1
|
Song J, Ye X, Xiao H. Liquid biopsy entering clinical practice: Past discoveries, current insights, and future innovations. Crit Rev Oncol Hematol 2025; 207:104613. [PMID: 39756526 DOI: 10.1016/j.critrevonc.2025.104613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/22/2024] [Accepted: 01/02/2025] [Indexed: 01/07/2025] Open
Abstract
In recent years, liquid biopsy has gained prominence as an emerging biomarker in cancer research, providing critical insights into tumor biology and metastasis. Technological advancements have enabled its integration into clinical practice, with ongoing trials demonstrating encouraging outcomes. Key applications of liquid biopsy include early cancer detection, cancer staging, prognosis evaluation, and real-time monitoring of tumor progression to optimize treatment decisions. In this review, we present a comprehensive conceptual framework for liquid biopsy, discuss the challenges in its research and clinical application, and highlight its significant potential in identifying therapeutic targets and resistance mechanisms across various cancer types. Furthermore, we explore the emerging role of liquid biopsy-based multicancer screening, which has shown promising advancements. Looking ahead, standardization, multi-omics coanalysis, and the advancement of precision medicine and personalized treatments are expected to drive the future development and integration of liquid biopsy into routine clinical workflows, enhancing cancer diagnosis and treatment management.
Collapse
Affiliation(s)
- Jinghan Song
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiong Ye
- School of Clinical Medicine, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Hui Xiao
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
2
|
Kanaji N, Yokohira M, Inoue T, Watanabe N, Mizoguchi H, Komori Y, Kawada K, Kadowaki N. Establishment of lung cancer cell lines and tumorigenesis in mice from malignant pleural effusion in patients with lung cancer. Transl Lung Cancer Res 2024; 13:2340-2351. [PMID: 39430339 PMCID: PMC11484711 DOI: 10.21037/tlcr-24-143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 08/20/2024] [Indexed: 10/22/2024]
Abstract
Background Lung cancer was often diagnosed by malignant pleural effusion (MPE). Excessive MPE is generally discarded. The establishment of cell lines and the generation of cancer mouse models have the potential to be directly linked to personalized medicine. This study aimed to establish cell lines and generate mouse models using MPE. Methods Cells derived from 5 mL of MPE were cultured in several conditions, including 100% MPE supernatant and Roswell Park Memorial Institute-1640 supplemented with 10% fetal bovine serum (FBS) or 10% MPE supernatant. When steady cell growth was observed, fewer cells were spread and the colonies were selected to establish the cell line. Cells derived from 10 mL of MPE were inoculated subcutaneously into non-obese diabetic-severe combined immunodeficiency (NOD-scid) and NOD.Cg-Prkdcscid Il2rgtmlWjl /SzJ (NSG) mice to assess tumorigenic potential. Results MPEs were obtained from 28 lung cancer patients, 23 of whom had adenocarcinoma. Cell lines were established from 5 patients (18%). Tumorigenesis was observed in 6 of 28 cases (21%). However, in 7 cases, the mice (7 NSG and 1 NOD-scid mice) became progressively weaker, lost their hair, and died within 12 weeks without tumorigenesis. The appearance and pathological findings were consistent with graft-versus-host disease. Cell line establishment and tumorigenesis in mice were associated with a lower response to first-line therapy and poorer prognosis of patients. Conclusions When MPEs were simply utilized, the cell line establishment rate was 18% and the engraftment rate in mice was 21%. The prognosis of patients who underwent cell line establishment and engraftment in mice was poor.
Collapse
Affiliation(s)
- Nobuhiro Kanaji
- Division of Hematology, Rheumatology and Respiratory Medicine, Department of Internal Medicine, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Masanao Yokohira
- Onco-Pathology, Department of Pathology and Host-Defense and Department of Medical Education, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Takuya Inoue
- Division of Hematology, Rheumatology and Respiratory Medicine, Department of Internal Medicine, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Naoki Watanabe
- Division of Hematology, Rheumatology and Respiratory Medicine, Department of Internal Medicine, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Hitoshi Mizoguchi
- Division of Hematology, Rheumatology and Respiratory Medicine, Department of Internal Medicine, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Yuta Komori
- Division of Hematology, Rheumatology and Respiratory Medicine, Department of Internal Medicine, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Kosuke Kawada
- Division of Hematology, Rheumatology and Respiratory Medicine, Department of Internal Medicine, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Norimitsu Kadowaki
- Division of Hematology, Rheumatology and Respiratory Medicine, Department of Internal Medicine, Faculty of Medicine, Kagawa University, Kagawa, Japan
| |
Collapse
|
3
|
Ogawa H, Koga T, Pham NA, Bernards N, Gregor A, Sata Y, Kitazawa S, Hiraishi Y, Ishiwata T, Aragaki M, Yokote F, Effat A, Kazlovich K, Li Q, Hueniken K, Li M, Maniwa Y, Tsao MS, Yasufuku K. Clinical and pathological predictors of engraftment for patient-derived xenografts in lung adenocarcinoma. Lung Cancer 2024; 194:107863. [PMID: 38968761 DOI: 10.1016/j.lungcan.2024.107863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/25/2024] [Accepted: 06/24/2024] [Indexed: 07/07/2024]
Abstract
Patient-derived xenografts (PDXs) are increasingly utilized in preclinical drug efficacy studies due to their ability to retain the molecular, histological, and drug response characteristics of patient tumors. This study aimed to investigate the factors influencing the successful engraftment of PDXs. Lung adenocarcinoma PDXs were established using freshly resected tumor tissues obtained through surgery. Radiological data of pulmonary nodules from this PDX cohort were analyzed, categorizing them into solid tumors and tumors with ground-glass opacity (GGO) based on preoperative CT images. Gene mutation status was obtained from next generation sequencing data and MassARRAY panel. A total of 254 resected primary lung adenocarcinomas were utilized for PDX establishment, with successful initial engraftment in 58 cases (22.8 %); stable engraftment defined as at least three serial passages was observed in 43 cases (16.9 %). The stable engraftment rates of PDXs from solid tumors and tumors with GGO were 22.1 % (42 of 190 cases) and 1.6 % (1 of 64 cases), respectively (P < 0.001). Adenocarcinomas with advanced stage, poor differentiation, solid histologic subtype, and KRAS or TP53 gene mutations were associated with stable PDX engraftment. Avoiding tumors with GGO features could enhance the cost-effectiveness of establishing PDX models from early-stage resected lung adenocarcinomas.
Collapse
Affiliation(s)
- Hiroyuki Ogawa
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada; Division of Thoracic Surgery, Graduate School of Medicine, Kobe University, Hyogo, Japan
| | - Takamasa Koga
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Nhu-An Pham
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Nicholas Bernards
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Alexander Gregor
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Yuki Sata
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Shinsuke Kitazawa
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Yoshihisa Hiraishi
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Tsukasa Ishiwata
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Masato Aragaki
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Fumi Yokote
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Andrew Effat
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Kate Kazlovich
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Quan Li
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Katrina Hueniken
- Department of Biostatistics, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Ming Li
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Yoshimasa Maniwa
- Division of Thoracic Surgery, Graduate School of Medicine, Kobe University, Hyogo, Japan
| | - Ming-Sound Tsao
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.
| | - Kazuhiro Yasufuku
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada; Department of Surgery, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
4
|
Hynds RE, Huebner A, Pearce DR, Hill MS, Akarca AU, Moore DA, Ward S, Gowers KHC, Karasaki T, Al Bakir M, Wilson GA, Pich O, Martínez-Ruiz C, Hossain ASMM, Pearce SP, Sivakumar M, Ben Aissa A, Grönroos E, Chandrasekharan D, Kolluri KK, Towns R, Wang K, Cook DE, Bosshard-Carter L, Naceur-Lombardelli C, Rowan AJ, Veeriah S, Litchfield K, Crosbie PAJ, Dive C, Quezada SA, Janes SM, Jamal-Hanjani M, Marafioti T, McGranahan N, Swanton C. Representation of genomic intratumor heterogeneity in multi-region non-small cell lung cancer patient-derived xenograft models. Nat Commun 2024; 15:4653. [PMID: 38821942 PMCID: PMC11143323 DOI: 10.1038/s41467-024-47547-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 03/28/2024] [Indexed: 06/02/2024] Open
Abstract
Patient-derived xenograft (PDX) models are widely used in cancer research. To investigate the genomic fidelity of non-small cell lung cancer PDX models, we established 48 PDX models from 22 patients enrolled in the TRACERx study. Multi-region tumor sampling increased successful PDX engraftment and most models were histologically similar to their parent tumor. Whole-exome sequencing enabled comparison of tumors and PDX models and we provide an adapted mouse reference genome for improved removal of NOD scid gamma (NSG) mouse-derived reads from sequencing data. PDX model establishment caused a genomic bottleneck, with models often representing a single tumor subclone. While distinct tumor subclones were represented in independent models from the same tumor, individual PDX models did not fully recapitulate intratumor heterogeneity. On-going genomic evolution in mice contributed modestly to the genomic distance between tumors and PDX models. Our study highlights the importance of considering primary tumor heterogeneity when using PDX models and emphasizes the benefit of comprehensive tumor sampling.
Collapse
Affiliation(s)
- Robert E Hynds
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK.
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK.
- Epithelial Cell Biology in ENT Research Group (EpiCENTR), Developmental Biology and Cancer, Great Ormond Street University College London Institute of Child Health, London, UK.
| | - Ariana Huebner
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Cancer Genome Evolution Research Group, Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - David R Pearce
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Mark S Hill
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Ayse U Akarca
- Department of Cellular Pathology, University College London Hospitals, London, UK
| | - David A Moore
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Department of Cellular Pathology, University College London Hospitals, London, UK
| | - Sophia Ward
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Advanced Sequencing Facility, The Francis Crick Institute, London, UK
| | - Kate H C Gowers
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
| | - Takahiro Karasaki
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Cancer Metastasis Laboratory, University College London Cancer Institute, London, UK
| | - Maise Al Bakir
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Gareth A Wilson
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Oriol Pich
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Carlos Martínez-Ruiz
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Genome Evolution Research Group, Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - A S Md Mukarram Hossain
- Cancer Research UK National Biomarker Centre, University of Manchester, Manchester, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University of Manchester, Manchester, UK
| | - Simon P Pearce
- Cancer Research UK National Biomarker Centre, University of Manchester, Manchester, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University of Manchester, Manchester, UK
| | - Monica Sivakumar
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Department of Cellular Pathology, University College London Hospitals, London, UK
| | - Assma Ben Aissa
- Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, UK
| | - Eva Grönroos
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Deepak Chandrasekharan
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
| | - Krishna K Kolluri
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
| | - Rebecca Towns
- Biological Services Unit, University College London, London, UK
| | - Kaiwen Wang
- School of Medicine, University of Leeds, Leeds, UK
| | - Daniel E Cook
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Leticia Bosshard-Carter
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
| | | | - Andrew J Rowan
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Selvaraju Veeriah
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Kevin Litchfield
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Tumour Immunogenomics and Immunosurveillance Laboratory, University College London Cancer Institute, London, UK
| | - Philip A J Crosbie
- Cancer Research UK Lung Cancer Centre of Excellence, University of Manchester, Manchester, UK
- Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester, UK
| | - Caroline Dive
- Cancer Research UK National Biomarker Centre, University of Manchester, Manchester, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University of Manchester, Manchester, UK
| | - Sergio A Quezada
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, UK
| | - Sam M Janes
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
| | - Mariam Jamal-Hanjani
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Metastasis Laboratory, University College London Cancer Institute, London, UK
- Department of Oncology, University College London Hospitals, London, UK
| | - Teresa Marafioti
- Department of Cellular Pathology, University College London Hospitals, London, UK
| | - Nicholas McGranahan
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK.
