1
|
Yang M, Li J, Huang X, Jin S, Wan S, Wu S. AT1, a small molecular degrader of BRD4 based on proteolysis targeting chimera technology alleviates renal fibrosis and inflammation in diabetic nephropathy. Bioorg Chem 2025; 156:108184. [PMID: 39862737 DOI: 10.1016/j.bioorg.2025.108184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 12/31/2024] [Accepted: 01/17/2025] [Indexed: 01/27/2025]
Abstract
Both type 1 and type 2 diabetes can lead to diabetic nephropathy (DN), a serious microvascular complication. Bromodomain 4 (BRD4), a member of the BET protein family, has been linked to various diseases, including cancer, inflammation, and fibrosis, and may be involved in the development of diabetes and its complications. In this study, we first explored the role and mechanism of BRD4 in DN. We found that BRD4 expression was upregulated in both diabetic cells and animal models, and that BRD4 knockdown alleviated DN. Therefore, we next investigated the effect of AT1, a small-molecule degrader of BRD4 based on proteolysis targeting chimera (PROTAC) technology, on DN improvement. PROTAC has seldom been applied to non-oncological diseases, and this study represents the first application of AT1 to DN. Finally, we explored the molecular mechanisms underlying DN improvement.
Collapse
Affiliation(s)
- Meng Yang
- School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China
| | - Jialin Li
- School of Pharmacy, Gannan Medical University, Ganzhou 341000, China
| | - Xiaocui Huang
- School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China
| | - Songzhi Jin
- School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China
| | - Shujing Wan
- School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China
| | - Suzhen Wu
- School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China.
| |
Collapse
|
2
|
Sun J, Gui Y, Zhou S, Zheng XL. Unlocking the secrets of aging: Epigenetic reader BRD4 as the target to combatting aging-related diseases. J Adv Res 2024; 63:207-218. [PMID: 37956861 PMCID: PMC11379999 DOI: 10.1016/j.jare.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/03/2023] [Accepted: 11/05/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Aging, a complex and profound journey, leads us through a labyrinth of physiological and pathological transformations, rendering us increasingly susceptible to aging-related diseases. Emerging investigations have unveiled the function of bromodomain containing protein 4 (BRD4) in manipulating the aging process and driving the emergence and progression of aging-related diseases. AIM OF REVIEW This review aims to offer a comprehensive outline of BRD4's functions involved in the aging process, and potential mechanisms through which BRD4 governs the initiation and progression of various aging-related diseases. KEY SCIENTIFIC CONCEPTS OF REVIEW BRD4 has a fundamental role in regulating the cell cycle, apoptosis, cellular senescence, the senescence-associated secretory phenotype (SASP), senolysis, autophagy, and mitochondrial function, which are involved in the aging process. Several studies have indicated that BRD4 governs the initiation and progression of various aging-related diseases, including Alzheimer's disease, ischemic cerebrovascular diseases, hypertension, atherosclerosis, heart failure, aging-related pulmonary fibrosis, and intervertebral disc degeneration (IVDD). Thus, the evidence from this review supports that BRD4 could be a promising target for managing various aging-related diseases, while further investigation is warranted to gain a thorough understanding of BRD4's role in these diseases.
Collapse
Affiliation(s)
- Jiaxing Sun
- Departments of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, AB, Canada; Department of Cardiology, the Second Xiangya Hospital of Central South University, Changsha, China
| | - Yu Gui
- Departments of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, AB, Canada
| | - Shenghua Zhou
- Department of Cardiology, the Second Xiangya Hospital of Central South University, Changsha, China.
| | - Xi-Long Zheng
- Departments of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, AB, Canada.
| |
Collapse
|
3
|
Jia S, Jia Y, Liang S, Wu L. Research progress of multi-target HDAC inhibitors blocking the BRD4-LIFR-JAK1-STAT3 signaling pathway in the treatment of cancer. Bioorg Med Chem 2024; 110:117827. [PMID: 38964169 DOI: 10.1016/j.bmc.2024.117827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/28/2024] [Accepted: 06/30/2024] [Indexed: 07/06/2024]
Abstract
Histone deacetylase inhibitors (HDACis) show beneficial effects on different hematological malignancy subtypes. However, their impacts on treating solid tumors are still limited due to diverse resistance mechanisms. Recent studies have found that the feedback activation of BRD4-LIFR-JAK1-STAT3 pathway after HDACi incubation is a vital mechanism inducing resistance of specific solid tumor cells to HDACis. This review summarizes the recent development of multi-target HDACis that can concurrently block BRD4-LIFR-JAK1-STAT3 pathway. Moreover, our findings hope to shed novel lights on developing novel multi-target HDACis with reduced BRD4-LIFR-JAK1-STAT3-mediated drug resistance in some tumors.
Collapse
Affiliation(s)
- Shuting Jia
- Jincheng People's Hospital, Jincheng 048026, China
| | - Yuye Jia
- Jincheng People's Hospital, Jincheng 048026, China
| | - Sufang Liang
- Jincheng People's Hospital, Jincheng 048026, China
| | - Liqiang Wu
- School of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China.
| |
Collapse
|
4
|
Yongprayoon V, Wattanakul N, Khomate W, Apithanangsiri N, Kasitipradit T, Nantajit D, Tavassoli M. Targeting BRD4: Potential therapeutic strategy for head and neck squamous cell carcinoma (Review). Oncol Rep 2024; 51:74. [PMID: 38606512 DOI: 10.3892/or.2024.8733] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/01/2024] [Indexed: 04/13/2024] Open
Abstract
As a member of BET (bromodomain and extra-terminal) protein family, BRD4 (bromodomain‑containing protein 4) is a chromatin‑associated protein that interacts with acetylated histones and actively recruits regulatory proteins, leading to the modulation of gene expression and chromatin remodeling. The cellular and epigenetic functions of BRD4 implicate normal development, fibrosis and inflammation. BRD4 has been suggested as a potential therapeutic target as it is often overexpressed and plays a critical role in regulating gene expression programs that drive tumor cell proliferation, survival, migration and drug resistance. To address the roles of BRD4 in cancer, several drugs that specifically target BRD4 have been developed. Inhibition of BRD4 has shown promising results in preclinical models, with several BRD4 inhibitors undergoing clinical trials for the treatment of various cancers. Head and neck squamous cell carcinoma (HNSCC), a heterogeneous group of cancers, remains a health challenge with a high incidence rate and poor prognosis. Conventional therapies for HNSCC often cause adverse effects to the patients. Targeting BRD4, therefore, represents a promising strategy to sensitize HNSCC to chemo‑ and radiotherapy allowing de‑intensification of the current therapeutic regime and subsequent reduced side effects. However, further studies are required to fully understand the underlying mechanisms of action of BRD4 in HNSCC in order to determine the optimal dosing and administration of BRD4‑targeted drugs for the treatment of patients with HNSCC.
Collapse
Affiliation(s)
- Voraporn Yongprayoon
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| | - Napasporn Wattanakul
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| | - Winnada Khomate
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| | - Nathakrit Apithanangsiri
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| | - Tarathip Kasitipradit
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| | - Danupon Nantajit
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| | - Mahvash Tavassoli
- Centre for Host Microbiome Interactions, King's College London, London SE1 1UL, UK
| |
Collapse
|
5
|
He Z, Zhong Y, Hu H, Li F. ZFP64 Promotes Gallbladder Cancer Progression through Recruiting HDAC1 to Activate NOTCH1 Signaling Pathway. Cancers (Basel) 2023; 15:4508. [PMID: 37760477 PMCID: PMC10527061 DOI: 10.3390/cancers15184508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/26/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
The lack of meaningful and effective early-stage markers remains the major challenge in the diagnosis of gallbladder cancer (GBC) and a huge barrier to timely treatment. Zinc finger protein 64 (ZFP64), a member of the zinc finger protein family, is considered to be a promising predictor in multiple tumors, but its potential effect in GBC still remains unclear. Here, we identified that ZFP64 was a vital regulatory protein in GBC. We found that ZFP64 expressed higher in GBC gallbladder carcinoma tissues than in normal tissues and was positively correlated with poor prognosis. Furthermore, ZFP64 was responsible for the migration, invasion, proliferation, anti-apoptosis, and epithelial mesenchymal transition (EMT) of GBC cells in vitro and in vivo. Mechanistically, through Co-IP assay, we confirmed that ZFP64 recruits HDAC1 localized to the promoter region of NUMB for deacetylation and therefore inhibits NUMB expression. The downregulation of NUMB enhanced the activation of the Notch1 signaling pathway, which is indispensable for the GBC-promotion effect of ZFP64 on GBC. In conclusion, ZFP64 regulated GBC progression and metastasis through upregulating the Notch1 signaling pathway, and thus ZFP64 is expected to become a new focus for a GBC prognostic marker and targeted therapy.
