1
|
Tasnim A, Sumaiya AA, Noman AA, Tahsin A, Saba AA, Ahmed R, Yasmin T, Nabi AHMN. A Comparative Meta-Analysis on the Association of lncRNAs MALAT1, HOTAIR, and AFAP1-AS1 With the Risk of Developing Lymph Node Metastasis in Lung Cancer. Cancer Rep (Hoboken) 2024; 7:e70091. [PMID: 39725668 DOI: 10.1002/cnr2.70091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 11/21/2024] [Accepted: 12/03/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND Numerous studies have demonstrated the significance of long noncoding RNA (lncRNA) in the development of cancer metastasis. The expression levels of many lncRNAs are elevated in metastatic lung cancer patients compared to non-metastatic lung cancer patients. OBJECTIVES The primary objective of the study was to investigate the association between the expression levels of three lncRNAs (MALAT1, HOTAIR, and AFAP1-AS1) and lymph node metastasis (LNM) of lung cancer. METHODS Cell Press, PubMed, SpringerLink, Web of Science, and Google Scholar were explored to perform the literature search. After screening 1862 articles, 66 English-language articles were selected based on the inclusion and exclusion criteria. From those articles, 17 publications comprising 1622 lung cancer patients were chosen for statistical analyses as well as quality assessment tests. RESULTS Forest plot analysis revealed that there was a significant difference in the incidence of LNM between the high and low MALAT1 expression groups (OR = 3.21, 95% CI: 1.34-7.67; random effects model). Significant differences were also observed in the incidence of LNM between patients with high and low HOTAIR expression levels (OR = 4.17, 95% CI: 1.47-11.82; random effects model). The expression level of AFAP1-AS1 was found to be significantly associated with LNM in lung cancer (OR = 2.31, 95% CI: 1.39-3.85, random effects model). Additional analysis from GEPIA and GEO databases revealed that the expression levels of these lncRNAs vary according to the type of tumor tissue, organ of metastasis, and cancer stage. However, these databases show that the result for AFAP1-AS1 is the most aligned with the meta-analysis's findings. Furthermore, several quality assessment tests showed that the AFAP1-AS1 studies are more reliable compared to the studies of other lncRNAs. CONCLUSION This study suggested that LNM in lung cancer patients is associated mostly with an elevated AFAP1-AS1 lncRNA level among the pool of three lncRNAs analyzed. Before these results can be implemented in a clinical setting, it is essential to conduct further validation and undertake comprehensive analysis to ensure robustness and reliability.
Collapse
Affiliation(s)
- Anha Tasnim
- Laboratory of Population Genetics, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Afra Anjum Sumaiya
- Laboratory of Population Genetics, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Abdullah Al Noman
- Laboratory of Population Genetics, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Anika Tahsin
- Laboratory of Population Genetics, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Abdullah Al Saba
- Laboratory of Population Genetics, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Rubaiat Ahmed
- Laboratory of Population Genetics, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Tahirah Yasmin
- Laboratory of Population Genetics, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - A H M Nurun Nabi
- Laboratory of Population Genetics, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| |
Collapse
|
2
|
Shen L, Wang B, Wang SP, Ji SK, Fu MJ, Wang SW, Hou WQ, Dai XJ, Liu HM. Combination Therapy and Dual-Target Inhibitors Based on LSD1: New Emerging Tools in Cancer Therapy. J Med Chem 2024; 67:922-951. [PMID: 38214982 DOI: 10.1021/acs.jmedchem.3c02133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
Lysine specific demethylase 1 (LSD1), a transcriptional modulator that represses or activates target gene expression, is overexpressed in many cancer and causes imbalance in the expression of normal gene networks. Over two decades, numerous LSD1 inhibitors have been reported, especially some of which have entered clinical trials, including eight irreversible inhibitors (TCP, ORY-1001, GSK-2879552, INCB059872, IMG-7289, ORY-2001, TAK-418, and LH-1802) and two reversible inhibitors (CC-90011 and SP-2577). Most clinical LSD1 inhibitors demonstrated enhanced efficacy in combination with other agents. LSD1 multitarget inhibitors have also been reported, exampled by clinical dual LSD1/histone deacetylases (HDACs) inhibitors 4SC-202 and JBI-802. Herein, we present a comprehensive overview of the combination of LSD1 inhibitors with various antitumor agents, as well as LSD1 multitarget inhibitors. Additionally, the challenges and future research directionsare also discussed, and we hope this review will provide new insight into the development of LSD1-targeted anticancer agents.
Collapse
Affiliation(s)
- Liang Shen
- Key Lab of Advanced Drug Preparation Technologies, Ministry of Education of China; State Key Laboratory of Esophageal Cancer Prevention & Treatment; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, Henan, China
| | - Bo Wang
- Key Lab of Advanced Drug Preparation Technologies, Ministry of Education of China; State Key Laboratory of Esophageal Cancer Prevention & Treatment; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, Henan, China
| | - Shao-Peng Wang
- Key Lab of Advanced Drug Preparation Technologies, Ministry of Education of China; State Key Laboratory of Esophageal Cancer Prevention & Treatment; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, Henan, China
| | - Shi-Kun Ji
- Key Lab of Advanced Drug Preparation Technologies, Ministry of Education of China; State Key Laboratory of Esophageal Cancer Prevention & Treatment; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, Henan, China
| | - Meng-Jie Fu
- Key Lab of Advanced Drug Preparation Technologies, Ministry of Education of China; State Key Laboratory of Esophageal Cancer Prevention & Treatment; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, Henan, China
| | - Shu-Wu Wang
- Key Lab of Advanced Drug Preparation Technologies, Ministry of Education of China; State Key Laboratory of Esophageal Cancer Prevention & Treatment; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, Henan, China
| | - Wen-Qing Hou
- Key Lab of Advanced Drug Preparation Technologies, Ministry of Education of China; State Key Laboratory of Esophageal Cancer Prevention & Treatment; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, Henan, China
| | - Xing-Jie Dai
- Key Lab of Advanced Drug Preparation Technologies, Ministry of Education of China; State Key Laboratory of Esophageal Cancer Prevention & Treatment; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, Henan, China
| | - Hong-Min Liu
- Key Lab of Advanced Drug Preparation Technologies, Ministry of Education of China; State Key Laboratory of Esophageal Cancer Prevention & Treatment; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, Henan, China
| |
Collapse
|
3
|
Ao YQ, Gao J, Jiang JH, Wang HK, Wang S, Ding JY. Comprehensive landscape and future perspective of long noncoding RNAs in non-small cell lung cancer: it takes a village. Mol Ther 2023; 31:3389-3413. [PMID: 37740493 PMCID: PMC10727995 DOI: 10.1016/j.ymthe.2023.09.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/01/2023] [Accepted: 09/17/2023] [Indexed: 09/24/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) are a distinct subtype of RNA that lack protein-coding capacity but exert significant influence on various cellular processes. In non-small cell lung cancer (NSCLC), dysregulated lncRNAs act as either oncogenes or tumor suppressors, contributing to tumorigenesis and tumor progression. LncRNAs directly modulate gene expression, act as competitive endogenous RNAs by interacting with microRNAs or proteins, and associate with RNA binding proteins. Moreover, lncRNAs can reshape the tumor immune microenvironment and influence cellular metabolism, cancer cell stemness, and angiogenesis by engaging various signaling pathways. Notably, lncRNAs have shown great potential as diagnostic or prognostic biomarkers in liquid biopsies and therapeutic strategies for NSCLC. This comprehensive review elucidates the significant roles and diverse mechanisms of lncRNAs in NSCLC. Furthermore, we provide insights into the clinical relevance, current research progress, limitations, innovative research approaches, and future perspectives for targeting lncRNAs in NSCLC. By summarizing the existing knowledge and advancements, we aim to enhance the understanding of the pivotal roles played by lncRNAs in NSCLC and stimulate further research in this field. Ultimately, unraveling the complex network of lncRNA-mediated regulatory mechanisms in NSCLC could potentially lead to the development of novel diagnostic tools and therapeutic strategies.
