1
|
Li H, Fu M, Wang L, Dai Y, Lv Z, Geng S. miR-4537 curtails ferroptosis by targeting MIOX in renal cell carcinoma. Transl Oncol 2025; 56:102401. [PMID: 40306150 PMCID: PMC12059673 DOI: 10.1016/j.tranon.2025.102401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/05/2025] [Accepted: 04/19/2025] [Indexed: 05/02/2025] Open
Abstract
Ferroptosis, an iron-dependent mode of cell death, has gained prominence for its critical role in the advancement of various cancers, notably clear cell renal carcinoma (ccRCC). The intricacies of ferroptosis's involvement in ccRCC, however, remain largely undefined. This study aimed to dissect the contribution of ferroptosis to ccRCC by examining differentially expressed genes (DEGs) identified within the TCGA ccRCC database and ferroptosis driver genes catalogued in the FerrDb database (dedicates to ferroptosis regulators and ferroptosis-disease associations). We employed 786-O and ACHN ccRCC cell lines, alongside HK2 (human kidey-2) cells and HKC (human kidney cells), to confirm the expression of 9 shared genes. Among these, MIOX (myo-inositol oxygenase) emerged as significantly downregulated in ccRCC cells compared to HK2 and HKC cells. Subsequent survival analysis illuminated a positive correlation between MIOX expression and improved patient survival, underscoring its prognostic significance. Further investigations into MIOX regulation identified four miRNAs via TargetScan predictions, with miR-4537 significantly upregulated in ccRCC cell lines. Functional assays involving miR-4537 mimics and inhibitors, combined with ferroptosis inducers and inhibitors, elucidated its impact on ccRCC cell growth and ferroptosis modulation. The results revealed that miR-4537 expression was diminished following ferroptosis induction, and the miR-4537 inhibitor markedly curbing ccRCC cell proliferation by fostering ferroptosis, while the mimic exerted opposite effects. Mechanistically, miR-4537 targets the 3'-UTR of MIOX to manipulate its expression, ultimately inhibiting ferroptosis in ccRCC cells. Our research indicated that miR-4537 restrained ferroptosis by regulating MIOX in ccRCC, offering novel insights into the mechanisms of ferroptosis in cancer biology and highlighting latent therapeutic avenues for cancer treatment through ferroptosis modulation.
Collapse
Affiliation(s)
- Hui Li
- Department of Laboratory Medicine, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Zhengzhou Key Laboratory for In Vitro Diagnosis of Hypertensive Disorders of Pregnancy, Zhengzhou, Henan, China.
| | - Mengyu Fu
- Department of Laboratory Medicine, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Zhengzhou Key Laboratory for In Vitro Diagnosis of Hypertensive Disorders of Pregnancy, Zhengzhou, Henan, China
| | - Lingli Wang
- Department of Laboratory Medicine, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Zhengzhou Key Laboratory for In Vitro Diagnosis of Hypertensive Disorders of Pregnancy, Zhengzhou, Henan, China
| | - Yanpeng Dai
- Department of Laboratory Medicine, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Zhengzhou Key Laboratory for In Vitro Diagnosis of Hypertensive Disorders of Pregnancy, Zhengzhou, Henan, China
| | - Zongxing Lv
- Department of Laboratory Medicine, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Zhengzhou Key Laboratory for In Vitro Diagnosis of Hypertensive Disorders of Pregnancy, Zhengzhou, Henan, China
| | - Shilin Geng
- Department of Laboratory Medicine, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Zhengzhou Key Laboratory for In Vitro Diagnosis of Hypertensive Disorders of Pregnancy, Zhengzhou, Henan, China
| |
Collapse
|
2
|
Nakano T, Okita K, Okazaki S, Yoshimoto S, Masuko S, Yagi H, Kato K, Tomioka Y, Imai K, Hamada Y, Masuko K, Shimada‐Takaura K, Nagai N, Saya H, Arai T, Ishiwata T, Masuko T. CD44v, S1PR1, HER3, MET and cancer-associated amino acid transporters are promising targets for the pancreatic cancers characterized using mAb. FEBS Open Bio 2025; 15:867-884. [PMID: 39757718 PMCID: PMC12051033 DOI: 10.1002/2211-5463.13963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/09/2024] [Accepted: 12/18/2024] [Indexed: 01/07/2025] Open
Abstract
Effective therapies have yet to be established for pancreatic ductal adenocarcinomas (PDAC) even though it is the most aggressive cancer. In the present study, PDAC was analyzed using novel rat mAbs against membrane proteins in conjunction with flow cytometry and immunohistochemistry. Human epidermal growth receptor (HER)1-4, mesenchymal to epithelial transition factor (MET), sphingosine-1-phospahate receptor 1 (S1PR1), l-type amino acid transporter 1 (LAT1), system x- c transporter (xCT), alanine-serine-cysteine transporter (ASCT2), cationic amino acid transporter 1 (CAT1) and variant CD44 (CD44v) were expressed at high frequencies in both in vitro and in vivo PDAC. Internalization of membrane proteins by mAbs and growth inhibition by toxin-linked mAbs were demonstrated in many PDAC cell lines, and mAbs against S1PR1, ASCT2, HER3 and CD44v inhibited the growth of xenografted MIA PaCa-2 PDAC cells. Furthermore, CD44v-high PDAC showed high mRNA expression of HER1-3, MET and CD44v, and was correlated with poor prognosis. Taken together, our results suggest that CD44v, S1PR1, HER3, MET and the above-mentioned cancer-associated amino acid transporters might be promising targets for the diagnosis and treatment of PDAC.
Collapse
Affiliation(s)
- Takashi Nakano
- Cell Biology Laboratory, School of PharmacyKindai UniversityHigashiosaka‐shiJapan
- Faculty of Health and Sports SciencesToyo UniversityKita‐kuJapan
| | - Kouki Okita
- Cell Biology Laboratory, School of PharmacyKindai UniversityHigashiosaka‐shiJapan
- Advanced Design for Pharmaceuticals, School of PharmacyKindai UniversityHigashiosaka‐shiJapan
| | - Shogo Okazaki
- Cell Biology Laboratory, School of PharmacyKindai UniversityHigashiosaka‐shiJapan
- Department of Microbiology, Division of Immunology and Pathobiology, School of DentistryNihon UniversityChiyoda‐kuJapan
| | - Soshi Yoshimoto
- Cell Biology Laboratory, School of PharmacyKindai UniversityHigashiosaka‐shiJapan
- PIERAS Co., LtdOsaka‐shiJapan
| | - Sachiko Masuko
- Cell Biology Laboratory, School of PharmacyKindai UniversityHigashiosaka‐shiJapan
- PIERAS Co., LtdOsaka‐shiJapan
| | - Hideki Yagi
- Cell Biology Laboratory, School of PharmacyKindai UniversityHigashiosaka‐shiJapan
- Department of Pharmaceuticals, Faculty of PharmacyInternational University of Health and WelfareOtawara‐shiJapan
| | - Kazunori Kato
- Faculty of Health and Sports SciencesToyo UniversityKita‐kuJapan
| | - Yoshihisa Tomioka
- Oncology Pharmacy Practice and Science, Graduate School of Pharmaceutical SciencesTohoku UniversitySendai‐shiJapan
| | - Kenichi Imai
- Department of Microbiology, Division of Immunology and Pathobiology, School of DentistryNihon UniversityChiyoda‐kuJapan
| | | | - Kazue Masuko
- Cell Biology Laboratory, School of PharmacyKindai UniversityHigashiosaka‐shiJapan
| | | | - Noriaki Nagai
- Advanced Design for Pharmaceuticals, School of PharmacyKindai UniversityHigashiosaka‐shiJapan
| | - Hideyuki Saya
- Oncology Innovation CenterFujita Health UniversityToyoake‐shiJapan
| | - Tomio Arai
- Division of Aging and Carcinogenesis, Research Team for Geriatric PathologyTokyo Metropolitan Institute for Geriatrics and GerontologyItabashi‐kuJapan
| | - Toshiyuki Ishiwata
- Division of Aging and Carcinogenesis, Research Team for Geriatric PathologyTokyo Metropolitan Institute for Geriatrics and GerontologyItabashi‐kuJapan
| | - Takashi Masuko
- Cell Biology Laboratory, School of PharmacyKindai UniversityHigashiosaka‐shiJapan
- Advanced Design for Pharmaceuticals, School of PharmacyKindai UniversityHigashiosaka‐shiJapan
- Oncology Innovation CenterFujita Health UniversityToyoake‐shiJapan
| |
Collapse
|
3
|
Guo Z, Li K, Ren X, Wang X, Yang D, Ma S, Zeng X, Zhang P. The role of the tumor microenvironment in HNSCC resistance and targeted therapy. Front Immunol 2025; 16:1554835. [PMID: 40236700 PMCID: PMC11996806 DOI: 10.3389/fimmu.2025.1554835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 03/10/2025] [Indexed: 04/17/2025] Open
Abstract
The prognosis for head and neck squamous cell carcinoma (HNSCC) remains unfavorable, primarily due to significant therapeutic resistance and the absence effective interventions. A major obstacle in cancer treatment is the persistent resistance of cancer cells to a variety of therapeutic modalities. The tumor microenvironment (TME) which includes encompasses all non-malignant components and their metabolites within the tumor tissue, plays a crucial role in this context. The distinct characteristics of the HNSCC TME facilitate tumor growth, invasion, metastasis, and resistance to treatment. This review provides a comprehensive overview of the HNSCC TME components, with a particular focus on tumor-associated macrophages (TAMs), regulatory T cells (Tregs), myeloid-derived suppressor cells (MDSCs), cancer-associated fibroblasts (CAFs), the extracellular matrix, reprogrammed metabolic processes, and metabolic products. It elucidates their contributions to modulating resistance to chemotherapy, radiotherapy, targeted therapy, and immunotherapy in HNSCC, and explores novel therapeutic strategies targeting the TME for HNSCC management.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Peng Zhang
- Department of Otolaryngology, Longgang Otolaryngology hospital & Shenzhen Key Laboratory of Otolaryngology, Shenzhen Institute of Otolaryngology, Shenzhen, Guangdong, China
| |
Collapse
|
4
|
Zheng J, Conrad M. Ferroptosis: when metabolism meets cell death. Physiol Rev 2025; 105:651-706. [PMID: 39661331 DOI: 10.1152/physrev.00031.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/18/2024] [Accepted: 11/28/2024] [Indexed: 12/12/2024] Open
Abstract
We present here a comprehensive update on recent advancements in the field of ferroptosis, with a particular emphasis on its metabolic underpinnings and physiological impacts. After briefly introducing landmark studies that have helped to shape the concept of ferroptosis as a distinct form of cell death, we critically evaluate the key metabolic determinants involved in its regulation. These include the metabolism of essential trace elements such as selenium and iron; amino acids such as cyst(e)ine, methionine, glutamine/glutamate, and tryptophan; and carbohydrates, covering glycolysis, the citric acid cycle, the electron transport chain, and the pentose phosphate pathway. We also delve into the mevalonate pathway and subsequent cholesterol biosynthesis, including intermediate metabolites like dimethylallyl pyrophosphate, squalene, coenzyme Q (CoQ), vitamin K, and 7-dehydrocholesterol, as well as fatty acid and phospholipid metabolism, including the biosynthesis and remodeling of ester and ether phospholipids and lipid peroxidation. Next, we highlight major ferroptosis surveillance systems, specifically the cyst(e)ine/glutathione/glutathione peroxidase 4 axis, the NAD(P)H/ferroptosis suppressor protein 1/CoQ/vitamin K system, and the guanosine triphosphate cyclohydrolase 1/tetrahydrobiopterin/dihydrofolate reductase axis. We also discuss other potential anti- and proferroptotic systems, including glutathione S-transferase P1, peroxiredoxin 6, dihydroorotate dehydrogenase, glycerol-3-phosphate dehydrogenase 2, vitamin K epoxide reductase complex subunit 1 like 1, nitric oxide, and acyl-CoA synthetase long-chain family member 4. Finally, we explore ferroptosis's physiological roles in aging, tumor suppression, and infection control, its pathological implications in tissue ischemia-reperfusion injury and neurodegeneration, and its potential therapeutic applications in cancer treatment. Existing drugs and compounds that may regulate ferroptosis in vivo are enumerated.