Collapse
Affiliation(s)
- Zhiqiang He
- Department of Biliary Surgery, West China Hospital, Sichuan University, Chengdu 610041, China;
| | - Yuhan Zhong
- Laboratory of Liver Transplantation, Key Laboratory of Transplant Engineering and Immunology, National Health Commission (NHC), West China Hospital, Sichuan University, Chengdu 610041, China;
| | - Haijie Hu
- Department of Biliary Surgery, West China Hospital, Sichuan University, Chengdu 610041, China;
| | - Fuyu Li
- Department of Biliary Surgery, West China Hospital, Sichuan University, Chengdu 610041, China;
| |
Collapse
|
6
|
Yang X, Xu L, Yang L, Xu S. Research progress of STAT3-based dual inhibitors for cancer therapy. Bioorg Med Chem 2023; 91:117382. [PMID: 37369169 DOI: 10.1016/j.bmc.2023.117382] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023]
Abstract
Signal transducer and activator of transcription 3 (STAT3), a transcription factor, regulates gene levels that are associated with cell survival, cell cycle, and immune reaction. It is correlated with the grade of malignancy and the development of various cancers and targeting STAT3 protein is a potentially promising therapeutic strategy for tumors. Over the past 20 years, various compounds have been found to directly inhibit STAT3 activity via different strategies. However, numerous difficulties exist in the development of STAT3 inhibitors, such as serious toxic effects, poor therapeutic effects, and intrinsic and acquired drug resistance. STAT3 inhibitors synergistically suppress cancer development with additional anti-tumor drugs, such as indoleamine 2,3-dioxygenase 1 inhibitors (IDO1i), histone deacetylase inhibitors (HDACi), DNA inhibitors, pro-tumorigenic cytokine inhibitors (PTCi), NF-κB inhibitors, and tubulin inhibitors. Therefore, individual molecule- based dual-target inhibitors can be the candidate alternative or complementary treatment to overcome the disadvantages of just STAT3 or other targets as a monotherapy. In this review, we discuss the theoretical basis for formulating STAT3-based dual-target inhibitors and also summarize their structure-activity relationships (SARs).
Collapse
Affiliation(s)
- Xiaojuan Yang
- School of Pharmacy, Xinxiang University, Xinxiang 453003, China.
| | - Lu Xu
- School of Pharmacy, Xinxiang University, Xinxiang 453003, China
| | - Li Yang
- School of Pharmacy, Xinxiang University, Xinxiang 453003, China
| | - Shaohong Xu
- School of Pharmacy, Xinxiang University, Xinxiang 453003, China.
| |
Collapse
|
7
|
Duan W, Yu M, Chen J. BRD4: New Hope in the Battle Against Glioblastoma. Pharmacol Res 2023; 191:106767. [PMID: 37061146 DOI: 10.1016/j.phrs.2023.106767] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/30/2023] [Accepted: 04/12/2023] [Indexed: 04/17/2023]
Abstract
The BET family proteins, comprising BRD2, BRD3 and BRD4, represent epigenetic readers of acetylated histone marks that play pleiotropic roles in the tumorigenesis and growth of multiple human malignancies, including glioblastoma (GBM). A growing body of investigation has proven BET proteins as valuable therapeutic targets for cancer treatment. Recently, several BRD4 inhibitors and degraders have been reported to successfully suppress GBM in preclinical and clinical studies. However, the precise role and mechanism of BRD4 in the pathogenesis of GBM have not been fully elucidated or summarized. This review focuses on summarizing the roles and mechanisms of BRD4 in the context of the initiation and development of GBM. In addition, several BRD4 inhibitors have been evaluated for therapeutic purposes as monotherapy or in combination with chemotherapy, radiotherapy, and immune therapies. Here, we provide a critical appraisal of studies evaluating various BRD4 inhibitors and degraders as novel treatment strategies against GBM.
Collapse
Affiliation(s)
- Weichen Duan
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Miao Yu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Jiajia Chen
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| |
Collapse
|
8
|
Chen J, Wang Z, Phuc T, Xu Z, Yang D, Chen Z, Lin Z, Kendrick S, Dai L, Li HY, Qin Z. Oncolytic strategy using new bifunctional HDACs/BRD4 inhibitors against virus-associated lymphomas. PLoS Pathog 2023; 19:e1011089. [PMID: 36638143 PMCID: PMC9879403 DOI: 10.1371/journal.ppat.1011089] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 01/26/2023] [Accepted: 12/26/2022] [Indexed: 01/14/2023] Open
Abstract
Primary effusion lymphoma (PEL) caused by Kaposi sarcoma-associated herpesvirus (KSHV) is an aggressive malignancy with poor prognosis even under chemotherapy. Currently, there is no specific treatment for PEL therefore requiring new therapies. Both histone deacetylases (HDACs) and bromodomain-containing protein 4 (BRD4) have been found as therapeutic targets for PEL through inducing viral lytic reactivation. However, the strategy of dual targeting with one agent and potential synergistic effects have never been explored. In the current study, we first demonstrated the synergistic effect of concurrently targeting HDACs and BRD4 on KSHV reactivation by using SAHA or entinostat (HDACs inhibitors) and (+)-JQ1 (BRD4 inhibitor), which indicated dual blockage of HDACs/BRD4 is a viable therapeutic approach. We were then able to rationally design and synthesize a series of new small-molecule inhibitors targeting HDACs and BRD4 with a balanced activity profile by generating a hybrid of the key binding motifs between (+)-JQ1 and entinostat or SAHA. Upon two iterative screenings of optimized compounds, a pair of epimers, 009P1 and 009P2, were identified to better inhibit the growth of KSHV positive lymphomas compared to (+)-JQ1 or SAHA alone at low nanomolar concentrations, but not KSHV negative control cells or normal cells. Mechanistic studies of 009P1 and 009P2 demonstrated significantly enhanced viral reactivation, cell cycle arrest and apoptosis in KSHV+ lymphomas through dually targeting HDACs and BRD4 signaling activities. Importantly, in vivo preclinical studies showed that 009P1 and 009P2 dramatically suppressed KSHV+ lymphoma progression with oral bioavailability and minimal visible toxicity. These data together provide a novel strategy for the development of agents for inducing lytic activation-based therapies against these viruses-associated malignancies.
Collapse
Affiliation(s)
- Jungang Chen
- Department of Pathology, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Zhengyu Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Tran Phuc
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Zhigang Xu
- College of Pharmacy, Chongqing University of Arts and Sciences, Yongchuan, Chongqing, China
| | - Donglin Yang
- College of Pharmacy, Chongqing University of Arts and Sciences, Yongchuan, Chongqing, China
| | - Zhengzhu Chen
- College of Pharmacy, Chongqing University of Arts and Sciences, Yongchuan, Chongqing, China
| | - Zhen Lin
- Department of Pathology, Tulane University Health Sciences Center, Tulane Cancer Center, New Orleans, Louisiana, United States of America
| | - Samantha Kendrick
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Lu Dai
- Department of Pathology, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Hong-yu Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- * E-mail: (HL); (ZQ)
| | - Zhiqiang Qin
- Department of Pathology, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- * E-mail: (HL); (ZQ)
| |
Collapse
|
9
|
Wu Z, Yu X, Zhang S, He Y, Guo W. The role of PI3K/AKT signaling pathway in gallbladder carcinoma. Am J Transl Res 2022; 14:4426-4442. [PMID: 35958463 PMCID: PMC9360899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVES The prognosis of gallbladder carcinoma (GBC) is poor, with a less than 5% five-year survival rate. Identifying the mechanisms underlying GBC occurrence and advancement is necessary to improve GBC patient prognosis and survival rates. The phosphatidylinositol 3-kinase (PI3K)/serine-threonine kinase (AKT) pathway is involved in cancer deterioration, tumor growth, cell proliferation, and distant metastasis. Studying the impacts of the PI3K/AKT pathway has resulted in the identification of key factors involved in GBC progression that might serve as therapeutic targets, promoting the development of new treatments. METHODS We reviewed recent literature exploring abnormal regulation of the PI3K/AKT pathway in gallbladder cancer, with a focus on abnormal RNA levels, protein level regulation, and drug treatment advances. RESULTS Further investigation of the regulation of small molecules and proteins by the PI3K/AKT pathway might ultimately provide new diagnostic or prognostic markers or cancer treatment targets. Recent studies have focused on RNA and proteins involved in the regulation of the cell cycle or cell movement in cancer progression via PI3K/AKT pathway, the use of anticancer drug combinations, or the anticancer effects of drugs not currently utilized for cancer treatment. CONCLUSIONS We herein review the known available molecules that affect the PI3K/AKT pathway in patients with GBC and the mechanisms of drug action associated with this pathway.