Collapse
Affiliation(s)
- Yong-Qiang Ao
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jian Gao
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jia-Hao Jiang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hai-Kun Wang
- CAS Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Shuai Wang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Jian-Yong Ding
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
4
|
Dong J, Pervaiz W, Tayyab B, Li D, Kang L, Zhang H, Gong H, Ma X, Li J, Agboyibor C, Bi Y, Liu H. A comprehensive comparative study on LSD1 in different cancers and tumor specific LSD1 inhibitors. Eur J Med Chem 2022; 240:114564. [PMID: 35820351 DOI: 10.1016/j.ejmech.2022.114564] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/20/2022] [Accepted: 06/20/2022] [Indexed: 01/14/2023]
Abstract
LSD1 was significantly over-expressed in several cancer types, and its aberrant overexpression was revealed to play a crucial role in the initiation and progression of cancer. Several LSD1 inhibitors that were discovered and developed so far were found to be effective in attenuating tumor growth in both in vivo and in vitro studies. However, the major challenge associated with the development of cancer therapies is personalized treatment. Therefore, it is essential to look in detail at how LSD1 plays its part in carcinogenesis and whether there are any different expression levels of LSD1 in different tumors. Here in this review, fresh insight into a list of function correlated LSD1 binding proteins are provided, and we tried to figure out the role of LSD1 in different cancer types, including hematological malignancies and solid tumors. A critical description of mutation preference for LSD1 in different tumors was also discussed. Recent research findings clearly showed that the abrogation of LSD1 demethylase activity via LSD1 inhibitors markedly reduced the growth of cancer cells. But there are still many ambiguities regarding the role of LSD1 in different cancers. Therefore, targeting LSD1 for treating different cancers is still reductionist, and many challenges need to be met to improve the therapeutic outcomes of LSD1 inhibitors.
Collapse
Affiliation(s)
- Jianshu Dong
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, China; Key Laboratory of Henan Province for Drug Quality Control and Evaluation, Zhengzhou University, Zhengzhou, 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou, 450001, China; Institute of Drug Discovery and Development, Zhengzhou University, Zhengzhou, 450001, China.
| | - Waqar Pervaiz
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, China; Key Laboratory of Henan Province for Drug Quality Control and Evaluation, Zhengzhou University, Zhengzhou, 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou, 450001, China; Institute of Drug Discovery and Development, Zhengzhou University, Zhengzhou, 450001, China
| | - Bilal Tayyab
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, China; Key Laboratory of Henan Province for Drug Quality Control and Evaluation, Zhengzhou University, Zhengzhou, 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou, 450001, China; Institute of Drug Discovery and Development, Zhengzhou University, Zhengzhou, 450001, China
| | - Dié Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, China; Key Laboratory of Henan Province for Drug Quality Control and Evaluation, Zhengzhou University, Zhengzhou, 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou, 450001, China; Institute of Drug Discovery and Development, Zhengzhou University, Zhengzhou, 450001, China
| | - Lei Kang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, China; Key Laboratory of Henan Province for Drug Quality Control and Evaluation, Zhengzhou University, Zhengzhou, 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou, 450001, China; Institute of Drug Discovery and Development, Zhengzhou University, Zhengzhou, 450001, China
| | - Huimin Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, China; Key Laboratory of Henan Province for Drug Quality Control and Evaluation, Zhengzhou University, Zhengzhou, 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou, 450001, China; Institute of Drug Discovery and Development, Zhengzhou University, Zhengzhou, 450001, China
| | - Huimin Gong
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, China; Key Laboratory of Henan Province for Drug Quality Control and Evaluation, Zhengzhou University, Zhengzhou, 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou, 450001, China; Institute of Drug Discovery and Development, Zhengzhou University, Zhengzhou, 450001, China
| | - Xinli Ma
- China-US(Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, Zhengzhou, Henan, 450008, China
| | - Jian Li
- China-US(Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, Zhengzhou, Henan, 450008, China
| | - Clement Agboyibor
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou, 450001, China; Institute of Drug Discovery and Development, Zhengzhou University, Zhengzhou, 450001, China
| | - Yuefeng Bi
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, China; Key Laboratory of Henan Province for Drug Quality Control and Evaluation, Zhengzhou University, Zhengzhou, 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou, 450001, China; Institute of Drug Discovery and Development, Zhengzhou University, Zhengzhou, 450001, China.
| | - Hongmin Liu
- Institute of Drug Discovery and Development, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
5
|
Luo Y, Li J, Yu P, Sun J, Hu Y, Meng X, Xiang L. Targeting lncRNAs in programmed cell death as a therapeutic strategy for non-small cell lung cancer. Cell Death Dis 2022; 8:159. [PMID: 35379783 PMCID: PMC8980082 DOI: 10.1038/s41420-022-00982-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/14/2022] [Accepted: 03/23/2022] [Indexed: 11/09/2022]
Abstract
Lung cancer is a leading cause of cancer-related mortality worldwide, with non-small cell lung cancer (NSCLC) being the most common histological type. Owing to the limited therapeutic efficacy and side effects of currently available therapies for NSCLC, it is necessary to identify novel therapeutic targets for NSCLC. Long non-coding RNAs (lncRNAs) are non-protein-coding RNAs with a transcript length of more than 200 nucleotides, which play a vital role in the tumorigenesis and progression of multiple cancers, including NSCLC. Induction of programmed cell death (PCD) is the main mechanism leading to tumour cell death in most cancer treatments. Recent studies have demonstrated that lncRNAs are closely correlated with PCD including apoptosis, pyroptosis, autophagy and ferroptosis, which can regulate PCD and relevant death pathways to affect NSCLC progression and the efficacy of clinical therapy. Therefore, in this review, we focused on the function of lncRNAs in PCD of NSCLC and summarized the therapeutic role of targeting lncRNAs in PCD for NSCLC treatment, aiming to provide new sights into the underlying pathogenic mechanisms and propose a potential new strategy for NSCLC therapy so as to improve therapeutic outcomes with the ultimate goal to benefit the patients.
Collapse
Affiliation(s)
- Yanqin Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P. R. China
| | - Jingyang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P. R. China
| | - Peng Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P. R. China
| | - Jiayi Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P. R. China
| | - Yingfan Hu
- School of Preclinical Medicine, Chengdu University, Chengdu, 610106, P. R. China
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P. R. China.
| | - Li Xiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P. R. China.
| |
Collapse
|
6
|
Sulewska A, Niklinski J, Charkiewicz R, Karabowicz P, Biecek P, Baniecki H, Kowalczuk O, Kozlowski M, Modzelewska P, Majewski P, Tryniszewska E, Reszec J, Dzieciol-Anikiej Z, Piwkowski C, Gryczka R, Ramlau R. A Signature of 14 Long Non-Coding RNAs (lncRNAs) as a Step towards Precision Diagnosis for NSCLC. Cancers (Basel) 2022; 14:cancers14020439. [PMID: 35053601 PMCID: PMC8773641 DOI: 10.3390/cancers14020439] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 01/11/2022] [Indexed: 02/04/2023] Open
Abstract
LncRNAs have arisen as new players in the world of non-coding RNA. Disrupted expression of these molecules can be tightly linked to the onset, promotion and progression of cancer. The present study estimated the usefulness of 14 lncRNAs (HAGLR, ADAMTS9-AS2, LINC00261, MCM3AP-AS1, TP53TG1, C14orf132, LINC00968, LINC00312, TP73-AS1, LOC344887, LINC00673, SOX2-OT, AFAP1-AS1, LOC730101) for early detection of non-small-cell lung cancer (NSCLC). The total RNA was isolated from paired fresh-frozen cancerous and noncancerous lung tissue from 92 NSCLC patients diagnosed with either adenocarcinoma (LUAD) or lung squamous cell carcinoma (LUSC). The expression level of lncRNAs was evaluated by a quantitative real-time PCR (qPCR). Based on Ct and delta Ct values, logistic regression and gradient boosting decision tree classifiers were built. The latter is a novel, advanced machine learning algorithm with great potential in medical science. The established predictive models showed that a set of 14 lncRNAs accurately discriminates cancerous from noncancerous lung tissues (AUC value of 0.98 ± 0.01) and NSCLC subtypes (AUC value of 0.84 ± 0.09), although the expression of a few molecules was statistically insignificant (SOX2-OT, AFAP1-AS1 and LOC730101 for tumor vs. normal tissue; and TP53TG1, C14orf132, LINC00968 and LOC730101 for LUAD vs. LUSC). However for subtypes discrimination, the simplified logistic regression model based on the four variables (delta Ct AFAP1-AS1, Ct SOX2-OT, Ct LINC00261, and delta Ct LINC00673) had even stronger diagnostic potential than the original one (AUC value of 0.88 ± 0.07). Our results demonstrate that the 14 lncRNA signature can be an auxiliary tool to endorse and complement the histological diagnosis of non-small-cell lung cancer.