- Cancer Genome Evolution Research Group, Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK.
| | - Charles Swanton
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK.
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK.
- Department of Oncology, University College London Hospitals, London, UK.
| |
Collapse
|
5
|
Demircan Çeker D, Baysungur V, Evman S, Kolbaş İ, Gördebil A, Nalbantoğlu SM, Tambağ Y, Kaçar Ö, Midi A, Aslanoğlu H, Kara N, Algan N, Boyacioğlu A, Karademir Yilmaz B, Şahin A, Ülbeği Polat H, Şehitoğullari A, Çibikdiken AO, Büyükyilmaz M, Aydilek İB, Eneş A, Küçüker S, Karakaya F, Boyaci İ, Gümüş M, Şenol O, Öztuğ M, Saban E, Soysal Ö, Büyükpinarbaşili N, Turna A, Günlüoğlu MZ, Çakir A, Tekin Ş, Tazebay U, Karadağ A. LUNGBANK: a novel biorepository strategy tailored for comprehensive multiomics analysis and P-medicine applications in lung cancer. Turk J Biol 2024; 48:203-217. [PMID: 39050710 PMCID: PMC11265891 DOI: 10.55730/1300-0152.2696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/26/2024] [Accepted: 05/28/2024] [Indexed: 07/27/2024] Open
Abstract
Background/aim LUNGBANK was established as part of Project LUNGMARK, pioneering a biorepository dedicated exclusively to lung cancer research. It employs cutting-edge technologies to streamline the handling of biospecimens, ensuring the acquisition of high-quality samples. This infrastructure is fortified with robust data management capabilities, enabling seamless integration of diverse datasets. LUNGBANK functions not merely as a repository but as a sophisticated platform crucial for advancing lung cancer research, poised to facilitate significant discoveries. Materials and methods LUNGBANK was meticulously designed to optimize every stage of biospecimen handling, from collection and storage to processing. Rigorous standard operating procedures and stringent quality control measures guarantee the integrity of collected biospecimens. Advanced data management protocols facilitate the efficient integration and analysis of various datasets, enhancing the depth and breadth of research possibilities in lung cancer. Results LUNGBANK has amassed a comprehensive collection of biospecimens essential for unraveling the intricate molecular mechanisms of lung cancer. The integration of state-of-the-art technologies ensures the acquisition of top-tier data, fostering breakthroughs in translational and histological research. Moreover, the establishment of patient-derived systems by LUNGBANK underscores its pivotal role in personalized medicine approaches. Conclusion The establishment of LUNGBANK marks a significant milestone in addressing the critical challenges of lung cancer research. By providing researchers with high-quality biospecimens and advanced research tools, LUNGBANK not only supports Project LUNGMARK's objectives but also contributes extensively to the broader landscape of personalized medicine. It promises to enhance our understanding of lung cancer initiation, progression, and therapeutic interventions tailored to individual patient needs, thereby advancing the field towards more effective diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Dilek Demircan Çeker
- Molecular Oncology Laboratory, Medical Biotechnology Research Group, VPLS, TÜBİTAK Marmara Research Center, Kocaeli, Turkiye
- Department of Molecular Biology and Genetics, Gebze Technical University, Kocaeli, Turkiye
| | - Volkan Baysungur
- Department of Thoracic Surgery, Faculty of Medicine, University of Health Sciences, İstanbul, Turkiye
- Department of Thoracic Surgery, Süreyyapaşa Training and Research Hospital, İstanbul, Turkiye
| | - Serdar Evman
- Department of Thoracic Surgery, Süreyyapaşa Training and Research Hospital, İstanbul, Turkiye
| | - İlker Kolbaş
- Department of Thoracic Surgery, Süreyyapaşa Training and Research Hospital, İstanbul, Turkiye
| | - Abdurrahim Gördebil
- Department of Thoracic Surgery, Süreyyapaşa Training and Research Hospital, İstanbul, Turkiye
| | - Sinem M Nalbantoğlu
- Molecular Oncology Laboratory, Medical Biotechnology Research Group, VPLS, TÜBİTAK Marmara Research Center, Kocaeli, Turkiye
| | - Yusuf Tambağ
- Software Technologies Research Institute, TÜBİTAK Informatics and Information Security Research Center, Ankara, Turkiye
| | - Ömer Kaçar
- Molecular Oncology Laboratory, Medical Biotechnology Research Group, VPLS, TÜBİTAK Marmara Research Center, Kocaeli, Turkiye
| | - Ahmet Midi
- Department of Pathology, Faculty of Medicine, Bahçeşehir University, İstanbul, Turkiye
| | - Hatice Aslanoğlu
- Department of Thoracic Surgery, Süreyyapaşa Training and Research Hospital, İstanbul, Turkiye
| | - Nülüfer Kara
- Department of Thoracic Surgery, Süreyyapaşa Training and Research Hospital, İstanbul, Turkiye
| | - Nilgün Algan
- Department of Thoracic Surgery, Süreyyapaşa Training and Research Hospital, İstanbul, Turkiye
| | - Ayberk Boyacioğlu
- Department of Thoracic Surgery, Süreyyapaşa Training and Research Hospital, İstanbul, Turkiye
| | - Betül Karademir Yilmaz
- Division of Biochemistry, Department of Basic Medical Sciences, Faculty of Medicine, Marmara University, İstanbul, Turkiye
- Genetic and Metabolic Diseases Research and Investigation Center (GEMHAM), Marmara University, İstanbul, Turkiye
| | - Ali Şahin
- Division of Biochemistry, Department of Basic Medical Sciences, Faculty of Medicine, Marmara University, İstanbul, Turkiye
- Genetic and Metabolic Diseases Research and Investigation Center (GEMHAM), Marmara University, İstanbul, Turkiye
| | - Hivda Ülbeği Polat
- Molecular Oncology Laboratory, Medical Biotechnology Research Group, VPLS, TÜBİTAK Marmara Research Center, Kocaeli, Turkiye
| | - Abidin Şehitoğullari
- Department of Thoracic Surgery, Faculty of Medicine, Sakarya University, Sakarya, Turkiye
| | - Ali Osman Çibikdiken
- Department of Computer Sciences and Engineering, KTO Karatay University, Konya, Turkiye
| | | | - İbrahim Berkan Aydilek
- Department of Computer Engineering, Faculty of Engineering, Harran University, Şanlıurfa, Turkiye
| | - Abdulkerim Eneş
- Department of Computer Engineering, Faculty of Engineering, Harran University, Şanlıurfa, Turkiye
| | - Sevde Küçüker
- Molecular Oncology Laboratory, Medical Biotechnology Research Group, VPLS, TÜBİTAK Marmara Research Center, Kocaeli, Turkiye
| | - Fatih Karakaya
- Molecular Oncology Laboratory, Medical Biotechnology Research Group, VPLS, TÜBİTAK Marmara Research Center, Kocaeli, Turkiye
| | - İhsan Boyaci
- Department of Internal Medicine, Faculty of Medicine, İstanbul Medipol University, İstanbul, Turkiye
| | - Mahmut Gümüş
- Department of Internal Medicine, Faculty of Medicine, İstanbul Medeniyet University, İstanbul, Turkiye
| | - Onur Şenol
- Department of Analytical Chemistry, Faculty of Pharmacy, Atatürk University, Erzurum, Turkiye
| | - Merve Öztuğ
- TÜBİTAK National Metrology Institute, Kocaeli, Turkiye
| | - Evren Saban
- TÜBİTAK National Metrology Institute, Kocaeli, Turkiye
| | - Ömer Soysal
- Department of Thoracic Surgery, Faculty of Medicine, Bezmialem Vakıf University, İstanbul, Turkiye
| | - Nur Büyükpinarbaşili
- Department of Pathology, Faculty of Medicine, Bezmialem Vakıf University, İstanbul, Turkiye
| | - Akif Turna
- Department of Thoracic Surgery, Faculty of Medicine, İstanbul University-Cerrahpaşa, İstanbul, Turkiye
| | - Mehmet Zeki Günlüoğlu
- Department of Thoracic Surgery, Faculty of Medicine, İstanbul Medipol University, İstanbul, Turkiye
| | - Aslı Çakir
- Department of Pathology, Faculty of Medicine, İstanbul Medipol University, İstanbul, Turkiye
| | - Şaban Tekin
- Division of Medical Biology, Department of Basic Medical Sciences, Faculty of Medicine, University of Health Sciences, İstanbul, Turkiye
| | - Uygar Tazebay
- Department of Molecular Biology and Genetics, Gebze Technical University, Kocaeli, Turkiye
| | - Abdullah Karadağ
- Molecular Oncology Laboratory, Medical Biotechnology Research Group, VPLS, TÜBİTAK Marmara Research Center, Kocaeli, Turkiye
- Institute of Biotechnology, Gebze Technical University, Kocaeli, Turkiye
| |
Collapse
|
6
|
Vaishnavi A, Kinsey CG, McMahon M. Preclinical Modeling of Pathway-Targeted Therapy of Human Lung Cancer in the Mouse. Cold Spring Harb Perspect Med 2024; 14:a041385. [PMID: 37788883 PMCID: PMC10760064 DOI: 10.1101/cshperspect.a041385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Animal models, particularly genetically engineered mouse models (GEMMs), continue to have a transformative impact on our understanding of the initiation and progression of hematological malignancies and solid tumors. Furthermore, GEMMs have been employed in the design and optimization of potent anticancer therapies. Increasingly, drug responses are assessed in mouse models either prior, or in parallel, to the implementation of precision medical oncology, in which groups of patients with genetically stratified cancers are treated with drugs that target the relevant oncoprotein such that mechanisms of drug sensitivity or resistance may be identified. Subsequently, this has led to the design and preclinical testing of combination therapies designed to forestall the onset of drug resistance. Indeed, mouse models of human lung cancer represent a paradigm for how a wide variety of GEMMs, driven by a variety of oncogenic drivers, have been generated to study initiation, progression, and maintenance of this disease as well as response to drugs. These studies have now expanded beyond targeted therapy to include immunotherapy. We highlight key aspects of the relationship between mouse models and the evolution of therapeutic approaches, including oncogene-targeted therapies, immunotherapies, acquired drug resistance, and ways in which successful antitumor strategies improve on efficiently translating preclinical approaches into successful antitumor strategies in patients.