Collapse
Affiliation(s)
- Zeyu Wu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan UniversitiesZhengzhou 450052, Henan, China
- Henan Key Laboratory of Digestive Organ TransplantationZhengzhou 450052, Henan, China
| | - Xiao Yu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan UniversitiesZhengzhou 450052, Henan, China
- Henan Key Laboratory of Digestive Organ TransplantationZhengzhou 450052, Henan, China
| | - Shuijun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan UniversitiesZhengzhou 450052, Henan, China
- Henan Key Laboratory of Digestive Organ TransplantationZhengzhou 450052, Henan, China
| | - Yuting He
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan UniversitiesZhengzhou 450052, Henan, China
- Henan Key Laboratory of Digestive Organ TransplantationZhengzhou 450052, Henan, China
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan UniversitiesZhengzhou 450052, Henan, China
- Henan Key Laboratory of Digestive Organ TransplantationZhengzhou 450052, Henan, China
| |
Collapse
|
10
|
Yao WY, Wu XS, Liu SL, Wu ZY, Dong P, Gong W. Preoperative lymphocyte to C-reactive protein ratio as a new prognostic indicator in patients with resectable gallbladder cancer. Hepatobiliary Pancreat Dis Int 2022; 21:267-272. [PMID: 34507896 DOI: 10.1016/j.hbpd.2021.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 08/11/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Inflammation is often related to cancer, and several inflammatory scores have been established to predict the prognosis of various types of cancer. Our study aimed to determine the prognostic value of the preoperative lymphocyte to C-reactive protein ratio (LCR) for predicting postoperative outcomes in patients with resectable gallbladder cancer (GBC). METHODS A retrospective analysis of 104 GBC patients who received curative surgery at Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine from January 2000 to December 2016 was performed. A time-dependent receiver operating characteristic curve was constructed to evaluate the accuracy of different markers. Univariate and multivariate Cox proportional hazard models were used to define factors associated with overall survival. RESULTS Among the assessed variables, the preoperative LCR showed the highest accuracy in predicting the overall survival of GBC patients (AUC: 0.736). Decreased preoperative LCR was significantly associated with advanced tumor stage, including tumor invasion (P = 0.018), lymph node metastasis (P = 0.011) and TNM stage (P = 0.022). A low preoperative LCR (cutoff threshold = 145.5) was an independent risk factor for overall survival in patients with resectable GBC (P < 0.001). CONCLUSIONS The preoperative LCR is a novel and valuable prognostic indicator of postoperative survival in patients with resectable GBC.
Collapse
Affiliation(s)
- Wen-Yan Yao
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai 200092, China
| | - Xiang-Song Wu
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai 200092, China
| | - Shi-Lei Liu
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai 200092, China
| | - Zi-You Wu
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai 200092, China
| | - Ping Dong
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai 200092, China
| | - Wei Gong
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai 200092, China.
| |
Collapse
|
11
|
Suppression of histone deacetylase 1 by JSL-1 attenuates the progression and metastasis of cholangiocarcinoma via the TPX2/Snail axis. Cell Death Dis 2022; 13:324. [PMID: 35395834 PMCID: PMC8993895 DOI: 10.1038/s41419-022-04571-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 12/19/2021] [Accepted: 01/19/2022] [Indexed: 01/06/2023]
Abstract
AbstractHistone deacetylases (HDACs) are entwined with the pathogenesis of various cancers and potentially serve as promising therapeutic targets. Herein, we intend to explore the potential role of HDAC1 inhibitor (JSL-1) in the tumorigenesis and metastasis of cholangiocarcinoma (CC) and to highlight the molecular basis of its function. As shown by bioinformatics analysis and immunohistochemical detection, high HDAC1 expression was witnessed in CC tissues relative to matched controls from patients with cholecystitis. The molecular network that HDAC1 silencing reduced the enrichment of HDAC1 and Snail on the TPX2 promoter was identified using immunoprecipitation and chromatin immunoprecipitation assays. Both short hairpin RNA (shRNA)-mediated knockdown of HDAC1 and JSL-1 treatment exhibited anti-proliferative, anti-migration and anti-invasion effects on CC cells through downregulation of TPX2. The in vivo xenograft model was developed in nude mice. Consistently, the anti-tumorigenic and anti-metastatic properties of shRNA against HDAC1 and HDAC1 inhibitor were validated in the in vivo settings. Taken together, our data supported the notion that HDAC1 inhibitor retards the initiation and development of CC via mediating the TPX2/Snail axis, highlighting the anti-tumor molecular network functioned in CC.
Collapse
|
12
|
Yu B, Liu L, Cai F, Peng Y, Tang X, Zeng D, Li T, Zhang F, Liang Y, Yuan X, Li J, Dai Z, Liao Q, Lv XB. The synergistic anticancer effect of the bromodomain inhibitor OTX015 and histone deacetylase 6 inhibitor WT-161 in osteosarcoma. Cancer Cell Int 2022; 22:64. [PMID: 35135529 PMCID: PMC8822767 DOI: 10.1186/s12935-022-02443-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 01/01/2022] [Indexed: 12/04/2022] Open
Abstract
Background Osteosarcoma (OS) is a tumour with a high malignancy level and a poor prognosis. First-line chemotherapy for OS has not been improved for many decades. Bromodomain and extraterminal domain (BET) and histone deacetylases (HDACs) regulate histone acetylation in tandem, and BET and HDACs have emerged as potential cancer therapeutic targets. Methods Cell proliferation, migration, invasion, colony formation, and sphere-forming assays were performed with the two inhibitors alone or in combination to evaluate their suppressive effect on the malignant properties of OS cells. Apoptosis and the cell cycle profile were measured by flow cytometry. The synergistic inhibitory effect of OTX015/WT-161 on tumours was also examined in a nude mouse xenograft model. Results The combined therapy of OTX015/WT-161 synergistically inhibited growth, migration, and invasion and induced apoptosis, resulting in G1/S arrest of OS cells. Additionally, OTX015/WT-161 inhibited the self-renewal ability of OS stem cells (OSCs) in a synergistic manner. Further mechanistic exploration revealed that the synergistic downregulation of β-catenin by OTX015-mediated suppression of FZD2 and WT-161-mediated upregulation of PTEN may be critical for the synergistic effect. Finally, the results of an in vivo assay showed that tumour xenografts were significantly decreased after treatment with the OTX015/WT-161 combination compared with OTX015 or WT-161 alone. Conclusions Our findings in this study demonstrated that OTX015 and WT-161 had synergistic anticancer efficacy against OS, and their combination might be a promising therapeutic strategy for OS. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-022-02443-y.
Collapse
Affiliation(s)
- Bo Yu
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, Central Laboratory, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, North 128 Xiangshan Road, Nanchang, 330008, Jiangxi, People's Republic of China.,Department of Orthopedics, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, North 128 Xiangshan Road, Nanchang, 330008, Jiangxi, People's Republic of China
| | - Lang Liu
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, Central Laboratory, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, North 128 Xiangshan Road, Nanchang, 330008, Jiangxi, People's Republic of China.,Department of Orthopedics, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, North 128 Xiangshan Road, Nanchang, 330008, Jiangxi, People's Republic of China
| | - Feng Cai
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, Central Laboratory, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, North 128 Xiangshan Road, Nanchang, 330008, Jiangxi, People's Republic of China.,Department of Orthopedics, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, North 128 Xiangshan Road, Nanchang, 330008, Jiangxi, People's Republic of China
| | - Yuanxiang Peng
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, Central Laboratory, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, North 128 Xiangshan Road, Nanchang, 330008, Jiangxi, People's Republic of China.,Department of Orthopedics, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, North 128 Xiangshan Road, Nanchang, 330008, Jiangxi, People's Republic of China
| | - Xiaofeng Tang
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, Central Laboratory, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, North 128 Xiangshan Road, Nanchang, 330008, Jiangxi, People's Republic of China
| | - Duo Zeng
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, Central Laboratory, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, North 128 Xiangshan Road, Nanchang, 330008, Jiangxi, People's Republic of China.,Department of Orthopedics, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, North 128 Xiangshan Road, Nanchang, 330008, Jiangxi, People's Republic of China
| | - Teng Li
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, Central Laboratory, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, North 128 Xiangshan Road, Nanchang, 330008, Jiangxi, People's Republic of China.,Department of Orthopedics, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, North 128 Xiangshan Road, Nanchang, 330008, Jiangxi, People's Republic of China
| | - Feifei Zhang
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, Central Laboratory, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, North 128 Xiangshan Road, Nanchang, 330008, Jiangxi, People's Republic of China
| | - Yiping Liang
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, Central Laboratory, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, North 128 Xiangshan Road, Nanchang, 330008, Jiangxi, People's Republic of China
| | - Xuhui Yuan
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, Central Laboratory, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, North 128 Xiangshan Road, Nanchang, 330008, Jiangxi, People's Republic of China.,Department of Orthopedics, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, North 128 Xiangshan Road, Nanchang, 330008, Jiangxi, People's Republic of China
| | - Jiayu Li
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, Central Laboratory, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, North 128 Xiangshan Road, Nanchang, 330008, Jiangxi, People's Republic of China.,Department of Orthopedics, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, North 128 Xiangshan Road, Nanchang, 330008, Jiangxi, People's Republic of China
| | - Zhengzai Dai
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, Central Laboratory, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, North 128 Xiangshan Road, Nanchang, 330008, Jiangxi, People's Republic of China.,Department of Orthopedics, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, North 128 Xiangshan Road, Nanchang, 330008, Jiangxi, People's Republic of China
| | - Qi Liao
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, Central Laboratory, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, North 128 Xiangshan Road, Nanchang, 330008, Jiangxi, People's Republic of China. .,Department of Orthopedics, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, North 128 Xiangshan Road, Nanchang, 330008, Jiangxi, People's Republic of China.