Collapse
Affiliation(s)
- Anetta Sulewska
- Department of Clinical Molecular Biology, Medical University of Bialystok, 15-269 Bialystok, Poland; (J.N.); (R.C.); (O.K.)
- Correspondence:
| | - Jacek Niklinski
- Department of Clinical Molecular Biology, Medical University of Bialystok, 15-269 Bialystok, Poland; (J.N.); (R.C.); (O.K.)
| | - Radoslaw Charkiewicz
- Department of Clinical Molecular Biology, Medical University of Bialystok, 15-269 Bialystok, Poland; (J.N.); (R.C.); (O.K.)
- Center of Experimental Medicine, Medical University of Bialystok, 15-369 Bialystok, Poland
| | - Piotr Karabowicz
- Biobank, Medical University of Bialystok, 15-269 Bialystok, Poland; (P.K.); (P.M.); (J.R.); (Z.D.-A.)
| | - Przemyslaw Biecek
- Faculty of Mathematics and Information Science, Warsaw University of Technology, 00-662 Warsaw, Poland; (P.B.); (H.B.)
| | - Hubert Baniecki
- Faculty of Mathematics and Information Science, Warsaw University of Technology, 00-662 Warsaw, Poland; (P.B.); (H.B.)
| | - Oksana Kowalczuk
- Department of Clinical Molecular Biology, Medical University of Bialystok, 15-269 Bialystok, Poland; (J.N.); (R.C.); (O.K.)
| | - Miroslaw Kozlowski
- Department of Thoracic Surgery, Medical University of Bialystok, 15-269 Bialystok, Poland;
| | - Patrycja Modzelewska
- Biobank, Medical University of Bialystok, 15-269 Bialystok, Poland; (P.K.); (P.M.); (J.R.); (Z.D.-A.)
| | - Piotr Majewski
- Department of Microbiological Diagnostics and Infectious Immunology, Medical University of Bialystok, 15-269 Bialystok, Poland; (P.M.); (E.T.)
| | - Elzbieta Tryniszewska
- Department of Microbiological Diagnostics and Infectious Immunology, Medical University of Bialystok, 15-269 Bialystok, Poland; (P.M.); (E.T.)
| | - Joanna Reszec
- Biobank, Medical University of Bialystok, 15-269 Bialystok, Poland; (P.K.); (P.M.); (J.R.); (Z.D.-A.)
- Department of Medical Pathomorphology, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Zofia Dzieciol-Anikiej
- Biobank, Medical University of Bialystok, 15-269 Bialystok, Poland; (P.K.); (P.M.); (J.R.); (Z.D.-A.)
- Department of Rehabilitation, Medical University of Bialystok, 15-089 Bialystok, Poland
| | - Cezary Piwkowski
- Department of Thoracic Surgery, Poznan University of Medical Sciences, 60-569 Poznan, Poland;
| | - Robert Gryczka
- Department of Oncology, Poznan University of Medical Sciences, 60-569 Poznan, Poland; (R.G.); (R.R.)
| | - Rodryg Ramlau
- Department of Oncology, Poznan University of Medical Sciences, 60-569 Poznan, Poland; (R.G.); (R.R.)
| |
Collapse
|
7
|
Ghafouri-Fard S, Khoshbakht T, Hussen BM, Taheri M, Mokhtari M. A Review on the Role of AFAP1-AS1 in the Pathoetiology of Cancer. Front Oncol 2021; 11:777849. [PMID: 34912717 PMCID: PMC8666534 DOI: 10.3389/fonc.2021.777849] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/09/2021] [Indexed: 12/17/2022] Open
Abstract
AFAP1-AS1 is a long non-coding RNA which partakes in the pathoetiology of several cancers. The sense protein coding gene from this locus partakes in the regulation of cytophagy, cell motility, invasive characteristics of cells and metastatic ability. In addition to acting in concert with AFAP1, AFAP1-AS1 can sequester a number of cancer-related miRNAs, thus affecting activity of signaling pathways involved in cancer progression. Most of animal studies have confirmed that AFAP1-AS1 silencing can reduce tumor volume and invasive behavior of tumor cells in the xenograft models. Moreover, statistical analyses in the human subjects have shown strong correlation between expression levels of this lncRNA and clinical outcomes. In the present work, we review the impact of AFAP1-AS1 in the carcinogenesis.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tayybeh Khoshbakht
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Majid Mokhtari
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Xiong F, Zhu K, Deng S, Huang H, Yang L, Gong Z, Shi L, He Y, Tang Y, Liao Q, Yu J, Li X, Li Y, Li G, Zeng Z, Xiong W, Zhang S, Guo C. AFAP1-AS1: a rising star among oncogenic long non-coding RNAs. SCIENCE CHINA-LIFE SCIENCES 2021; 64:1602-1611. [PMID: 33999309 DOI: 10.1007/s11427-020-1874-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 12/13/2020] [Indexed: 12/13/2022]
Abstract
Long non-coding RNAs (lncRNAs) have become a hotspot in biomedical research. This interest reflects their extensive involvement in the regulation of the expression of other genes, and their influence on the occurrence and development of a variety of human diseases. Actin filament associated protein 1-Antisense RNA 1(AFAP1-AS1) is a recently discovered oncogenic lncRNA. It is highly expressed in a variety of solid tumors, and regulates the expression of downstream genes and signaling pathways through adsorption and competing microRNAs, or by the direct binding to other proteins. Ultimately, AFAP1-AS1 promotes proliferation, chemotherapy resistance, and resistance to apoptosis, maintains stemness, and enhances invasion and migration of tumor cells. This paper summarizes the research concerning AFAP1-AS1 in malignant tumors, including the clinical application prospects of AFAP1-AS1 as a potential molecular marker and therapeutic target of malignant tumors. We also discuss the limitations in the knowledge of AFAP1-AS1 and directions of further research. AFAP1-AS1 is expected to provide an example for studies of other lncRNA molecules.
Collapse
Affiliation(s)
- Fang Xiong
- Science and Technology on Information System Engineering Laboratory, National University of Defense Technology, Changsha, 410000, China
- Department of Periodontology, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, 410078, China
- NHC Key Laboratory of Carcinogenesis and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education of China, Cancer Research Institute, Central South University, Changsha, 410078, China
| | - Kunjie Zhu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Su Deng
- Science and Technology on Information System Engineering Laboratory, National University of Defense Technology, Changsha, 410000, China
| | - Hongbin Huang
- Science and Technology on Information System Engineering Laboratory, National University of Defense Technology, Changsha, 410000, China
| | - Liting Yang
- Department of Periodontology, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, 410078, China
| | - Zhaojian Gong
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital Central South University, Changsha, 410011, China
| | - Lei Shi
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital Central South University, Changsha, 410011, China
| | - Yi He
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Yanyan Tang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Qianjin Liao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Jianjun Yu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Xiaoling Li
- NHC Key Laboratory of Carcinogenesis and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education of China, Cancer Research Institute, Central South University, Changsha, 410078, China
| | - Yong Li
- Department of Medicine, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Guiyuan Li
- NHC Key Laboratory of Carcinogenesis and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education of China, Cancer Research Institute, Central South University, Changsha, 410078, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education of China, Cancer Research Institute, Central South University, Changsha, 410078, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education of China, Cancer Research Institute, Central South University, Changsha, 410078, China
| | - Shanshan Zhang
- Department of Periodontology, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, 410078, China.
| | - Can Guo
- NHC Key Laboratory of Carcinogenesis and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education of China, Cancer Research Institute, Central South University, Changsha, 410078, China.