Collapse
Affiliation(s)
- Aria Vaishnavi
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | - Conan G Kinsey
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah 84112, USA
| | - Martin McMahon
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
- Department of Dermatology, University of Utah, Salt Lake City, Utah 84112, USA
- Department of Oncological Sciences, University of Utah, Salt Lake City, Utah 84112, USA
| |
Collapse
|
7
|
Zhao R, Xu Y, Chen Y, Zhang J, Teng F, Liao S, Chen S, Wu Q, Xiang C, Pang J, Shang Z, Zhao J, Bao H, Bao H, Shao Y, Lu S, Han Y. Clonal dynamics and Stereo-seq resolve origin and phenotypic plasticity of adenosquamous carcinoma. NPJ Precis Oncol 2023; 7:80. [PMID: 37634047 PMCID: PMC10460394 DOI: 10.1038/s41698-023-00430-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 07/31/2023] [Indexed: 08/28/2023] Open
Abstract
The genomic origin and development of the biphasic lung adenosquamous carcinoma (ASC) remain inconclusive. Here, we derived potential evolutionary trajectory of ASC through whole-exome sequencing, Stereo-seq, and patient-derived xenografts. We showed that EGFR and MET activating mutations were the main drivers in ASCs. Phylogenetically, these drivers and passenger mutations found in both components were trunk clonal events, confirming monoclonal origination. Comparison of multiple lesions also revealed closer genomic distance between lymph node metastases and the ASC component with the same phenotype. However, as mutational signatures of EGFR-positive lung squamous carcinomas (LUSCs) were more comparable to EGFR-positive ASCs than to wild-type LUSCs, we postulated different origination of these LUSCs, with ASC being the potential intermediate state of driver-positive LUSCs. Spatial transcriptomic profiling inferred transformation from adenocarcinoma to squamous cell carcinoma, which was then histologically captured in vivo. Together, our results explained the development of ASC and provided insights into future clinical decisions.
Collapse
Affiliation(s)
- Ruiying Zhao
- Department of Pathology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, PR China
| | - Yunhua Xu
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, PR China
| | - Yedan Chen
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, 210032, PR China
| | - Jiajun Zhang
- BGI Research, Chongqing, 401329, PR China
- BGI Research, Shenzhen, 518083, PR China
| | - Fei Teng
- BGI Research, Shenzhen, 518083, PR China
| | - Sha Liao
- BGI Research, Chongqing, 401329, PR China
- BGI Research, Shenzhen, 518083, PR China
| | - Shengnan Chen
- Department of Pathology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, PR China
| | - Qian Wu
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, 210032, PR China
| | - Chan Xiang
- Department of Pathology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, PR China
| | - Jiaohui Pang
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, 210032, PR China
| | - Zhanxian Shang
- Department of Pathology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, PR China
| | - Jikai Zhao
- Department of Pathology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, PR China
| | - Hairong Bao
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, 210032, PR China
| | - Hua Bao
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, 210032, PR China
| | - Yang Shao
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, 210032, PR China
- School of Public Health, Nanjing Medical University, Nanjing, 211166, PR China
| | - Shun Lu
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, PR China.
| | - Yuchen Han
- Department of Pathology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, PR China.
| |
Collapse
|
8
|
Wang C, Yuan X, Xue J. Targeted therapy for rare lung cancers: Status, challenges, and prospects. Mol Ther 2023; 31:1960-1978. [PMID: 37179456 PMCID: PMC10362419 DOI: 10.1016/j.ymthe.2023.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/29/2023] [Accepted: 05/10/2023] [Indexed: 05/15/2023] Open
Abstract
Lung cancer causes the most cancer-related deaths worldwide. In recent years, molecular and immunohistochemical techniques have rapidly developed, further inaugurating an era of personalized medicine for lung cancer. The rare subset of lung cancers accounts for approximately 10%, each displaying distinct clinical characteristics. Treatments for rare lung cancers are mainly based on evidence from common counterparts, which may lead to unsolid clinical benefits considering intertumoral heterogeneity. The increasing knowledge of molecular profiling of rare lung cancers has made targeting genetic alterations and immune checkpoints a powerful strategy. Additionally, cellular therapy has emerged as a promising way to target tumor cells. In this review, we first discuss the current status of targeted therapy and preclinical models for rare lung cancers, as well as provide mutational profiles by integrating the results of existing cohorts. Finally, we point out the challenges and future directions for developing targeted agents for rare lung cancer.
Collapse
Affiliation(s)
- Chunsen Wang
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, the National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiang Yuan
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, the National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jianxin Xue
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, the National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
9
|
Xie X, Li L, Xie L, Liu Z, Zhang G, Gao X, Peng W, Deng H, Yang Y, Yang M, Chang L, Yi X, Xia X, He Z, Zhou C. Stratification of non-small cell lung adenocarcinoma patients with EGFR actionable mutations based on drug-resistant stem cell genes. iScience 2023; 26:106584. [PMID: 37288343 PMCID: PMC10241979 DOI: 10.1016/j.isci.2023.106584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/02/2023] [Accepted: 03/30/2023] [Indexed: 06/09/2023] Open
Abstract
EGFR-TKIs were used in NSCLC patients with actionable EGFR mutations and prolong prognosis. However, most patients treated with EGFR-TKIs developed resistance within around one year. This suggests that residual EGFR-TKIs resistant cells may eventually lead to relapse. Predicting resistance risk in patients will facilitate individualized management. Herein, we built an EGFR-TKIs resistance prediction (R-index) model and validate in cell line, mice, and cohort. We found significantly higher R-index value in resistant cell lines, mice models and relapsed patients. Patients with an elevated R-index had significantly shorter relapse time. We also found that the glycolysis pathway and the KRAS upregulation pathway were related to EGFR-TKIs resistance. MDSC is a significant immunosuppression factor in the resistant microenvironment. Our model provides an executable method for assessing patient resistance status based on transcriptional reprogramming and may contribute to the clinical translation of patient individual management and the study of unclear resistance mechanisms.
Collapse
Affiliation(s)
- Xiaohong Xie
- Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Lifeng Li
- Geneplus-Beijing, Beijing 102206, China
| | - Liang Xie
- Department of Thoracic Surgery, Guangdong Provincial People’s Hospital/Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, China
| | | | | | - Xuan Gao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Geneplus-Shenzhen Clinical Laboratory, Shenzhen, Guangdong 518122, China
| | - Wenying Peng
- The Second Department of Oncology, Yunnan Cancer Hospital & The Third Affiliated Hospital of Kunming Medical University & Yunnan Cancer Center, Kunming 650000, China
| | - Haiyi Deng
- Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Yilin Yang
- Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Meiling Yang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | | | - Xin Yi
- Geneplus-Beijing, Beijing 102206, China
| | | | - Zhiyi He
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Chengzhi Zhou
- Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| |
Collapse
|
10
|
Ji Y, Luan S, Yang X, Yin B, Jin X, Wang H, Jiang W. Efficacy of bronchoscopic intratumoral injection of endostar and cisplatin in lung squamous cell carcinoma patients underwent conventional chemoradiotherapy. Open Med (Wars) 2023; 18:20230640. [PMID: 37025426 PMCID: PMC10071812 DOI: 10.1515/med-2023-0640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 11/20/2022] [Accepted: 12/22/2022] [Indexed: 04/05/2023] Open
Abstract
Bronchoscopy has been widely used for the therapy of lung cancer. This study aimed to evaluate the therapeutic efficacy and adverse reactions of bronchoscopic intratumoral injection of endostar and cisplatin in patients with lung squamous cell carcinoma (LSCC). A total of 40 LSCC patients who underwent conventional chemoradiotherapy were included in this study, and 20 of them received a bronchoscopic injection of endostar and cisplatin as an additive therapeutic modality (treatment group). The clinical response rate, progression-free survival (PFS), and adverse reactions of the patients were compared and analyzed. The treatment group had better short- and long-term therapeutic efficacy compared to the control group, but no significant differences were observed between the two therapeutic regimens in adverse reactions. Elderly and advanced LSCC patients had worse therapeutic efficacy and a high probability of adverse reactions after the therapy. Collectively, our analysis data demonstrated that the bronchoscopic intratumoral injection of endostar and cisplatin had improved therapeutic efficacy, and the cardiovascular adverse reactions were within the controllable range in the treatment of LSCC in clinical practices.
Collapse
Affiliation(s)
- Yanzhen Ji
- Otorhinolaryngological Department, Hiser Medical Center of Qingdao, Qingdao266033, Shandong, China
| | - Shuli Luan
- Department of Geriatrics, Hiser Medical Center of Qingdao, Qingdao266033, Shandong, China
| | - Xiaoping Yang
- Pneumology Department, Hiser Medical Center of Qingdao, Qingdao266033, Shandong, China
| | - Bin Yin
- Pneumology Department, Hiser Medical Center of Qingdao, Qingdao266033, Shandong, China
| | - Xiaojie Jin
- Pneumology Department, Hiser Medical Center of Qingdao, Qingdao266033, Shandong, China
| | - Haiyan Wang
- Pneumology Department, Hiser Medical Center of Qingdao, Qingdao266033, Shandong, China
| | - Wenqing Jiang
- Pneumology Department, Hiser Medical Center of Qingdao, No. 4 Renmin Road, Qingdao266033, Shandong, China
| |
Collapse
|
11
|
Warashina S, Sato H, Zouda M, Takahashi M, Wada Y, Passioura T, Suga H, Watanabe Y, Matsumoto K, Mukai H. Two-Chain Mature Hepatocyte Growth Factor-Specific Positron Emission Tomography Imaging in Tumors Using 64Cu-Labeled HiP-8, a Nonstandard Macrocyclic Peptide Probe. Mol Pharm 2023; 20:2029-2038. [PMID: 36862642 DOI: 10.1021/acs.molpharmaceut.2c01020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Two-chain hepatocyte growth factor (tcHGF), the mature form of HGF, is associated with malignancy and anticancer drug resistance; therefore, its quantification is an important indicator for cancer diagnosis. In tumors, activated tcHGF hardly discharges into the systemic circulation, indicating that tcHGF is an excellent target for molecular imaging using positron emission tomography (PET). We recently discovered HGF-inhibitory peptide-8 (HiP-8) that binds specifically to human tcHGF with nanomolar affinity. The purpose of this study was to investigate the usefulness of HiP-8-based PET probes in human HGF knock-in humanized mice. 64Cu-labeled HiP-8 molecules were synthesized using a cross-bridged cyclam chelator, CB-TE1K1P. Radio-high-performance liquid chromatography-based metabolic stability analyses showed that more than 90% of the probes existed in intact form in blood at least for 15 min. In PET studies, significantly selective visualization of hHGF-overexpressing tumors versus hHGF-negative tumors was observed in double-tumor-bearing mice. The accumulation of labeled HiP-8 into the hHGF-overexpressing tumors was significantly reduced by competitive inhibition. In addition, the radioactivity and distribution of phosphorylated MET/HGF receptor were colocalized in tissues. These results demonstrate that the 64Cu-labeled HiP-8 probes are suitable for tcHGF imaging in vivo, and secretory proteins like tcHGF can be a target for PET imaging.