| | - Xiao-Bin Lv
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, Central Laboratory, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, North 128 Xiangshan Road, Nanchang, 330008, Jiangxi, People's Republic of China.
| |
Collapse
|
13
|
Elamin G, Aljoundi A, Soliman ME. A synergistic multitargeted of BET and HDAC: an intra-molecular mechanism of communication in treatment of Waldenström macroglobulinemia. MOLECULAR SIMULATION 2021. [DOI: 10.1080/08927022.2021.2005248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Ghazi Elamin
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Aimen Aljoundi
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Mahmoud E.S. Soliman
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
14
|
BET Proteins as Attractive Targets for Cancer Therapeutics. Int J Mol Sci 2021; 22:ijms222011102. [PMID: 34681760 PMCID: PMC8538173 DOI: 10.3390/ijms222011102] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/04/2021] [Accepted: 10/08/2021] [Indexed: 12/15/2022] Open
Abstract
Transcriptional dysregulation is a hallmark of cancer and can be an essential driver of cancer initiation and progression. Loss of transcriptional control can cause cancer cells to become dependent on certain regulators of gene expression. Bromodomain and extraterminal domain (BET) proteins are epigenetic readers that regulate the expression of multiple genes involved in carcinogenesis. BET inhibitors (BETis) disrupt BET protein binding to acetylated lysine residues of chromatin and suppress the transcription of various genes, including oncogenic transcription factors. Phase I and II clinical trials demonstrated BETis’ potential as anticancer drugs against solid tumours and haematological malignancies; however, their clinical success was limited as monotherapies. Emerging treatment-associated toxicities, drug resistance and a lack of predictive biomarkers limited BETis’ clinical progress. The preclinical evaluation demonstrated that BETis synergised with different classes of compounds, including DNA repair inhibitors, thus supporting further clinical development of BETis. The combination of BET and PARP inhibitors triggered synthetic lethality in cells with proficient homologous recombination. Mechanistic studies revealed that BETis targeted multiple essential homologous recombination pathway proteins, including RAD51, BRCA1 and CtIP. The exact mechanism of BETis’ anticancer action remains poorly understood; nevertheless, these agents provide a novel approach to epigenome and transcriptome anticancer therapy.
Collapse
|
15
|
Joseph V, Levine M. Ronald C.D. Breslow (1931-2017): A career in review. Bioorg Chem 2021; 115:104868. [PMID: 34523507 DOI: 10.1016/j.bioorg.2021.104868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/23/2021] [Indexed: 11/26/2022]
Abstract
Reviewed herein are key research accomplishments of Professor Ronald Charles D. Breslow (1931-2017) throughout his more than 60 year research career. These accomplishments span a wide range of topics, most notably physical organic chemistry, medicinal chemistry, and bioorganic chemistry. These topics are reviewed, as are topics of molecular electronics and origin of chirality, which combine to make up the bulk of this review. Also reviewed briefly are Breslow's contributions to the broader chemistry profession, including his work for the American Chemical Society and his work promoting gender equity. Throughout the article, efforts are made to put Breslow's accomplishments in the context of other work being done at the time, as well as to include subsequent iterations and elaborations of the research.
Collapse
Affiliation(s)
- Vincent Joseph
- Department of Chemical Sciences, Ariel University, Israel
| | - Mindy Levine
- Department of Chemical Sciences, Ariel University, Israel.
| |
Collapse
|
16
|
Mayr C, Kiesslich T, Erber S, Bekric D, Dobias H, Beyreis M, Ritter M, Jäger T, Neumayer B, Winkelmann P, Klieser E, Neureiter D. HDAC Screening Identifies the HDAC Class I Inhibitor Romidepsin as a Promising Epigenetic Drug for Biliary Tract Cancer. Cancers (Basel) 2021; 13:cancers13153862. [PMID: 34359763 PMCID: PMC8345689 DOI: 10.3390/cancers13153862] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 07/27/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Biliary tract cancer (BTC) is a rare disease with dismal outcomes. Therefore, the investigation of new therapeutic targets is urgently required. In this study, we demonstrate that histone deacetylases (HDACs) are expressed in BTC cell lines and that treatment of BTC cells with different HDAC class inhibitors reduces cell viability. Specifically, we found that BTC cells are vulnerable to the HDAC class I inhibitor romidepsin. Treatment with romidepsin resulted in apoptotic cell death of BTC cells and reduced HDAC activity. Furthermore, romidepsin augmented the cytotoxic effect of the standard chemotherapeutic cisplatin. HDAC class I proteins were also expressed in BTC patient samples. We detected that BTC patients with high HDAC-2-expressing tumors showed a significantly shorter survival. In summary, we were able to demonstrate that BTC cells are vulnerable to HDAC inhibition and that the HDAC class I inhibitor romidepsin might be a promising anti-BTC substance. Abstract Inhibition of histone deacetylases (HDACs) is a promising anti-cancer approach. For biliary tract cancer (BTC), only limited therapeutic options are currently available. Therefore, we performed a comprehensive investigation of HDAC expression and pharmacological HDAC inhibition into a panel of eight established BTC cell lines. The screening results indicate a heterogeneous expression of HDACs across the studied cell lines. We next tested the effect of six established HDAC inhibitors (HDACi) covering pan- and class-specific HDACis on cell viability of BTC cells and found that the effect (i) is dose- and cell-line-dependent, (ii) does not correlate with HDAC isoform expression, and (iii) is most pronounced for romidepsin (a class I HDACi), showing the highest reduction in cell viability with IC50 values in the low-nM range. Further analyses demonstrated that romidepsin induces apoptosis in BTC cells, reduces HDAC activity, and increases acetylation of histone 3 lysine 9 (H3K9Ac). Similar to BTC cell lines, HDAC 1/2 proteins were heterogeneously expressed in a cohort of resected BTC specimens (n = 78), and their expression increased with tumor grading. The survival of BTC patients with high HDAC-2-expressing tumors was significantly shorter. In conclusion, HDAC class I inhibition in BTC cells by romidepsin is highly effective in vitro and encourages further in vivo evaluation in BTC. In situ assessment of HDAC 2 expression in BTC specimens indicates its importance for oncogenesis and/or progression of BTC as well as for the prognosis of BTC patients.
Collapse
Affiliation(s)
- Christian Mayr
- Center for Physiology, Pathophysiology and Biophysics-Salzburg and Nuremberg, Institute for Physiology and Pathophysiology-Salzburg, Paracelsus Medical University, Strubergasse 22, 5020 Salzburg, Austria; (T.K.); (S.E.); (D.B.); (H.D.); (M.B.); (M.R.)
- Department of Internal Medicine I, University Clinics Salzburg, Paracelsus Medical University, Müllner Hauptstrasse 48, 5020 Salzburg, Austria
- Correspondence:
| | - Tobias Kiesslich
- Center for Physiology, Pathophysiology and Biophysics-Salzburg and Nuremberg, Institute for Physiology and Pathophysiology-Salzburg, Paracelsus Medical University, Strubergasse 22, 5020 Salzburg, Austria; (T.K.); (S.E.); (D.B.); (H.D.); (M.B.); (M.R.)
- Department of Internal Medicine I, University Clinics Salzburg, Paracelsus Medical University, Müllner Hauptstrasse 48, 5020 Salzburg, Austria
| | - Sara Erber
- Center for Physiology, Pathophysiology and Biophysics-Salzburg and Nuremberg, Institute for Physiology and Pathophysiology-Salzburg, Paracelsus Medical University, Strubergasse 22, 5020 Salzburg, Austria; (T.K.); (S.E.); (D.B.); (H.D.); (M.B.); (M.R.)
| | - Dino Bekric
- Center for Physiology, Pathophysiology and Biophysics-Salzburg and Nuremberg, Institute for Physiology and Pathophysiology-Salzburg, Paracelsus Medical University, Strubergasse 22, 5020 Salzburg, Austria; (T.K.); (S.E.); (D.B.); (H.D.); (M.B.); (M.R.)
| | - Heidemarie Dobias
- Center for Physiology, Pathophysiology and Biophysics-Salzburg and Nuremberg, Institute for Physiology and Pathophysiology-Salzburg, Paracelsus Medical University, Strubergasse 22, 5020 Salzburg, Austria; (T.K.); (S.E.); (D.B.); (H.D.); (M.B.); (M.R.)
| | - Marlena Beyreis
- Center for Physiology, Pathophysiology and Biophysics-Salzburg and Nuremberg, Institute for Physiology and Pathophysiology-Salzburg, Paracelsus Medical University, Strubergasse 22, 5020 Salzburg, Austria; (T.K.); (S.E.); (D.B.); (H.D.); (M.B.); (M.R.)
| | - Markus Ritter
- Center for Physiology, Pathophysiology and Biophysics-Salzburg and Nuremberg, Institute for Physiology and Pathophysiology-Salzburg, Paracelsus Medical University, Strubergasse 22, 5020 Salzburg, Austria; (T.K.); (S.E.); (D.B.); (H.D.); (M.B.); (M.R.)