| |
Collapse
|
9
|
Wu L, Wen Z, Song Y, Wang L. A novel autophagy-related lncRNA survival model for lung adenocarcinoma. J Cell Mol Med 2021; 25:5681-5690. [PMID: 33987935 PMCID: PMC8184679 DOI: 10.1111/jcmm.16582] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 04/09/2021] [Accepted: 04/19/2021] [Indexed: 12/12/2022] Open
Abstract
Long non‐coding RNA (lncRNA) is an important regulatory factor in the development of lung adenocarcinoma, which is related to the control of autophagy. LncRNA can also be used as a biomarker of prognosis in patients with lung adenocarcinoma. Therefore, it is important to determine the prognostic value of autophagy‐related lncRNA in lung adenocarcinoma. In this study, autophagy‐related mRNAs‐lncRNAs were screened from lung adenocarcinoma and a co‐expression network of autophagy‐related mRNAs‐lncRNAs was constructed by using The Cancer Genome Atlas (TCGA). The univariate and multivariate Cox proportional hazard analyses were used to evaluate the prognostic value of the autophagy‐related lncRNAs and finally obtained a survival model composed of 11 autophagy‐related lncRNAs. Through Kaplan‐Meier analysis, univariate and multivariate Cox regression analysis and time‐dependent receiver operating characteristic (ROC) curve analysis, it was further verified that the survival model was a new independent prognostic factor for patients with lung adenocarcinoma. In addition, based on the survival model, gene set enrichment analysis (GSEA) was used to illustrate the function of genes in low‐risk and high‐risk groups. These 11 lncRNAs were GAS6‐AS1, AC106047.1, AC010980.2, AL034397.3, NKILA, AL606489.1, HLA‐DQB1‐AS1, LINC01116, LINC01806, FAM83A‐AS1 and AC090559.1. The hazard ratio (HR) of the risk score was 1.256 (1.196‐1.320) (P < .001) in univariate Cox regression analysis and 1.215 (1.149‐1.286) (P < .001) in multivariate Cox regression analysis. And the AUC value of the risk score was 0.809. The 11 autophagy‐related lncRNA survival models had important predictive value for the prognosis of lung adenocarcinoma and may become clinical autophagy‐related therapeutic targets.
Collapse
Affiliation(s)
- Liwei Wu
- Department of Thoracic Surgery, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Zilu Wen
- Department of Scientific Research, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Yanzheng Song
- Department of Thoracic Surgery, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.,TB Center, Shanghai Emerging & Re-emerging Infectious Diseases Institute, Shanghai, China
| | - Lin Wang
- Department of Thoracic Surgery, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| |
Collapse
|
10
|
Xu S, Zheng L, Kang L, Xu H, Gao L. microRNA-let-7e in serum-derived exosomes inhibits the metastasis of non-small-cell lung cancer in a SUV39H2/LSD1/CDH1-dependent manner. Cancer Gene Ther 2021; 28:250-264. [PMID: 33299140 DOI: 10.1038/s41417-020-00216-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 08/03/2020] [Accepted: 08/17/2020] [Indexed: 11/09/2022]
Abstract
Non-small-cell lung cancer (NSCLC) remains the leading cause of cancer-related death worldwide. Accumulating research has highlighted the ability of exosome-encapsulated microRNAs (miRNAs or miRs) as potential circulating biomarkers for lung cancer. The current study aimed to evaluate the clinical significance of serum-derived exosomal miR-let-7e as a biomarker in the metastasis of NSCLC. Initially, the expression of miR-let-7e, SUV39H2, and CDH1 in human NSCLC tissues and exosomes isolated from the serum of NSCLC patients was determined by RT-qPCR, demonstrating that miR-let-7e was downregulated in NSCLC tissues and serum-derived exosomes, while SUV39H2 was upregulated in NSCLC tissues. Kaplan-Meier method revealed that both lower miR-let-7e expression and higher SUV39H2 expression were correlated with a lower survival rate of NSCLC patients. Next, SUV39H2 was predicted and validated to be a target of miR-let-7e using dual-luciferase reporter assay. NSCLC H1299 cells following ectopic expression and depletion experiments of miR-let-7e and SUV39H2 were treated with serum-derived exosomes, after which the viability, migration, and invasion of H1299 cells were detected using CCK-8 and Transwell assays. Further, in vivo experiments were conducted to elucidate the effect of exosomal miR-let-7e on tumorigenesis. Results revealed that miR-let-7e overexpression in serum-derived exosomes inhibited SUV39H2, resulting in impaired cell viability, migration, and invasion in vitro as well as delayed tumor growth in vivo. In conclusion, the key findings of the current study demonstrate that exosomal miR-let-7e from serum possesses anticarcinogenic properties against NSCLC via the SUV39H2/LSD1/CDH1 axis.
Collapse
Affiliation(s)
- Shufeng Xu
- Department of Respiratory, The First Hospital of Qinhuangdao, Qinhuangdao, 066000, PR China
| | - Lei Zheng
- Department of Oncology, The First Hospital of Qinhuangdao, Qinhuangdao, 066000, PR China
| | - Liying Kang
- Department of Oncology, Tianjin Wuqing District People's Hospital, Tianjin, 301700, PR China
| | - Hongmei Xu
- Department of Oncology, The First Hospital of Qinhuangdao, Qinhuangdao, 066000, PR China
| | - Liming Gao
- Department of Oncology, The First Hospital of Qinhuangdao, Qinhuangdao, 066000, PR China.
| |
Collapse
|
11
|
Long non-coding RNA linc00665 inhibits CDKN1C expression by binding to EZH2 and affects cisplatin sensitivity of NSCLC cells. MOLECULAR THERAPY-NUCLEIC ACIDS 2021; 23:1053-1065. [PMID: 33664990 PMCID: PMC7887328 DOI: 10.1016/j.omtn.2021.01.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 01/14/2021] [Indexed: 12/13/2022]
Abstract
Long non-coding RNAs (lncRNAs) can play significant regulatory roles in cells that affect the development and acquired drug resistance of lung cancer. Herein, we report that lncRNA linc00665 is significantly upregulated in non-small cell lung cancer (NSCLC) tissues compared with adjacent normal tissues. linc00665 affects the sensitivity of NSCLC cells to the chemotherapy drug cisplatin (DDP), making it a potential target for the treatment of NSCLC. Functional experiments showed that linc00665 enhanced the proliferation and migration of NSCLC cells in vivo and in vitro, and knocking down linc00665 could enhance the drug sensitivity of NSCLC cells to DDP. Further work revealed that linc00665 could recruit enhancer of zeste homolog 2 (EZH2) to the promoter region of cyclin-dependent kinase inhibitor 1C (CDKN1C) to inhibit its transcription and thus carry out its tumorigenic role. In conclusion, our study elucidated the carcinogenic role of the linc00665-EZH2-CDKN1C axis in NSCLC tumors and its ability to influence the sensitivity of these tumors to DDP. These results suggest that linc00665 may be a potential diagnostic marker and therapeutic target in NSCLC, and they also provide a new direction for the development of clinical reversal methods for acquired drug resistance in patients with NSCLC.
Collapse
|
12
|
Aftabi Y, Ansarin K, Shanehbandi D, Khalili M, Seyedrezazadeh E, Rahbarnia L, Asadi M, Amiri-Sadeghan A, Zafari V, Eyvazi S, Bakhtiyari N, Zarredar H. Long non-coding RNAs as potential biomarkers in the prognosis and diagnosis of lung cancer: A review and target analysis. IUBMB Life 2020; 73:307-327. [PMID: 33369006 DOI: 10.1002/iub.2430] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/26/2020] [Accepted: 12/04/2020] [Indexed: 12/17/2022]
Abstract
Long non-coding RNAs (lncRNA) have been emerged as a novel class of molecular regulators in cancer. They are dysregulated in many types of cancer; however, there is not enough knowledge available on their expression and functional profiles. Lung cancer is the leading cause of the cancer deaths worldwide. Generally, lncRNAs may be associated with lung tumor pathogenesis and they may act as biomarkers for the cancer prognosis and diagnosis. Compared to other invasive prognostic and diagnostic methods, detection of lncRNAs might be a user-friendly and noninvasive method. In this review article, we selected 27 tumor-associated lncRNAs by literature reviewing to further discussing in detail for using as diagnostic and prognostic biomarkers in lung cancer. Also, in an in silico target analysis, the "Experimentally supported functional regulation" approach of the LncTarD web tool was used to identifying the target genes and regulatory mechanisms of the selected lncRNAs. The reports on diagnostic and prognostic potential of all selected lncRNAs were discussed. However, the target genes and regulatory mechanisms of the 22 lncRNAs were identified by in silico analysis and we found the pathways that are controlled by each target group of lncRNAs. They use epigenetic mechanisms, ceRNA mechanisms, protein interaction and sponge mechanism. Also, 10, 23, 5, and 28 target genes for each of these mechanisms were identified, respectively. Finally, each group of target genes controls 50, 12, 7, and 2 molecular pathways, respectively. In conclusion, LncRNAs could be used as biomarkers in lung cancer due to their roles in control of several signaling pathways related to lung tumors. Also, it seems that lncRNAs, which use epigenetic mechanisms for modulating a large number of pathways, could be considered as important subjects for lung cancer-related diagnostic and prognostic biomarkers.
