shibutani
- Laboratory of Veterinary Hygiene, Yamaguchi University Joint Graduate School of Veterinary Medicine, Yamaguchi, Japan
| | - Koichi Sato
- Laboratory of Veterinary Pharmacology, Yamaguchi University Joint Graduate School of Veterinary Medicine, Yamaguchi, Japan
| | - Takashi Ohama
- Laboratory of Veterinary Pharmacology, Yamaguchi University Joint Graduate School of Veterinary Medicine, Yamaguchi, Japan.
| |
Collapse
|
6
|
Ren J, Yu P, Liu S, Li R, Niu X, Chen Y, Zhang Z, Zhou F, Zhang L. Deubiquitylating Enzymes in Cancer and Immunity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303807. [PMID: 37888853 PMCID: PMC10754134 DOI: 10.1002/advs.202303807] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/30/2023] [Indexed: 10/28/2023]
Abstract
Deubiquitylating enzymes (DUBs) maintain relative homeostasis of the cellular ubiquitome by removing the post-translational modification ubiquitin moiety from substrates. Numerous DUBs have been demonstrated specificity for cleaving a certain type of ubiquitin linkage or positions within ubiquitin chains. Moreover, several DUBs perform functions through specific protein-protein interactions in a catalytically independent manner, which further expands the versatility and complexity of DUBs' functions. Dysregulation of DUBs disrupts the dynamic equilibrium of ubiquitome and causes various diseases, especially cancer and immune disorders. This review summarizes the Janus-faced roles of DUBs in cancer including proteasomal degradation, DNA repair, apoptosis, and tumor metastasis, as well as in immunity involving innate immune receptor signaling and inflammatory and autoimmune disorders. The prospects and challenges for the clinical development of DUB inhibitors are further discussed. The review provides a comprehensive understanding of the multi-faced roles of DUBs in cancer and immunity.
Collapse
Affiliation(s)
- Jiang Ren
- The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033P. R. China
| | - Peng Yu
- Zhongshan Institute for Drug DiscoveryShanghai Institute of Materia MedicaChinese Academy of SciencesZhongshanGuangdongP. R. China
| | - Sijia Liu
- International Biomed‐X Research CenterSecond Affiliated Hospital of Zhejiang University School of MedicineZhejiang UniversityHangzhouP. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang ProvinceHangzhou310058China
| | - Ran Li
- The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033P. R. China
| | - Xin Niu
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058P. R. China
| | - Yan Chen
- The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033P. R. China
| | - Zhenyu Zhang
- Department of NeurosurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan450003P. R. China
| | - Fangfang Zhou
- Institutes of Biology and Medical ScienceSoochow UniversitySuzhou215123P. R. China
| | - Long Zhang
- The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033P. R. China
- International Biomed‐X Research CenterSecond Affiliated Hospital of Zhejiang University School of MedicineZhejiang UniversityHangzhouP. R. China
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058P. R. China
- Cancer CenterZhejiang UniversityHangzhouZhejiang310058P. R. China
| |
Collapse
|
7
|
Long Y, Hu Z, Yang D, Wang F, Zhao C, Zhang Y, Zhang Y, Ma H, Lv H. Pharmacological inhibition of the ubiquitin-specific protease 8 effectively suppresses glioblastoma cell growth. Open Life Sci 2023; 18:20220562. [PMID: 36816802 PMCID: PMC9922063 DOI: 10.1515/biol-2022-0562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/08/2022] [Accepted: 01/04/2023] [Indexed: 02/11/2023] Open
Abstract
Glioblastoma (GBM) is a malignant brain tumor. The purpose of this study is to estimate the potential effects and underlying mechanisms of a ubiquitin-specific protease 8 (USP8) small-molecule inhibitor on the phenotypic characteristics of GBM cells. The growth, migration, invasion, and stemness of GBM LN229 and T98G cells were evaluated by conducting cell proliferation, colony formation, wound healing, transwell, Ki-67 staining, spheroid formation, and ionizing radiation assays, and the results collectively showed the suppressive effects of USP8 inhibition on GBM cells. Furthermore, transcriptomic profiling of GBM cells treated with the USP8 inhibitor deubiquitinase (DUB)-IN-1 revealed significantly altered mRNA expression induced by pharmacological USP8 inhibition, from which we confirmed downregulated Aurora kinase A (AURKA) protein levels using immunoblotting assays. Our findings indicated that the proliferation, invasion, and stemness of LN229 and T98G cells were markedly suppressed by USP8 inhibition. Pharmacological USP8 suppression elicits multiple tumor-inhibitory effects, likely through dysregulating various mRNA expression events, including that of the key cell cycle regulator and oncogenic protein AURKA. Therefore, our observations corroborate the GBM-supportive roles of USP8 and suggest pharmacological USP8 inhibition is a viable therapeutic approach to target GBM. The purpose of this study was to investigate the effect and mechanism of action of the USP8 inhibitor DUB-IN-1 on GBM.
Collapse
Affiliation(s)
- Yu Long
- Department of Pharmacy, The Second Affiliated Hospital, Dalian Medical University, No. 467 Zhongshan Road, Dalian 116000, China
| | - Zengchun Hu
- Department of Neurosurgery, The Second Affiliated Hospital, Dalian Medical University, Dalian 116000, China
| | - Dian Yang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116000, China
| | - Fuqiang Wang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116000, China
| | - Chen’ge Zhao
- Department of Pharmacy, The Second Affiliated Hospital, Dalian Medical University, No. 467 Zhongshan Road, Dalian 116000, China
| | - Yang Zhang
- Department of Pharmacy, The Second Affiliated Hospital, Dalian Medical University, No. 467 Zhongshan Road, Dalian 116000, China
| | - Yingqiu Zhang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116000, China
| | - Hui Ma
- Department of Pharmacy, The Second Affiliated Hospital, Dalian Medical University, No. 467 Zhongshan Road, Dalian 116000, China
| | - Huiyi Lv
- Department of Pharmacy, The Second Affiliated Hospital, Dalian Medical University, No. 467 Zhongshan Road, Dalian 116000, China,Dalian Kexiang Technology Development Co., LTD, No. 467 Zhongshan Road, Dalian 116000, China
| |
Collapse
|
8
|
Elu N, Presa N, Mayor U. RNAi-Based Screening for the Identification of Specific Substrate-Deubiquitinase Pairs. Methods Mol Biol 2023; 2602:95-105. [PMID: 36446969 DOI: 10.1007/978-1-0716-2859-1_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Ubiquitination signals are regulated in time and space due to the coordinated action of E3s and DUBs, which enables the precise control of cellular function and homeostasis. Mutations in all types of ubiquitin-proteasome system (UPS) components are related to pathological conditions. The identification of E3/DUBs' ubiquitinated substrates can provide a clearer view of the molecular mechanisms underlying those diseases. However, the analysis of ubiquitinated proteins is not trivial. Here, we propose a protocol to identify DUB/substrate pairs, by combining DUB silencing, specific pull-down of the substrate, and image analysis of its ubiquitinated fraction.
Collapse
Affiliation(s)
- Nagore Elu
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Natalia Presa
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Ugo Mayor
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain.