- Ludwig Boltzmann Institute for Arthritis und Rehabilitation, Paracelsus Medical University, Strubergasse 22, 5020 Salzburg, Austria
- School of Medical Sciences, Kathmandu University, Kavreplanchowk, Dhulikhel 45200, Nepal
| | - Tarkan Jäger
- Department of Surgery, University Clinics Salzburg, Paracelsus Medical University, Müllner Hauptstrasse 48, 5020 Salzburg, Austria;
| | - Bettina Neumayer
- Institute of Pathology, University Clinics Salzburg, Paracelsus Medical University, Müllner Hauptstrasse 48, 5020 Salzburg, Austria; (B.N.); (P.W.); (E.K.); (D.N.)
- Cancer Cluster Salzburg, 5020 Salzburg, Austria
| | - Paul Winkelmann
- Institute of Pathology, University Clinics Salzburg, Paracelsus Medical University, Müllner Hauptstrasse 48, 5020 Salzburg, Austria; (B.N.); (P.W.); (E.K.); (D.N.)
- Cancer Cluster Salzburg, 5020 Salzburg, Austria
| | - Eckhard Klieser
- Institute of Pathology, University Clinics Salzburg, Paracelsus Medical University, Müllner Hauptstrasse 48, 5020 Salzburg, Austria; (B.N.); (P.W.); (E.K.); (D.N.)
- Cancer Cluster Salzburg, 5020 Salzburg, Austria
| | - Daniel Neureiter
- Institute of Pathology, University Clinics Salzburg, Paracelsus Medical University, Müllner Hauptstrasse 48, 5020 Salzburg, Austria; (B.N.); (P.W.); (E.K.); (D.N.)
- Cancer Cluster Salzburg, 5020 Salzburg, Austria
| |
Collapse
|
17
|
Duan YC, Zhang SJ, Shi XJ, Jin LF, Yu T, Song Y, Guan YY. Research progress of dual inhibitors targeting crosstalk between histone epigenetic modulators for cancer therapy. Eur J Med Chem 2021; 222:113588. [PMID: 34107385 DOI: 10.1016/j.ejmech.2021.113588] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 05/09/2021] [Accepted: 05/25/2021] [Indexed: 12/13/2022]
Abstract
Abnormal epigenetics is a critical hallmark of human cancers. Anticancer drug discovery directed at histone epigenetic modulators has gained impressive advances with six drugs available for cancer therapy and numerous other candidates undergoing clinical trials. However, limited therapeutic profile, drug resistance, narrow safety margin, and dose-limiting toxicities pose intractable challenges for their clinical utility. Because histone epigenetic modulators undergo intricate crosstalk and act cooperatively to shape an aberrant epigenetic profile, co-targeting histone epigenetic modulators with a different mechanism of action has rapidly emerged as an attractive strategy to overcome the limitations faced by the single-target epigenetic inhibitors. In this review, we summarize in detail the crosstalk of histone epigenetic modulators in regulating gene transcription and the progress of dual epigenetic inhibitors targeting this crosstalk.
Collapse
Affiliation(s)
- Ying-Chao Duan
- School of Pharmacy, Xinxiang Medical University, 453003, Xinxiang, Henan Province, PR China.
| | - Shao-Jie Zhang
- School of Pharmacy, Xinxiang Medical University, 453003, Xinxiang, Henan Province, PR China
| | - Xiao-Jing Shi
- Laboratory Animal Center, Academy of Medical Science, Zhengzhou University, 450052, Zhengzhou, Henan Province, PR China
| | - Lin-Feng Jin
- School of Pharmacy, Xinxiang Medical University, 453003, Xinxiang, Henan Province, PR China
| | - Tong Yu
- School of Pharmacy, Xinxiang Medical University, 453003, Xinxiang, Henan Province, PR China
| | - Yu Song
- School of Pharmacy, Xinxiang Medical University, 453003, Xinxiang, Henan Province, PR China
| | - Yuan-Yuan Guan
- School of Pharmacy, Xinxiang Medical University, 453003, Xinxiang, Henan Province, PR China.
| |
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW Breast cancer frequently metastasizes to the bone and lung, but the ability to treat metastatic tumor cells remains a pressing clinical challenge. Histone deacetylases (HDACs) and histone acetyltransferases (HATs) have emerged as promising targets since these enzymes are aberrantly expressed in numerous cancers and regulate the expression of genes that drive tumorigenesis and metastasis. This review focuses on the abnormal expression of histone-modifying enzymes in cancers that have a high tropism for the bone and lung and explores the clinical use of histone deacetylase inhibitors for the treatment and prevention of metastasis to these sites. RECENT FINDINGS Preclinical studies have demonstrated that the role for HDACs is highly dependent on tumor type and stage of disease progression. HDAC inhibitors can induce apoptosis, senescence, cell differentiation, and tumor dormancy genes and inhibit angiogenesis, making these promising therapeutics for the treatment of metastatic disease. HDAC inhibitors are already FDA approved for hematologic malignancies and are in clinical trials with standard-of-care chemotherapies and targeted agents for several solid tumors, including cases of metastatic disease. However, these drugs can negatively impact bone homeostasis. Although HDAC inhibitors are not currently administered for the treatment of bone and lung metastatic disease, preclinical studies have shown that these drugs can reduce distant metastasis by targeting molecular factors and signaling pathways that drive tumor cell dissemination to these sites. Thus, HDAC inhibitors in combination with bone protective therapies may be beneficial in the treatment of bone metastatic cancers.
Collapse
Affiliation(s)
- Courtney M Edwards
- Graduate Program in Cancer Biology, Vanderbilt University, 2215b Garland Ave, 1165C Medical Research Building IV, Nashville, TN, 37232, USA
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Rachelle W Johnson
- Graduate Program in Cancer Biology, Vanderbilt University, 2215b Garland Ave, 1165C Medical Research Building IV, Nashville, TN, 37232, USA.
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
| |
Collapse
|
19
|
Current status in the discovery of dual BET/HDAC inhibitors. Bioorg Med Chem Lett 2021; 38:127829. [PMID: 33685790 DOI: 10.1016/j.bmcl.2021.127829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The development of desired multitarget agents may provide an attractive and cost-effective complement or alternative to drug combinations. Bromodomain and extraterminal domain (BET) and histone deacetylase (HDAC), as important epigenetic modulators, are attractive targets in drug discovery and development. Considering the fact that BET and HDAC inhibitors exert a synergistic effect on cellular processes in cancer cells, the design of dual BET/HDAC inhibitors may be a rational strategy to improve the efficacy of their single-target drugs for tumor treatment. In the current review, we depict the development of dual BET/HDAC inhibitors and particularly highlight their structure-activity relationships (SARs), binding modes, and biological functions with the aim to facilitate rational drug design and develop more dual BET/HDAC inhibitors.
Collapse
|
20
|
Borgonetti V, Galeotti N. Combined inhibition of histone deacetylases and BET family proteins as epigenetic therapy for nerve injury-induced neuropathic pain. Pharmacol Res 2021; 165:105431. [PMID: 33529752 DOI: 10.1016/j.phrs.2021.105431] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/18/2020] [Accepted: 01/09/2021] [Indexed: 02/07/2023]
Abstract
Current treatments for neuropathic pain have often moderate efficacy and present unwanted effects showing the need to develop effective therapies. Accumulating evidence suggests that histone acetylation plays essential roles in chronic pain and the analgesic activity of histone deacetylases (HDACs) inhibitors is documented. Bromodomain and extra-terminal domain (BET) proteins are epigenetic readers that interact with acetylated lysine residues on histones, but little is known about their implication in neuropathic pain. Thus, the current study was aimed to investigate the effect of the combination of HDAC and BET inhibitors in the spared nerve injury (SNI) model in mice. Intranasal administration of i-BET762 (BET inhibitor) or SAHA (HDAC inhibitor) attenuated thermal and mechanical hypersensitivity and this antiallodynic activity was improved by co-administration of both drugs. Spinal cord sections of SNI mice showed an increased expression of HDAC1 and Brd4 proteins and combination produced a stronger reduction compared to each epigenetic agent alone. SAHA and i-BET762, administered alone or in combination, counteracted the SNI-induced microglia activation by inhibiting the expression of IBA1, CD11b, inducible nitric oxide synthase (iNOS), the activation of nuclear factor-κB (NF-κB) and signal transducer and activator of transcription-1 (STAT1) with comparable efficacy. Conversely, the epigenetic inhibitors showed a modest effect on spinal proinflammatory cytokines content that was significantly potentiated by their combination. Present results indicate a key role of acetylated histones and their recruitment by BET proteins on microglia-mediated spinal neuroinflammation. Targeting neuropathic pain with the combination of HDAC and BET inhibitors may represent a promising new therapeutic option.