Collapse
Affiliation(s)
- Younes Aftabi
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Khalil Ansarin
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Dariush Shanehbandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Khalili
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Science, Tabriz, Iran.,Rahat Breathe and Sleep Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Ensiyeh Seyedrezazadeh
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Leila Rahbarnia
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Milad Asadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Amiri-Sadeghan
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Venus Zafari
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Shirin Eyvazi
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Nasim Bakhtiyari
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Habib Zarredar
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Science, Tabriz, Iran
| |
Collapse
|
13
|
Gao H, Sun Y, Chen J, Jin H, Yang W. Long non-coding RNA AFAP1-AS1 promotes cell growth and inhibits apoptosis by binding to specific proteins in germinal center B-cell-like diffuse large B-cell lymphoma. Am J Transl Res 2020; 12:8225-8246. [PMID: 33437395 PMCID: PMC7791486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
Germinal center B-cell-like diffuse large B-cell lymphoma (GCB-DLBCL) is a common subtype of lymphoma in adults. Previously, we found that actin filament-associated protein 1-antisense RNA 1 (AFAP1-AS1) is among the most overexpressed lncRNAs in GCB-DLBCL. In this study, we explored its biological functions and molecular mechanisms in the progression of GCB-DLBCL. We discovered, via bioinformatics, that patients with a high expression of AFAP1-AS1 had significantly poor disease-free survival (DFS) and overall survival (OS). Subsequent assays demonstrated that AFAP1-AS1 knockdown inhibited cell proliferation and prompted arrest of the G0/G1 cell cycle and apoptosis in GCB-DLBCL cell lines. Proteomics analysis indicated that hundreds of proteins were deregulated after AFAP1-AS1 knockdown and KEGG pathway analysis revealed that the deregulated proteins belonged to multiple signaling pathways, such as "B-cell receptor signaling pathway". Moreover, in the comprehensive identification of proteins that bind to RNA (by ChIRP-MS), several proteins associated with RNA splicing were identified (e.g., SFPQ, NONO, SRSF2, SRSF6, and KHSRP) that could specifically bind to AFAP1-AS1, which was confirmed by parallel reaction monitoring assay (PRM). Conclusively, we demonstrated that AFAP1-AS1 is a possible prognostic marker of poor outcomes in GCB-DLBCL patients and could modulate gene expression through connecting to specific proteins to practice its oncogenic role in GCB-DLBCL.
Collapse
Affiliation(s)
- Hongyu Gao
- Department of Hematology, Shengjing Hospital Affiliated to China Medical UniversityShenyang 110000, Liaoning, P. R. China
| | - Ying Sun
- Department of Hematology, Shengjing Hospital Affiliated to China Medical UniversityShenyang 110000, Liaoning, P. R. China
| | - Jiawen Chen
- Department of Hematology, Shengjing Hospital Affiliated to China Medical UniversityShenyang 110000, Liaoning, P. R. China
| | - Hong Jin
- Department of Pathogen Biology, China Medical UniversityShenyang 110000, Liaoning, P. R. China
| | - Wei Yang
- Department of Hematology, Shengjing Hospital Affiliated to China Medical UniversityShenyang 110000, Liaoning, P. R. China
| |
Collapse
|
14
|
The knockdown of LncRNA AFAP1-AS1 suppressed cell proliferation, migration, and invasion, and promoted apoptosis by regulating miR-545-3p/hepatoma-derived growth factor axis in lung cancer. Anticancer Drugs 2020; 32:11-21. [PMID: 33290312 DOI: 10.1097/cad.0000000000001003] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Lung cancer is one of the most common human cancers. Long noncoding RNA AFAP1-AS1 (LncRNA AFAP1-AS1) and microRNA-545-3p (miR-545-3p) were reported to play important roles in lung cancer development. This study aimed to elucidate the functional mechanisms of AFAP1-AS1 and miR-545-3p in lung cancer. Quantitative real time polymerase chain reaction was carried out to determine the levels of AFAP1-AS1, miR-545-3p and hepatoma-derived growth factor (HDGF). Cell proliferation, apoptosis, migration and invasion were detected by 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2-H-tetrazolium bromide assay, flow cytometry, and transwell migration and invasion assays, respectively. Furthermore, the interaction between miR-545-3p and AFAP1-AS1 or HDGF was predicted by bioinformatics analysis software starbase and confirmed by the dual luciferase reporter assay. Western blot assay was used to detect the protein level of HDGF. Besides, murine xenograft model was conducted through injecting A549 cells transfected with sh-AFAP1-AS1. The expression levels of AFAP1-AS1 and HDGF were increased, while miR-545-3p was decreased in lung cancer tissues and cells. AFAP1-AS1 knockdown suppressed lung cancer cell proliferation, migration, and invasion and induced apoptosis. Furthermore, AFAP1-AS1 mediated cell progression through regulating miR-545-3p expression. In addition, miR-545-3p negatively regulated the expression level of HDGF via binding 3'-untranslated region of HDGF. As expected, AFAP1-AS1 knockdown inhibited lung cancer progression via affecting miR-545-3p/HDGF axis. Besides, AFAP1-AS1 knockdown suppressed lung cancer tumor growth in vivo. Collectively, our results suggested that AFAP1-AS1 promoted the development of lung cancer via regulating miR-545-3p/HDGF axis, providing a potential target for the treatment of lung cancer.
Collapse
|
15
|
Li L, Huang K, Lu Z, Zhao H, Li H, Ye Q, Peng G. Bioinformatics analysis of LINC01554 and its co‑expressed genes in hepatocellular carcinoma. Oncol Rep 2020; 44:2185-2197. [PMID: 33000250 PMCID: PMC7551476 DOI: 10.3892/or.2020.7779] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 08/31/2020] [Indexed: 12/14/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related morbidity and mortality globally. Despite the remarkable improvements in comprehensive HCC treatment, the underlying mechanistic details of HCC remain elusive. We screened HCC patients for differentially expressed genes (DEGs) using the Gene Expression Omnibus (GSE113850) and The Cancer Genome Atlas (TCGA) datasets. LINC01554 expression in 40 paired samples was determined by quantitative reverse transcription polymerase chain reaction (RT-qPCR), and its clinical significance was assessed. LINC01554 was found to have a gain-of-function role in HCC in vitro. Additionally, the bioinformatics analysis of the genes co-expressed with LINC01554 was performed using the Co-LncRNA website, and potential molecular mechanisms were investigated using the Gene Ontology and Kyoto Encyclopaedia of Genes and Genomes resources and validated by in vitro experiments. A total of 229 DEGs were identified from the GSE113850 dataset. Among the identified DEGs, three long non-coding RNAs (lncRNAs) (DIO3OS, LINC01554, and LINC01093) with |logFC| ≥2 and P<0.05 were screened. A total of 148 lncRNAs with |logFC| ≥1 and P<0.05 were identified from TCGA dataset. Low LINC01554 expression levels were significantly correlated with overall survival, pathological stage, hepatitis B infection, tumour size, portal vein tumour thrombus, and TNM stage. Using gain-of-function assays, we further showed that LINC01554 inhibited the proliferation, migration, and invasion of the HCCLM9 and SK-Hep1 cells and promoted G0/G1 arrest, but it did not significantly affect apoptosis. Western blotting revealed that LINC01554 overexpression resulted in increased ZO-1 and E-cadherin expression levels, but decreased N-cadherin and vimentin expression levels. Moreover, LINC01554 overexpression inhibited Akt, p-Akt, β-catenin, and p-Gsk3β expression. Our results showed that LINC01554 repressed HCC cell invasiveness and epithelial-to-mesenchymal transition partly by inhibiting Wnt and PI3K-Akt signalling in vitro. Taken together, our findings provide new insights into the molecular mechanisms underlying HCC tumourigenesis and implicate LINC01554 as a potential target for HCC therapy.