Collapse
Affiliation(s)
- Jiashuo Zheng
- Institute of Metabolism and Cell Death, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, Neuherberg, Germany
| | - Marcus Conrad
- Institute of Metabolism and Cell Death, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, Neuherberg, Germany
- Translational Redox Biology, Technical University of Munich (TUM), TUM Natural School of Sciences, Garching, Germany
| |
Collapse
|
5
|
Li Y, Zhang H, Yang F, Zhu D, Chen S, Wang Z, Wei Z, Yang Z, Jia J, Zhang Y, Wang D, Ma M, Kang X. Mechanisms and therapeutic potential of disulphidptosis in cancer. Cell Prolif 2025; 58:e13752. [PMID: 39354653 DOI: 10.1111/cpr.13752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/30/2024] [Accepted: 09/14/2024] [Indexed: 10/04/2024] Open
Abstract
SLC7A11 plays a pivotal role in tumour development by facilitating cystine import to enhance glutathione synthesis and counteract oxidative stress. Disulphidptosis, an emerging form of cell death observed in cells with high expression of SLC7A11 under glucose deprivation, is regulated through reduction-oxidation reactions and disulphide bond formation. This process leads to contraction and collapse of the F-actin cytoskeleton from the plasma membrane, ultimately resulting in cellular demise. Compared to other forms of cell death, disulphidptosis exhibits distinctive characteristics and regulatory mechanisms. This mechanism provides novel insights and innovative strategies for cancer treatment while also inspiring potential therapeutic approaches for other diseases. Our review focuses on elucidating the molecular mechanism underlying disulphidptosis and its connection with the actin cytoskeleton, identifying alternative metabolic forms of cell death, as well as offering insights into disulphidptosis-based cancer therapy. A comprehensive understanding of disulphidptosis will contribute to our knowledge about fundamental cellular homeostasis and facilitate the development of groundbreaking therapies for disease treatment.
Collapse
Affiliation(s)
- Yanhu Li
- Lanzhou University Second Hospital, Lanzhou, PR China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, PR China
| | - Haijun Zhang
- Lanzhou University Second Hospital, Lanzhou, PR China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, PR China
- The Second People's Hospital of Gansu Province, Lanzhou, PR China
| | - Fengguang Yang
- Lanzhou University Second Hospital, Lanzhou, PR China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, PR China
| | - Daxue Zhu
- Lanzhou University Second Hospital, Lanzhou, PR China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, PR China
| | - Shijie Chen
- Lanzhou University Second Hospital, Lanzhou, PR China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, PR China
| | - Zhaoheng Wang
- Lanzhou University Second Hospital, Lanzhou, PR China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, PR China
| | - Ziyan Wei
- Lanzhou University Second Hospital, Lanzhou, PR China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, PR China
| | - Zhili Yang
- Lanzhou University Second Hospital, Lanzhou, PR China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, PR China
| | - Jingwen Jia
- Lanzhou University Second Hospital, Lanzhou, PR China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, PR China
| | - Yizhi Zhang
- Lanzhou University Second Hospital, Lanzhou, PR China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, PR China
| | - Dongxin Wang
- Lanzhou University Second Hospital, Lanzhou, PR China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, PR China
| | - Mingdong Ma
- Lanzhou University Second Hospital, Lanzhou, PR China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, PR China
| | - Xuewen Kang
- Lanzhou University Second Hospital, Lanzhou, PR China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, PR China
| |
Collapse
|
6
|
Gao C, Zhang H, Wang X. Current advances on the role of ferroptosis in tumor immune evasion. Discov Oncol 2024; 15:736. [PMID: 39621177 PMCID: PMC11612115 DOI: 10.1007/s12672-024-01573-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/11/2024] [Indexed: 12/06/2024] Open
Abstract
Ferroptosis is a non-apoptotic form of regulated cell death characterized by iron accumulation and uncontrolled lipid peroxidation, leading to plasma membrane rupture and intracellular content release. Cancer immunotherapy, especially immune checkpoint inhibitors (ICIs) targeting PD-1 and PD-L1, has been considered a breakthrough in cancer treatment, achieving encouraging clinical anti-tumor effects in a variety of cancers. However, tumor immune evasion is indispensable to immunotherapy failure. The mechanisms of tumor immune evasion are quite complex, and its occurrence is inseparable from the ferroptosis in tumor microenvironment (TME). Thus, a comprehensive understanding of the role of ferroptosis in tumor immune evasion is crucial to enhance the efficacy of immunotherapy. In this review, we provide an overview of the recent advancements in understanding ferroptosis in cancer, covering molecular mechanisms and interactions with the TME. We also summarize the potential applications of ferroptosis induction in immunotherapy, as well as ferroptosis inhibition for cancer treatment in various conditions. We finally discuss ferroptosis as a double-edged sword, including the current challenges and future directions regarding its potential for cancer treatment.
Collapse
Affiliation(s)
- Changlin Gao
- Graduate School of Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Haoran Zhang
- Central Hospital Affiliated to Dalian University of Technology, Dalian, 116000, Liaoning, China
- Graduate School of Dalian Medical University, Dalian, 116000, Liaoning, China
| | - Xianwei Wang
- Central Hospital Affiliated to Dalian University of Technology, Dalian, 116000, Liaoning, China.
| |
Collapse
|
7
|
Lee J, Roh JL. Unveiling therapeutic avenues targeting xCT in head and neck cancer. Cell Oncol (Dordr) 2024; 47:2019-2030. [PMID: 39361147 DOI: 10.1007/s13402-024-00997-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2024] [Indexed: 01/11/2025] Open
Abstract
Head and neck cancer (HNC) remains a major global health burden, prompting the need for innovative therapeutic strategies. This review examines the role of the cystine/glutamate antiporter (xCT) in HNC, specifically focusing on how xCT contributes to cancer progression through mechanisms such as redox imbalance, ferroptosis, and treatment resistance. The central questions addressed include how xCT dysregulation affects tumor biology and the potential for targeting xCT to enhance treatment outcomes. We explore recent developments in xCT-targeted current and emerging therapies, including xCT inhibitors and novel treatment modalities, and their role in addressing therapeutic challenges. This review aims to provide a comprehensive analysis of xCT as a therapeutic target and to outline future directions for research and clinical application.
Collapse
Affiliation(s)
- Jaewang Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA Bundang Medical Center, CHA University, Seongnam, 13496, Gyeonggi-do, Republic of Korea
| | - Jong-Lyel Roh
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA Bundang Medical Center, CHA University, Seongnam, 13496, Gyeonggi-do, Republic of Korea.