Collapse
Affiliation(s)
- Vittoria Borgonetti
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Viale G. Pieraccini 6, 50139, Florence, Italy
| | - Nicoletta Galeotti
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Viale G. Pieraccini 6, 50139, Florence, Italy.
| |
Collapse
|
21
|
Chang X, Sun D, Shi D, Wang G, Chen Y, Zhang K, Tan H, Liu J, Liu B, Ouyang L. Design, synthesis, and biological evaluation of quinazolin-4(3 H)-one derivatives co-targeting poly(ADP-ribose) polymerase-1 and bromodomain containing protein 4 for breast cancer therapy. Acta Pharm Sin B 2021; 11:156-180. [PMID: 33532187 PMCID: PMC7838034 DOI: 10.1016/j.apsb.2020.06.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/08/2020] [Accepted: 05/28/2020] [Indexed: 02/07/2023] Open
Abstract
This study was aimed to design the first dual-target small-molecule inhibitor co-targeting poly (ADP-ribose) polymerase-1 (PARP1) and bromodomain containing protein 4 (BRD4), which had important cross relation in the global network of breast cancer, reflecting the synthetic lethal effect. A series of new BRD4 and PARP1 dual-target inhibitors were discovered and synthesized by fragment-based combinatorial screening and activity assays that together led to the chemical optimization. Among these compounds, 19d was selected and exhibited micromole enzymatic potencies against BRD4 and PARP1, respectively. Compound 19d was further shown to efficiently modulate the expression of BRD4 and PARP1. Subsequently, compound 19d was found to induce breast cancer cell apoptosis and stimulate cell cycle arrest at G1 phase. Following pharmacokinetic studies, compound 19d showed its antitumor activity in breast cancer susceptibility gene 1/2 (BRCA1/2) wild-type MDA-MB-468 and MCF-7 xenograft models without apparent toxicity and loss of body weight. These results together demonstrated that a highly potent dual-targeted inhibitor was successfully synthesized and indicated that co-targeting of BRD4 and PARP1 based on the concept of synthetic lethality would be a promising therapeutic strategy for breast cancer.
Collapse
Key Words
- BC, breast cancer
- BET, bromodomain and extra-terminal domain
- BRCA1/2, breast cancer susceptibility gene 1/2
- BRD4
- BRD4, bromodomain 4
- CDK4/6, cyclin-dependent kinase 4/6
- DSB, DNA double-strand break
- Dual-target inhibitor
- EGFR, epidermal growth factor receptor
- ELISA, enzyme linked immunosorbent assay
- ER, estrogen receptor
- ESI-HR-MS, high-resolution mass spectra
- FDA, U.S. Food and Drug Administration
- FITC, fluorescein isothiocyanate isomer I
- HE, hematoxylin-eosin
- HPLC, high-performance liquid chromatography
- HR, homologous recombination
- HRD, homologous recombination deficiency
- IHC, immunohistochemistry
- NHEJ, nonhomologous end-joining
- PARP1
- PARP1, poly(ADP-ribose) polymerase-1
- PI, propidium iodide
- PK, pharmacokinetics
- PPI, protein−protein interaction
- Quinazolin-4(3H)-one derivatives
- SAR, structure–activity relationship
- SOP, standard operation process
- Synthetic lethality
- TCGA, the cancer genome atlas
- TGI, tumor growth inhibition
- TLC, thin-layer chromatography
- TNBC, triple-negative breast cancer
- TR-FRET, time-resolved fluorescence resonance energy transfer.
- shRNA, short hairpin RNA
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jie Liu
- Corresponding authors. Tel./fax: +86 28 85503817 (Jie Liu), +86 28 85164063 (Bo Liu), +86 28 85503817 (Liang Ouyang).
| | - Bo Liu
- Corresponding authors. Tel./fax: +86 28 85503817 (Jie Liu), +86 28 85164063 (Bo Liu), +86 28 85503817 (Liang Ouyang).
| | - Liang Ouyang
- Corresponding authors. Tel./fax: +86 28 85503817 (Jie Liu), +86 28 85164063 (Bo Liu), +86 28 85503817 (Liang Ouyang).
| |
Collapse
|
22
|
Current status in the discovery of dual BET/HDAC inhibitors. Bioorg Med Chem Lett 2021; 31:127671. [PMID: 33229136 DOI: 10.1016/j.bmcl.2020.127671] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/22/2020] [Accepted: 11/01/2020] [Indexed: 12/13/2022]
Abstract
The development of desired multitarget agents may provide an attractive and cost-effective complement or alternative to drug combinations. BET and HDAC, as important epigenetic modulators, are both attractive targets in drug discovery and development. Considering the fact that BET and HDAC inhibitors exert a synergistic effect on cellular processes in cancer cells, the design of dual BET/HDAC inhibitors may be a rational strategy to improve the efficacy of their single-target drugs for tumor treatment. In current review, we depict the development of dual BET/HDAC inhibitors and particularly highlight their SARs, binding modes and biological functions with the aim to facilitate rational design and develop more dual BET/HDAC inhibitors.
Collapse
|
23
|
Matissek SJ, Han W, Karbalivand M, Sayed M, Reilly BM, Mallat S, Ghazal SM, Munshi M, Yang G, Treon SP, Walker SR, Elsawa SF. Epigenetic targeting of Waldenström macroglobulinemia cells with BET inhibitors synergizes with BCL2 or histone deacetylase inhibition. Epigenomics 2020; 13:129-144. [PMID: 33356554 DOI: 10.2217/epi-2020-0189] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Aim: Waldenström macroglobulinemia (WM) is a low-grade B-cell lymphoma characterized by overproduction of monoclonal IgM. To date, there are no therapies that provide a cure for WM patients, and therefore, it is important to explore new therapies. Little is known about the efficiency of epigenetic targeting in WM. Materials & methods: WM cells were treated with BET inhibitors (JQ1 and I-BET-762) and venetoclax, panobinostat or ibrutinib. Results: BET inhibition reduces growth of WM cells, with little effect on survival. This finding was enhanced by combination therapy, with panobinostat (LBH589) showing the highest synergy. Conclusion: Our studies identify BET inhibitors as effective therapy for WM, and these inhibitors can be enhanced in combination with BCL2 or histone deacetylase inhibition.
Collapse
Affiliation(s)
- Stephan J Matissek
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH, 03824, USA
| | - Weiguo Han
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH, 03824, USA
| | - Mona Karbalivand
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH, 03824, USA
| | - Mohamed Sayed
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH, 03824, USA
| | - Brendan M Reilly
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH, 03824, USA
| | - Shayna Mallat
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH, 03824, USA
| | - Shimaa M Ghazal
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH, 03824, USA
| | - Manit Munshi
- Bing Center for Waldenström Macroglobulinemia, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.,Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Guang Yang
- Bing Center for Waldenström Macroglobulinemia, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.,Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Steven P Treon
- Bing Center for Waldenström Macroglobulinemia, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.,Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Sarah R Walker
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH, 03824, USA
| | - Sherine F Elsawa
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH, 03824, USA
| |
Collapse
|
24
|
Liu Y, Bi T, Yuan F, Gao X, Jia G, Tian Z. S-adenosylmethionine induces apoptosis and cycle arrest of gallbladder carcinoma cells by suppression of JAK2/STAT3 pathways. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2020; 393:2507-2515. [PMID: 32219484 DOI: 10.1007/s00210-020-01858-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 03/19/2020] [Indexed: 12/27/2022]
Abstract
S-adenosylmethionine (SAM) is a naturally occurring physiologic molecule found ubiquitously in all mammalian cells and an essential compound in many metabolic pathways. It has been reported to possess many pharmacological properties including cancer-preventive and anticancer effects. However, the precise molecular mechanism involved in its anticancer effect is not yet clear. The present study is conducted to investigate the anticancer activity and the underlying mechanisms of SAM on human gallbladder cancer cells (GBC-SD and SGC-996) in vitro and in vivo. Cells were dealt with SAM and subjected to cell viability, colony formation, Hoechst staining, apoptosis, cycle arrest, western blot, and xenograft tumorigenicity assay. Experimental results showed that SAM could significantly inhibit the growth and proliferation and induce the apoptosis as well as cell cycle arrest in G0/G1 phase of GBC-SD and SGC-996 cells in a dose-dependent manner in vitro. The expression levels of p-JAK2, p-STAT3, Mcl-1, and Bcl-XL were significantly downregulated. In addition, inhibition of the JAK2/STAT3 pathway significantly enhanced the anti-apoptotic effect of SAM, suggesting the key roles of JAK2/STAT3 in the process. More importantly, our in vivo studies demonstrated that administration of SAM could significantly decrease the tumor weight and volume and immunohistochemistry analysis proved the downregulation of p-JAK2 and p-STAT3 in tumor tissues following SAM treatment, consistent with our in vitro results. In summary, our findings indicated that SAM can inhibit cell proliferation and induce apoptosis as well as cycle arrest of GBC cells by suppression of JAK2/STAT3 pathways and the dramatic effects of SAM hinting that SAM might be a useful therapeutic option for patients suffering from gallbladder cancer.