Collapse
Affiliation(s)
- Ling Li
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, Hubei 430071, P.R. China
| | - Kang Huang
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, Hubei 430071, P.R. China
| | - Zhongshan Lu
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, Hubei 430071, P.R. China
| | - Huijia Zhao
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, Hubei 430071, P.R. China
| | - Hao Li
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, Hubei 430071, P.R. China
| | - Qifa Ye
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, Hubei 430071, P.R. China
| | - Guizhu Peng
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
16
|
Pan W, Wu A, Yu H, Yu Q, Zheng B, Yang W, Tian D, Li P, Gao Y. Involvement of the lncRNA AFAP1-AS1/microRNA-195/E2F3 axis in proliferation and migration of enteric neural crest stem cells of Hirschsprung's disease. Exp Physiol 2020; 105:1939-1949. [PMID: 32959905 DOI: 10.1113/ep088780] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 09/15/2020] [Indexed: 12/12/2022]
Abstract
NEW FINDINGS What is the central question of this study? Long non-coding RNAs (lncRNAs) are widely involved in the progression of Hirschsprung's disease (HSCR), but the role of actin filament associated protein 1 antisense RNA1 (AFAP1-AS1), an lncRNA, in HSCR has not been explored before. What is the main finding and its importance? Downregulation of AFAP1-AS1 blocks enteric neural crest stem cell proliferation, differentiation, migration and invasion and promotes the occurrence of HSCR via the miR-195/E2F3 axis, indicating thatAFAP1-AS might be a potential biomarker for HSCR patients. ABSTRACT Long non-coding RNAs (lncRNAs) are involved in several human disorders. Nevertheless, it remains unclear whether they are implicated in the phenotypes of enteric neural crest stem cells (ENCSCs) in Hirschsprung's disease (HSCR). Therefore, we designed this study to explore the pathogenicity of AFAP1-AS1 for HSCR. Microarray analysis and bioinformatic tools were used to screen out the differentially lncRNAs and microRNAs (miRNAs) in patients with HSCR. Small interference RNA transfection was applied to carry out functional experiments in ENCSCs. Cellular activities were detected by cell counting kit-8, 5-ethynyl-2'-deoxyuridine, Transwell assays and flow cytometry. Finally, rescue experiments were performed to examine the cofunction of AFAP1-AS1 and miR-195 and of miR-195 and E2F transcription factor 3 (E2F3). AFAP1-AS1 was reduced in HSCR patients. Meanwhile, knockdown of AFAP1-AS1 reduced the cell migratory and proliferative capacities and facilitated cell apoptosis along with G0/G1 phase arrest. E2F3 was diminished when miR-195 was upregulated, and AFAP1-AS1 inhibition reduced its ability to bind to miR-195. Altogether, AFAP1-AS1 silencing acts as an endogenous RNA by interacting with miR-195 to alter E2F3 expression, thus conferring repressive effects on ENCSC activity and promoting HSCR progression.
Collapse
Affiliation(s)
- Weikang Pan
- Department of Pediatric Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Ali Wu
- Department of Endoscopy, Shaanxi Nuclear Industry 215 Hospital, Xianyang, Shaanxi, PR China
| | - Hui Yu
- Department of Pediatric Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Qiang Yu
- Department of Pediatric Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Baijun Zheng
- Department of Pediatric Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Weili Yang
- Department of Pediatric Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Donghao Tian
- Department of Pediatric Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Peng Li
- Department of Pediatric Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Ya Gao
- Department of Pediatric Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| |
Collapse
|
17
|
Long Non-Coding RNAs as Strategic Molecules to Augment the Radiation Therapy in Esophageal Squamous Cell Carcinoma. Int J Mol Sci 2020; 21:ijms21186787. [PMID: 32947897 PMCID: PMC7576487 DOI: 10.3390/ijms21186787] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/09/2020] [Accepted: 09/13/2020] [Indexed: 12/12/2022] Open
Abstract
Intrinsic resistance to ionizing radiation is the major impediment in the treatment and clinical management of esophageal squamous cell carcinoma (ESCC), leading to tumor relapse and poor prognosis. Although several biological and molecular mechanisms are responsible for resistance to radiotherapy in ESCC, the molecule(s) involved in predicting radiotherapy response and prognosis are still lacking, thus requiring a detailed understanding. Recent studies have demonstrated an imperative correlation amongst several long non-coding RNAs and their involvement in complex cellular networks like DNA damage and repair, cell cycle, apoptosis, proliferation, and epithelial-mesenchymal transition. Additionally, accumulating evidence has suggested abnormal expression of lncRNAs in malignant tumor cells before and after radiotherapy effects in tumor cells' sensitivity. Thus, lncRNAs indeed represent unique molecules that can influence tumor cell susceptibility for various clinical interventions. On this note, herein, we have summarized the current status of lncRNAs in augmenting resistance/sensitivity in ESCC against radiotherapy. In addition, we have also discussed various strategies to increase the radiosensitivity in ESCC cells under clinical settings.
Collapse
|
18
|
Qu QH, Jiang SZ, Li XY. LncRNA TBX5-AS1 Regulates the Tumor Progression Through the PI3K/AKT Pathway in Non-Small Cell Lung Cancer. Onco Targets Ther 2020; 13:7949-7961. [PMID: 32884287 PMCID: PMC7431607 DOI: 10.2147/ott.s255195] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/10/2020] [Indexed: 12/12/2022] Open
Abstract
Purpose Long non-coding RNAs (lncRNAs) have been reported to play important roles in tumor biology. In this study, we aimed to investigate the effects of T-box transcription factor 5 antisense RNA 1 (TBX5-AS1) on aggressive phenotypes of non-small cell lung cancer (NSCLC) cells and explore its regulatory pathway. Methods The expression of TBX5-AS1 in tissues, plasma, and cells was determined by qRT-PCR. Cell viability, proliferation, migration, invasion, and apoptosis were assessed using MTT, colony formation, wound-healing, Transwell, and flow cytometry assay, respectively. Western blot analysis was performed to measure the expression of apoptosis-related proteins. Besides, transfected cells were exposed to PI3K activator (740Y-P) to verify the regulatory pathway. Results TBX5-AS1 expression was down-regulated in NSCLC tissues, plasma, and cells, and associated with lymph node metastasis and histological grade. Overexpression of TBX5-AS1 inhibited cell viability, colony formation, migration, and invasion, while it promoted apoptosis. Conversely, knockdown of TBX5-AS1 showed the completely opposite results. Additionally, western blot showed that the phosphorylation of PI3K and AKT was stimulated by TBX5-AS1 knockdown and suppressed by TBX5-AS1 overexpression. The addition of 740Y-P in transfected cells reversed the TBX5-AS1-induced inhibition of PI3K and AKT phosphorylation and effects on aggressive phenotypes of NSCLC cells. Conclusion The study confirmed the down-regulation of TBX5-AS1 in patients with NSCLC and its association with the progression. We innovatively proposed a possible model of TBX5-AS1-mediated gene regulation in NSCLC progression that TBX5-AS1 inhibited the aggressive phenotypes of NSCLC cells through inactivating the PI3K/AKT pathway. This finding provided a novel insight into NSCLC pathogenesis.