- Department of Biomedical Science, General Graduate School, CHA University, Pocheon, Republic of Korea.
| |
Collapse
|
8
|
Zhao L, Wu P, Lu J, He Y, Shu Q, Pan F, Xie H, Wang X, Ju H, Du Y, Peng H. Cigarette smoke extract induces ferroptosis in human retinal pigment epithelial cells. Heliyon 2024; 10:e38151. [PMID: 39498038 PMCID: PMC11533555 DOI: 10.1016/j.heliyon.2024.e38151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/31/2024] [Accepted: 09/18/2024] [Indexed: 11/07/2024] Open
Abstract
Background Age-related macular degeneration (AMD) is a common blindness diseases. Retinal pigment epithelium (RPE) dysfunction due to smoking is an essential environmental factor in the pathogenesis of AMD. Ferroptosis is a novel type of iron-dependent programmed cell death (PCD). However, the relationship between cigarette smoke extract (CSE)-induced RPE damage and ferroptosis remains unclear. Methods In our study, we extracted CSE using a modified device to explore the optimal concentration of CSE, and observed the expression of proteins and molecules after CSE exposure for ARPE-19 cells by protein immunoblotting and assay kits for iron ions and mitochondrial membrane potential (MMP). At the same time, CSE was injected into the vitreous cavity of mice with a microsyringe for AMD modeling to observe the morphology of the retina-RPE-choroid complex and the differences expression of proteins. In addition, the protective effects of ferroptosis inhibitors on CSE-induced RPE cell damage were also investigated by in vivo and in vitro experiments. Results In this study, we observed that CSE induced cellular damage in a human retinal pigment epithelial cell line (ARPE-19), resulting in ferrous ion (Fe2+) accumulation, an increas in reactive oxygen species (ROS) and lipid peroxidation (LP), a reduction in GSH levels, and the inhibition of Gpx4 expression. In addition, transmission electron microscopy (TEM) of in vivo and in vitro samples showed that after exposure to CSE, the mitochondria of RPE cells were wrinkled, the membrane density was increased, and the number of cristae decreased or cristae were not observed. Conclusions The results of this study indicate that the ferroptosis inhibitors ferrostatin-1 (Fer-1) and liproxstatin-1 (Lip-1) protect RPE cells from CSE-induced ferroptosis, and this evidence paves the way for AMD studies.
Collapse
Affiliation(s)
| | | | - Jing Lu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Yuxia He
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Qinxin Shu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Fuying Pan
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Hao Xie
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Xing Wang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Huan Ju
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Yong Du
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Hui Peng
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, China
| |
Collapse
|
9
|
Li W, Zeng Q, Wang B, Lv C, He H, Yang X, Cheng B, Tao X. Oxidative stress promotes oral carcinogenesis via Thbs1-mediated M1-like tumor-associated macrophages polarization. Redox Biol 2024; 76:103335. [PMID: 39255693 PMCID: PMC11414564 DOI: 10.1016/j.redox.2024.103335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/06/2024] [Accepted: 08/29/2024] [Indexed: 09/12/2024] Open
Abstract
Although oxidative stress is closely associated with tumor invasion and metastasis, its' exact role and mechanism in the initial stage of oral cancer remain ambiguous. Glutamine uptake mediated by alanine-serine-cysteine transporter 2 (ASCT2) participates in glutathione synthesis to resolve oxidative stress. Currently, we firstly found that ASCT2 deletion caused oxidative stress in oral mucosa and promoted oral carcinogenesis induced by 4-Nitroquinoline-1-oxide (4-NQO) using transgenic mice of ASCT2 knockout in oral epithelium. Subsequently, we identified an upregulated gene Thbs1 linked to macrophage infiltration by mRNA sequencing and immunohistochemistry. Importantly, multiplex immunohistochemistry showed M1-like tumor-associated macrophages (TAMs) were enriched in cancerous area. Mechanically, targeted ASCT2 effectively curbed glutamine uptake and caused intracellular reactive oxygen species (ROS) accumulation, which upregulated Thbs1 in oral keratinocytes and then activated p38, Akt and SAPK/JNK signaling to polarize M1-like TAMs via exosome-transferred pathway. Moreover, we demonstrated M1-like TAMs promoted malignant progression of oral squamous cell carcinoma (OSCC) both in vitro and in vivo by a DOK transformed cell line induced by 4-NQO. All these results establish that oxidative stress triggered by ASCT2 deletion promotes oral carcinogenesis through Thbs1-mediated M1 polarization, and indicate that restore redox homeostasis is a new approach to prevent malignant progression of oral potentially malignant disorders.
Collapse
Affiliation(s)
- Wei Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Qingwen Zeng
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Bing Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Chao Lv
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Haoan He
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Xi Yang
- Department of Periodontology, Stomatological Hospital, Southern Medical University, Guangzhou, China.
| | - Bin Cheng
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.
| | - Xiaoan Tao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.
| |
Collapse
|
10
|
Long Y, Xu Z, Yu J, Hu X, Xie Y, Duan X, Li N, Yan Y, Wang Y, Qin J. Targeting xCT with sulfasalazine suppresses triple-negative breast cancer growth via inducing autophagy and coordinating cell cycle and proliferation. Anticancer Drugs 2024; 35:830-843. [PMID: 39016262 DOI: 10.1097/cad.0000000000001630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
There is a substantial unmet need for effective treatment strategies in triple-negative breast cancer (TNBC). Recently, renewed attention has been directed towards targeting glutamine (Gln) metabolism to enhance the efficacy of cancer treatment. Nonetheless, a comprehensive exploration into the mechanistic implications of targeting Gln metabolism in TNBC is lacking. In this study, our objective was to probe the sensitivity of TNBC to alterations in Gln metabolism, using representative TNBC cell lines: MDA-MB-231, MDA-MB-468, and 4T1. Through an integration of bioinformatics, in-vitro, and in-vivo investigations, we demonstrated that sulfasalazine (SAS), like erastin (a known xCT inhibitor), effectively suppressed the expression and transport function of xCT, resulting in a depletion of glutathione levels in MDA-MB-231 and MDA-MB-468 cells. Furthermore, both xCT knockdown and SAS treatment demonstrated the promotion of cellular autophagy. We unveiled a positive correlation between xCT and the autophagy-related molecule p62, their co-expression indicating poor survival outcomes in breast cancer patients. In addition, our research revealed the influence of SAS and xCT on the expression of proteins regulating cell cycle and proliferation. Treatment with SAS or xCT knockdown led to the inhibition of MYC, CDK1, and CD44 expression. Significantly, the combined administration of SAS and rapamycin exhibited a synergistic inhibitory effect on the growth of transplanted breast tumor in mouse models constructed from murine-derived 4T1 cells. Taken together, our findings suggested the potential and clinical relevance of the SAS and rapamycin combination in the treatment of TNBC.
Collapse
Affiliation(s)
- Yaping Long
- Department of Immunology, School of Medicine, Nankai University
| | - Zizheng Xu
- Department of Immunology, School of Medicine, Nankai University
| | - Jing Yu
- Department of Immunology, School of Medicine, Nankai University
| | - Xiao Hu
- Department of Immunology, School of Medicine, Nankai University
| | - Yu Xie
- Department of Immunology, School of Medicine, Nankai University
| | - Xianxian Duan
- Department of Immunology, School of Medicine, Nankai University
| | - Ning Li
- School of Disaster and Emergency Medicine, Faculty of Medicine, Tianjin University
| | - Yan Yan
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Hospital of Stomatology, Nankai University, Tianjin, China
| | - Yue Wang
- Department of Immunology, School of Medicine, Nankai University
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Hospital of Stomatology, Nankai University, Tianjin, China
| | - Junfang Qin
- Department of Immunology, School of Medicine, Nankai University
| |
Collapse
|
11
|
Young TA, Bahnassy S, Abalum TC, Pope EA, Rivera AT, Fernandez AI, Olukoya AO, Mobin D, Ranjit S, Libbey NE, Persaud S, Rozeboom AM, Chaldekas K, Harris BT, Madak-Erdogan Z, Sottnik JL, Sikora MJ, Riggins RB. Glutamate Transport Proteins and Metabolic Enzymes are Poor Prognostic Factors in Invasive Lobular Carcinoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.29.615681. [PMID: 39464069 PMCID: PMC11507668 DOI: 10.1101/2024.09.29.615681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Invasive Lobular Carcinoma (ILC) is a subtype of breast cancer characterized by distinct biological features, and limited glucose uptake coupled with increased reliance on amino acid and lipid metabolism. Our prior studies highlight the importance of glutamate as a key regulator of ILC tumor growth and therapeutic response. Here we examine the expression of four key proteins involved in glutamate transport and metabolism - SLC3A2, SLC7A11, GPX4, and GLUD1/2 - in a racially diverse cohort of 72 estrogen receptor-positive (ER+) ILC and 50 ER+ invasive ductal carcinoma, no special type (IDC/NST) patients with primary disease. All four proteins are associated with increased tumor size in ILC, but not IDC/NST, with SLC3A2 also specifically linked to shorter overall survival and the presence of comorbidities in ILC. Notably, GLUD1/2 expression is associated with ER expression in ILC, and is most strongly associated with increased tumor size and stage in Black women with ILC from our cohort and TCGA. We further explore the effects of GLUD1 inhibition in endocrine therapy-resistant ILC cells using the small-molecule inhibitor R162, which reduces ER protein levels, increases reactive oxygen species, and inhibits oxidative phosphorylation. These findings highlight a potentially important role for glutamate metabolism in ILC, particularly for Black women, and position several of these glutamate-handling proteins as potential targets for therapeutic intervention in ILC.