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
9
|
Elu N, Osinalde N, Ramirez J, Presa N, Rodriguez JA, Prieto G, Mayor U. Identification of substrates for human deubiquitinating enzymes (DUBs): An up-to-date review and a case study for neurodevelopmental disorders. Semin Cell Dev Biol 2022; 132:120-131. [PMID: 35042675 DOI: 10.1016/j.semcdb.2022.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/04/2022] [Accepted: 01/04/2022] [Indexed: 12/15/2022]
Abstract
Similar to the reversal of kinase-mediated protein phosphorylation by phosphatases, deubiquitinating enzymes (DUBs) oppose the action of E3 ubiquitin ligases and reverse the ubiquitination of proteins. A total of 99 human DUBs, classified in 7 families, allow in this way for a precise control of cellular function and homeostasis. Ubiquitination regulates a myriad of cellular processes, and is altered in many pathological conditions. Thus, ubiquitination-regulating enzymes are increasingly regarded as potential candidates for therapeutic intervention. In this context, given the predicted easier pharmacological control of DUBs relative to E3 ligases, a significant effort is now being directed to better understand the processes and substrates regulated by each DUB. Classical studies have identified specific DUB substrate candidates by traditional molecular biology techniques in a case-by-case manner. Lately, single experiments can identify thousands of ubiquitinated proteins at a specific cellular context and narrow down which of those are regulated by a given DUB, thanks to the development of new strategies to isolate and enrich ubiquitinated material and to improvements in mass spectrometry detection capabilities. Here we present an overview of both types of studies, discussing the criteria that, in our view, need to be fulfilled for a protein to be considered as a high-confidence substrate of a given DUB. Applying these criteria, we have manually reviewed the relevant literature currently available in a systematic manner, and identified 650 high-confidence substrates of human DUBs. We make this information easily accessible to the research community through an updated version of the DUBase website (https://ehubio.ehu.eus/dubase/). Finally, in order to illustrate how this information can contribute to a better understanding of the physiopathological role of DUBs, we place a special emphasis on a subset of these enzymes that have been associated with neurodevelopmental disorders.
Collapse
Affiliation(s)
- Nagore Elu
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa 48940, Spain
| | - Nerea Osinalde
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, UPV/EHU, Vitoria-Gasteiz 01006, Spain
| | - Juanma Ramirez
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa 48940, Spain
| | - Natalia Presa
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa 48940, Spain
| | - Jose Antonio Rodriguez
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa 48940, Spain
| | - Gorka Prieto
- Department of Communications Engineering, University of the Basque Country (UPV/EHU), Bilbao 48013, Spain
| | - Ugo Mayor
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa 48940, Spain; Ikerbasque, Basque Foundation for Science, Bilbao 48013, Spain.
| |
Collapse
|
10
|
An T, Lu Y, Gong Z, Wang Y, Su C, Tang G, Hou J. Research Progress for Targeting Deubiquitinases in Gastric Cancers. Cancers (Basel) 2022; 14:cancers14235831. [PMID: 36497313 PMCID: PMC9735992 DOI: 10.3390/cancers14235831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Gastric cancers (GCs) are malignant tumors with a high incidence that threaten global public health. Despite advances in GC diagnosis and treatment, the prognosis remains poor. Therefore, the mechanisms underlying GC progression need to be identified to develop prognostic biomarkers and therapeutic targets. Ubiquitination, a post-translational modification that regulates the stability, activity, localization, and interactions of target proteins, can be reversed by deubiquitinases (DUBs), which can remove ubiquitin monomers or polymers from modified proteins. The dysfunction of DUBs has been closely linked to tumorigenesis in various cancer types, and targeting certain DUBs may provide a potential option for cancer therapy. Multiple DUBs have been demonstrated to function as oncogenes or tumor suppressors in GC. In this review, we summarize the DUBs involved in GC and their associated upstream regulation and downstream mechanisms and present the benefits of targeting DUBs for GC treatment, which could provide new insights for GC diagnosis and therapy.
Collapse
Affiliation(s)
- Tao An
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yanting Lu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250353, China
| | - Zhaoqi Gong
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yongtao Wang
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Chen Su
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
- Institute of Gastrointestinal Oncology, School of Medicine, Xiamen University, Xiamen 361005, China
| | - Guimei Tang
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Correspondence: (G.T.); (J.H.)
| | - Jingjing Hou
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
- Institute of Gastrointestinal Oncology, School of Medicine, Xiamen University, Xiamen 361005, China
- Correspondence: (G.T.); (J.H.)
| |
Collapse
|
11
|
Characterizing and exploiting the many roles of aberrant H2B monoubiquitination in cancer pathogenesis. Semin Cancer Biol 2022; 86:782-798. [PMID: 34953650 DOI: 10.1016/j.semcancer.2021.12.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 12/08/2021] [Accepted: 12/19/2021] [Indexed: 01/27/2023]
Abstract
Monoubiquitination of histone H2B on lysine 120 (H2Bub1) is implicated in the control of multiple essential processes, including transcription, DNA damage repair and mitotic chromosome segregation. Accordingly, aberrant regulation of H2Bub1 can induce transcriptional reprogramming and genome instability that may promote oncogenesis. Remarkably, alterations of the ubiquitin ligases and deubiquitinating enzymes regulating H2Bub1 are emerging as ubiquitous features in cancer, further supporting the possibility that the misregulation of H2Bub1 is an underlying mechanism contributing to cancer pathogenesis. To date, aberrant H2Bub1 dynamics have been reported in multiple cancer types and are associated with transcriptional changes that promote oncogenesis in a cancer type-specific manner. Owing to the multi-functional nature of H2Bub1, misregulation of its writers and erasers may drive disease initiation and progression through additional synergistic processes. Accordingly, understanding the molecular determinants and pathogenic impacts associated with aberrant H2Bub1 regulation may reveal novel drug targets and therapeutic vulnerabilities that can be exploited to develop innovative precision medicine strategies that better combat cancer. In this review, we present the normal functions of H2Bub1 in the control of DNA-associated processes and describe the pathogenic implications associated with its misregulation in cancer. We further discuss the challenges coupled with the development of therapeutic strategies targeting H2Bub1 misregulation and expose the potential benefits of designing treatments that synergistically exploit the multiple functionalities of H2Bub1 to improve treatment selectivity and efficacy.
Collapse
|
12
|
Li Z, Huang X, Hu W, Lu H. Down-regulation of USP22 reduces cell stemness and enhances the sensitivity of pancreatic cancer cells to cisplatin by inactivating the Wnt/β-catenin pathway. Tissue Cell 2022; 77:101787. [PMID: 35623308 DOI: 10.1016/j.tice.2022.101787] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/16/2022] [Accepted: 03/16/2022] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Pancreatic cancer (PC) has the worst prognosis of all common cancers worldwide. This study was intended to investigate the role of ubiquitin specific peptidase 22 (USP22) in cisplatin sensitivity of PC cells and its regulatory mechanism. METHODS The expression of USP22 and the toxicity of cisplatin to PC cells were detected. The two cell lines AsPC-1 and CAPAN-1 with the most differential drug resistance were selected. By down-expressing USP22 in CAPAN-1 cells and over-expressing USP22 in AsPC-1 cells, the survival rate of PC cells treated with cisplatin was detected. The mRNA expressions of stem cell markers, cell stemness, migration ability and apoptosis of PC cells were detected. The expression of Wnt/β-catenin pathway related proteins was detected. The role of the Wnt/β-catenin pathway in PC cell stemness and cisplatin sensitivity was explored after adding the inhibitor HLY78 and activator DKK1. RESULTS USP22 was highly-expressed in PC cells, and the sensitivity of PC cells to cisplatin was negatively-correlated with USP22 expression. Downregulation of USP22 raised the sensitivity of PC cells to cisplatin, reduced the levels of stem cell markers, reduced the tumor sphere formation and migration, and promoted apoptosis. Silencing USP22 inhibited the Wnt/β-catenin pathway. Inhibition of USP22 reduced the cell stemness and augmented the sensitivity of PC cells to cisplatin by inhibiting the Wnt/β-catenin pathway. CONCLUSION Silencing USP22 can inhibit the Wnt/β-catenin pathway to reduce cell stemness and enhance the sensitivity of PC cells to cisplatin.