Collapse
Affiliation(s)
- Yan Liu
- Department of Surgery for Vascular Thyroid and Hernia, Xuzhou Central Hospital, Xuzhou, Jiangsu, 221009, People's Republic of China
| | - Tingting Bi
- Department of Gastroenterology, Xuzhou Central Hospital, Xuzhou, Jiangsu, 221009, People's Republic of China
| | - Fukang Yuan
- Department of Surgery for Vascular Thyroid and Hernia, Xuzhou Central Hospital, Xuzhou, Jiangsu, 221009, People's Republic of China
| | - Xinbao Gao
- Department of Surgery for Vascular Thyroid and Hernia, Xuzhou Central Hospital, Xuzhou, Jiangsu, 221009, People's Republic of China
| | - Gaolei Jia
- Department of Surgery for Vascular Thyroid and Hernia, Xuzhou Central Hospital, Xuzhou, Jiangsu, 221009, People's Republic of China.
| | - Zhilong Tian
- Department of Surgery for Vascular Thyroid and Hernia, Xuzhou Central Hospital, Xuzhou, Jiangsu, 221009, People's Republic of China.
| |
Collapse
|
25
|
Liu SL, Wu XS, Li FN, Yao WY, Wu ZY, Dong P, Wang XF, Gong W. ERRα promotes pancreatic cancer progression by enhancing the transcription of PAI1 and activating the MEK/ERK pathway. Am J Cancer Res 2020; 10:3622-3643. [PMID: 33294258 PMCID: PMC7716152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 10/23/2020] [Indexed: 06/12/2023] Open
Abstract
Estrogen-related receptor alpha (ERRα), an orphan nuclear receptor, was reported to be highly associated with the progression and tumorigenesis of several human malignancies. However, the biological role and underlying molecular mechanisms of ERRα in pancreatic cancer (PC) remain unknown. The present study demonstrated that ERRα was significantly overexpressed in PC tissues and cell lines. Its high expression was correlated with tumor size, distant metastasis, TNM stage, tumor differentiation and poor prognosis of PC. Subsequent functional assays showed that ERRα promoted PC cell proliferation, tumor growth, as well as migration and invasion via activating the epithelial-mesenchymal transition. In addition, knockdown of ERRα induced apoptosis and G0/G1 cell cycle arrest in PC cells. Plasminogen activator inhibitor 1 (PAI1) was identified by RNA sequencing, knockdown of which could suppress the cell proliferation, migration and invasion that promoted by ERRα overexpression. Further mechanistic investigation using chromatin immunoprecipitation and dual-luciferase reporter assays revealed that ERRα could bind to the PAI1 promoter region and transcriptionally enhance PAI1 expression. Moreover, our data indicated that ERRα played its oncogenic role in PC via activating the MEK/ERK pathway. Taken together, our study demonstrates that ERRα promotes PC progression by enhancing the transcription of PAI1 and activation of the MEK/ERK pathway, pointing to ERRα as a novel diagnostic and therapeutic target for PC.
Collapse
Affiliation(s)
- Shi-Lei Liu
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of MedicineNo. 1665 Kongjiang Road, Shanghai 200092, China
- Shanghai Key Laboratory of Biliary Tract Disease ResearchNo. 1665 Kongjiang Road, Shanghai 200092, China
| | - Xiang-Song Wu
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of MedicineNo. 1665 Kongjiang Road, Shanghai 200092, China
- Shanghai Key Laboratory of Biliary Tract Disease ResearchNo. 1665 Kongjiang Road, Shanghai 200092, China
| | - Feng-Nan Li
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of MedicineNo. 1665 Kongjiang Road, Shanghai 200092, China
- Shanghai Key Laboratory of Biliary Tract Disease ResearchNo. 1665 Kongjiang Road, Shanghai 200092, China
| | - Wen-Yan Yao
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of MedicineNo. 1665 Kongjiang Road, Shanghai 200092, China
| | - Zi-You Wu
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of MedicineNo. 1665 Kongjiang Road, Shanghai 200092, China
| | - Ping Dong
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of MedicineNo. 1665 Kongjiang Road, Shanghai 200092, China
- Shanghai Key Laboratory of Biliary Tract Disease ResearchNo. 1665 Kongjiang Road, Shanghai 200092, China
| | - Xue-Feng Wang
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of MedicineNo. 1665 Kongjiang Road, Shanghai 200092, China
- Shanghai Key Laboratory of Biliary Tract Disease ResearchNo. 1665 Kongjiang Road, Shanghai 200092, China
| | - Wei Gong
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of MedicineNo. 1665 Kongjiang Road, Shanghai 200092, China
- Shanghai Key Laboratory of Biliary Tract Disease ResearchNo. 1665 Kongjiang Road, Shanghai 200092, China
| |
Collapse
|
26
|
Discovery of selective HDAC/BRD4 dual inhibitors as epigenetic probes. Eur J Med Chem 2020; 209:112868. [PMID: 33077265 DOI: 10.1016/j.ejmech.2020.112868] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/14/2020] [Accepted: 09/21/2020] [Indexed: 12/15/2022]
Abstract
According to the binding mode of ABBV-744 with bromodomains and the cape space of HDAC, the novel selective HDAC/BRD4 dual inhibitors were designed and synthesized by the pharmacophore fusion strategy. Evaluating the biomolecular activities through SARs exploration identified three kinds of selective dual inhibitors 41c (HDAC1/BRD4), 43a (pan-HDAC/BRD4) and 43d (HDAC6/BRD4(BD2)), whose target-related cellular activities in MV-4-11 cells were also confirmed. Significantly, the selective dual inhibitor 41c (HDAC1/BRD4) exhibited synergistic effects against MV-4-11 cells, which strongly induced G0/G1 cell cycle arrest and apoptosis, and the first HDAC6/BRD4(BD2) dual inhibitor was found. This study provides support for selective HDAC/BRD4 dual inhibitors as epigenetic probes based on pyrrolopyridone core for the future biological evaluation in different cancer cell lines.
Collapse
|
27
|
Combination of ACY-241 and JQ1 Synergistically Suppresses Metastasis of HNSCC via Regulation of MMP-2 and MMP-9. Int J Mol Sci 2020; 21:ijms21186873. [PMID: 32961679 PMCID: PMC7554925 DOI: 10.3390/ijms21186873] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/09/2020] [Accepted: 09/17/2020] [Indexed: 02/06/2023] Open
Abstract
Overexpression of histone deacetylase 6 (HDAC6) and bromodomain-containing protein 4 (BRD4) is related to aggressiveness of head and neck squamous carcinoma (HNSCC). Based on studies that HDAC6 and BRD4 are potential therapeutic targets of HNSCC, we hypothesized that the combination treatment of BET inhibitor JQ1 and HDAC6-selective inhibitor ACY-241 could exhibit synergistic anticancer effects in human papillomavirus (HPV)-positive and HPV-negative HNSCC cells. In this study, HNSCC cell growth and viability were measured by CCK-8 assay, apoptosis was analyzed by flow cytometry, and metastasis was studied by wound healing and transwell assays. Furthermore, immunoblotting is conducted to investigate proteins that modulate apoptosis or metastasis. Here, we report that the combination of ACY-241 and JQ1 shows synergistic cell growth inhibition, viability reduction, and apoptosis induction in HNSCC cells through inactivation of AKT and NF-κB signaling. Importantly, we demonstrate that combined treatment of ACY-241 and JQ1 synergistically suppresses TNF-α-induced migration and invasion via dysregulating matrix metalloproteinase (MMP)-2, MMP-9, and MT1-MMP. Overall, the combination of ACY-241 and JQ1 significantly suppresses proliferation and metastasis in HPV-positive and HPV-negative HNSCC. Collectively, these findings suggest that the co-inhibition of BET and HDAC6 can be a new therapeutic strategy in HNSCC.
Collapse
|
28
|
Wang Y, Shi Y, Tao M, Zhuang S, Liu N. Peritoneal fibrosis and epigenetic modulation. Perit Dial Int 2020; 41:168-178. [PMID: 32662737 DOI: 10.1177/0896860820938239] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Peritoneal dialysis (PD) is an effective treatment for patients with end-stage renal disease. However, peritoneal fibrosis (PF) is a common complication that ultimately leads to ultrafiltration failure and discontinuation of PD after long-term PD therapy. There is currently no effective therapy to prevent or delay this pathologic process. Recent studies have reported epigenetic modifications involved in PF, and accumulating evidence suggests that epigenetic therapies may have the potential to prevent and treat PF clinically. The major epigenetic modifications in PF include DNA methylation, histone modification, and noncoding RNAs. The mechanisms of epigenetic regulation in PF are complex, predominantly involving modification of signaling molecules, transcriptional factors, and genes. This review will describe the mechanisms of epigenetic modulation in PF and discuss the possibility of targeting them to prevent and treat this complication.