Collapse
Affiliation(s)
- Todd A. Young
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057
| | - Shaymaa Bahnassy
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057
| | - Theresa C. Abalum
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057
- Towson University, Towson, MD 21252
| | - Eden A. Pope
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057
- Wake Forest University, Winston-Salem, NC 27109
| | - Amanda Torres Rivera
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057
| | - Aileen I. Fernandez
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520
| | - Ayodeji O. Olukoya
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057
| | - Dua Mobin
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057
| | - Suman Ranjit
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC 20057
| | - Nicole E. Libbey
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057
| | - Sonali Persaud
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057
| | - Aaron M. Rozeboom
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057
| | - Krysta Chaldekas
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057
| | - Brent T. Harris
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057
- Departments of Neurology and Pathology, Georgetown University Medical Center, Washington, DC 20057
| | - Zeynep Madak-Erdogan
- Department of Food Science and Human Nutrition, Cancer Center at Illinois, Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801
| | - Joseph L. Sottnik
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Matthew J. Sikora
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Rebecca B. Riggins
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057
| |
Collapse
|
12
|
Jiang Y, Sun M. SLC7A11: the Achilles heel of tumor? Front Immunol 2024; 15:1438807. [PMID: 39040097 PMCID: PMC11260620 DOI: 10.3389/fimmu.2024.1438807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 06/25/2024] [Indexed: 07/24/2024] Open
Abstract
The non-natriuretic-dependent glutamate/cystine inverse transporter-system Xc- is composed of two protein subunits, SLC7A11 and SLC3A2, with SLC7A11 serving as the primary functional component responsible for cystine uptake and glutathione biosynthesis. SLC7A11 is implicated in tumor development through its regulation of redox homeostasis, amino acid metabolism, modulation of immune function, and induction of programmed cell death, among other processes relevant to tumorigenesis. In this paper, we summarize the structure and biological functions of SLC7A11, and discuss its potential role in tumor therapy, which provides a new direction for precision and personalized treatment of tumors.
Collapse
Affiliation(s)
- Yulang Jiang
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Liver and Kidney Diseases, Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mingyu Sun
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Liver and Kidney Diseases, Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
13
|
Guo S, Wang X, Wang Y, Bai J, Liu Y, Shao Z. The potential therapeutic targets of glutamine metabolism in head and neck squamous cell carcinoma. Biomed Pharmacother 2024; 176:116906. [PMID: 38876051 DOI: 10.1016/j.biopha.2024.116906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/27/2024] [Accepted: 06/06/2024] [Indexed: 06/16/2024] Open
Abstract
Targeting metabolic reprogramming may be an effective strategy to enhance cancer treatment efficacy. Glutamine serves as a vital nutrient for cancer cells. Inhibiting glutamine metabolism has shown promise in preventing tumor growth both in vivo and in vitro through various mechanisms. Therefore, this review collates recent scientific literature concerning the correlation between glutamine metabolism and cancer treatment. Novel treatment modalities based on amino acid transporters, metabolites, and glutaminase are discussed. Moreover, we demonstrate the relationship between glutamine metabolism and tumor proliferation, drug resistance, and the tumor immune microenvironment, offering new perspectives for the clinical treatment of head and neck squamous cell carcinoma, particularly for combined therapies. Identifying innovative approaches for enhancing the efficacy of glutamine-based metabolic therapy is crucial to improving HNSCC treatment.
Collapse
Affiliation(s)
- Shutian Guo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China; Department of Oral and Maxillofacial-Head and Neck Oncology, School of Stomatology-Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xinmiao Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China; Department of Oral and Maxillofacial-Head and Neck Oncology, School of Stomatology-Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yifan Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China; Department of Oral and Maxillofacial-Head and Neck Oncology, School of Stomatology-Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Junqiang Bai
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China; Department of Oral and Maxillofacial-Head and Neck Oncology, School of Stomatology-Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yi Liu
- Department of stomatology, Huangshi Central Hospital (Affiliated Hospital of Hubei Polytechnic University), Huangshi 435000, China.
| | - Zhe Shao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China; Day Surgery Center, School and Hospital of Stomatology, Wuhan University, China.
| |
Collapse
|
14
|
He R, Wei Y, Peng Z, Yang J, Zhou Z, Li A, Wu Y, Wang M, Li X, Zhao D, Liu Z, Dong H, Leng X. α-Ketoglutarate alleviates osteoarthritis by inhibiting ferroptosis via the ETV4/SLC7A11/GPX4 signaling pathway. Cell Mol Biol Lett 2024; 29:88. [PMID: 38877424 PMCID: PMC11177415 DOI: 10.1186/s11658-024-00605-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 06/04/2024] [Indexed: 06/16/2024] Open
Abstract
Osteoarthritis (OA) is the most common degenerative joint disorder that causes disability in aged individuals, caused by functional and structural alterations of the knee joint. To investigate whether metabolic drivers might be harnessed to promote cartilage repair, a liquid chromatography-mass spectrometry (LC-MS) untargeted metabolomics approach was carried out to screen serum biomarkers in osteoarthritic rats. Based on the correlation analyses, α-ketoglutarate (α-KG) has been demonstrated to have antioxidant and anti-inflammatory properties in various diseases. These properties make α-KG a prime candidate for further investigation of OA. Experimental results indicate that α-KG significantly inhibited H2O2-induced cartilage cell matrix degradation and apoptosis, reduced levels of reactive oxygen species (ROS) and malondialdehyde (MDA), increased superoxide dismutase (SOD) and glutathione (GSH)/glutathione disulfide (GSSG) levels, and upregulated the expression of ETV4, SLC7A11 and GPX4. Further mechanistic studies observed that α-KG, like Ferrostatin-1 (Fer-1), effectively alleviated Erastin-induced apoptosis and ECM degradation. α-KG and Fer-1 upregulated ETV4, SLC7A11, and GPX4 at the mRNA and protein levels, decreased ferrous ion (Fe2+) accumulation, and preserved mitochondrial membrane potential (MMP) in ATDC5 cells. In vivo, α-KG treatment inhibited ferroptosis in OA rats by activating the ETV4/SLC7A11/GPX4 pathway. Thus, these findings indicate that α-KG inhibits ferroptosis via the ETV4/SLC7A11/GPX4 signaling pathway, thereby alleviating OA. These observations suggest that α-KG exhibits potential therapeutic properties for the treatment and prevention of OA, thereby having potential clinical applications in the future.
Collapse
Affiliation(s)
- Rong He
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin Province, China
| | - Yuchi Wei
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin Province, China
| | - Zeyu Peng
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin Province, China
| | - Jie Yang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin Province, China
| | - Zhenwei Zhou
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin Province, China
| | - Ailin Li
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin Province, China
| | - Yongji Wu
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin Province, China
| | - Mingyue Wang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin Province, China
| | - Xiangyan Li
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin Province, China
| | - Daqing Zhao
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin Province, China
| | - Zhonghua Liu
- Department of orthopaedics, The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, 130117, Jilin Province, China.
| | - Haisi Dong
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin Province, China.
| | - Xiangyang Leng
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin Province, China.
| |
Collapse
|
15
|
Arnér ESJ, Schmidt EE. Unresolved questions regarding cellular cysteine sources and their possible relationships to ferroptosis. Adv Cancer Res 2024; 162:1-44. [PMID: 39069366 PMCID: PMC11785257 DOI: 10.1016/bs.acr.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Cysteine is required for synthesis of glutathione (GSH), coenzyme A, other sulfur-containing metabolites, and most proteins. In most cells, cysteine comes from extracellular disulfide sources including cystine, glutathione-disulfide, and peptides. The thioredoxin reductase-1 (TrxR1)- or glutathione-disulfide reductase (GSR)-driven enzymatic systems can fuel cystine reduction via thioredoxins, glutaredoxins, or other thioredoxin-fold proteins. Free cystine enters cells thorough the cystine-glutamate antiporter, xCT, but systemically, plasma glutathione-disulfide might predominate as a cystine source. Erastin, inhibiting both xCT and voltage-dependent anion channels, induces ferroptotic cell death, so named because this type of cell death is antagonized by iron-chelators. Many cancer cells seem to be predisposed to ferroptosis, which has been proposed as a targetable cancer liability. Ferroptosis is associated with lipid peroxidation and loss of either glutathione peroxidase-4 (GPX4) or ferroptosis suppressor protein-1 (FSP1), which each prevent accumulation of lipid peroxides. It has been suggested that an xCT inhibition-induced cellular cysteine-deficiency lowers GSH levels, starving GPX4 for reducing power and allowing membrane lipid peroxides to accumulate, thereby causing ferroptosis. Aspects of ferroptosis are however not fully understood and need to be further scrutinized, for example that neither disruption of GSH synthesis, loss of GSH, nor disruption of glutathione disulfide reductase (GSR), triggers ferroptosis in animal models. Here we reevaluate the relationships between Erastin, xCT, GPX4, cellular cysteine and GSH, RSL3 or ML162, and ferroptosis. We conclude that, whereas both Cys and ferroptosis are potential liabilities in cancer, their relationship to each other remains insufficiently understood.