Collapse
Affiliation(s)
- Zhenlu Li
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xing Huang
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Weiming Hu
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Huimin Lu
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
13
|
De Luca V, Leo M, Cretella E, Montanari A, Saliola M, Ciaffi G, Vecchione A, Stoppacciaro A, Filetici P. Role of yUbp8 in Mitochondria and Hypoxia Entangles the Finding of Human Ortholog Usp22 in the Glioblastoma Pseudo-Palisade Microlayer. Cells 2022; 11:cells11101682. [PMID: 35626719 PMCID: PMC9140154 DOI: 10.3390/cells11101682] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/05/2022] [Accepted: 05/17/2022] [Indexed: 02/01/2023] Open
Abstract
KAT Gcn5 and DUB Ubp8 are required for respiration and mitochondria functions in budding yeast, and in this study we show that loss of respiratory activity is acquired over time. Interestingly, we show that absence of Ubp8 allows cells to grow in hypoxic conditions with altered mitophagy. Comparatively, the aggressive glioblastoma (GBM) multiforme tumor shows survival mechanisms able to overcome hypoxia in the brain. Starting from yeast and our findings on the role of Ubp8 in hypoxia, we extended our analysis to the human ortholog and signature cancer gene Usp22 in glioblastoma tumor specimens. Here we demonstrate that Usp22 is localized and overexpressed in the pseudo-palisade tissue around the necrotic area of the tumor. In addition, Usp22 colocalizes with the mitophagy marker Parkin, indicating a link with mitochondria function in GBM. Collectively, this evidence suggests that altered expression of Usp22 might provide a way for tumor cells to survive in hypoxic conditions, allowing the escape of cells from the necrotic area toward vascularized tissues. Collectively, our experimental data suggest a model for a possible mechanism of uncontrolled proliferation and invasion in glioblastoma.
Collapse
Affiliation(s)
- Veronica De Luca
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy; (V.D.L.); (M.L.); (E.C.); (A.M.); (M.S.)
| | - Manuela Leo
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy; (V.D.L.); (M.L.); (E.C.); (A.M.); (M.S.)
| | - Elisabetta Cretella
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy; (V.D.L.); (M.L.); (E.C.); (A.M.); (M.S.)
| | - Arianna Montanari
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy; (V.D.L.); (M.L.); (E.C.); (A.M.); (M.S.)
| | - Michele Saliola
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy; (V.D.L.); (M.L.); (E.C.); (A.M.); (M.S.)
| | - Gabriele Ciaffi
- Department of Clinical and Molecular Medicine, Sant’ Andrea Hospital, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy; (G.C.); (A.V.)
| | - Andrea Vecchione
- Department of Clinical and Molecular Medicine, Sant’ Andrea Hospital, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy; (G.C.); (A.V.)
| | - Antonella Stoppacciaro
- Department of Clinical and Molecular Medicine, Sant’ Andrea Hospital, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy; (G.C.); (A.V.)
- Correspondence: (A.S.); (P.F.); Tel.: +39-06-3377-6102 (A.S.)
| | - Patrizia Filetici
- Institute of Molecular Biology and Pathology—CNR, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
- Correspondence: (A.S.); (P.F.); Tel.: +39-06-3377-6102 (A.S.)
| |
Collapse
|
14
|
The role of ubiquitin-specific peptidases in glioma progression. Biomed Pharmacother 2021; 146:112585. [PMID: 34968923 DOI: 10.1016/j.biopha.2021.112585] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 11/24/2022] Open
Abstract
The balance between ubiquitination and deubiquitination is crucial for protein stability, function and location under physiological conditions. Dysregulation of E1/E2/E3 ligases or deubiquitinases (DUBs) results in malfunction of the ubiquitin system and is involved in many diseases. Increasing reports have indicated that ubiquitin-specific peptidases (USPs) play a part in the progression of many kinds of cancers and could be good targets for anticancer treatment. Glioma is the most common malignant tumor in the central nervous system. Clinical treatment for high-grade glioma is unsatisfactory thus far. Multiple USPs are dysregulated in glioma and have the potential to be therapeutic targets. In this review, we collected studies on the roles of USPs in glioma progression and summarized the mechanisms of USPs in glioma tumorigenesis, malignancy and chemoradiotherapy resistance.
Collapse
|
15
|
Sharma A, Khan H, Singh TG, Grewal AK, Najda A, Kawecka-Radomska M, Kamel M, Altyar AE, Abdel-Daim MM. Pharmacological Modulation of Ubiquitin-Proteasome Pathways in Oncogenic Signaling. Int J Mol Sci 2021; 22:11971. [PMID: 34769401 PMCID: PMC8584958 DOI: 10.3390/ijms222111971] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 12/20/2022] Open
Abstract
The ubiquitin-proteasome pathway (UPP) is involved in regulating several biological functions, including cell cycle control, apoptosis, DNA damage response, and apoptosis. It is widely known for its role in degrading abnormal protein substrates and maintaining physiological body functions via ubiquitinating enzymes (E1, E2, E3) and the proteasome. Therefore, aberrant expression in these enzymes results in an altered biological process, including transduction signaling for cell death and survival, resulting in cancer. In this review, an overview of profuse enzymes involved as a pro-oncogenic or progressive growth factor in tumors with their downstream signaling pathways has been discussed. A systematic literature review of PubMed, Medline, Bentham, Scopus, and EMBASE (Elsevier) databases was carried out to understand the nature of the extensive work done on modulation of ubiquitin-proteasome pathways in oncogenic signaling. Various in vitro, in vivo studies demonstrating the involvement of ubiquitin-proteasome systems in varied types of cancers and the downstream signaling pathways involved are also discussed in the current review. Several inhibitors of E1, E2, E3, deubiquitinase enzymes and proteasome have been applied for treating cancer. Some of these drugs have exhibited successful outcomes in in vivo studies on different cancer types, so clinical trials are going on for these inhibitors. This review mainly focuses on certain ubiquitin-proteasome enzymes involved in developing cancers and certain enzymes that can be targeted to treat cancer.
Collapse
Affiliation(s)
- Anmol Sharma
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (A.S.); (H.K.); (A.K.G.)
| | - Heena Khan
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (A.S.); (H.K.); (A.K.G.)