Collapse
Affiliation(s)
- Shota Warashina
- Laboratory for Molecular Delivery and Imaging Technology, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Hiroki Sato
- Division of Tumor Dynamics and Regulation, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Maki Zouda
- Laboratory for Molecular Delivery and Imaging Technology, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Maiko Takahashi
- Laboratory for Molecular Delivery and Imaging Technology, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Yasuhiro Wada
- Laboratory for Pathophysiological and Health Science, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Toby Passioura
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo 113-0033, Japan
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo 113-0033, Japan
| | - Yasuyoshi Watanabe
- Laboratory for Pathophysiological and Health Science, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Kunio Matsumoto
- Division of Tumor Dynamics and Regulation, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan.,WPI-Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma, Kanazawa, Ishikawa 920-1192, Japan
| | - Hidefumi Mukai
- Laboratory for Molecular Delivery and Imaging Technology, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,Department of Pharmaceutical Informatics, Graduate School of Biomedical Science, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan
| |
Collapse
|
12
|
Miura K, Koyanagi-Aoi M, Maniwa Y, Aoi T. Chorioallantoic membrane assay revealed the role of TIPARP (2,3,7,8-tetrachlorodibenzo-p-dioxin-inducible poly (ADP-ribose) polymerase) in lung adenocarcinoma-induced angiogenesis. Cancer Cell Int 2023; 23:34. [PMID: 36841751 PMCID: PMC9960622 DOI: 10.1186/s12935-023-02870-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 02/13/2023] [Indexed: 02/27/2023] Open
Abstract
BACKGROUND The chorioallantoic membrane (CAM) assay is a well-established technique to evaluate tumor invasion and angiogenesis and may overcome the shortcoming of the patient-derived xenograft (PDX) mouse model. Currently, few reports have described lung cancer invasion and angiogenesis in the CAM assay. We therefore used the CAM assay in the evaluation of lung cancer. METHOD Lung cancer cell line-derived organoids or lung cancer cell lines were transplanted into the CAM on embryonic development day (EDD) 10, and an analysis was performed on EDD 15. Microscopic and macroscopic images and movies of the grafts on the CAM were captured and analyzed. The relationships between the graft and chick vessels were evaluated using immunohistochemistry. RESULTS We transplanted lung cancer cell lines and cell line-derived organoid into a CAM to investigate angiogenesis and invasion. They engrafted on the CAM at a rate of 50-83%. A549-OKS cells showed enhanced cell invasion and angiogenesis on the CAM in comparison to A549-GFP cells as was reported in vitro. Next, we found that A549-TIPARP cells promoted angiogenesis on the CAM. RNA-seq identified 203 genes that were upregulated more than twofold in comparison to A549-GFP cells. A pathway analysis revealed many upregulated pathways related to degradation and synthesis of the extracellular matrix in A549-TIPARP cells. CONCLUSIONS The CAM assay can be used to evaluate and research invasion and angiogenesis in lung cancer. The elevated expression of TIPARP in lung cancer may induce angiogenesis by remodeling the extracellular matrix.
Collapse
Affiliation(s)
- Kenji Miura
- grid.31432.370000 0001 1092 3077Division of Stem Cell Medicine, Graduate School of Medicine, Kobe University, 7-5-1 Kusunoki-cho, Chuo-Ku, Kobe, Hyogo 650-0017 Japan ,grid.31432.370000 0001 1092 3077Division of Advanced Medical Science, Graduate School of Science, Technology and Innovation, Kobe University, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017 Japan ,grid.31432.370000 0001 1092 3077Division of Thoracic Surgery, Graduate School of Medicine, Kobe University, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017 Japan
| | - Michiyo Koyanagi-Aoi
- grid.31432.370000 0001 1092 3077Division of Stem Cell Medicine, Graduate School of Medicine, Kobe University, 7-5-1 Kusunoki-cho, Chuo-Ku, Kobe, Hyogo 650-0017 Japan ,grid.31432.370000 0001 1092 3077Division of Advanced Medical Science, Graduate School of Science, Technology and Innovation, Kobe University, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017 Japan ,grid.411102.70000 0004 0596 6533Center for Human Resource Development for Regenerative Medicine, Kobe University Hospital, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017 Japan
| | - Yoshimasa Maniwa
- grid.31432.370000 0001 1092 3077Division of Thoracic Surgery, Graduate School of Medicine, Kobe University, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017 Japan
| | - Takashi Aoi
- Division of Stem Cell Medicine, Graduate School of Medicine, Kobe University, 7-5-1 Kusunoki-cho, Chuo-Ku, Kobe, Hyogo, 650-0017, Japan. .,Division of Advanced Medical Science, Graduate School of Science, Technology and Innovation, Kobe University, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan. .,Center for Human Resource Development for Regenerative Medicine, Kobe University Hospital, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan.
| |
Collapse
|
13
|
Zhang Y, Chen F, Creighton CJ. Pan-cancer molecular subtypes of metastasis reveal distinct and evolving transcriptional programs. Cell Rep Med 2023; 4:100932. [PMID: 36731467 PMCID: PMC9975284 DOI: 10.1016/j.xcrm.2023.100932] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/22/2022] [Accepted: 01/12/2023] [Indexed: 02/04/2023]
Abstract
Molecular mechanisms underlying cancer metastasis span diverse tissues of origin. Here, we synthesize and collate the transcriptomes of patient-derived xenografts and patient tumor metastases, and these data collectively represent 38 studies and over 3,000 patients and 4,000 tumors. We identify four expression-based subtypes of metastasis transcending tumor lineage. The first subtype has extensive copy alterations, higher expression of MYC transcriptional targets and DNA repair genes, and bromodomain inhibitor response association. The second subtype has higher expression of genes involving metabolism and prostaglandin synthesis and regulation. The third subtype has evidence of neuronal differentiation, higher expression of DNA and histone methylation genes and EZH2 transcriptional targets, and BCL2 inhibitor response association. The fourth subtype has higher expression of immune checkpoint and Notch pathway genes. The metastasis subtypes reflect expression differences from paired primaries, with subtype switching being common. These subtypes facilitate understanding of the molecular underpinnings of metastases beyond tissue-oriented domains, with therapeutic implications.
Collapse
Affiliation(s)
- Yiqun Zhang
- Dan L. Duncan Comprehensive Cancer Center Division of Biostatistics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Fengju Chen
- Dan L. Duncan Comprehensive Cancer Center Division of Biostatistics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Chad J Creighton
- Dan L. Duncan Comprehensive Cancer Center Division of Biostatistics, Baylor College of Medicine, Houston, TX 77030, USA; Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, MS305, Houston, TX 77030, USA; Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
14
|
Gautam LK, Harriott NC, Caceres AM, Ryan AL. Basic Science Perspective on Engineering and Modeling the Large Airways. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1413:73-106. [PMID: 37195527 DOI: 10.1007/978-3-031-26625-6_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The airway epithelium provides a physical and biochemical barrier playing a key role in protecting the lung from infiltration of pathogens and irritants and is, therefore, crucial in maintaining tissue homeostasis and regulating innate immunity. Due to continual inspiration and expiration of air during breathing, the epithelium is exposed to a plethora of environmental insults. When severe or persistent, these insults lead to inflammation and infection. The effectiveness of the epithelium as a barrier is reliant upon its capacity for mucociliary clearance, immune surveillance, and regeneration upon injury. These functions are accomplished by the cells that comprise the airway epithelium and the niche in which they reside. Engineering of new physiological and pathological models of the proximal airways requires the generation of complex structures comprising the surface airway epithelium, submucosal gland epithelium, extracellular matrix, and niche cells, including smooth muscle cells, fibroblasts, and immune cells. This chapter focuses on the structure-function relationships in the airways and the challenges of developing complex engineered models of the human airway.
Collapse
Affiliation(s)
- Lalit K Gautam
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Noa C Harriott
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Adrian M Caceres
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Amy L Ryan
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
15
|
Pan J, Cai X, Zheng X, Zhu X, Feng J, Wang X. Luteolin inhibits viability, migration, angiogenesis and invasion of non-small cell lung cancer vascular endothelial cells via miR-133a-3p/purine rich element binding protein B-mediated MAPK and PI3K/Akt signaling pathways. Tissue Cell 2022; 75:101740. [PMID: 35101688 DOI: 10.1016/j.tice.2022.101740] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 01/03/2022] [Accepted: 01/17/2022] [Indexed: 12/27/2022]
Abstract
Luteolin inhibits tumorigenesis of non-small cell lung cancer (NSCLC), but its mechanism still needs to be clarified. We hereby explored the effects of luteolin in vascular endothelial cells of NSCLC (NSCLC-VECs). After extraction and identification of NSCLC-VECs, cells were treated with luteolin and transfected. The viability, migration, angiogenesis and invasion of the cells were measured. The levels of miR-133a-3p, purine rich element binding protein B (PURB), vascular endothelial growth factor (VEGF), phosphatidylinositol 3-kinase (PI3K), Akt, mitogen-activated protein kinases (MAPK), matrix metalloproteinase (MMP)-2/-9 were determined. The interaction relationship of miR-133a-3p and PURB was identified. Luteolin inhibited the viability, migration, angiogenesis and invasion of NSCLC-VECs yet up-regulated miR-133a-3p level, while miR-133a-3p inhibitor counteracted the repressive effect of luteolin on the viability, migration, angiogenesis, and invasion in NSCLC-VECs. Luteolin inhibited the expressions of migration- and invasion-associated proteins (VEGF, MMP-2 and MMP-9), PI3K/Akt and MAPK signaling pathways-related factors, while miR-133a-3p inhibitor reversed the inhibitory effect of Luteolin on NSCLC-VECs. Luteolin decreased the level of PURB, which was targeted by miR-133a-3p. ShPURB promoted miR-133a-3p level in NSCLC-VECs, while reversing the promoting effects of miR-133a-3p inhibitor on the migration, invasion, and levels of migration- and invasion-associated proteins, PI3K/Akt and MAPK pathways-associated factors in NSCLC-VECs. Collectively speaking, luteolin inhibits the migration and invasion of NSCLC-VECs via miR-133a-3p/PURB- mediated MAPK and PI3K/Akt pathways.
Collapse
Affiliation(s)
- Jie Pan
- Department of General Medicine, Lishui City People's Hospital, The Sixth Affiliated Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, China
| | - Xiaoping Cai
- Department of Respiratory Medicine, Lishui City People's Hospital, The Sixth Affiliated Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, China
| | - Xiao Zheng
- Department of Respiratory Medicine, Suichang County People's Hospital, China
| | - Xiaoyu Zhu
- Department of General Surgery, Lishui City People's Hospital, China
| | - Jihong Feng
- Department of Oncology, Lishui City People's Hospital, The Sixth Affiliated Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, China
| | - Xiaoqiu Wang
- Department of Oncology, Lishui City People's Hospital, The Sixth Affiliated Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, China.
| |
Collapse
|
16
|
Wieleba I, Wojas-Krawczyk K, Krawczyk P, Milanowski J. Clinical Application Perspectives of Lung Cancers 3D Tumor Microenvironment Models for In Vitro Cultures. Int J Mol Sci 2022; 23:ijms23042261. [PMID: 35216378 PMCID: PMC8876687 DOI: 10.3390/ijms23042261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/01/2022] [Accepted: 02/16/2022] [Indexed: 02/01/2023] Open
Abstract
Despite the enormous progress and development of modern therapies, lung cancer remains one of the most common causes of death among men and women. The key element in the development of new anti-cancer drugs is proper planning of the preclinical research phase. The most adequate basic research exemplary for cancer study are 3D tumor microenvironment in vitro models, which allow us to avoid the use of animal models and ensure replicable culture condition. However, the question tormenting the scientist is how to choose the best tool for tumor microenvironment research, especially for extremely heterogenous lung cancer cases. In the presented review we are focused to explain the key factors of lung cancer biology, its microenvironment, and clinical gaps related to different therapies. The review summarized the most important strategies for in vitro culture models mimicking the tumor–tumor microenvironmental interaction, as well as all advantages and disadvantages were depicted. This knowledge could facilitate the right decision to designate proper pre-clinical in vitro study, based on available analytical tools and technical capabilities, to obtain more reliable and personalized results for faster introduction them into the future clinical trials.