Collapse
Affiliation(s)
- Elias S J Arnér
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden; Department of Selenoprotein Research and the National Tumor Biology Laboratory, National Institutes of Oncology, Budapest, Hungary
| | - Edward E Schmidt
- Laboratory of Redox Biology, University of Veterinary Medicine, Budapest, Hungary; Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, United States.
| |
Collapse
|
16
|
Liu X, Zhuang L, Gan B. Disulfidptosis: disulfide stress-induced cell death. Trends Cell Biol 2024; 34:327-337. [PMID: 37574347 DOI: 10.1016/j.tcb.2023.07.009] [Citation(s) in RCA: 88] [Impact Index Per Article: 88.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 08/15/2023]
Abstract
The cystine transporter solute carrier family 7 member 11 (SLC7A11) (also known as xCT) promotes glutathione synthesis and counters oxidative stress-induced cell death, including ferroptosis, by importing cystine. Also, SLC7A11 plays a crucial role in tumor development. However, recent studies have uncovered an unexpected role of SLC7A11 in promoting disulfidptosis, a novel form of regulated cell death induced by disulfide stress. In this review, we examine the opposing roles of SLC7A11 in regulating redox homeostasis and cell survival/death, summarize current knowledge on disulfidptosis, and explore its potential in disease treatment. A deeper understanding of disulfidptosis will offer new insights into fundamental cellular homeostasis and facilitate the development of innovative therapies for disease treatment.
Collapse
Affiliation(s)
- Xiaoguang Liu
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Li Zhuang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Boyi Gan
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.
| |
Collapse
|
17
|
Yao T, Li L. The influence of microbiota on ferroptosis in intestinal diseases. Gut Microbes 2023; 15:2263210. [PMID: 37795964 PMCID: PMC10557621 DOI: 10.1080/19490976.2023.2263210] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 09/21/2023] [Indexed: 10/06/2023] Open
Abstract
Ferroptosis is a distinctive form of iron-dependent necrotic cell death, characterized by excessive lipid peroxidation on cellular membranes and compromised cellular antioxidant defenses. Multiple metabolic pathways, including iron and lipid metabolism, as well as antioxidant systems, contribute to the execution of ferroptosis. The gut microbiota exerts regulatory effects on ferroptosis through its microbial composition, biological functions, and metabolites. Notably, most pathogenic bacteria tend to promote ferroptosis, thereby inducing or exacerbating diseases, while most probiotics have been shown to protect against cell death. Given microbiota colonization in the gut, an intimate association is found between intestinal diseases and microbiota. This review consolidates the essential aspects of ferroptotic processes, emphasizing key molecules and delineating the intricate interplay between gut microbiota and ferroptosis. Moreover, this review underscores the potential utility of gut microbiota modulation in regulating ferroptosis for the treatment of intestinal diseases.
Collapse
Affiliation(s)
- Ting Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, China
| |
Collapse
|
18
|
Lee J, Roh JL. Epigenetic modulation of ferroptosis in cancer: Identifying epigenetic targets for novel anticancer therapy. Cell Oncol (Dordr) 2023; 46:1605-1623. [PMID: 37438601 DOI: 10.1007/s13402-023-00840-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2023] [Indexed: 07/14/2023] Open
Abstract
Ferroptosis is a newly recognized form of oxidative-regulated cell death resulting from iron-mediated lipid peroxidation accumulation. Radical-trapping antioxidant systems can eliminate these oxidized lipids and prevent disrupting the integrity of cell membranes. Epigenetic modifications can regulate ferroptosis by altering gene expression or cell phenotype without permanent sequence changes. These mechanisms include DNA methylation, histone modifications, RNA modifications, and noncoding RNAs. Epigenetic alterations in cancer can control the expression of ferroptosis regulators or related pathways, leading to changes in cell sensitivity to ferroptosis inducers or cancer progression. Epigenetic alterations in cancer are influenced by a wide range of cancer hallmarks, contributing to therapeutic resistance. Targeting epigenetic alterations is a promising approach to overcoming cancer resilience. However, the exact mechanisms involved in different types of cancer remain unresolved. Discovering more ferroptosis-associated epigenetic targets and interventions can help overcome current barriers in anticancer therapy. Many papers on epigenetic modifications of ferroptosis have been continuously published, making it essential to summarize the current state-of-the-art in the epigenetic regulation of ferroptosis in human cancer.
Collapse
Affiliation(s)
- Jaewang Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA Bundang Medical Center, CHA University, Seongnam, Gyeonggi-do, 13496, Republic of Korea
- Department of Biomedical Science, General Graduate School, CHA University, Seongnam, Republic of Korea
| | - Jong-Lyel Roh
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA Bundang Medical Center, CHA University, Seongnam, Gyeonggi-do, 13496, Republic of Korea.
- Department of Biomedical Science, General Graduate School, CHA University, Seongnam, Republic of Korea.
| |
Collapse
|
19
|
Zhu L, Cao P, Yang S, Lin F, Wang J. Prolonged exposure to environmental levels of microcystin-LR triggers ferroptosis in brain via the activation of Erk/MAPK signaling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 267:115651. [PMID: 37913581 DOI: 10.1016/j.ecoenv.2023.115651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/16/2023] [Accepted: 10/27/2023] [Indexed: 11/03/2023]
Abstract
While existing research has illuminated the environmental dangers and neurotoxic effects of MC-LR exposure, the molecular underpinnings of brain damage from environmentally-relevant MC-LR exposure remain elusive. Employing a comprehensive approach involving RNA sequencing, histopathological examination, and biochemical analyses, we discovered genes differentially expressed and enriched in the ferroptosis pathway. This finding was associated with mitochondrial structural impairment and downregulation of Gpx4 and Slc7a11 in mice brains subjected to low-dose MC-LR over 180 days. Mirroring these findings, we noted reduced cell viability and GSH/GSSH ratio, along with an increased ROS level, in HT-22, BV-2, and bEnd.3 cells following MC-LR exposure. Intriguingly, MC-LR also amplified phospho-Erk levels in both in vivo and in vitro settings, and the effects were mitigated by treatment with PD98059, an Erk inhibitor. Taken together, our findings implicate the activation of the Erk/MAPK signaling pathway in MC-LR-induced ferroptosis, shedding valuable light on the neurotoxic mechanisms of MC-LR. These insights could guide future strategies to prevent MC-induced neurodegenerative diseases.
Collapse
Affiliation(s)
- Lingyun Zhu
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Pingping Cao
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Suisui Yang
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Fan Lin
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Jing Wang
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
20
|
Zheng Y, Yao Y, Ge T, Ge S, Jia R, Song X, Zhuang A. Amino acid metabolism reprogramming: shedding new light on T cell anti-tumor immunity. J Exp Clin Cancer Res 2023; 42:291. [PMID: 37924140 PMCID: PMC10623764 DOI: 10.1186/s13046-023-02845-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 09/28/2023] [Indexed: 11/06/2023] Open
Abstract
Metabolic reprogramming of amino acids has been increasingly recognized to initiate and fuel tumorigenesis and survival. Therefore, there is emerging interest in the application of amino acid metabolic strategies in antitumor therapy. Tremendous efforts have been made to develop amino acid metabolic node interventions such as amino acid antagonists and targeting amino acid transporters, key enzymes of amino acid metabolism, and common downstream pathways of amino acid metabolism. In addition to playing an essential role in sustaining tumor growth, new technologies and studies has revealed amino acid metabolic reprograming to have wide implications in the regulation of antitumor immune responses. Specifically, extensive crosstalk between amino acid metabolism and T cell immunity has been reported. Tumor cells can inhibit T cell immunity by depleting amino acids in the microenvironment through nutrient competition, and toxic metabolites of amino acids can also inhibit T cell function. In addition, amino acids can interfere with T cells by regulating glucose and lipid metabolism. This crucial crosstalk inspires the exploitation of novel strategies of immunotherapy enhancement and combination, owing to the unprecedented benefits of immunotherapy and the limited population it can benefit. Herein, we review recent findings related to the crosstalk between amino acid metabolism and T cell immunity. We also describe possible approaches to intervene in amino acid metabolic pathways by targeting various signaling nodes. Novel efforts to combine with and unleash potential immunotherapy are also discussed. Hopefully, some strategies that take the lead in the pipeline may soon be used for the common good.
Collapse
Affiliation(s)
- Yue Zheng
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 20025, P. R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 20025, P. R. China
| | - Yiran Yao
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 20025, P. R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 20025, P. R. China
| | - Tongxin Ge
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 20025, P. R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 20025, P. R. China
| | - Shengfang Ge
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 20025, P. R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 20025, P. R. China
| | - Renbing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 20025, P. R. China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 20025, P. R. China.
| | - Xin Song
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 20025, P. R. China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 20025, P. R. China.
| | - Ai Zhuang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 20025, P. R. China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 20025, P. R. China.
| |
Collapse
|
21
|
Li W, Ling Z, Wang J, Su Z, Lu J, Yang X, Cheng B, Tao X. ASCT2-mediated glutamine uptake promotes Th1 differentiation via ROS-EGR1-PAC1 pathway in oral lichen planus. Biochem Pharmacol 2023; 216:115767. [PMID: 37634599 DOI: 10.1016/j.bcp.2023.115767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 08/29/2023]
Abstract
Oral lichen planus (OLP) is a T cell-mediated autoimmune disease of oral mucosa concerning with the redox imbalance. Although glutamine uptake mediated by alanine-serine-cysteine transporter 2 (ASCT2) is critical to T cell differentiation, the exact mechanism remains ambiguous. Here, we elucidate a novel regulatory mechanism of ASCT2-mediated uptake in the differentiation and proliferation of T cells through maintaining redox balance in OLP. The results of immunohistochemistry (IHC) showed that both ASCT2 and glutaminase (GLS) were obviously upregulated compared to controls in OLP. Moreover, correlation analyses indicated that ASCT2 expression was significantly related to GLS level. Interestingly, the upregulation of glutamine metabolism in epithelial layer was consistent with that in lamina propria. Functional assays in vitro revealed the positive association between glutamine metabolism and lymphocytes infiltration. Additionally, multiplex immunohistochemistry (mIHC) uncovered a stronger colocalization among ASCT2 and CD4 and IFN-γ, which was further demonstrated by human Th1 differentiation assay in vitro. Mechanistically, targeting glutamine uptake through interference with ASCT2 using L-γ-Glutamyl-p-nitroanilide (GPNA) decreased the glutamine uptake of T cells and leaded to the accumulation of intracellular reactive oxygen species (ROS), which promoted dual specificity phosphatase 2 (DUSP2/PAC1) expression through activation of early growth response 1 (EGR1) to induce dephosphorylation of signal transducer and activator of transcription 3 (STAT3) and inhibit Th1 differentiation in turn. These results demonstrated that glutamine uptake mediated by ASCT2 induced Th1 differentiation by ROS-EGR1-PAC1 pathway, and restoring the redox dynamic balance through targeting ASCT2 may be a potential treatment for T cell-mediated autoimmune diseases.