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (A.S.); (H.K.); (A.K.G.)
| | - Amarjot Kaur Grewal
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (A.S.); (H.K.); (A.K.G.)
| | - Agnieszka Najda
- Department of Vegetable Crops and Medicinal Plants, University of Life Sciences in Lublin, 50A Doświadczalna Street, 20-280 Lublin, Poland; (A.N.); (M.K.-R.)
| | - Małgorzata Kawecka-Radomska
- Department of Vegetable Crops and Medicinal Plants, University of Life Sciences in Lublin, 50A Doświadczalna Street, 20-280 Lublin, Poland; (A.N.); (M.K.-R.)
| | - Mohamed Kamel
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt;
| | - Ahmed E. Altyar
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, P.O. Box 80260, Jeddah 21589, Saudi Arabia;
| | - Mohamed M. Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
16
|
P4HA2 Promotes Epithelial-to-Mesenchymal Transition and Glioma Malignancy through the Collagen-Dependent PI3K/AKT Pathway. JOURNAL OF ONCOLOGY 2021; 2021:1406853. [PMID: 34434233 PMCID: PMC8382519 DOI: 10.1155/2021/1406853] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/21/2021] [Accepted: 08/03/2021] [Indexed: 01/15/2023]
Abstract
Prolyl-4-hydroxylase subunit 2 (P4HA2) is a member of collagen modification enzymes involved in the remodeling of the extracellular matrix (ECM). Mounting evidence has suggested that deregulation of P4HA2 is common in cancer. However, the role of P4HA2 in glioma remains unknown. The present study aimed to elucidate the expression pattern, oncogenic functions, and molecular mechanisms of P4HA2 in glioblastoma cells. The TCGA datasets and paraffin samples were used for examining the expressions of P4HA2. P4HA2-specific lentivirus was generated to assess its oncogenic functions. A P4HA2 enzyme inhibitor (DHB) and an AKT agonist (SC79) were utilized to study the mechanisms. As a result, we demonstrated that P4HA2 is overexpressed in glioma and inversely correlates with patient survival. Knockdown of P4HA2 inhibited proliferation, migration, invasion, and epithelial-to-mesenchymal transition (EMT) like phenotype of glioma cells in vitro and suppressed tumor xenograft growth in vivo. Mechanistically, expressions of a series of collagen genes and of phosphorylated PI3K/AKT were downregulated by either P4HA2 silencing or inhibition of its prolyl hydroxylase. Finally, the inhibitory effects on the migration, invasion, and EMT-related molecules by P4HA2 knockdown were reversed by AKT activation with SC79. Our findings for the first time reveal that P4HA2 acts as an oncogenic molecule in glioma malignancy by regulating the expressions of collagens and the downstream PI3K/AKT signaling pathway.
Collapse
|
17
|
Maksoud S. The Role of the Ubiquitin Proteasome System in Glioma: Analysis Emphasizing the Main Molecular Players and Therapeutic Strategies Identified in Glioblastoma Multiforme. Mol Neurobiol 2021; 58:3252-3269. [PMID: 33665742 PMCID: PMC8260465 DOI: 10.1007/s12035-021-02339-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/22/2021] [Indexed: 12/11/2022]
Abstract
Gliomas constitute the most frequent tumors of the brain. High-grade gliomas are characterized by a poor prognosis caused by a set of attributes making treatment difficult, such as heterogeneity and cell infiltration. Additionally, there is a subgroup of glioma cells with properties similar to those of stem cells responsible for tumor recurrence after treatment. Since proteasomal degradation regulates multiple cellular processes, any mutation causing disturbances in the function or expression of its elements can lead to various disorders such as cancer. Several studies have focused on protein degradation modulation as a mechanism of glioma control. The ubiquitin proteasome system is the main mechanism of cellular proteolysis that regulates different events, intervening in pathological processes with exacerbating or suppressive effects on diseases. This review analyzes the role of proteasomal degradation in gliomas, emphasizing the elements of this system that modulate different cellular mechanisms in tumors and discussing the potential of distinct compounds controlling brain tumorigenesis through the proteasomal pathway.
Collapse
Affiliation(s)
- Semer Maksoud
- Experimental Therapeutics and Molecular Imaging Unit, Department of Neurology, Neuro-Oncology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
18
|
Guo JN, Xia BR, Deng SH, Yang C, Pi YN, Cui BB, Jin WL. Deubiquitinating Enzymes Orchestrate the Cancer Stem Cell-Immunosuppressive Niche Dialogue: New Perspectives and Therapeutic Potential. Front Cell Dev Biol 2021; 9:680100. [PMID: 34179009 PMCID: PMC8220152 DOI: 10.3389/fcell.2021.680100] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 05/17/2021] [Indexed: 11/13/2022] Open
Abstract
Cancer stem cells (CSCs) are sparks for igniting tumor recurrence and the instigators of low response to immunotherapy and drug resistance. As one of the important components of tumor microenvironment, the tumor associated immune microenvironment (TAIM) is driving force for the heterogeneity, plasticity and evolution of CSCs. CSCs create the inhibitory TAIM (ITAIM) mainly through four stemness-related signals (SRSs), including Notch-nuclear factor-κB axis, Hedgehog, Wnt and signal transducer and activator of transcription. Ubiquitination and deubiquitination in proteins related to the specific stemness of the CSCs have a profound impact on the regulation of ITAIM. In regulating the balance between ubiquitination and deubiquitination, it is crucial for deubiquitinating enzymes (DUBs) to cleave ubiquitin chains from substrates. Ubiquitin-specific peptidases (USPs) comprise the largest family of DUBs. Growing evidence suggests that they play novel functions in contribution of ITAIM, including regulating tumor immunogenicity, activating stem cell factors, upregulating the SRSs, stabilizing anti-inflammatory receptors, and regulating anti-inflammatory cytokines. These overactive or abnormal signaling may dampen antitumor immune responses. The inhibition of USPs could play a regulatory role in SRSs and reversing ITAIM, and also have great potential in improving immune killing ability against tumor cells, including CSCs. In this review, we focus on the USPs involved in CSCs signaling pathways and regulating ITAIM, which are promising therapeutic targets in antitumor therapy.
Collapse
Affiliation(s)
- Jun-Nan Guo
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Bai-Rong Xia
- Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, Anhui Provincial Cancer Hospital, University of Science and Technology of China, Hefei, China
| | - Shen-Hui Deng
- Department of Anesthesiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chang Yang
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Ya-Nan Pi
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Bin-Bin Cui
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Wei-Lin Jin
- Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, Institute of Cancer Neuroscience, The First Clinical Medical College of Lanzhou University, Lanzhou, China
| |
Collapse
|
19
|
Feng T, Ling S, Xu C, Ying L, Su D, Xu X. Ubiquitin-specific peptidase 22 in cancer. Cancer Lett 2021; 514:30-37. [PMID: 33989708 DOI: 10.1016/j.canlet.2021.05.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/21/2021] [Accepted: 05/05/2021] [Indexed: 02/07/2023]
Abstract
Recently, many studies have shown that deubiquitination modification of proteins is of great significance in major physiological processes such as cell proliferation, apoptosis, and differentiation. The ubiquitin-specific peptidase (USP) family is one of the most numerous and structurally diverse of the deubiquitinates known to date. USP22, an important member of the USP family, has been found to be closely associated with tumor cell cycle regulation, stemness maintenance, invasion and metastasis, chemoresistance, and immune regulation. We focus on recent advances regarding USP22's function in cancer and discuss the prospect of USP22 in this review.
Collapse
Affiliation(s)
- Tingting Feng
- Department of Pathology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer(IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China; Cancer Research Institute, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer(IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China; Department of Colorectal Medicine, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer(IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China; Department of Hepatobiliary and Pancreatic Surgery, The Center for Integrated Oncology and Precision Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Sunbin Ling
- Department of Hepatobiliary and Pancreatic Surgery, The Center for Integrated Oncology and Precision Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Chenyang Xu
- Department of Pathology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer(IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Lisha Ying
- Cancer Research Institute, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer(IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Dan Su
- Department of Pathology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer(IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.
| | - Xiao Xu
- Department of Hepatobiliary and Pancreatic Surgery, The Center for Integrated Oncology and Precision Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.
| |
Collapse
|
20
|
Zhou S, Cai Y, Liu X, Jin L, Wang X, Ma W, Zhang T. Role of H2B mono-ubiquitination in the initiation and progression of cancer. Bull Cancer 2021; 108:385-398. [PMID: 33685627 DOI: 10.1016/j.bulcan.2020.12.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/04/2020] [Accepted: 12/11/2020] [Indexed: 01/07/2023]
Abstract
Numerous epigenetic alterations are observed in cancer cells, and dysregulation of mono-ubiquitination of histone H2B (H2Bub1) has often been linked to tumorigenesis. H2Bub1 is a dynamic post-translational histone modification associated with transcriptional elongation and DNA damage response. Histone H2B monoubiquitination occurs in the site of lysine 120, written predominantly by E3 ubiquitin ligases RNF20/RNF40 and deubiquitinated by ubiquitin specific peptidase 22 (USP22). RNF20/40 is often altered in the primary tumors including colorectal cancer, breast cancer, ovarian cancer, prostate cancer, and lung cancer, and the loss of H2Bub1 is usually associated with poor prognosis in tumor patients. The purpose of this review is to summarize the current knowledge of H2Bub1 in transcription, DNA damage response and primary tumors. This review also provides novel options for exploiting the potential therapeutic target H2Bub1 in personalized cancer therapy.