Collapse
Affiliation(s)
- Yi Wang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, China
| | - Yingfeng Shi
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, China
| | - Min Tao
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, China
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, China.,Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, USA
| | - Na Liu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, China
| |
Collapse
|
29
|
Liu S, Chu B, Cai C, Wu X, Yao W, Wu Z, Yang Z, Li F, Liu Y, Dong P, Gong W. DGCR5 Promotes Gallbladder Cancer by Sponging MiR-3619-5p via MEK/ERK1/2 and JNK/p38 MAPK Pathways. J Cancer 2020; 11:5466-5477. [PMID: 32742494 PMCID: PMC7391188 DOI: 10.7150/jca.46351] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 06/15/2020] [Indexed: 02/05/2023] Open
Abstract
Gallbladder cancer (GBC) is a highly aggressive malignant cancer with poor prognosis. Long noncoding RNA (lncRNA) DiGeorge syndrome critical region gene (DGCR5) has been reported to participate in various types of cancers, but its role in GBC remains largely unknown. This study aimed to explore the functions and mechanisms of DGCR5 in GBC. Here, we found that DGCR5 was upregulated in GBC tissues and cell lines. Through functional experiments, it was demonstrated that silence of DGCR5 significantly suppressed the cell proliferation, migration, invasion, and induced apoptosis and cell cycle arrest in GBC cells. In addition, miR-3619-5p was predicted and further verified as the target of DGCR5. Moreover, miR-3619-5p was observed downregulated in GBC tissues and cell lines, and miR-3619-5p mimics repressed the GBC cell proliferation, migration, invasion and could be rescued by DGCR5 overexpression. Mechanistically, it was found that DGCR5 knockdown and miR-3619-5p mimics inactivated the MEK/ERK1/2 and JNK/p38 MAPK pathways. In addition, rescue experiments indicated that inhibition of MEK/ERK1/2 and JNK/p38 MAPK pathways could reverse the effects of DGCR5 overexpression on cell proliferation, migration and invasion. Finally, xenograft model assay was used to validate that knockdown of DGCR5 suppressed GBC via regulating MEK/ERK1/2 and JNK/p38 MAPK pathways in vivo. Taken together, it was uncovered in our study that DGCR5 exerts an oncogenic role by sponging miR-3619-5p and activating MEK/ERK1/2 and JNK/p38 MAPK pathways in GBC progression.
Collapse
Affiliation(s)
- Shilei Liu
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai 200092, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai 200092, China
| | - Bingfeng Chu
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai 200092, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai 200092, China
| | - Chen Cai
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai 200092, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai 200092, China
| | - Xiangsong Wu
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai 200092, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai 200092, China
| | - Wenyan Yao
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai 200092, China
| | - Ziyou Wu
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai 200092, China
| | - Ziyi Yang
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai 200092, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai 200092, China
| | - Fengnan Li
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai 200092, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai 200092, China
| | - Yingbin Liu
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai 200092, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai 200092, China
| | - Ping Dong
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai 200092, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai 200092, China
| | - Wei Gong
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai 200092, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai 200092, China
| |
Collapse
|
30
|
Lin S, Du L. The therapeutic potential of BRD4 in cardiovascular disease. Hypertens Res 2020; 43:1006-1014. [PMID: 32409773 DOI: 10.1038/s41440-020-0459-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 03/11/2020] [Accepted: 04/02/2020] [Indexed: 12/11/2022]
Abstract
Bromodomain-containing protein 4 (BRD4) is a member of the bromodomain and extra terminal (BET) protein family that has gained wide attention in the field of cancer due to its role in the formation of super enhancers (SEs) and the regulation of oncogene expression. However, there is increasing evidence that BRD4 also plays a pivotal role in a variety of cardiovascular diseases, suggesting that understanding the mechanisms of BRD4 in these diseases is important to advance studies and clinical treatment. In this article, we summarize the mechanisms of BRD4 in cardiovascular diseases, including pulmonary arterial hypertension, heart failure, atherosclerosis, and hypertension. In addition, we discuss small molecule inhibitors of BRD4 as novel therapeutic strategies for cardiovascular diseases.
Collapse
Affiliation(s)
- Shigang Lin
- Department of Neonatology, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lizhong Du
- Department of Neonatology, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
31
|
Donepezil attenuates vascular dementia in rats through increasing BDNF induced by reducing HDAC6 nuclear translocation. Acta Pharmacol Sin 2020; 41:588-598. [PMID: 31913348 PMCID: PMC7470853 DOI: 10.1038/s41401-019-0334-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 11/18/2019] [Indexed: 02/07/2023]
Abstract
Vascular dementia (VD) is the second most common dementia disease after Alzheimer's diseases (AD) in the world. Donepezil is used to treat mild to moderate AD, and it has been shown to treat cognitive impairment and memory deficits caused by VD. However, the action mechanism of donepezil against VD has not been clarified. In this study, a bilateral common carotid artery occlusion (BCCAO) model was established in rats to simulate the pathology of VD. Two weeks after the surgery, the rats were administered donepezil (10 mg · kg-1 · d-1, ig) for 3 weeks, and then subjected to behavioral tests. We showed that donepezil treatment significantly improved the performance of BCCAO rats in Morris Water Mazes test and Step-down test. Furthermore, we showed that donepezil treatment significantly attenuated neurodegeneration and restored the synapse dendritic spines density in cortex and hippocampus. We revealed that donepezil treatment significantly increased BDNF expression in cortex and hippocampus. Interestingly, donepezil treatment significantly decreased nuclear translocation of HDAC6 and the binding between HDAC6 and BDNF promoter IV in cortex, but not in the hippocampus. The attenuated neurodegeneration by donepezil in cortex and hippocampus might due to the reduced ROS levels and increased phosphorylation of AMPK, whereas increased phosphorylation of AKT was only detected in cortex. In conclusion, our results demonstrate that donepezil attenuates neurodegeneration in cortex and hippocampus via increasing BDNF expression; the regulation of donepezil on HDAC6 occurred in cortex, but not in the hippocampus. This study further clarifies the pharmacological mechanism of donepezil, while also emphasizes the promising epigenetic regulation of HDAC6.
Collapse
|
32
|
Suppression of BCL6 function by HDAC inhibitor mediated acetylation and chromatin modification enhances BET inhibitor effects in B-cell lymphoma cells. Sci Rep 2019; 9:16495. [PMID: 31712669 PMCID: PMC6848194 DOI: 10.1038/s41598-019-52714-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 10/21/2019] [Indexed: 12/11/2022] Open
Abstract
Multiple genetic aberrations in the regulation of BCL6, including in acetyltransferase genes, occur in clinically aggressive B-cell lymphomas and lead to higher expression levels and activity of this transcriptional repressor. BCL6 is, therefore, an attractive target for therapy in aggressive lymphomas. In this study romidepsin, a potent histone deacetylase inhibitor (HDACi), induced apoptosis and cell cycle arrest in Burkitt and diffuse large B-cell lymphoma cell lines, which are model cells for studying the mechanism of action of BCL6. Romidepsin caused BCL6 acetylation at early timepoints inhibiting its function, while at later timepoints BCL6 expression was reduced and target gene expression increased due to chromatin modification. MYC contributes to poor prognosis in aggressive lymphoma. MYC function is reduced by inhibition of chromatin readers of the bromodomain and extra-terminal repeat (BET) family, which includes BRD4. The novel combination of romidepsin and JQ1, a BRD4 inhibitor was investigated and showed synergy. Collectively we suggest that the combination of HDACi and BRD4i should be pursued in further pre-clinical testing.
Collapse
|
33
|
Liu S, Li F, Pan L, Yang Z, Shu Y, Lv W, Dong P, Gong W. BRD4 inhibitor and histone deacetylase inhibitor synergistically inhibit the proliferation of gallbladder cancer in vitro and in vivo. Cancer Sci 2019; 110:2493-2506. [PMID: 31215139 PMCID: PMC6676267 DOI: 10.1111/cas.14102] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 06/08/2019] [Accepted: 06/15/2019] [Indexed: 02/05/2023] Open
Abstract
Gallbladder cancer (GBC) is the most common malignancy of the bile duct and has a high mortality rate. Here, we demonstrated that BRD4 inhibitor JQ1 and histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) synergistically inhibited the GBC cells in vitro and in vivo. Our results showed that cotreatment with JQ1 and SAHA significantly inhibited proliferation, cell viability and metastasis, and induced apoptosis and G2/M arrest in GBC cells, with only minor effects in benign cells. In vivo, tumor volumes and weights of GBC xenograft models were significantly decreased after treatment with JQ1 or SAHA; meanwhile, the cotreatment showed the strongest effect. Further study indicated that the above anticancer effects was associated with the downregulation of BRD4 and suppression of PI3K/AKT and MAPK/ERK pathways. These findings highlight JQ1 and SAHA as potential therapeutic agents and their combination as a promising therapeutic strategy for GBC.
Collapse
Affiliation(s)
- Shilei Liu
- Department of General SurgeryXinhua Hospital, Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Biliary Tract Disease ResearchShanghaiChina
| | - Fengnan Li
- Department of General SurgeryXinhua Hospital, Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Biliary Tract Disease ResearchShanghaiChina
| | - Lijia Pan
- Department of General SurgeryXinhua Hospital, Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Biliary Tract Disease ResearchShanghaiChina
| | - Ziyi Yang
- Department of General SurgeryXinhua Hospital, Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Biliary Tract Disease ResearchShanghaiChina
| | - Yijun Shu
- Department of General SurgeryXinhua Hospital, Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Biliary Tract Disease ResearchShanghaiChina
| | - Wenjie Lv
- Department of General SurgeryXinhua Hospital, Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Biliary Tract Disease ResearchShanghaiChina
| | - Ping Dong
- Department of General SurgeryXinhua Hospital, Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Biliary Tract Disease ResearchShanghaiChina
| | - Wei Gong
- Department of General SurgeryXinhua Hospital, Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Biliary Tract Disease ResearchShanghaiChina
| |
Collapse
|