Collapse
Affiliation(s)
- Wei Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Zihang Ling
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Jinmei Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Zhangci Su
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Jingyi Lu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Xi Yang
- Department of Periodontology, Stomatological Hospital, Southern Medical University, Guangzhou, China.
| | - Bin Cheng
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.
| | - Xiaoan Tao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.
| |
Collapse
|
22
|
Zhou Q, Tao C, Yuan J, Pan F, Wang R. Ferroptosis, a subtle talk between immune system and cancer cells: To be or not to be? Biomed Pharmacother 2023; 165:115251. [PMID: 37523985 DOI: 10.1016/j.biopha.2023.115251] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/02/2023] Open
Abstract
Ferroptosis, an established form of programmed cell death discovered in 2012, is characterized by an imbalance in iron metabolism, lipid metabolism, and antioxidant metabolism. Activated CD8 + T cells can trigger ferroptosis in tumor cells by releasing interferon-γ, which initiates the ferroptosis program. Despite the remarkable progress made in treating various tumors with immunotherapy, such as anti-PD1/PDL1, there are still significant challenges to overcome, including limited treatment options and drug resistance. In this review, we exam the potential biological significance of the ferroptosis phenotype using bioinformatics and review the latest advancements in understanding the mechanism of ferroptosis-mediated anti-tumor immunotherapy. Furthermore, we revisit the host immune system, immune microenvironment, ferroptotic defense system, metabolic reprogramming, and key genes that regulate the occurrence and resistance of ferroptosis of tumor cell. Additionally, several immune-combined ferroptosis treatment strategies were put forward to improve immunotherapy efficacy and to provide new insights into reversing anti-tumor immune drug resistance.
Collapse
Affiliation(s)
- Qiong Zhou
- Department of Medical Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province 210093, PR China.
| | - Chunyu Tao
- Department of Medical Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province 210093, PR China.
| | - Jiakai Yuan
- Department of Medical Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province 210093, PR China.
| | - Fan Pan
- Department of Medical Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province 210093, PR China.
| | - Rui Wang
- Department of Medical Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province 210093, PR China.
| |
Collapse
|
23
|
Benavente S. Remodeling the tumor microenvironment to overcome treatment resistance in HPV-negative head and neck cancer. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:291-313. [PMID: 37457128 PMCID: PMC10344731 DOI: 10.20517/cdr.2022.141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 05/02/2023] [Accepted: 05/22/2023] [Indexed: 07/18/2023]
Abstract
Despite intensive efforts and refined techniques, overall survival in HPV-negative head and neck cancer remains poor. Robust immune priming is required to elicit a strong and durable antitumor immune response in immunologically cold and excluded tumors like HPV-negative head and neck cancer. This review highlights how the tumor microenvironment could be affected by different immune and stromal cell types, weighs the need to integrate metabolic regulation of the tumor microenvironment into cancer treatment strategies and summarizes the emerging clinical applicability of personalized immunotherapeutic strategies in HPV-negative head and neck cancer.
Collapse
Affiliation(s)
- Sergi Benavente
- Correspondence to: Dr. Sergi Benavente, Department of Radiation Oncology, Vall d’Hebron University Hospital, Passeig Vall d’Hebron 119, Barcelona 08035, Spain. E-mail:
| |
Collapse
|
24
|
Lee J, Shin D, Roh JL. Lipid metabolism alterations and ferroptosis in cancer: Paving the way for solving cancer resistance. Eur J Pharmacol 2023; 941:175497. [PMID: 36621602 DOI: 10.1016/j.ejphar.2023.175497] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/22/2022] [Accepted: 01/05/2023] [Indexed: 01/07/2023]
Abstract
Cancer often perturbs lipid metabolism, which leads to the alteration of metabolism intermediates, contributing to their deregulated growth and metastasis. Alteration of lipid metabolism shifting to contain more polyunsaturated fatty acids (PUFAs) in membrane phospholipids (PLs) also leads to cancer therapy resistance. High amounts of PL-PUFAs render cancer cells more vulnerable to lipid peroxidation (LPO), predisposing them towards ferroptosis, a new form of iron-dependent oxidative regulated cell death. The commitment of cancer undergoing ferroptotic cell death depends on the adaptive lipidome remodeling, LPO patterns, and LPO scavenging ability in heterogeneous cancer cells. Ferroptosis is receiving attention in cancer research as treating cancers, altering membrane lipid homeostasis, and refractory from conventional therapies. Therefore, a better understanding of the molecular underpinning of lipid metabolism alterations may provide new opportunities for solving cancer resistance. This review intends to understand altered lipid metabolism in cancers and discuss lipid composition and metabolic processes associated with ferroptosis induction in cancers.
Collapse
Affiliation(s)
- Jaewang Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - Daiha Shin
- Western Seoul Center, Korea Basic Science Institute, Seoul, Republic of Korea
| | - Jong-Lyel Roh
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea.
| |
Collapse
|
25
|
Glutamine Metabolism in Cancer Stem Cells: A Complex Liaison in the Tumor Microenvironment. Int J Mol Sci 2023; 24:ijms24032337. [PMID: 36768660 PMCID: PMC9916789 DOI: 10.3390/ijms24032337] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/19/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023] Open
Abstract
In this review we focus on the role of glutamine in control of cancer stem cell (CSC) fate. We first provide an overview of glutamine metabolism, and then summarize relevant studies investigating how glutamine metabolism modulates the CSC compartment, concentrating on solid tumors. We schematically describe how glutamine in CSC contributes to several metabolic pathways, such as redox metabolic pathways, ATP production, non-essential aminoacids and nucleotides biosynthesis, and ammonia production. Furthermore, we show that glutamine metabolism is a key regulator of epigenetic modifications in CSC. Finally, we briefly discuss how cancer-associated fibroblasts, adipocytes, and senescent cells in the tumor microenvironment may indirectly influence CSC fate by modulating glutamine availability. We aim to highlight the complexity of glutamine's role in CSC, which supports our knowledge about metabolic heterogeneity within the CSC population.
Collapse
|
26
|
Takeshita H, Yoshida R, Inoue J, Ishikawa K, Shinohara K, Hirayama M, Oyama T, Kubo R, Yamana K, Nagao Y, Gohara S, Sakata J, Nakashima H, Matsuoka Y, Nakamoto M, Hirayama M, Kawahara K, Takahashi N, Hirosue A, Kuwahara Y, Fukumoto M, Toya R, Murakami R, Nakayama H. FOXM1-Mediated Regulation of Reactive Oxygen Species and Radioresistance in Oral Squamous Cell Carcinoma Cells. J Transl Med 2023; 103:100060. [PMID: 36801643 DOI: 10.1016/j.labinv.2022.100060] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 12/30/2022] [Indexed: 01/11/2023] Open
Abstract
Radioresistance is a major obstacle to the successful treatment of oral squamous cell carcinoma (OSCC). To help overcome this issue, we have developed clinically relevant radioresistant (CRR) cell lines generated by irradiating parental cells over time, which are useful for OSCC research. In the present study, we conducted gene expression analysis using CRR cells and their parental lines to investigate the regulation of radioresistance in OSCC cells. Based on gene expression changes over time in CRR cells and parental lines subjected to irradiation, forkhead box M1 (FOXM1) was selected for further analysis in terms of its expression in OSCC cell lines, including CRR cell lines and clinical specimens. We suppressed or upregulated the expression of FOXM1 in OSCC cell lines, including CRR cell lines, and examined radiosensitivity, DNA damage, and cell viability under various conditions. The molecular network regulating radiotolerance was also investigated, especially the redox pathway, and the radiosensitizing effect of FOXM1 inhibitors was examined as a potential therapeutic application. We found that FOXM1 was not expressed in normal human keratinocytes but was expressed in several OSCC cell lines. The expression of FOXM1 was upregulated in CRR cells compared with that detected in the parental cell lines. In a xenograft model and clinical specimens, FOXM1 expression was upregulated in cells that survived irradiation. FOXM1-specific small interfering RNA (siRNA) treatment increased radiosensitivity, whereas FOXM1 overexpression decreased radiosensitivity, and DNA damage was altered significantly under both conditions, as well as the levels of redox-related molecules and reactive oxygen species production. Treatment with the FOXM1 inhibitor thiostrepton had a radiosensitizing effect and overcame radiotolerance in CRR cells. According to these results, the FOXM1-mediated regulation of reactive oxygen species could be a novel therapeutic target for the treatment of radioresistant OSCC; thus, treatment strategies targeting this axis might overcome radioresistance in this disease.