Collapse
|
17
|
Ge Y, Zhang X, Liang W, Tang C, Gu D, Shi J, Wei X. OncoVee™-MiniPDX-Guided Anticancer Treatment for Gastric Cancer Patients With Synchronous Liver Metastases: A Retrospective Cohort Analysis. Front Oncol 2022; 11:757383. [PMID: 35047388 PMCID: PMC8761725 DOI: 10.3389/fonc.2021.757383] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 12/03/2021] [Indexed: 12/21/2022] Open
Abstract
Background It is estimated that 35% of gastric cancer patients appear with synchronous distant metastases—the vast majority of patients presenting with metastatic hepatic disease. How to choose the most appropriate drugs or regimens is crucial to improve the prognosis of patients. We conducted this retrospective cohort analysis to evaluate the efficacy of OncoVee™-MiniPDX-guided treatment for these patients. Methods Gastric cancer patients with liver metastases (GCLM) were enrolled. Patients were divided into MiniPDX and control group according to their wishes. In the observation group, the OncoVee™-MiniPDX model was conducted to screen the most sensitive drug or regimens to determine the clinical administration. Meanwhile, patients were treated with regular medications in the control group according to the guidelines without the MiniPDX model. The primary endpoint was overall survival (OS), and the secondary outcomes included objective response rate (ORR), disease control rate (DCR), and progression-free survival (PFS). Results A total of 68 patients with GCLM were included, with the observation and control groups of 21 and 47 patients, respectively. The baseline characteristics of patients were balanced between these two groups. MiniPDX drug sensitivity tests were associated with the increased use of targeted drugs when compared with the control group (33.3 vs. 0%, p=0.032). Median OS was estimated to be 9.4 (95% CI, 7.9–11.2) months and 7.9 (95% CI, 7.2–8.7) months in the observation and control group, respectively. Both univariate (control group vs. MiniPDX group: HR=2.586, 95% CI= 1.362–4.908, p=0.004) and multivariate regression analyses (Control group vs. MiniPDX group: adjusted HR (aHR)=4.288, 95% CI= 1.452–12.671, p=0.008) showed the superiority of the observation group on OS. Similarly, MiniPDX-based regiments significantly improve the PFS of these cases (median PFS 6.7 months vs. 4.2 months, aHR=2.773, 95% CI=1.532–3.983, p=0.029). ORR and DCR were also improved in MiniPDX group comparing with control group (ORR, 57.14 vs. 25.53%, p=0.029; DCR: 85.71 vs. 68.08%, p=0.035). Conclusion OncoVee™-MiniPDX model, which was used to select drugs to guide antitumor treatment, was promising to prolong survival and improve the response rate of patients with GCLM. Further well-designed studies are needed to confirm the clinical benefits of MiniPDX.
Collapse
Affiliation(s)
- Yutong Ge
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xin Zhang
- Department of Gastrointestinal Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Wei Liang
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Cuiju Tang
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Dongying Gu
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Junfeng Shi
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xiaowei Wei
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
18
|
Ma HC, Zhu YJ, Zhou R, Yu YY, Xiao ZZ, Zhang HB. Lung cancer organoids, a promising model still with long way to go. Crit Rev Oncol Hematol 2022; 171:103610. [DOI: 10.1016/j.critrevonc.2022.103610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 12/13/2022] Open
|
19
|
Jo H, Yagishita S, Hayashi Y, Ryu S, Suzuki M, Kohsaka S, Ueno T, Matsumoto Y, Horinouchi H, Ohe Y, Watanabe SI, Motoi N, Yatabe Y, Mano H, Takahashi K, Hamada A. Comparative study on the efficacy and exposure of molecular target agents in non-small cell lung cancer PDX models with driver genetic alterations. Mol Cancer Ther 2021; 21:359-370. [PMID: 34911818 DOI: 10.1158/1535-7163.mct-21-0371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/11/2021] [Accepted: 12/13/2021] [Indexed: 11/16/2022]
Abstract
Patient-derived xenografts (PDXs) can adequately reflect clinical drug efficacy. However, the methods for evaluating drug efficacy are not fully established. We selected five non-small cell lung cancer (NSCLC) PDXs with genetic alterations from established PDXs and the corresponding molecular targeted therapy was administered orally for 21 consecutive days. Genetic analysis, measurement of drug concentrations in blood and tumors using liquid chromatography and tandem mass spectrometry, and analysis of drug distribution in tumors using matrix-assisted laser desorption/ionization mass spectrometry were performed. Fifteen (20%) PDXs were established using samples collected from 76 NSCLC patients with genetic alterations. The genetic alterations observed in original patients were largely maintained in PDXs. We compared the drug efficacy in original patients and PDX models; the efficacies against certain PDXs correlated with the clinical effects, while those against the others did not. We determined blood and intratumor concentrations in the PDX model, but both concentrations were low, and no evident correlation with the drug efficacy could be observed. The intratumoral spatial distribution of the drugs was both homogeneous and heterogeneous for each drug, and the distribution was independent of the expression of the target protein. The evaluation of drug efficacy in PDXs enabled partial reproduction of the therapeutic effect in original patients. A more detailed analysis of systemic and intratumoral pharmacokinetics may help clarify the mode of action of drugs. Further development of evaluation methods and indices to improve the prediction accuracy of clinical efficacy is warranted.
Collapse
Affiliation(s)
- Hitomi Jo
- Division of Molecular Pharmacology, National Cancer Center Research Institute
| | - Shigehiro Yagishita
- Division of Molecular Pharmacology, National Cancer Center Research Institute
| | - Yoshiharu Hayashi
- Division of Molecular Pharmacology, National Cancer Center Research Institute
| | - Shoraku Ryu
- Division of Molecular Pharmacology, National Cancer Center Research Institute
| | - Mikiko Suzuki
- Division of Molecular Pharmacology, National Cancer Center Research Institute
| | - Shinji Kohsaka
- Division of Cellular Signaling, National Cancer Center Research Institute
| | - Toshihide Ueno
- Division of Cellular Signaling, National Cancer Center Research Institute
| | | | | | - Yuichiro Ohe
- Department of Thoracic Oncology, National Cancer Center Hospital
| | | | - Noriko Motoi
- Department of Pathology, National Cancer Center Hospital
| | - Yasushi Yatabe
- Department of Diagnostic Pathology, National Cancer Center Hospital
| | | | | | - Akinobu Hamada
- Division of Molecular Pharmacology, National Cancer Center Research Institute
| |
Collapse
|
20
|
Arnal-Estapé A, Foggetti G, Starrett JH, Nguyen DX, Politi K. Preclinical Models for the Study of Lung Cancer Pathogenesis and Therapy Development. Cold Spring Harb Perspect Med 2021; 11:a037820. [PMID: 34518338 PMCID: PMC8634791 DOI: 10.1101/cshperspect.a037820] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Experimental preclinical models have been a cornerstone of lung cancer translational research. Work in these model systems has provided insights into the biology of lung cancer subtypes and their origins, contributed to our understanding of the mechanisms that underlie tumor progression, and revealed new therapeutic vulnerabilities. Initially patient-derived lung cancer cell lines were the main preclinical models available. The landscape is very different now with numerous preclinical models for research each with unique characteristics. These include genetically engineered mouse models (GEMMs), patient-derived xenografts (PDXs) and three-dimensional culture systems ("organoid" cultures). Here we review the development and applications of these models and describe their contributions to lung cancer research.
Collapse
Affiliation(s)
- Anna Arnal-Estapé
- Department of Pathology
- Yale Cancer Center, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | | - Don X Nguyen
- Department of Pathology
- Department of Internal Medicine (Section of Medical Oncology)
- Yale Cancer Center, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | - Katerina Politi
- Department of Pathology
- Department of Internal Medicine (Section of Medical Oncology)
- Yale Cancer Center, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| |
Collapse
|
21
|
Hassanein SS, Ibrahim SA, Abdel-Mawgood AL. Cell Behavior of Non-Small Cell Lung Cancer Is at EGFR and MicroRNAs Hands. Int J Mol Sci 2021; 22:12496. [PMID: 34830377 PMCID: PMC8621388 DOI: 10.3390/ijms222212496] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/13/2021] [Accepted: 11/17/2021] [Indexed: 12/18/2022] Open
Abstract
Lung cancer is a complex disease associated with gene mutations, particularly mutations of Kirsten Rat Sarcoma Viral Oncogene Homolog (KRAS) and epidermal growth factor receptor (EGFR). Non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC) are the two major types of lung cancer. The former includes most lung cancers (85%) and are commonly associated with EGFR mutations. Several EGFR-tyrosine kinase inhibitors (EGFR-TKIs), including erlotinib, gefitinib, and osimertinib, are effective therapeutic agents in EGFR-mutated NSCLC. However, their effectiveness is limited by the development (acquired) or presence of intrinsic drug resistance. MicroRNAs (miRNAs) are key gene regulators that play a profound role in the development and outcomes for NSCLC via their role as oncogenes or oncosuppressors. The regulatory role of miRNA-dependent EGFR crosstalk depends on EGFR signaling pathway, including Rat Sarcoma/Rapidly Accelerated Fibrosarcoma/Mitogen-Activated Protein Kinase/Extracellular Signal-Regulated Kinase 1/2 (Ras/Raf/MEK/ERK1/2), Signal Transducer and Activator of Transcription (STAT), Nuclear Factor Kappa-Light-Chain-Enhancer of Activated B Cells (NF-kB), phosphoinositide 3-kinase/protein kinase B (PI3K/AKT), Janus kinase 1 (JAK1), and growth factor receptor-bound protein 2 (GRB2). Dysregulated expression of miRNAs affects sensitivity to treatment with EGFR-TKIs. Thus, abnormalities in miRNA-dependent EGFR crosstalk can be used as diagnostic and prognostic markers, as well as therapeutic targets in NSCLC. In this review, we present an overview of miRNA-dependent EGFR expression regulation, which modulates the behavior and progression of NSCLC.