Collapse
Affiliation(s)
- Sa Zhou
- Tianjin University of Science and Technology, College of Biotechnology, Tianjin 300457, PR China
| | - Yuqiao Cai
- Tianjin University of Science and Technology, College of Biotechnology, Tianjin 300457, PR China
| | - Xinyi Liu
- Tianjin University of Science and Technology, College of Biotechnology, Tianjin 300457, PR China
| | - Lijun Jin
- Tianjin University of Science and Technology, College of Biotechnology, Tianjin 300457, PR China
| | - Xiaoqin Wang
- Beijing University of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing 102206, PR China
| | - Wenjian Ma
- Tianjin University of Science and Technology, College of Biotechnology, Tianjin 300457, PR China; Qilu Institute of Technology, Shandong 250200, PR China.
| | - Tongcun Zhang
- Tianjin University of Science and Technology, College of Biotechnology, Tianjin 300457, PR China; Wuhan University of Science and Technology, Institute of Biology and Medicine, Wuhan 430081, PR China.
| |
Collapse
|
21
|
Rong J, Li Z, Xu L, Lang L, Zheng G. microRNA-362-3p targets USP22 to retard retinoblastoma growth via reducing deubiquitination of LSD1. Cell Cycle 2021; 20:298-307. [PMID: 33475455 DOI: 10.1080/15384101.2021.1874685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Accumulating evidence has reported the role of microRNA (miR) in retinoblastoma (RB). Therefore, the objective was to discuss how miR-362-3p exerted its function in RB cell progression via regulating ubiquitin-specific protease 2 (USP22) and lysine-specific histone demethylase 1 (LSD1). MiR-362-3p, USP22 and LSD1 expression in RB cells and tissues were tested. The biological functions of RB cells were detected via over-expressing miR-362-3p and down-regulating USP22. The target relationship of USP22 and miR-362-3p as well as the interaction of USP22 and LSD1 in RB was verified. Down-regulated miR-362-3p and up-regulated USP22 and LSD1 were demonstrated in RB tissues and cells. Restoring miR-362-3p and depleting USP22 attenuated invasion, proliferation and migration, and facilitated apoptosis of RB cells. USP22 was a target gene of miR-362-3p. USP22 deubiquitinated LSD1 in RB. It is revealed that miR-362-3p targets USP22 and then restrains invasion, proliferation and migration while promotes apoptosis of RB via reducing LSD1 modified by deubiquitination.
Collapse
Affiliation(s)
- Junbo Rong
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University , Zhengzhou, Henan, China
| | - Zhigang Li
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University , Zhengzhou, Henan, China
| | - Limin Xu
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University , Zhengzhou, Henan, China
| | - Lijuan Lang
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University , Zhengzhou, Henan, China
| | - Guangying Zheng
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University , Zhengzhou, Henan, China
| |
Collapse
|
22
|
Kunadis E, Lakiotaki E, Korkolopoulou P, Piperi C. Targeting post-translational histone modifying enzymes in glioblastoma. Pharmacol Ther 2020; 220:107721. [PMID: 33144118 DOI: 10.1016/j.pharmthera.2020.107721] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/08/2020] [Accepted: 10/27/2020] [Indexed: 12/30/2022]
Abstract
Glioblastoma (GBM) is the most common primary brain tumor in adults, and the most lethal form of glioma, characterized by variable histopathology, aggressiveness and poor clinical outcome and prognosis. GBMs constitute a challenge for oncologists because of their molecular heterogeneity, extensive invasion, and tendency to relapse. Glioma cells demonstrate a variety of deregulated genomic pathways and extensive interplay with epigenetic alterations. Epigenetic modifications have emerged as essential players in GBM research, with biomarker potential for tumor classification and prognosis and for drug targeting. Histone posttranslational modifications (PTMs) are crucial regulators of chromatin architecture and gene expression, playing a pivotal role in malignant transformation, tumor development and progression. Alteration in the expression of genes coding for lysine and arginine methyltransferases (G9a, SUV39H1 and SETDB1) and acetyltransferases and deacetylases (KAT6A, SIRT2, SIRT7, HDAC4, 6, 9) contribute to GBM pathogenesis. In addition, proteins of the sumoylation pathway are upregulated in GBM cell lines, including E1 (SAE1), E2 (Ubc9) components, and a SUMO-specific protease (SENP1). Preclinical and clinical studies are currently in progress targeting epigenetic enzymes in gliomas, including a new generation of histone deacetylase (HDAC), protein arginine methyltransferase (PRMT) and bromodomain (BRD) inhibitors. Herein, we provide an update on recent advances in glioma epigenetic research, focusing on the role of histone modifications and the use of epigenetic therapy as a valid treatment option for glioblastoma.
Collapse
Affiliation(s)
- Elena Kunadis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece
| | - Eleftheria Lakiotaki
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece
| | - Penelope Korkolopoulou
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece.
| |
Collapse
|
23
|
Zhang C, Jin M, Zhao J, Chen J, Jin W. Organoid models of glioblastoma: advances, applications and challenges. Am J Cancer Res 2020; 10:2242-2257. [PMID: 32905502 PMCID: PMC7471358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 07/13/2020] [Indexed: 06/11/2023] Open
Abstract
The high mortality and poor clinical prognosis of glioblastoma multiforme (GBM) are concerns for many GBM patients as well as clinicians and researchers. The lack of a preclinical model that can easily be established and accurately recapitulate tumour biology and the tumour microenvironment further complicates GBM research and its clinical translation. GBM organoids (GBOs) are promising high-fidelity models that can be applied to model the disease, develop drugs, establish a living biobank, mimic therapeutic responses and explore personalized therapy. However, GBO models face some challenges, including deficient immune responses, absent vascular system and controversial reliability. In recent years, considerable progress has been achieved in the improvement of brain tumour organoid models and research based on such models. In addition to the traditional cultivation method, these models can be cultivated via genetic engineering and co-culture of cerebral organoids and GBM. In this review, we summarize the applications of GBM organoids and related advances and provide our opinions on associated limitations and challenges.