Collapse
Affiliation(s)
- Hisashi Takeshita
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Ryoji Yoshida
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.
| | - Junki Inoue
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Kohei Ishikawa
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan; Department of Dentistry, Self-Defense Forces Kumamoto Hospital, Kumamoto, Japan
| | - Kosuke Shinohara
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Mayumi Hirayama
- Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Toru Oyama
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Ryuta Kubo
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Keisuke Yamana
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Yuka Nagao
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Shunsuke Gohara
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Junki Sakata
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hikaru Nakashima
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | | | - Masafumi Nakamoto
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Masatoshi Hirayama
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Kenta Kawahara
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Nozomu Takahashi
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Akiyuki Hirosue
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Yoshikazu Kuwahara
- Radiation Biology and Medicine, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Manabu Fukumoto
- Pathology Informatics Team, RIKEN Center for Advanced Intelligence Project, Chuo-ku, Tokyo, Japan
| | - Ryo Toya
- Department of Radiation Oncology, Kumamoto University Hospital, Kumamoto, Japan
| | - Ryuji Murakami
- Department of Medical Radiation Sciences, Faculty of Life Sciences, Kumamoto, Japan
| | - Hideki Nakayama
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
27
|
Lee J, Roh JL. Ferroptosis induction via targeting metabolic alterations in head and neck cancer. Crit Rev Oncol Hematol 2023; 181:103887. [PMID: 36442748 DOI: 10.1016/j.critrevonc.2022.103887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/09/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022] Open
Abstract
Ferroptosis is a newly regulated cell death induced by the accumulation of iron-mediated lipid peroxidation. The alteration of cancer metabolism may contribute to proliferation, metastasis, and treatment resistance in human cancers, implicating the sensitivity to ferroptosis induction. Altered metabolism in cancer cells regulates oxidative stresses and changes metabolism intermediates, contributing to their deregulated growth and proliferation. Cancer metabolic changes toward the elevation of cellular free iron and polyunsaturated fatty acids sensitize cancer cells to lipid peroxidation toxicity tightly linked to ferroptosis. The altered metabolism in cancers can be served as a promising target to reverse cancer therapeutic resistance by ferroptosis induction to selectively kill cancer cells while sparing normal cells. The role of mitochondria and lipid metabolism in inducing ferroptosis in head and neck cancer (HNC) has been elucidated in previous studies. Ferroptosis is receiving attention in cancer research as treating cancers altering cellular metabolism and refractory from conventional therapies. More in-depth studies are needed to develop highly therapeutic drugs and practical methods to induce ferroptosis in diverse cancer cells and tumor microenvironments effectively. Therefore, this review intends to understand the altered metabolism and find new therapeutic possibilities using ferroptosis in HNC.
Collapse
Affiliation(s)
- Jaewang Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea; Department of Biomedical Science, General Graduate School, CHA University, Seongnam, Republic of Korea
| | - Jong-Lyel Roh
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea; Department of Biomedical Science, General Graduate School, CHA University, Seongnam, Republic of Korea.
| |
Collapse
|
28
|
Lee J, Roh JL. SLC7A11 as a Gateway of Metabolic Perturbation and Ferroptosis Vulnerability in Cancer. Antioxidants (Basel) 2022; 11:antiox11122444. [PMID: 36552652 PMCID: PMC9774303 DOI: 10.3390/antiox11122444] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
SLC7A11 is a cell transmembrane protein composing the light chain of system xc-, transporting extracellular cystine into cells for cysteine production and GSH biosynthesis. SLC7A11 is a critical gateway for redox homeostasis by maintaining the cellular levels of GSH that counter cellular oxidative stress and suppress ferroptosis. SLC7A11 is overexpressed in various human cancers and regulates tumor development, proliferation, metastasis, microenvironment, and treatment resistance. Upregulation of SLC7A11 in cancers is needed to adapt to high oxidative stress microenvironments and maintain cellular redox homeostasis. High basal ROS levels and SLC7A11 dependences in cancer cells render them vulnerable to further oxidative stress. Therefore, cyst(e)ine depletion may be an effective new strategy for cancer treatment. However, the effectiveness of the SLC7A11 inhibitors or cyst(e)inase has been established in many preclinical studies but has not reached the stage of clinical trials for cancer patients. A better understanding of cysteine and SLC7A11 functions regulating and interacting with redox-active proteins and their substrates could be a promising strategy for cancer treatment. Therefore, this review intends to understand the role of cysteine in antioxidant and redox signaling, the regulators of cysteine bioavailability in cancer, the role of SLC7A11 linking cysteine redox signaling in cancer metabolism and targeting SLC7A11 for novel cancer therapeutics.
Collapse
Affiliation(s)
- Jaewang Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA Bundang Medical Center, CHA University, Seongnam 13496, Republic of Korea
- Department of Biomedical Science, General Graduate School, CHA University, Seongnam 13496, Republic of Korea
| | - Jong-Lyel Roh
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA Bundang Medical Center, CHA University, Seongnam 13496, Republic of Korea
- Department of Biomedical Science, General Graduate School, CHA University, Seongnam 13496, Republic of Korea
- Correspondence: ; Tel.: +82-31-780-2988
| |
Collapse
|
29
|
Induction of ferroptosis in head and neck cancer: A novel bridgehead for fighting cancer resilience. Cancer Lett 2022; 546:215854. [PMID: 35973621 DOI: 10.1016/j.canlet.2022.215854] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 12/11/2022]
Abstract
Most head and neck cancers (HNCs) originate from mucosal epithelial cells and show epithelial traits. It often changes to a mesenchymal or poorly differentiated state as cancer progresses, leading to invasion, metastasis, and resistance to treatment. The loss of epithelial traits by the epithelial-mesenchymal transition may render resilient cancers vulnerable to a novel non-apoptotic regulated cell death ferroptosis by the iron-dependent accumulation of excessive lipid peroxidation. By regulating mitochondrial or iron metabolism, intracellular ferrous iron and lipid peroxidation accumulation can be boosted, making resistant cancer cells more susceptible to ferroptosis. This article discusses the potential effect of ferroptosis induction as a novel treatment for resilient HNCs.
Collapse
|
30
|
The Role of SLC7A11 in Cancer: Friend or Foe? Cancers (Basel) 2022; 14:cancers14133059. [PMID: 35804831 PMCID: PMC9264807 DOI: 10.3390/cancers14133059] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/12/2022] [Accepted: 06/15/2022] [Indexed: 11/17/2022] Open
Abstract
SLC7A11 controls the uptake of extracellular cystine in exchange for glutamate at a ratio of 1:1, and it is overexpressed in a variety of tumours. Accumulating evidence has shown that the expression of SLC7A11 is fine-tuned at multiple levels, and plays diverse functional and pharmacological roles in tumours, such as cellular redox homeostasis, cell growth and death, and cell metabolism. Many reports have suggested that the inhibition of SLC7A11 expression and activity is favourable for tumour therapy; thus, SLC7A11 is regarded as a potential therapeutic target. However, emerging evidence also suggests that on some occasions, the inhibition of SLC7A11 is beneficial to the survival of cancer cells, and confers the development of drug resistance. In this review, we first briefly introduce the biological properties of SLC7A11, including its structure and physiological functions, and further summarise its regulatory network and potential regulators. Then, focusing on its role in cancer, we describe the relationships of SLC7A11 with tumourigenesis, survival, proliferation, metastasis, and therapeutic resistance in more detail. Finally, since SLC7A11 has been linked to cancer through multiple approaches, we propose that its contribution and regulatory mechanism require further elucidation. Thus, more personalised therapeutic strategies should be adapted when targeting SLC7A11.
Collapse
|
31
|
Zhang Q, Li W. Correlation between amino acid metabolism and self-renewal of cancer stem cells: Perspectives in cancer therapy. World J Stem Cells 2022; 14:267-286. [PMID: 35662861 PMCID: PMC9136564 DOI: 10.4252/wjsc.v14.i4.267] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/19/2022] [Accepted: 04/25/2022] [Indexed: 02/06/2023] Open
Abstract
Cancer stem cells (CSCs) possess self-renewal and differentiation potential, which may be related to recurrence, metastasis, and radiochemotherapy resistance during tumor treatment. Understanding the mechanisms via which CSCs maintain self-renewal may reveal new therapeutic targets for attenuating CSC resistance and extending patient life-span. Recent studies have shown that amino acid metabolism plays an important role in maintaining the self-renewal of CSCs and is involved in regulating their tumorigenicity characteristics. This review summarizes the relationship between CSCs and amino acid metabolism, and discusses the possible mechanisms by which amino acid metabolism regulates CSC characteristics particularly self-renewal, survival and stemness. The ultimate goal is to identify new targets and research directions for elimination of CSCs.