Collapse
Affiliation(s)
- Sarah Sayed Hassanein
- Biotechnology Program, Basic and Applied Sciences (BAS) Institute, Egypt-Japan University of Science and Technology (E-JUST), Alexandria 21934, Egypt;
- Department of Zoology, Faculty of Science, Cairo University, Giza 12613, Egypt;
| | | | - Ahmed Lotfy Abdel-Mawgood
- Biotechnology Program, Basic and Applied Sciences (BAS) Institute, Egypt-Japan University of Science and Technology (E-JUST), Alexandria 21934, Egypt;
| |
Collapse
|
22
|
Strüder D, Momper T, Irmscher N, Krause M, Liese J, Schraven S, Zimpfer A, Zonnur S, Burmeister AS, Schneider B, Frerich B, Mlynski R, Große-Thie C, Junghanss C, Maletzki C. Establishment and characterization of patient-derived head and neck cancer models from surgical specimens and endoscopic biopsies. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:246. [PMID: 34362423 PMCID: PMC8344210 DOI: 10.1186/s13046-021-02047-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 07/16/2021] [Indexed: 01/31/2023]
Abstract
Background Head and neck squamous cell carcinoma (HNSCC) is heterogeneous in etiology, phenotype and biology. Patient-derived xenografts (PDX) maintain morphology and molecular profiling of the original tumors and have become a standard “Avatar” model for human cancer research. However, restricted availability of tumor samples hindered the widespread use of PDX. Most PDX-projects include only surgical specimens because reliable engraftment from biopsies is missing. Therefore, sample collection is limited and excludes recurrent and metastatic, non-resectable cancer from preclinical models as well as future personalized medicine. Methods This study compares the PDX-take rate, -growth, histopathology, and molecular characteristics of endoscopic specimens with surgical specimens. HNSCC samples (n = 55) were collected ad hoc, fresh frozen and implanted into NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ mice. Results Engraftment was successful in both sample types. However, engraftment rate was lower (21 vs. 52%) and growth delayed (11.2 vs. 6.7 weeks) for endoscopic biopsies. Following engraftment, growth kinetic was similar. Comparisons of primary tumors and corresponding PDX models confirmed preservation of histomorphology (HE histology) and molecular profile (Illumina Cancer Hotspot Panel) of the patients’ tumors. Accompanying flow cytometry on primary tumor specimens revealed a heterogeneous tumor microenvironment among individual cases and identified M2-like macrophages as positive predictors for engraftment. Vice versa, a high PD-L1 expression (combined positive score on tumor/immune cells) predicted PDX rejection. Conclusion Including biopsy samples from locally advanced or metastatic lesions from patients with non-surgical treatment strategies, increases the availability of PDX for basic and translational research. This facilitates (pre-) clinical studies for individual response prediction based on immunological biomarkers. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-02047-w.
Collapse
Affiliation(s)
- Daniel Strüder
- Department of Otorhinolaryngology, Head and Neck Surgery "Otto Koerner", Rostock University Medical Center, Rostock, Germany
| | - Theresa Momper
- Department of Internal Medicine, Medical Clinic III - Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, Schillingallee 70, 18057, Rostock, Germany
| | - Nina Irmscher
- Department of Internal Medicine, Medical Clinic III - Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, Schillingallee 70, 18057, Rostock, Germany
| | - Mareike Krause
- Department of Internal Medicine, Medical Clinic III - Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, Schillingallee 70, 18057, Rostock, Germany
| | - Jan Liese
- Department of Oral and Maxillofacial Surgery, Facial Plastic Surgery, Rostock University Medical Center, Rostock, Germany
| | - Sebastian Schraven
- Department of Otorhinolaryngology, Head and Neck Surgery "Otto Koerner", Rostock University Medical Center, Rostock, Germany
| | - Annette Zimpfer
- Institute of Pathology, Rostock University Medical Center, Rostock, Germany
| | - Sarah Zonnur
- Institute of Pathology, Rostock University Medical Center, Rostock, Germany
| | - Ann-Sophie Burmeister
- Department of Internal Medicine, Medical Clinic III - Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, Schillingallee 70, 18057, Rostock, Germany
| | - Björn Schneider
- Institute of Pathology, Rostock University Medical Center, Rostock, Germany
| | - Bernhard Frerich
- Department of Oral and Maxillofacial Surgery, Facial Plastic Surgery, Rostock University Medical Center, Rostock, Germany
| | - Robert Mlynski
- Department of Otorhinolaryngology, Head and Neck Surgery "Otto Koerner", Rostock University Medical Center, Rostock, Germany
| | - Christina Große-Thie
- Department of Internal Medicine, Medical Clinic III - Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, Schillingallee 70, 18057, Rostock, Germany
| | - Christian Junghanss
- Department of Internal Medicine, Medical Clinic III - Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, Schillingallee 70, 18057, Rostock, Germany
| | - Claudia Maletzki
- Department of Internal Medicine, Medical Clinic III - Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, Schillingallee 70, 18057, Rostock, Germany.
| |
Collapse
|
23
|
Mapping lung squamous cell carcinoma pathogenesis through in vitro and in vivo models. Commun Biol 2021; 4:937. [PMID: 34354223 PMCID: PMC8342622 DOI: 10.1038/s42003-021-02470-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 07/15/2021] [Indexed: 02/07/2023] Open
Abstract
Lung cancer is the main cause of cancer death worldwide, with lung squamous cell carcinoma (LUSC) being the second most frequent subtype. Preclinical LUSC models recapitulating human disease pathogenesis are key for the development of early intervention approaches and improved therapies. Here, we review advances and challenges in the generation of LUSC models, from 2D and 3D cultures, to murine models. We discuss how molecular profiling of premalignant lesions and invasive LUSC has contributed to the refinement of in vitro and in vivo models, and in turn, how these systems have increased our understanding of LUSC biology and therapeutic vulnerabilities.
Collapse
|
24
|
Pardo-Sánchez JM, Mancheño N, Cerón J, Jordá C, Ansotegui E, Juan Ó, Palanca S, Cremades A, Gandía C, Farràs R. Increased Tumor Growth Rate and Mesenchymal Properties of NSCLC-Patient-Derived Xenograft Models during Serial Transplantation. Cancers (Basel) 2021; 13:cancers13122980. [PMID: 34198671 PMCID: PMC8232339 DOI: 10.3390/cancers13122980] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 06/06/2021] [Accepted: 06/09/2021] [Indexed: 02/07/2023] Open
Abstract
Non-small-cell lung cancer (NSCLC) is the leading cause of cancer death worldwide. The high mortality is very often a consequence of its late diagnosis when the cancer is already locally advanced or has disseminated. Advances in the study of NSCLC tumors have been achieved by using in vivo models, such as patient-derived xenografts. Apart from drug screening, this approach may also be useful for study of the biology of the tumors. In the present study, surgically resected primary lung cancer samples (n = 33) were implanted in immunodeficient mice, and nine were engrafted successfully, including seven adenocarcinomas, one squamous-cell carcinoma, and one large-cell carcinoma. ADC tumors bearing the KRAS-G12C mutation were the most frequently engrafted in our PDX collection. Protein expression of vimentin, ezrin, and Ki67 were evaluated in NSCLC primary tumors and during serial transplantation by immunohistochemistry, using H-score. Our data indicated a more suitable environment for solid adenocarcinoma, compared to other lung tumor subtypes, to grow and preserve its architecture in mice, and a correlation between higher vimentin and ezrin expression in solid adenocarcinomas. A correlation between high vimentin expression and lung adenocarcinoma tumors bearing KRAS-G12C mutation was also observed. In addition, tumor evolution towards more proliferative and mesenchymal phenotypes was already observed in early PDX tumor passages. These PDX models provide a valuable platform for biomarker discovery and drug screening against tumor growth and EMT for lung cancer translational research.
Collapse
Affiliation(s)
- José Miguel Pardo-Sánchez
- Oncogenic Signalling Laboratory, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain; (J.M.P.-S.); (C.G.)
| | - Nuria Mancheño
- Department of Pathology, University and Polytechnic La Fe Hospital, 46026 Valencia, Spain;
| | - José Cerón
- Department of Thoracic Surgery, University and Polytechnic La Fe Hospital, 46026 Valencia, Spain; (J.C.); (C.J.)
| | - Carlos Jordá
- Department of Thoracic Surgery, University and Polytechnic La Fe Hospital, 46026 Valencia, Spain; (J.C.); (C.J.)
| | - Emilio Ansotegui
- Department of Pulmonology, University and Polytechnic La Fe Hospital, 46026 Valencia, Spain;
| | - Óscar Juan
- Department of Medical Oncology, University and Polytechnic La Fe Hospital, 46026 Valencia, Spain;
| | - Sarai Palanca
- Molecular Biology Unit, Service of Clinical Analysis, University and Polytechnic La Fe Hospital, 46026 Valencia, Spain;
| | - Antonio Cremades
- Department of Pathology, Hospital Universitario de la Ribera, 46600 Alzira, Spain;
| | - Carolina Gandía
- Oncogenic Signalling Laboratory, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain; (J.M.P.-S.); (C.G.)
| | - Rosa Farràs
- Oncogenic Signalling Laboratory, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain; (J.M.P.-S.); (C.G.)
- Correspondence:
| |
Collapse
|
25
|
Kanaki Z, Voutsina A, Markou A, Pateras IS, Potaris K, Avgeris M, Makrythanasis P, Athanasiadis EI, Vamvakaris I, Patsea E, Vachlas K, Lianidou E, Georgoulias V, Kotsakis A, Klinakis A. Generation of Non-Small Cell Lung Cancer Patient-Derived Xenografts to Study Intratumor Heterogeneity. Cancers (Basel) 2021; 13:cancers13102446. [PMID: 34070013 PMCID: PMC8157865 DOI: 10.3390/cancers13102446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 12/25/2022] Open
Abstract
Simple Summary It is widely thought that tumors are composed of different subpopulations of cancer cells carrying genetic alterations with some of them being common among all cells while others are unique for each subpopulation. This variable genetic profile of tumor cells is a component of what is collectively described as intratumor heterogeneity (ITH). Surviving the immune system and therapies, and establishing metastases are forces of natural selection that act upon ITH and drive tumor evolution and, eventually, the clinical presentation of patients. The aim of this prospective study was to investigate ITH in early-stage operable non-small cell lung cancer. We directly grafted human tumors in immunosuppressed mice and compared the genetic profile of the tumors grown in mice with that of the original human tumors. We identified clinical factors that affected the ability of human tumors to grow as mouse xenografts. Abstract Recent advances in sequencing technologies have allowed the in-depth molecular study of tumors, even at the single cell level. Sequencing efforts have uncovered a previously unappreciated heterogeneity among tumor cells, which has been postulated to be the driving force of tumor evolution and to facilitate recurrence, metastasis, and drug resistance. In the current study, focused on early-stage operable non-small cell lung cancer, we used tumor growth in patient-derived xenograft (PDX) models in mice as a fast-forward tumor evolution process to investigate the molecular characteristics of tumor cells that grow in mice, as well as the parameters that affect the grafting efficiency. We found that squamous cell carcinomas grafted significantly more efficiently compared with adenocarcinomas. Advanced stage, patient age and primary tumor size were positively correlated with grafting. Additionally, we isolated and characterized circulating tumor cells (CTC) from patients’ peripheral blood and found that the presence of CTCs expressing epithelial-to-mesenchymal (EMT) markers correlated with the grafting potential. Interestingly, exome sequencing of the PDX tumor identified genetic alterations in DNA repair and genome integrity genes that were under-represented in the human primary counterpart. In conclusion, through the generation of a PDX biobank of NSCLC, we identified the clinical and molecular properties of tumors that affected growth in mice.