Collapse
Affiliation(s)
- Chaocai Zhang
- Department of Neurosurgery, Hainan General Hospital/Hainan Affiliated Hospital of Hainan Medical UniversityHaikou, PR China
| | - Mingzhu Jin
- Shanghai Jiao Tong University School of MedicineShanghai, PR China
| | - Jiannong Zhao
- Department of Neurosurgery, Hainan General Hospital/Hainan Affiliated Hospital of Hainan Medical UniversityHaikou, PR China
| | - Juxiang Chen
- Department of Neurosurgery, Shanghai Institute of Neurosurgery, Changzheng Hospital, Second Military Medical UniversityShanghai, PR China
| | - Weilin Jin
- Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, Department of Instrument Science and Engineering, Institute of Nano Biomedicine and Engineering, School of Electronic Information and Electronic Engineering, Shanghai Jiao Tong UniversityShanghai, PR China
| |
Collapse
|
24
|
Liu W, Xu Z, Zhou J, Xing S, Li Z, Gao X, Feng S, Xiao Y. High Levels of HIST1H2BK in Low-Grade Glioma Predicts Poor Prognosis: A Study Using CGGA and TCGA Data. Front Oncol 2020; 10:627. [PMID: 32457836 PMCID: PMC7225299 DOI: 10.3389/fonc.2020.00627] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 04/06/2020] [Indexed: 12/22/2022] Open
Abstract
A number of biomarkers have been identified for various cancers. However, biomarkers associated with glioma remain largely to be explored. In the current study, we investigated the relationship between the expression and prognostic value of the HIST1H2BK gene in glioma. Sequential data filtering (survival analysis, independent prognostic analysis, ROC curve analysis, and clinical correlation analysis) was performed, which resulted in identification of the association between the HIST1H2BK gene and glioma. Then, the HIST1H2BK gene was analyzed using bioinformatics (Kaplan–Meier survival analysis, univariate Cox analysis, multivariate Cox analysis, and ROC curve analysis). The results showed that low expression of HIST1H2BK was associated with better prognosis, and high expression of HIST1H2BK was associated with poor prognosis. In addition, HIST1H2BK was an independent prognostic indicator for patients with glioma. We also evaluated the association between HIST1H2BK and clinical characteristics. Furthermore, gene set enrichment analysis (GSEA) and analysis of immune infiltration were performed. The results showed that HIST1H2BK was associated with intensity of immune infiltration in glioma. Finally, co-expression analysis was performed. The results showed that HIST1H2BK was positively correlated with HIST1H2AG, HIST2H2AA4, HIST1H2BJ, HIST2H2BE, and HIST1H2AC, and negatively correlated with PDZD4, CRY2, GABBR1, rp5-1119a7.17, and KCNJ11. This study showed that upregulation of HIST1H2BK in low-grade glioma (LGG) tissue was an indicator of poor prognosis. Moreover, this study demonstrated that HIST1H2BK may be a promising biomarker for the treatment of LGG.
Collapse
Affiliation(s)
- Weidong Liu
- Department of Neurosurgery, Liaocheng People's Hospital, Liaocheng, China
| | - Zhentao Xu
- Department of Neurosurgery, Liaocheng People's Hospital, Liaocheng, China
| | - Jie Zhou
- Department of Nursing, Liaocheng Vocational and Technical College, Liaocheng, China
| | - Shuang Xing
- Department of Nursing, Liaocheng Vocational and Technical College, Liaocheng, China
| | - Zhiqiang Li
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xu Gao
- Department of Neurosurgery, General Hospital of Northern Theater Command (General Hospital of Shenyang Military), Shenyang, China
| | - Shiyu Feng
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, China
| | - Yilei Xiao
- Department of Neurosurgery, Liaocheng People's Hospital, Liaocheng, China
| |
Collapse
|
25
|
The role of deubiquitinating enzymes in cancer drug resistance. Cancer Chemother Pharmacol 2020; 85:627-639. [PMID: 32146496 DOI: 10.1007/s00280-020-04046-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 02/19/2020] [Indexed: 12/18/2022]
Abstract
Drug resistance is a well-known phenomenon leading to a reduction in the effectiveness of pharmaceutical treatments. Resistance to chemotherapeutic agents can involve various intrinsic cellular processes including drug efflux, increased resistance to apoptosis, increased DNA damage repair capabilities in response to platinum salts or other DNA-damaging drugs, drug inactivation, drug target alteration, epithelial-mesenchymal transition (EMT), inherent cell heterogeneity, epigenetic effects, or any combination of these mechanisms. Deubiquitinating enzymes (DUBs) reverse ubiquitination of target proteins, maintaining a balance between ubiquitination and deubiquitination of proteins to maintain cell homeostasis. Increasing evidence supports an association of altered DUB activity with development of several cancers. Thus, DUBs are promising candidates for targeted drug development. In this review, we outline the involvement of DUBs, particularly ubiquitin-specific proteases, and their roles in drug resistance in different types of cancer. We also review potential small molecule DUB inhibitors that can be used as drugs for cancer treatment.
Collapse
|
26
|
Qiu GZ, Liu Q, Wang XG, Xu GZ, Zhao T, Lou MQ. Hypoxia-induced USP22-BMI1 axis promotes the stemness and malignancy of glioma stem cells via regulation of HIF-1α. Life Sci 2020; 247:117438. [PMID: 32070708 DOI: 10.1016/j.lfs.2020.117438] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/12/2020] [Accepted: 02/14/2020] [Indexed: 11/19/2022]
Abstract
AIMS This study intends to investigate the mechanisms of ubiqutin-specific protease 22 (USP22)/B cell-specific Moloney murine leukemia virus integration site 1 (BMI1) on the biological phenotypes of glioma stem cells (GSCs) under hypoxia. MAIN METHODS Western blot, Cell Counting Kit-8, colony formation and flow cytometry assays were preformed to evaluate cells biological behaviors. Luciferase assay was utilized to identify the associations among USP22, HIF-1α and BMI1. KEY FINDINGS Silencing USP22 reduced the stemness and proliferation of GSCs, and increased its apoptosis in response to hypoxia. Whilst, overexpression of BMI1 reversed these phenomena. Whilst, a significant decrease in proliferation and stemness of GSCs caused by HIF-1α exhaustion were inversed by overexpression of USP22 or BMI1. SIGNIFICANCE Function of USP22-BMI1 on biological behaviors of GSCs was regulated by HIF-1α in response to hypoxia.
Collapse
Affiliation(s)
- Guan-Zhong Qiu
- The Neurosurgery Department of the Shanghai General Hospital, Shanghai Jiaotong University, No. 85 Wujin Road, Hongkou District, Shanghai, PR China; The Neurosurgery Department of the 960th Hospital of Joint Logistics Support Force, The Chinese People's Liberation Army, No. 25 Shifan Road, Beicun Street, Worker's New Village, Tianqiao District, Jinan, Shandong Province, PR China.
| | - Qiang Liu
- The Neurosurgery Department of the 960th Hospital of Joint Logistics Support Force, The Chinese People's Liberation Army, No. 25 Shifan Road, Beicun Street, Worker's New Village, Tianqiao District, Jinan, Shandong Province, PR China
| | - Xiao-Gang Wang
- The Neurosurgery Department of the 960th Hospital of Joint Logistics Support Force, The Chinese People's Liberation Army, No. 25 Shifan Road, Beicun Street, Worker's New Village, Tianqiao District, Jinan, Shandong Province, PR China
| | - Guang-Zhen Xu
- The Neurosurgery Department of the 960th Hospital of Joint Logistics Support Force, The Chinese People's Liberation Army, No. 25 Shifan Road, Beicun Street, Worker's New Village, Tianqiao District, Jinan, Shandong Province, PR China
| | - Tong Zhao
- Department of Neurosurgery, Huashan Hospital, Fudan University, No. 12 Urumqi Middle Road, Jing'an District, Shanghai, PR China
| | - Mei-Qing Lou
- The Neurosurgery Department of the Shanghai General Hospital, Shanghai Jiaotong University, No. 85 Wujin Road, Hongkou District, Shanghai, PR China.