Collapse
Affiliation(s)
- Qing-Hai Qu
- Department of Blood Transfusion, Weifang Yidu Center Hospital, Weifang Medical University, Qingzhou, Shandong 262500, People's Republic of China
| | - Shui-Zheng Jiang
- Calling Ethos Construction Transfusion, Weifang Yidu Center Hospital, Weifang Medical University, Qingzhou, Shandong 262500, People's Republic of China
| | - Xin-Ying Li
- Department of Conservative Dentistry and Endodontics, Weifang Dental Hospital, Qingzhou, Shandong 262500, People's Republic of China
| |
Collapse
|
19
|
Shen W, Yu L, Cong A, Yang S, Wang P, Han G, Gu B, Zhang W. Silencing lncRNA AFAP1-AS1 Inhibits the Progression of Esophageal Squamous Cell Carcinoma Cells via Regulating the miR-498/VEGFA Axis. Cancer Manag Res 2020; 12:6397-6409. [PMID: 32801880 PMCID: PMC7402668 DOI: 10.2147/cmar.s254302] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 07/11/2020] [Indexed: 12/24/2022] Open
Abstract
Purpose In view of the continuous increase of the mortality rate, esophageal squamous cell carcinoma (ESCC) develops into a major health concern. In this study, we aimed to investigate the underlying mechanism of long noncoding RNA (lncRNA) actin filament-associated protein 1 antisense RNA (AFAP1-AS1)/microRNA-498 (miR-498)/vascular endothelial growth factor A (VEGFA) in ESCC cells. Methods The expression levels of AFAP1-AS1, miR-498 and VEGFA in ESCC tissues and cells were detected using quantitative real-time polymerase chain reaction (qRT-PCR). The effects of AFAP1-AS1 on ESCC cells proliferation and apoptosis were measured by methyl thiazolyl tetrazolium (MTT) and flow cytometry, respectively. Transwell assay was carried out to determine cell migration. In addition, VEGFA and cell behaviors-related proteins were determined by Western blot analysis. The targeted relationships of AFAP1-AS1 were verified by dual-luciferase reporter and RNA pull-down assays. Results The expression levels of lncRNA AFAP1-AS1 and VEGFA mRNA were upregulated, but miR-498 was downregulated in ESCC tissues and cells. Moreover, miR-498 was directly targeted by AFAP1-AS1 and there was a negative correlation between miR-498 and AFAP1-AS1. Functionally, AFAP1-AS1 silencing inhibited the proliferation and migration and induced apoptosis of ESCC cells. Interestingly, miR-498 inhibition rescued the effects of AFAP1-AS1 knockdown on cell proliferation, apoptosis and migration and restored the expression levels of tumor-developing marker proteins of AFAP1-AS1 silencing in Eca109 and KYSE-30 cells. Furthermore, VEGFA was verified as a direct target of miR-498 and reversed the effects of miR-498 overexpression on cell behaviors of ESCC in vitro. Conclusion Downregulation of AFAP1-AS1 impeded the proliferation and migration and induced apoptosis of ESCC cells by regulating miR-498/VEGFA axis, which might serve as a novel biomarker for the diagnosis and treatment of ESCC.
Collapse
Affiliation(s)
- Wenhao Shen
- Department of Oncology, Taizhou People's Hospital, Taizhou, Jiangsu, People's Republic of China.,Medical School of Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Lei Yu
- Department of Oncology, Taizhou People's Hospital, Taizhou, Jiangsu, People's Republic of China.,Medical School of Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Aihua Cong
- Department of Oncology, Taizhou People's Hospital, Taizhou, Jiangsu, People's Republic of China.,Medical School of Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Song Yang
- Department of Oncology, Taizhou People's Hospital, Taizhou, Jiangsu, People's Republic of China.,Medical School of Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Peng Wang
- Department of Oncology, Taizhou People's Hospital, Taizhou, Jiangsu, People's Republic of China.,Medical School of Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Gaohua Han
- Department of Oncology, Taizhou People's Hospital, Taizhou, Jiangsu, People's Republic of China.,Medical School of Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Bin Gu
- Medical School of Nantong University, Nantong, Jiangsu, People's Republic of China.,Department of Emergency, Taizhou People's Hospital, Taizhou, Jiangsu, People's Republic of China
| | - Wei Zhang
- Medical School of Nantong University, Nantong, Jiangsu, People's Republic of China.,Department of Infectious Disease, Taizhou People's Hospital, Taizhou, Jiangsu, People's Republic of China
| |
Collapse
|
20
|
LncRNA AFAP1-AS1 promotes osteoblast differentiation of human aortic valve interstitial cells through regulating miR-155/SMAD5 axis. Mol Cell Probes 2020; 50:101509. [PMID: 31945413 DOI: 10.1016/j.mcp.2020.101509] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/26/2019] [Accepted: 01/12/2020] [Indexed: 12/17/2022]
Abstract
AIM Degenerative calcific aortic valve disease (DCAVD) is a common valve disease characterized by massive calcium deposits in the aortic valve. Osteoblast differentiation of valve interstitial cells (VICs) is responsible for the formation of calcific nodules. This study aims to explore the function and underlying mechanism of long non-coding RNA (lncRNA) AFAP1-AS1 (actin filament-associated protein 1 antisense RNA 1) in the pathogenesis of DCAVD. METHODS AFAP1-AS1, miR-155 and mRNA levels were detected by qRT-PCR. Protein levels were measured by Western blot. Calcification deposition was examined by Alizarin Red staining. The interaction between AFAP1-AS1 and miR-155, as well as miR-155 and SMAD5 was evaluated using luciferase reporter assay. RESULTS AFAP1-AS1 expression was increased both in calcified aortic valves from DCAVD patients and after osteogenic induction in human VICs. Furthermore, AFAP1-AS1 overexpression promoted osteogenic differentiation of VICs, whereas AFAP1-AS1 knockdown inhibited osteogenic differentiation. Mechanistically, AFAP1-AS1 acted as a sponge for miR-155 to elevate SMAD5 expression. Further functional assays revealed that miR-155 mimic and SMAD5 silencing effectively reversed AFAP1-AS1-promoted osteogenic differentiation of VICs. CONCLUSION Collectively, AFAP1-AS1 promotes osteogenic differentiation of VICs, at least in part, by sponging miR-155 to upregulate SMAD5. This study sheds new light on lncRNA-directed therapeutics in DCAVD.
Collapse
|
21
|
Zhang Y, Jin T, Shen H, Yan J, Guan M, Jin X. Identification of Long Non-Coding RNA Expression Profiles and Co-Expression Genes in Thyroid Carcinoma Based on The Cancer Genome Atlas (TCGA) Database. Med Sci Monit 2019; 25:9752-9769. [PMID: 31856144 PMCID: PMC6931392 DOI: 10.12659/msm.917845] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Background Thyroid carcinoma is a malignancy with high morbidity and mortality. Genetic alterations play pivot roles in the pathogenesis of thyroid carcinoma, where long noncoding RNA (lncRNA) have been identified to be crucial. This study sought to investigate the biological functions of lncRNA expression profiles in thyroid carcinoma. Material/Methods The lncRNAs expression profiles were acquired from The Cancer Genome Atlas (TCGA) database according to 510 thyroid cancer tissues and 58 normal thyroid tissues. By using R package edgeR, differentially expressed RNAs were obtained. Also, an overall survival model was established based on Cox regression and clinical data then testified by Kaplan-Meier plot, receiver operating characteristic (ROC)-curve and C-index analysis. We investigated the co-expressed genes with lncRNAs involved in the prognostic model, as well as Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis was conducted R package clusterProfile. Results A total of 352 lncRNAs were identified as differentially expressed in thyroid carcinoma, and an overall survival model consisting of 8 signature lncRNAs was proposed (ROC=0.862, C-index=0.893, P<0.05), 3 of which (DOCK9-DT, FAM111A-DT, and LINC01736) represent co-expressed mRNAs. However, as an oncogene, only FAM111A-DT increased the prognostic risk in thyroid carcinoma. Furthermore, we found differential genes LINC01016, LHX1-DT, IGF2-AS, ND MIR1-1HG-AS1, significantly related to lymph node metastasis (P<0.05). Conclusions In this study, we clarified the differential lncRNA expression profiles which were related to the tumorigenesis and prognosis in thyroid carcinoma. Our results provide new rationale and understandings to the pathogenesis and regulatory mechanisms of thyroid carcinoma.