Collapse
Affiliation(s)
- Zoi Kanaki
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece; (Z.K.); (A.V.); (P.M.)
| | - Alexandra Voutsina
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece; (Z.K.); (A.V.); (P.M.)
| | - Athina Markou
- Analysis of Circulating Tumor Cells Lab, Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece; (A.M.); (E.L.)
| | - Ioannis S. Pateras
- Department of Histology and Embryology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Konstantinos Potaris
- Department of Thoracic Surgery, Sotiria Hospital for Chest Diseases, 11527 Athens, Greece; (K.P.); (K.V.)
| | - Margaritis Avgeris
- Laboratory of Clinical Biochemistry–Molecular Diagnostics, Second Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, “P. & A. Kyriakou” Children’s Hospital, 11527 Athens, Greece;
| | - Periklis Makrythanasis
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece; (Z.K.); (A.V.); (P.M.)
| | | | - Ioannis Vamvakaris
- Pathology Department, Athens Chest Hospital “Sotiria”, 11527 Athens, Greece;
| | - Eleni Patsea
- Department of Pathology, Metropolitan Hospital, 18547 Cholargos, Greece;
| | - Konstantinos Vachlas
- Department of Thoracic Surgery, Sotiria Hospital for Chest Diseases, 11527 Athens, Greece; (K.P.); (K.V.)
| | - Evi Lianidou
- Analysis of Circulating Tumor Cells Lab, Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece; (A.M.); (E.L.)
| | | | - Athanasios Kotsakis
- Department of Medical Oncology, General University Hospital of Larissa, 41110 Larissa, Greece;
| | - Apostolos Klinakis
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece; (Z.K.); (A.V.); (P.M.)
- Correspondence:
| |
Collapse
|
26
|
Alix-Panabières C, Pantel K. Liquid Biopsy: From Discovery to Clinical Application. Cancer Discov 2021; 11:858-873. [PMID: 33811121 DOI: 10.1158/2159-8290.cd-20-1311] [Citation(s) in RCA: 554] [Impact Index Per Article: 138.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 01/22/2021] [Accepted: 01/29/2021] [Indexed: 12/23/2022]
Abstract
Over the past 10 years, circulating tumor cells (CTC) and circulating tumor DNA (ctDNA) have received enormous attention as new biomarkers and subjects of translational research. Although both biomarkers are already used in numerous clinical trials, their clinical utility is still under investigation with promising first results. Clinical applications include early cancer detection, improved cancer staging, early detection of relapse, real-time monitoring of therapeutic efficacy, and detection of therapeutic targets and resistance mechanisms. Here, we propose a conceptual framework of CTC and ctDNA assays and point out current challenges of CTC and ctDNA research, which might structure this dynamic field of translational cancer research. SIGNIFICANCE: The analysis of blood for CTCs or cell-free nucleic acids called "liquid biopsy" has opened new avenues for cancer diagnostics, including early detection of tumors, improved risk assessment and staging, as well as early detection of relapse and monitoring of tumor evolution in the context of cancer therapies.
Collapse
Affiliation(s)
- Catherine Alix-Panabières
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, Montpellier, France. .,CREEC/CANECEV, MIVEGEC (CREES), University of Montpellier, CNRS, IRD, Montpellier, France
| | - Klaus Pantel
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
27
|
Zhou W, Gao Y, Tong Y, Wu Q, Zhou Y, Li Y. Anlotinib enhances the antitumor activity of radiofrequency ablation on lung squamous cell carcinoma. Pharmacol Res 2021; 164:105392. [PMID: 33348023 DOI: 10.1016/j.phrs.2020.105392] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/08/2020] [Accepted: 12/11/2020] [Indexed: 12/14/2022]
Abstract
Anlotinib is a novel molecular targeted drug that has been approved for the treatment of lung adenocarcinoma. Currently these agents are rarely used in the treatment of lung squamous cell carcinoma (LSCC). Bronchoscope-guided radiofrequency ablation (RFA) is a new strategy proposed for the treatment of LSCC that is able to alleviate the obstruction of the respiratory tract caused by LSCC by direct destruction of the tumor tissues. The presence work aims to reveal whether Anlotinib could enhance the antitumor activity of RFA on LSCC cells. The results from real-time PCR (qPCR) confirmed overexpression of targets of anlotinib activity, including receptor tyrosine kinase or the MPAK/PI3K-AKT pathway kinases, in LSCC tissues. Treatment with anlotinib inhibited the survival, in vitro invasion, and migration of LSCC cells. Moreover, the antitumor effects of RFA were investigated using a rodent model of LSCC. The combination of RFA and anlotinib treatment enhanced the antitumor effect of RFA treatment. We propose a combinative strategy of RFA and anlotinib as a novel approach for successful management of LSCC.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Respiratory and Critical Care Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, PR China.
| | - Yongping Gao
- Department of Respiratory Medicine, Emergency General Hospital, Beijing, 100028, PR China.
| | - Yaqi Tong
- Department of Respiratory and Critical Care Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, PR China.
| | - Qingjun Wu
- Department of Thoracic Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, PR China.
| | - Yunzhi Zhou
- Department of Respiratory and Critical Care Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, PR China.
| | - Yanming Li
- Department of Respiratory and Critical Care Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, PR China.
| |
Collapse
|
28
|
Huo KG, D'Arcangelo E, Tsao MS. Patient-derived cell line, xenograft and organoid models in lung cancer therapy. Transl Lung Cancer Res 2020; 9:2214-2232. [PMID: 33209645 PMCID: PMC7653147 DOI: 10.21037/tlcr-20-154] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Lung cancer accounts for most cancer-related deaths worldwide and has an overall 5-year survival rate of ~15%. Cell lines have played important roles in the study of cancer biology and potential therapeutic targets, as well as pre-clinical testing of novel drugs. However, most experimental therapies that have cleared preclinical testing using established cell lines have failed phase III clinical trials. This suggests that such models may not adequately recapitulate patient tumor biology and clinical outcome predictions. Here, we discuss and compare different pre-clinical lung cancer models, including established cell lines, patient-derived cell lines, xenografts and organoids, summarize the methodology for generating these models, and review their relative advantages and limitations in different oncologic research applications. We further discuss additional gaps in patient-derived pre-clinical models to better recapitulate tumor biology and improve their clinical predictive power.
Collapse
Affiliation(s)
- Ku-Geng Huo
- University Health Network and Princess Margaret Cancer Centre, Toronto, Canada
| | - Elisa D'Arcangelo
- University Health Network and Princess Margaret Cancer Centre, Toronto, Canada
| | - Ming-Sound Tsao
- University Health Network and Princess Margaret Cancer Centre, Toronto, Canada
| |
Collapse
|
29
|
Wang R, Yamada T, Kita K, Taniguchi H, Arai S, Fukuda K, Terashima M, Ishimura A, Nishiyama A, Tanimoto A, Takeuchi S, Ohtsubo K, Yamashita K, Yamano T, Yoshimura A, Takayama K, Kaira K, Taniguchi Y, Atagi S, Uehara H, Hanayama R, Matsumoto I, Han X, Matsumoto K, Wang W, Suzuki T, Yano S. Transient IGF-1R inhibition combined with osimertinib eradicates AXL-low expressing EGFR mutated lung cancer. Nat Commun 2020; 11:4607. [PMID: 32929081 PMCID: PMC7490421 DOI: 10.1038/s41467-020-18442-4] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 08/24/2020] [Indexed: 12/12/2022] Open
Abstract
Drug tolerance is the basis for acquired resistance to epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) including osimertinib, through mechanisms that still remain unclear. Here, we show that while AXL-low expressing EGFR mutated lung cancer (EGFRmut-LC) cells are more sensitive to osimertinib than AXL-high expressing EGFRmut-LC cells, a small population emerge osimertinib tolerance. The tolerance is mediated by the increased expression and phosphorylation of insulin-like growth factor-1 receptor (IGF-1R), caused by the induction of its transcription factor FOXA1. IGF-1R maintains association with EGFR and adaptor proteins, including Gab1 and IRS1, in the presence of osimertinib and restores the survival signal. In AXL-low-expressing EGFRmut-LC cell-derived xenograft and patient-derived xenograft models, transient IGF-1R inhibition combined with continuous osimertinib treatment could eradicate tumors and prevent regrowth even after the cessation of osimertinib. These results indicate that optimal inhibition of tolerant signals combined with osimertinib may dramatically improve the outcome of EGFRmut-LC.
Collapse
MESH Headings
- Acrylamides/pharmacology
- Acrylamides/therapeutic use
- Aged, 80 and over
- Aniline Compounds/pharmacology
- Aniline Compounds/therapeutic use
- Animals
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/pathology
- Cell Line, Tumor
- Cell Survival/drug effects
- ErbB Receptors/genetics
- Gene Expression Regulation, Neoplastic/drug effects
- Hepatocyte Nuclear Factor 3-alpha/metabolism
- Humans
- Imidazoles/pharmacology
- Lung Neoplasms/drug therapy
- Lung Neoplasms/genetics
- Lung Neoplasms/pathology
- Male
- Mice
- Models, Biological
- Mutation/genetics
- Phosphorylation/drug effects
- Proto-Oncogene Proteins/metabolism
- Pyrazines/pharmacology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptor Protein-Tyrosine Kinases/metabolism
- Receptor, IGF Type 1/antagonists & inhibitors
- Receptor, IGF Type 1/genetics
- Receptor, IGF Type 1/metabolism
- Up-Regulation/drug effects
- Axl Receptor Tyrosine Kinase
Collapse
Affiliation(s)
- Rong Wang
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Tadaaki Yamada
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan.
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| | - Kenji Kita
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Hirokazu Taniguchi
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Sachiko Arai
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Koji Fukuda
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
- Nano Life Science Institute, Kanazawa University, Kanazawa, Japan
| | - Minoru Terashima
- Division of Functional Genomics, Cancer Research Institute, Kanazawa University Kanazawa, Kanazawa, Japan
| | - Akihiko Ishimura
- Division of Functional Genomics, Cancer Research Institute, Kanazawa University Kanazawa, Kanazawa, Japan
| | - Akihiro Nishiyama
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Azusa Tanimoto
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Shinji Takeuchi
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
- Nano Life Science Institute, Kanazawa University, Kanazawa, Japan
| | - Koshiro Ohtsubo
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Kaname Yamashita
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Tomoyoshi Yamano
- Department of Immunology, Graduate School of Medicine, Kanazawa University, Kanazawa, Japan
| | - Akihiro Yoshimura
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Koichi Takayama
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kyoichi Kaira
- Department of Respiratory Medicine, Comprehensive Cancer Center, International Medical Center, Saitama Medical University, Hidaka, Japan
| | - Yoshihiko Taniguchi
- Department of Thoracic Oncology, National Hospital Organization Kinki-chuo Chest Medical Center, Sakai, Japan
| | - Shinji Atagi
- Department of Thoracic Oncology, National Hospital Organization Kinki-chuo Chest Medical Center, Sakai, Japan
| | - Hisanori Uehara
- Division of Pathology, Tokushima University Hospital, Tokushima, Japan
| | - Rikinari Hanayama
- Nano Life Science Institute, Kanazawa University, Kanazawa, Japan
- Department of Immunology, Graduate School of Medicine, Kanazawa University, Kanazawa, Japan
| | - Isao Matsumoto
- Department of Thoracic, Cardiovascular and General Surgery, Kanazawa University, Kanazawa, Japan
| | - Xujun Han
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
- Nano Life Science Institute, Kanazawa University, Kanazawa, Japan
- Division of Tumor Dynamics and Regulation, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Kunio Matsumoto
- Nano Life Science Institute, Kanazawa University, Kanazawa, Japan
- Division of Tumor Dynamics and Regulation, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
- Tumor Microenvironment Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Japan
| | - Wei Wang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Takeshi Suzuki
- Division of Functional Genomics, Cancer Research Institute, Kanazawa University Kanazawa, Kanazawa, Japan
- Tumor Microenvironment Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Japan
| | - Seiji Yano
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan.