| |
Collapse
|
27
|
Zhang L, Qiang J, Yang X, Wang D, Rehman AU, He X, Chen W, Sheng D, Zhou L, Jiang Y, Li T, Du Y, Feng J, Hu X, Zhang J, Hu X, Shao Z, Liu S. IL1R2 Blockade Suppresses Breast Tumorigenesis and Progression by Impairing USP15-Dependent BMI1 Stability. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1901728. [PMID: 31921558 PMCID: PMC6947699 DOI: 10.1002/advs.201901728] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 10/16/2019] [Indexed: 05/02/2023]
Abstract
Breast tumor initiating cells (BTICs) with ALDH+CD24-CD44+ phenotype are the most tumorigenic and invasive cell population in breast cancer. However, the molecular mechanisms are still unclear. Here, it is found that a negative immune regulator interleukin-1 receptor type 2 (IL1R2) is upregulated in breast cancer (BC) tissues and especially in BTICs. BC patients with high IL1R2 expression have a poorer overall survival and relapse-free survival. High IL1R2 promotes BTIC self-renewal and BC cell proliferation and invasion. Mechanistically, IL1R2 is activated by IL1β, as demonstrated by the fact that IL1β induces the release of IL1R2 intracellular domain (icd-IL1R2) and icd-IL1R2 then interacts with the deubiquitinase USP15 at the UBL2 domain and promotes its activity, which finally induces BMI1 deubiquitination at lysine 81 and stabilizes BMI1 protein. In addition, IL1R2 neutralizing antibody can suppress the protein expression of both IL1R2 and BMI1, and significantly abrogates the promoting effect of IL1R2 on BTIC self-renewal and BC cell growth both in vitro and in vivo. The current results indicate that blocking IL1R2 with neutralizing antibody provides a therapeutic approach to inhibit BC progression by targeting BTICs.
Collapse
Affiliation(s)
- Lixing Zhang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical SciencesShanghai Medical CollegeKey Laboratory of Breast Cancer in ShanghaiInnovation Center for Cell Signaling NetworkCancer InstituteFudan UniversityShanghai200032China
- Department of OncologyDepartment of Breast SurgeryShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Jiankun Qiang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical SciencesShanghai Medical CollegeKey Laboratory of Breast Cancer in ShanghaiInnovation Center for Cell Signaling NetworkCancer InstituteFudan UniversityShanghai200032China
- Department of OncologyDepartment of Breast SurgeryShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Xiaoli Yang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical SciencesShanghai Medical CollegeKey Laboratory of Breast Cancer in ShanghaiInnovation Center for Cell Signaling NetworkCancer InstituteFudan UniversityShanghai200032China
- Department of OncologyDepartment of Breast SurgeryShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Dong Wang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical SciencesShanghai Medical CollegeKey Laboratory of Breast Cancer in ShanghaiInnovation Center for Cell Signaling NetworkCancer InstituteFudan UniversityShanghai200032China
- School of Life ScienceThe CAS Key Laboratory of Innate Immunity and Chronic DiseaseUniversity of Science and Technology of ChinaHefeiAnhui230027China
| | - Adeel ur Rehman
- School of Life ScienceThe CAS Key Laboratory of Innate Immunity and Chronic DiseaseUniversity of Science and Technology of ChinaHefeiAnhui230027China
| | - Xueyan He
- Fudan University Shanghai Cancer Center and Institutes of Biomedical SciencesShanghai Medical CollegeKey Laboratory of Breast Cancer in ShanghaiInnovation Center for Cell Signaling NetworkCancer InstituteFudan UniversityShanghai200032China
| | - Weilong Chen
- School of Life ScienceThe CAS Key Laboratory of Innate Immunity and Chronic DiseaseUniversity of Science and Technology of ChinaHefeiAnhui230027China
| | - Dandan Sheng
- Fudan University Shanghai Cancer Center and Institutes of Biomedical SciencesShanghai Medical CollegeKey Laboratory of Breast Cancer in ShanghaiInnovation Center for Cell Signaling NetworkCancer InstituteFudan UniversityShanghai200032China
- School of Life ScienceThe CAS Key Laboratory of Innate Immunity and Chronic DiseaseUniversity of Science and Technology of ChinaHefeiAnhui230027China
| | - Lei Zhou
- Fudan University Shanghai Cancer Center and Institutes of Biomedical SciencesShanghai Medical CollegeKey Laboratory of Breast Cancer in ShanghaiInnovation Center for Cell Signaling NetworkCancer InstituteFudan UniversityShanghai200032China
- School of Life ScienceThe CAS Key Laboratory of Innate Immunity and Chronic DiseaseUniversity of Science and Technology of ChinaHefeiAnhui230027China
| | - Yi‐zhou Jiang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical SciencesShanghai Medical CollegeKey Laboratory of Breast Cancer in ShanghaiInnovation Center for Cell Signaling NetworkCancer InstituteFudan UniversityShanghai200032China
| | - Tao Li
- State Key Laboratory of ProteomicsInstitute of Basic Medical SciencesNational Center of Biomedical AnalysisBeijing100850China
| | - Ying Du
- Department of Laboratory Medicine and Central LaboratorySouthern Medical University Affiliated Fengxian HospitalShanghai201499China
| | - Jing Feng
- Department of Laboratory Medicine and Central LaboratorySouthern Medical University Affiliated Fengxian HospitalShanghai201499China
| | - Xin Hu
- Fudan University Shanghai Cancer Center and Institutes of Biomedical SciencesShanghai Medical CollegeKey Laboratory of Breast Cancer in ShanghaiInnovation Center for Cell Signaling NetworkCancer InstituteFudan UniversityShanghai200032China
- Department of OncologyDepartment of Breast SurgeryShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Jian Zhang
- Department of Medical OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Xi‐chun Hu
- Department of Medical OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Zhi‐ming Shao
- Fudan University Shanghai Cancer Center and Institutes of Biomedical SciencesShanghai Medical CollegeKey Laboratory of Breast Cancer in ShanghaiInnovation Center for Cell Signaling NetworkCancer InstituteFudan UniversityShanghai200032China
- Department of OncologyDepartment of Breast SurgeryShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Suling Liu
- Fudan University Shanghai Cancer Center and Institutes of Biomedical SciencesShanghai Medical CollegeKey Laboratory of Breast Cancer in ShanghaiInnovation Center for Cell Signaling NetworkCancer InstituteFudan UniversityShanghai200032China
- Department of OncologyDepartment of Breast SurgeryShanghai Medical CollegeFudan UniversityShanghai200032China
| |
Collapse
|
28
|
Functional analysis of deubiquitylating enzymes in tumorigenesis and development. Biochim Biophys Acta Rev Cancer 2019; 1872:188312. [DOI: 10.1016/j.bbcan.2019.188312] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/16/2019] [Accepted: 08/16/2019] [Indexed: 02/06/2023]
|
29
|
Zou Y, Yang R, Huang ML, Kong YG, Sheng JF, Tao ZZ, Gao L, Chen SM. NOTCH2 negatively regulates metastasis and epithelial-Mesenchymal transition via TRAF6/AKT in nasopharyngeal carcinoma. J Exp Clin Cancer Res 2019; 38:456. [PMID: 31699119 PMCID: PMC6836530 DOI: 10.1186/s13046-019-1463-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 10/21/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Clinically, distant metastasis after primary treatment remains a key problem in nasopharyngeal carcinoma (NPC). Thus, identification of the underlying mechanisms and development of novel therapeutic strategies are urgently needed. NOTCH has been shown to function as a tumor promotor that enhances angiogenesis, cancer invasion and metastasis in NPC. However, the precise roles of the four individual NOTCH receptors and their mechanisms of action are unclear. METHODS We used Western blot analysis, immunofluorescence, immunohistochemical analysis, phalloidin staining, mouse tumor metastatic dissemination models, gene set enrichment analysis, immunoprecipitation assays and a series of functional assays to determine the potential role of NOTCH2 in regulating NPC metastasis. RESULTS NOTCH2 expression in the NPC tissues of patients with cervical lymph node metastasis was lower than that of patients without cervical lymph node metastasis. Correspondingly, NOTCH2 expression was low in metastatic and poorly differentiated NPC cells. NOTCH2 expression correlated negatively with survival time in patients with NPC. Suppression of NOTCH2 expression promoted NPC cell metastasis, whereas NOTCH2 overexpression inhibited this process. Furthermore, NOTCH2 attenuated the TRAF6-AKT signaling axis via an interaction between the NOTCH2 intracellular domain (N2ICD) and TRAF6, which inhibited epithelial-mesenchymal transition (EMT) and eventually suppressed NPC metastasis. CONCLUSIONS These findings reveal that loss of NOTCH2 activates the TRAF6/AKT axis and promotes metastasis in NPC, suggesting that NOTCH2 may represent a therapeutic target for the treatment of NPC.