Collapse
Affiliation(s)
- Yun Zhang
- Department of Endocrine Surgery, Zhuji People's Hospital of Zhejiang Province, Zhuji, Zhejiang, China (mainland)
| | - Taobo Jin
- Department of Endocrine Surgery, Zhuji People's Hospital of Zhejiang Province, Zhuji, Zhejiang, China (mainland)
| | - Haipeng Shen
- Department of Endocrine Surgery, Zhuji People's Hospital of Zhejiang Province, Zhuji, Zhejiang, China (mainland)
| | - Junfeng Yan
- Department of Endocrine Surgery, Zhuji People's Hospital of Zhejiang Province, Zhuji, Zhejiang, China (mainland)
| | - Ming Guan
- Department of Endocrine Surgery, Zhuji People's Hospital of Zhejiang Province, Zhuji, Zhejiang, China (mainland)
| | - Xin Jin
- Department of Endocrine Surgery, Zhuji People's Hospital of Zhejiang Province, Zhuji, Zhejiang, China (mainland)
| |
Collapse
|
22
|
Ma X, Zhao X, Wang K, Tang X, Guo J, Mi M, Qi Y, Chang L, Huang Y, Tong D. Identification and analysis of long non-coding RNAs that are involved in inflammatory process in response to transmissible gastroenteritis virus infection. BMC Genomics 2019; 20:806. [PMID: 31684870 PMCID: PMC6829948 DOI: 10.1186/s12864-019-6156-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 10/09/2019] [Indexed: 12/28/2022] Open
Abstract
Background Transmissible gastroenteritis virus (TGEV) infection can cause acute inflammation. Long noncoding RNAs (lncRNAs) play important roles in a number of biological process including inflammation response. However, whether lncRNAs participate in TGEV-induced inflammation in porcine intestinal epithelial cells (IPECs) is largely unknown. Results In this study, the next-generation sequencing (NGS) technology was used to analyze the profiles of lncRNAs in Mock and TGEV-infected porcine intestinal epithelial cell-jejunum 2 (IPEC-J2) cell line. A total of 106 lncRNAs were differentially expressed. Many differentially expressed lncRNAs act as elements to competitively attach microRNAs (miRNAs) which target to messenger RNA (mRNAs) to mediate expression of genes that related to toll-like receptors (TLRs), NOD-like receptors (NLRs), tumor necrosis factor (TNF), and RIG-I-like receptors (RLRs) pathways. Functional analysis of the binding proteins and the up/down-stream genes of the differentially expressed lncRNAs revealed that lncRNAs were principally related to inflammatory response. Meanwhile, we found that the differentially expressed lncRNA TCONS_00058367 might lead to a reduction of phosphorylation of transcription factor p65 (p-p65) in TGEV-infected IPEC-J2 cells by negatively regulating its antisense gene promyelocytic leukemia (PML). Conclusions The data showed that differentially expressed lncRNAs might be involved in inflammatory response induced by TGEV through acting as miRNA sponges, regulating their up/down-stream genes, or directly binding proteins.
Collapse
Affiliation(s)
- Xuelian Ma
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Xiaomin Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Kaili Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Xiaoyi Tang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Jianxiong Guo
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Mi Mi
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Yanping Qi
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Lingling Chang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Yong Huang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Dewen Tong
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| |
Collapse
|
23
|
Chi Y, Wang D, Wang J, Yu W, Yang J. Long Non-Coding RNA in the Pathogenesis of Cancers. Cells 2019; 8:1015. [PMID: 31480503 PMCID: PMC6770362 DOI: 10.3390/cells8091015] [Citation(s) in RCA: 577] [Impact Index Per Article: 96.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/25/2019] [Accepted: 08/29/2019] [Indexed: 12/24/2022] Open
Abstract
The incidence and mortality rate of cancer has been quickly increasing in the past decades. At present, cancer has become the leading cause of death worldwide. Most of the cancers cannot be effectively diagnosed at the early stage. Although there are multiple therapeutic treatments, including surgery, radiotherapy, chemotherapy, and targeted drugs, their effectiveness is still limited. The overall survival rate of malignant cancers is still low. It is necessary to further study the mechanisms for malignant cancers, and explore new biomarkers and targets that are more sensitive and effective for early diagnosis, treatment, and prognosis of cancers than traditional biomarkers and methods. Long non-coding RNAs (lncRNAs) are a class of RNA transcripts with a length greater than 200 nucleotides. Generally, lncRNAs are not capable of encoding proteins or peptides. LncRNAs exert diverse biological functions by regulating gene expressions and functions at transcriptional, translational, and post-translational levels. In the past decade, it has been demonstrated that the dysregulated lncRNA profile is widely involved in the pathogenesis of many diseases, including cancer, metabolic disorders, and cardiovascular diseases. In particular, lncRNAs have been revealed to play an important role in tumor growth and metastasis. Many lncRNAs have been shown to be potential biomarkers and targets for the diagnosis and treatment of cancers. This review aims to briefly discuss the latest findings regarding the roles and mechanisms of some important lncRNAs in the pathogenesis of certain malignant cancers, including lung, breast, liver, and colorectal cancers, as well as hematological malignancies and neuroblastoma.
Collapse
Affiliation(s)
- Yujing Chi
- Department of Central Laboratory & Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing 100044, China
| | - Di Wang
- Department of Central Laboratory & Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing 100044, China
| | - Junpei Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
- Key Laboratory of Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Beijing 100191, China
| | - Weidong Yu
- Department of Central Laboratory & Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing 100044, China
| | - Jichun Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.
- Key Laboratory of Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Beijing 100191, China.
| |
Collapse
|
24
|
Yu S, Yang D, Ye Y, Liu P, Chen Z, Lei T, Pu J, Liu L, Wang Z. Long noncoding RNA actin filament-associated protein 1 antisense RNA 1 promotes malignant phenotype through binding with lysine-specific demethylase 1 and repressing HMG box-containing protein 1 in non-small-cell lung cancer. Cancer Sci 2019; 110:2211-2225. [PMID: 31069893 PMCID: PMC6609801 DOI: 10.1111/cas.14039] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/28/2019] [Accepted: 05/06/2019] [Indexed: 12/16/2022] Open
Abstract
The number of documented long noncoding RNAs (lncRNAs) has dramatically increased, and their biological functions and underlying mechanisms in pathological processes, especially cancer, remain to be elucidated. Actin filament-associated protein 1 antisense RNA 1 (AFAP1-AS1) is a 6810-nt lncRNA located on chromosome 4p16.1 that was first reported to be upregulated in esophageal adenocarcinoma tissues and cell lines. Here we reported that AFAP1-AS1, recruiting and binding to lysine-specific demethylase 1 (LSD1), was generally overexpressed in human non-small-cell lung cancer (NSCLC) tissues using quantitative real-time PCR. Higher AFAP1-AS1 expression was significantly correlated with larger tumor size (P = .008), lymph node metastasis (P = .025), higher TNM stage (P = .024), and worse overall survival in NSCLC patients. In vitro experiments revealed that AFAP1-AS1 downregulation inhibited cell migration and induced apoptosis; AFAP1-AS1 knockdown also hindered tumorigenesis in vivo. Moreover, mechanistic investigations including RNA immunoprecipitation and ChIP assays validated that AFAP1-AS1 repressed HMG box-containing protein 1 (HBP1) expression by recruiting LSD1 to the HBP1 promoter regions in PC-9 and H1975 cells. Furthermore, HBP1 functions as a tumor suppressor, and its ectopic expression hindered cell proliferation. Rescue assays determined that the oncogenic effect of AFAP1-AS1 is partially dependent on the epigenetic silencing of HBP1. In conclusion, our results indicate that AFAP1-AS1 is carcinogenic and that the AFAP1-AS1/LSD1/HBP1 axis could constitute a new therapeutic direction for NSCLC.
Collapse
Affiliation(s)
- Shanxun Yu
- Department of OncologyThe Second Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Daolu Yang
- Department of OncologyThe Second Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Yunyao Ye
- Department of OncologyThe Second Affiliated Hospital of Nanjing Medical UniversityNanjingChina
- Department of OncologyTaizhou People's HospitalTaizhouChina
| | - Pei Liu
- Department of OncologyThe Second Affiliated Hospital of Nanjing Medical UniversityNanjingChina
- Department of Digestive OncologyThe Fourth Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Zhenyao Chen
- Department of OncologyThe Second Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Tianyao Lei
- Department of OncologyThe Second Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Jiaze Pu
- Department of Digestive OncologyThe Fourth Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Longfa Liu
- Department of Digestive OncologyThe Fourth Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Zhaoxia Wang
- Department of OncologyThe Second Affiliated Hospital of Nanjing Medical UniversityNanjingChina
- Cancer Medical CenterThe Second Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| |
Collapse
|