- Nano Life Science Institute, Kanazawa University, Kanazawa, Japan.
| |
Collapse
|
30
|
Qi L, Kogiso M, Du Y, Zhang H, Braun FK, Huang Y, Teo WY, Lindsay H, Zhao S, Baxter P, Zhao X, Yu L, Liu Z, Zhang X, Su JM, Adesina A, Yang J, Chintagumpala M, Perlaky L, Tsz-Kwong Man C, Lau CC, Li XN. Impact of SCID mouse gender on tumorigenicity, xenograft growth and drug-response in a large panel of orthotopic PDX models of pediatric brain tumors. Cancer Lett 2020; 493:197-206. [PMID: 32891713 DOI: 10.1016/j.canlet.2020.08.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/12/2020] [Accepted: 08/26/2020] [Indexed: 11/26/2022]
Abstract
Brain tumor is the leading cause of cancer related death in children. Clinically relevant animals are critical for new therapy development. To address the potential impact of animal gender on tumorigenicity rate, xenograft growth and in vivo drug responses, we retrospectively analyzed 99 of our established patient derived orthotopic xenograft mouse models (orthotopic PDX or PDOX). From 27 patient tumors, including 5 glioblastomas (GBMs), 11 medulloblastomas (MBs), 4 ependymomas (EPNs), 4 atypical teratoid/rhabdoid tumors (ATRTs) and 3 diffuse intrinsic pontine gliomas (DIPGs), that were directly implanted into matching locations in the brains of approximately equal numbers of male and female animals (n = 310) in age-matched (within 2-week age-difference) SCID mice, the tumor formation rate was 50.6 ± 21.5% in male and 52.7 ± 23.5% in female mice with animal survival times of 192.6 ± 31.7 days in male and 173.9 ± 34.5 days in female mice (P = 0.46) regardless of pathological diagnosis. Once established, PDOX tumors were serially subtransplanted for up to VII passage. Analysis of 1,595 mice from 59 PDOX models (18 GBMs, 18 MBs, 5 ATRTs, 6 EPNs, 7 DIPGs and 5 PENTs) during passage II and VII revealed similar tumor take rates of the 6 different tumor types between male (85.4 ± 15.5%) and female mice (84.7 ± 15.2%) (P = 0.74), and animal survival times were 96.7 ± 23.3 days in male mice and 99.7 ± 20 days in female (P = 0.25). A total of 284 mice from 7 GBM, 2 MB, 1 ATRT, 1 EPN, 2 DIPG and 1 PNET were treated with a series of standard and investigational drugs/compounds. The overall survival times were 106.9 ± 25.7 days in male mice, and 110.9 ± 31.8 days in female mice (P = 0.41), similar results were observed when different types/models were analyzed separately. In conclusion, our data demonstrated that the gender of SCID mice did not have a major impact on animal model development nor drug responses in vivo, and SCID mice of both genders are appropriate for use.
Collapse
Affiliation(s)
- Lin Qi
- Pre-clinical Neuro-oncology Research Program, Houston, TX, 77030, USA; Texas Children's Cancer Center, Houston, TX, 77030, USA
| | - Mari Kogiso
- Pre-clinical Neuro-oncology Research Program, Houston, TX, 77030, USA; Texas Children's Cancer Center, Houston, TX, 77030, USA
| | - Yuchen Du
- Pre-clinical Neuro-oncology Research Program, Houston, TX, 77030, USA; Texas Children's Cancer Center, Houston, TX, 77030, USA
| | - Huiyuan Zhang
- Pre-clinical Neuro-oncology Research Program, Houston, TX, 77030, USA; Texas Children's Cancer Center, Houston, TX, 77030, USA
| | - Frank K Braun
- Pre-clinical Neuro-oncology Research Program, Houston, TX, 77030, USA; Texas Children's Cancer Center, Houston, TX, 77030, USA
| | - Yulun Huang
- Pre-clinical Neuro-oncology Research Program, Houston, TX, 77030, USA; Texas Children's Cancer Center, Houston, TX, 77030, USA; Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital, Soochow University Medical School, Suzhou, 215007, China
| | - Wan-Yee Teo
- Humphrey Oei Institute of Cancer Research, National Cancer Center Singapore, 169610, Singapore; KK Women's and Children's Hospital, 169610, Singapore; Institute of Molecular and Cell Biology, A*STAR, 169610, Singapore; Cancer and Stem Cell Biology Program, Duke-NUS Medical School, 169610, Singapore
| | - Holly Lindsay
- Pre-clinical Neuro-oncology Research Program, Houston, TX, 77030, USA; Texas Children's Cancer Center, Houston, TX, 77030, USA
| | - Sibo Zhao
- Pre-clinical Neuro-oncology Research Program, Houston, TX, 77030, USA; Texas Children's Cancer Center, Houston, TX, 77030, USA
| | | | - Xiumei Zhao
- Pre-clinical Neuro-oncology Research Program, Houston, TX, 77030, USA; Texas Children's Cancer Center, Houston, TX, 77030, USA
| | - Litian Yu
- Pre-clinical Neuro-oncology Research Program, Houston, TX, 77030, USA; Texas Children's Cancer Center, Houston, TX, 77030, USA
| | - Zhigang Liu
- Department of Head and Neck Oncology, The Oancer Oenter of the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, 519001, China; Phase I Clinical Trial Laboratory, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, 519001, China
| | - Xingding Zhang
- Department of Pharmacology, School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Jack Mf Su
- Texas Children's Cancer Center, Houston, TX, 77030, USA
| | - Adekunle Adesina
- Department of Pathology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jianhua Yang
- Texas Children's Cancer Center, Houston, TX, 77030, USA
| | | | | | | | - Ching C Lau
- Division of Hematology-Oncology, Connecticut Children's Medical Center, USA; The Jackson Laboratory for Genomic Medicine and University of Connecticut School of Medicine, USA
| | - Xiao-Nan Li
- Pre-clinical Neuro-oncology Research Program, Houston, TX, 77030, USA; Texas Children's Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
31
|
Transforming a toxic drug into an efficacious nanomedicine using a lipoprodrug strategy for the treatment of patient-derived melanoma xenografts. J Control Release 2020; 324:289-302. [PMID: 32442582 DOI: 10.1016/j.jconrel.2020.05.025] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 05/13/2020] [Accepted: 05/16/2020] [Indexed: 12/19/2022]
Abstract
Despite the progress made with the recent clinical use of the anticancer compound cabazitaxel, the efficacy in patients remains unsatisfactory, largely due to the high in vivo toxicity of the agent. Therefore, strategies that achieve favorable outcomes and good safety profiles will greatly expand the repertoire of this potent agent. Here, we propose a combinatorial strategy to reform the cabazitaxel agent and the use of sequential supramolecular nanoassembly with liposomal compositions to assemble a prodrug-formulated liposome, termed lipoprodrug, for safe and effective drug delivery. Reconstructing cabazitaxel with a polyunsaturated fatty acid (i.e., docosahexaenoic acid) via a hydrolyzable ester bond confers the generated prodrug with the ability to be readily integrated into the lipid bilayer of liposomes for systemic administration. The resulting lipoprodrug scaffold showed significantly sustained drug release profiles and improved pharmacokinetics in rats as well as a reduction in systemic toxicity in vivo. Notably, the lipoprodrug outperformed free cabazitaxel in terms of in vivo therapeutic efficacy in multiple separate tumor xenograft-bearing mouse models, one of which was a patient-derived xenograft model. Surprisingly, the lipoprodrug was able to reduce tumor invasiveness and reprogram the tumor immunosuppressive microenvironment by proinflammatory macrophage polarization. Our findings validate this lipoprodrug approach as a simple yet effective strategy for transforming the highly toxic cabazitaxel agent into an efficacious nanomedicine with excellent in vivo tolerability. This approach could also be applied to rescue other drugs or drug candidates that have failed in clinical trials due to poor pharmacokinetic properties or unacceptable toxicity in patients.
Collapse
|
32
|
Kita K, Fukuda K, Takahashi H, Tanimoto A, Nishiyama A, Arai S, Takeuchi S, Yamashita K, Ohtsubo K, Otani S, Yanagimura N, Suzuki C, Ikeda H, Tamura M, Matsumoto I, Yano S. Patient-derived xenograft models of non-small cell lung cancer for evaluating targeted drug sensitivity and resistance. Cancer Sci 2019; 110:3215-3224. [PMID: 31432603 PMCID: PMC6778641 DOI: 10.1111/cas.14171] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 08/06/2019] [Accepted: 08/13/2019] [Indexed: 12/22/2022] Open
Abstract
Patient-derived xenograft (PDX) models are a useful tool in cancer biology research. However, the number of lung cancer PDX is limited. In the present study, we successfully established 10 PDX, including three adenocarcinoma (AD), six squamous cell carcinoma (SQ) and one large cell carcinoma (LA), from 30 patients with non-small cell lung cancer (NSCLC) (18 AD, 10 SQ, and 2 LA), mainly in SCID hairless outbred (SHO) mice (Crlj:SHO-Prkdcscid Hrhr ). Histology of SQ, advanced clinical stage (III-IV), status of lymph node metastasis (N2-3), and maximum standardized uptake value ≥10 when evaluated using a delayed 18 F-fluoro-2-deoxy-d-glucose positron emission tomography (FDG-PET) scan was associated with successful PDX establishment. Histological analyses showed that PDX had histology similar to that of patients' surgically resected tumors (SRT), whereas components of the microenvironment were replaced with murine cells after several passages. Next-generation sequencing analyses showed that after two to six passages, PDX preserved the majority of the somatic mutations and mRNA expressions of the corresponding SRT. Two out of three PDX with AD histology had epidermal growth factor receptor (EGFR) mutations (L858R or exon 19 deletion) and were sensitive to EGFR tyrosine kinase inhibitors (EGFR-TKI), such as gefitinib and osimertinib. Furthermore, in one of the two PDX with an EGFR mutation, osimertinib resistance was induced that was associated with epithelial-to-mesenchymal transition. This study presented 10 serially transplantable PDX of NSCLC in SHO mice and showed the use of PDX with an EGFR mutation for analyses of EGFR-TKI resistance.
Collapse
Affiliation(s)
- Kenji Kita
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan.,Central Research Resource Branch, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Koji Fukuda
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan.,Nano Life Science Institute, Kanazawa University, Kanazawa, Japan
| | - Hiro Takahashi
- Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Azusa Tanimoto
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Akihiro Nishiyama
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Sachiko Arai
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan.,Central Research Resource Branch, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Shinji Takeuchi
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan.,Nano Life Science Institute, Kanazawa University, Kanazawa, Japan
| | - Kaname Yamashita
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Koshiro Ohtsubo
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Sakiko Otani
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Naohiro Yanagimura
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Chiaki Suzuki
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Hiroko Ikeda
- Division of Pathology, Kanazawa University Hospital, Kanazawa, Japan
| | - Masaya Tamura
- Department of Thoracic, Cardiovascular and General Surgery, Kanazawa University, Kanazawa, Japan
| | - Isao Matsumoto
- Department of Thoracic, Cardiovascular and General Surgery, Kanazawa University, Kanazawa, Japan
| | - Seiji Yano
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan.,Nano Life Science Institute, Kanazawa University, Kanazawa, Japan
| |
Collapse
|