Collapse
Affiliation(s)
- You Zou
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, 430060 Hubei People’s Republic of China
| | - Rui Yang
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, 430060 Hubei People’s Republic of China
| | - Mao-Ling Huang
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, 430060 Hubei People’s Republic of China
| | - Yong-Gang Kong
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, 430060 Hubei People’s Republic of China
| | - Jian-Fei Sheng
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, 430060 Hubei People’s Republic of China
| | - Ze-Zhang Tao
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, 430060 Hubei People’s Republic of China
| | - Ling Gao
- Department of Endocrinology & Metabolism, Renmin Hospital of Wuhan University, Jinan, China
| | - Shi-Ming Chen
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, 430060 Hubei People’s Republic of China
| |
Collapse
|
30
|
Liang J, Zhang XL, Li S, Xie S, Wang WF, Yu RT. Ubiquitin-specific protease 22 promotes the proliferation, migration and invasion of glioma cells. Cancer Biomark 2019; 23:381-389. [PMID: 30223389 DOI: 10.3233/cbm-181413] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Ubiquitin-specific protease 22 (USP22), as one of the 11 death-from-cancer signature genes, presented high expression in a variety of tumors. Previous studies showed that USP22 played a significant role in cell-cycle, oncogenesis, clinicopathology and survival. Our studies have presented USP22 was over-expressed in glioma tissue and the patients with high expression of USP22 had a poor survival than that with low expression of USP22. However, the concrete effect of USP22 on biological behavior in glioma cells has been rarely reported. The study aimed to clear the effect of USP22 on cell proliferation, migration and invasion in glioma. Using siRNA, USP22 was knocked down in U251 and U87 glioma cells and successful transfection effect was validated. Cell proliferation, migration and invasion were observed by the methods of EdU, Wound healing and Transwell assay, separately. At the same time, the expression of MMP2 was detected by Gelatin zymography after transfecting siRNAs. After the knockdown of USP22 by siRNA, the abilities of glioma cell proliferation, migration and invasion were decreased, accompanying, the expression of MMP2 was also decreased. We drew a conclusion that USP22 could increase the abilities of proliferation, migration and invasion of glioma cells, and promote the growth and development of glioma.
Collapse
|
31
|
Qiu GZ, Mao XY, Ma Y, Gao XC, Wang Z, Jin MZ, Sun W, Zou YX, Lin J, Fu HL, Jin WL. Ubiquitin-specific protease 22 acts as an oncoprotein to maintain glioma malignancy through deubiquitinating B cell-specific Moloney murine leukemia virus integration site 1 for stabilization. Cancer Sci 2018; 109:2199-2210. [PMID: 29788550 PMCID: PMC6029839 DOI: 10.1111/cas.13646] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 05/08/2018] [Accepted: 05/16/2018] [Indexed: 12/13/2022] Open
Abstract
Ubiquitin‐specific protease 22 (USP22) is a member of the “death‐from‐cancer” signature, which plays a key role in cancer progression. Previous evidence has shown that USP22 is overexpressed and correlates with poor prognosis in glioma. The effect and mechanism of USP22 in glioma malignancy, especially cancer stemness, remain elusive. Herein, we find USP22 is more enriched in stem‐like tumorspheres than differentiated glioma cells. USP22 knockdown inhibits cancer stemness in glioma cell lines. With a cell‐penetrating TAT‐tag protein, B cell‐specific Moloney murine leukemia virus integration site 1 (BMI1), a robust glioma stem‐cell marker, is found to mediate the effect of USP22 on glioma stemness. By immunofluorescence, USP22 and BMI1 are found to share similar intranuclear expression in glioma cells. By analysis with immunohistochemistry and bioinformatics, USP22 is found to positively correlate with BMI1 at the post‐translational level only rather than at the transcriptional level. By immunoprecipitation and in vivo deubiquitination assay, USP22 is found to interact with and deubiquitinate BMI1 for protein stabilization. Microarray analysis shows that USP22 and BMI1 mutually regulate a series of genes involved in glioma stemness such as POSTN,HEY2,PDGFRA and ATF3. In vivo study with nude mice confirms the role of USP22 in promoting glioma tumorigenesis by regulating BMI1. All these findings indicate USP22 as a novel deubiquitinase of BMI1 in glioma. We propose a working model of the USP22‐BMI1 axis, which promotes glioma stemness and tumorigenesis through oncogenic activation. Thus, targeting USP22 might be an effective strategy to treat glioma especially in those with elevated BMI1 expression.
Collapse
Affiliation(s)
- Guan-Zhong Qiu
- Department of Instrument Science and Engineering, Key Lab. for Thin Film and Microfabrication Technology of Ministry of Education, School of Electronic Information and Electronic Engineering, Institute of Nano Biomedicine and Engineering, Shanghai Jiao Tong University, Shanghai, China.,Department of Neurosurgery, General Hospital of Jinan Military Command, Jinan, China
| | - Xiao-Yuan Mao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Central South University, Changsha, China.,Human Key Laboratory of Pharmacogenetics, Changsha, China
| | - Yue Ma
- Department of Instrument Science and Engineering, Key Lab. for Thin Film and Microfabrication Technology of Ministry of Education, School of Electronic Information and Electronic Engineering, Institute of Nano Biomedicine and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Xing-Chun Gao
- Shanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic Medical Medicine, Xi'an Medical University, Xi'an, China
| | - Zhen Wang
- Department of Instrument Science and Engineering, Key Lab. for Thin Film and Microfabrication Technology of Ministry of Education, School of Electronic Information and Electronic Engineering, Institute of Nano Biomedicine and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Ming-Zhu Jin
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Sun
- Department of Neurosurgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Yong-Xiang Zou
- Department of Neurosurgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Jing Lin
- Department of Neurosurgery, The General Hospital of Western Air Force, Chengdu, China
| | - Hua-Lin Fu
- Department of Instrument Science and Engineering, Key Lab. for Thin Film and Microfabrication Technology of Ministry of Education, School of Electronic Information and Electronic Engineering, Institute of Nano Biomedicine and Engineering, Shanghai Jiao Tong University, Shanghai, China.,National Centers for Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wei-Lin Jin
- Department of Instrument Science and Engineering, Key Lab. for Thin Film and Microfabrication Technology of Ministry of Education, School of Electronic Information and Electronic Engineering, Institute of Nano Biomedicine and Engineering, Shanghai Jiao Tong University, Shanghai, China.,National Centers for Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|