Collapse
Affiliation(s)
- Qi Zhang
- Cancer Center, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Wei Li
- Cancer Center, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| |
Collapse
|
32
|
Mahapatra E, Sengupta D, Kumar R, Dehury B, Das S, Roy M, Mukherjee S. Phenethylisothiocyanate Potentiates Platinum Therapy by Reversing Cisplatin Resistance in Cervical Cancer. Front Pharmacol 2022; 13:803114. [PMID: 35548339 PMCID: PMC9081374 DOI: 10.3389/fphar.2022.803114] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 03/22/2022] [Indexed: 12/24/2022] Open
Abstract
Acquired cisplatin resistance in cervical cancer therapy is principally caused by reduction in intracellular drug accumulation, which is exerted by hyperactivation of the oncogenic PI3K/Akt signaling axis and overexpression of cisplatin-exporter MRP2 along with prosurvival effectors NF-κB and IAPs in cervical cancer cells. These activated prosurvival signaling cascades drive drug efflux and evasion of apoptosis for rendering drug-resistant phenotypes. Our study challenges the PI3K/Akt axis in a cisplatin-resistant cervical cancer scenario with phenethylisothiocyanate (PEITC) for chemosensitization of SiHaR, a cisplatin-resistant sub-line of SiHa and 3-methylcholanthrene–induced cervical cancer mice models. SiHaR exhibited higher MRP2, p-AktThr308, NF-κB, XIAP, and survivin expressions which cumulatively compromised cisplatin retention capacity and accumulated PEITC better than SiHa. SiHaR appeared to favor PEITC uptake as its accumulation rates were found to be positively correlated with MRP2 expressions. PEITC treatment in SiHaR for 3 h prior to cisplatin exposure revived intracellular platinum levels, reduced free GSH levels, generated greater ROS, and altered mitochondrial membrane potential compared to SiHa. Western blot and immunofluorescence results indicated that PEITC successfully downregulated MRP2 in addition to suppressing p-AktThr308, XIAP, survivin, and NF-κB expressions. In mice models, administration of 5 mg/kg body-weight PEITC priming dosage prior to treatment with 3 mg/kg body-weight of cisplatin remediated cervical histology and induced tumor regression in contrast to the group receiving the same dosage of cisplatin only. This suggested PEITC as a potential chemosensitizing agent in light of acquired cisplatin resistance in cervical cancer and established its candidature for Phase I clinical trial.
Collapse
Affiliation(s)
- Elizabeth Mahapatra
- Department of Environmental Carcinogenesis and Toxicology, Chittaranjan National Cancer Institute, Kolkata, India
| | - Debomita Sengupta
- Department of Environmental Carcinogenesis and Toxicology, Chittaranjan National Cancer Institute, Kolkata, India
| | - Ravindra Kumar
- School of Biotechnology, National Institute of Technology Calicut, Kozhikode, India
| | - Budheswar Dehury
- ICMR-Regional Medical Research Centre, Chandrasekharpur, Bhubaneswar, India
| | - Salini Das
- Department of Environmental Carcinogenesis and Toxicology, Chittaranjan National Cancer Institute, Kolkata, India
| | - Madhumita Roy
- Department of Environmental Carcinogenesis and Toxicology, Chittaranjan National Cancer Institute, Kolkata, India
| | - Sutapa Mukherjee
- Department of Environmental Carcinogenesis and Toxicology, Chittaranjan National Cancer Institute, Kolkata, India
- *Correspondence: Sutapa Mukherjee, , orcid.org/0000-0002-4411-7257
| |
Collapse
|
33
|
Takeda Y, Chijimatsu R, Ofusa K, Kobayashi S, Doki Y, Eguchi H, Ishii H. Cancer metabolism challenges genomic instability and clonal evolution as therapeutic targets. Cancer Sci 2022; 113:1097-1104. [PMID: 35112433 PMCID: PMC8990295 DOI: 10.1111/cas.15279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/17/2022] [Accepted: 01/20/2022] [Indexed: 11/29/2022] Open
Abstract
Although cancer precision medicine has improved diagnosis and therapy, refractory cancers such as pancreatic cancer remain to be challenging targets. Clinical sequencing has identified the significant alterations in driver genes and traced their clonal evolutions. Recent studies indicated that the tumor microenvironment elicits alterations in cancer metabolism, although its involvement in the cause and development of genomic alterations has not been established. Genomic abnormalities can contribute to the survival of selected subpopulations, recently recognized as clonal evolution, and dysfunction can lead to DNA mutations. Here, we present the most recent studies on the mechanisms of cancer metabolism involved in the maintenance of genomic stability to update current understanding of such processes. Sirtuins, which are NAD+-dependent protein deacetylases, appear to be involved in the control of genomic stability. Alterations of deleterious subpopulations would be exposed to selective pressure for cell survival. Recent studies indicated that a new type of cell death, ferroptosis, determines the survival of clones and exert cancer-restricting or -promoting effects to surrounding cells in the tumor microenvironment. Suppressing genomic instability and eliminating deleterious clones by cell death will contribute to the improvement of cancer medicine. Furthermore, the elucidation of the mechanisms involved is seen as a bridgehead to the pharmacologic suppression of such refractory cancers as pancreatic cancer.
Collapse
Affiliation(s)
- Yu Takeda
- Department of Gastroenterological SurgeryGraduate School of MedicineOsaka UniversitySuitaJapan
| | - Ryota Chijimatsu
- Department of Medical Data ScienceGraduate School of MedicineCenter of Medical Innovation and Translational ResearchOsaka UniversitySuitaJapan
| | - Ken Ofusa
- Department of Medical Data ScienceGraduate School of MedicineCenter of Medical Innovation and Translational ResearchOsaka UniversitySuitaJapan
- Prophoenix DivisionFood and Life‐Science LaboratoryIdea Consultants, IncOsaka‐cityJapan
| | - Shogo Kobayashi
- Department of Gastroenterological SurgeryGraduate School of MedicineOsaka UniversitySuitaJapan
| | - Yuichiro Doki
- Department of Gastroenterological SurgeryGraduate School of MedicineOsaka UniversitySuitaJapan
| | - Hidetoshi Eguchi
- Department of Gastroenterological SurgeryGraduate School of MedicineOsaka UniversitySuitaJapan
| | - Hideshi Ishii
- Department of Medical Data ScienceGraduate School of MedicineCenter of Medical Innovation and Translational ResearchOsaka UniversitySuitaJapan
| |
Collapse
|
34
|
Amino Acid Metabolism in Cancer Drug Resistance. Cells 2022; 11:cells11010140. [PMID: 35011702 PMCID: PMC8750102 DOI: 10.3390/cells11010140] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/28/2021] [Accepted: 12/28/2021] [Indexed: 02/06/2023] Open
Abstract
Despite the numerous investigations on resistance mechanisms, drug resistance in cancer therapies still limits favorable outcomes in cancer patients. The complexities of the inherent characteristics of tumors, such as tumor heterogeneity and the complicated interaction within the tumor microenvironment, still hinder efforts to overcome drug resistance in cancer cells, requiring innovative approaches. In this review, we describe recent studies offering evidence for the essential roles of amino acid metabolism in driving drug resistance in cancer cells. Amino acids support cancer cells in counteracting therapies by maintaining redox homeostasis, sustaining biosynthetic processes, regulating epigenetic modification, and providing metabolic intermediates for energy generation. In addition, amino acid metabolism impacts anticancer immune responses, creating an immunosuppressive or immunoeffective microenvironment. A comprehensive understanding of amino acid metabolism as it relates to therapeutic resistance mechanisms will improve anticancer therapeutic strategies.
Collapse
|
35
|
Managing GSH elevation and hypoxia to overcome resistance of cancer therapies using functionalized nanocarriers. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.103022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
36
|
Baba H, Kanda M, Sawaki K, Nakamura S, Ueda S, Shimizu D, Koike M, Kodera Y, Fujii T. SLC7A9 as a Potential Biomarker for Lymph Node Metastasis of Esophageal Squamous Cell Carcinoma. Ann Surg Oncol 2021; 29:2699-2709. [PMID: 34773193 DOI: 10.1245/s10434-021-11001-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 10/05/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND The expression of solute carrier (SLC) 7 family genes is reportedly associated with several malignancies. Here, we focused on SLC7A9 and investigated its expression, function, and clinical significance in esophageal squamous cell carcinoma (ESCC). METHODS SLC7A9 transcription levels were evaluated in 13 ESCC cell lines, and polymerase chain reaction (PCR) array analysis was conducted to detect coordinately expressed genes with SLC7A9. SLC7A9 contributions to proliferation, invasion, and migration were evaluated in ESCC cells subjected to siRNA-mediated gene knockdown and pCMV6-entry plasmid-mediated overexpression. SLC7A9 expression was detected in 189 ESCC tissues by quantitative reverse-transcription (qRT)-PCR and correlated with clinicopathological parameters. RESULTS The expression levels of SLC7A9 varied widely in ESCC cell lines and correlated with FGFBP1 expression. Knockdown of SLC7A9 significantly suppressed the proliferation, invasion, and migration of the ESCC cell lines. Moreover, overexpression of SLC7A9 enhanced cell proliferation and migration. In analyses of clinical specimens, SLC7A9 mRNA was overexpressed in the ESCC tissues compared with the adjacent normal esophageal tissues. High mRNA expression was significantly associated with high levels of squamous cell carcinoma-related antigen and carcinoembryonic antigen, advanced disease stage, and lymph node metastasis. High SLC7A9 expression was also significantly associated with poor disease-specific and disease-free survival, and lymph node recurrence after radical surgery, but not with the other recurrence patterns. On multivariate analysis, high SLC7A9 expression was an independent predictor of lymph node recurrence. CONCLUSIONS SLC7A9 influences the malignant behavior of ESCC cells. Tumor SLC7A9 expression may serve as a novel biomarker for predicting lymph node metastasis and recurrence in ESCC patients.
Collapse
Affiliation(s)
- Hayato Baba
- Department of Surgery and Science, Academic Assembly, University of Toyama, Toyama, Japan.,Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Mitsuro Kanda
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan.
| | - Koichi Sawaki
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Shunsuke Nakamura
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Sei Ueda
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan.,Department of Maxillofacial Surgery, School of Dentistry, Aichi-gakuin University Graduate School of Medicine, Nagoya, Japan.,Department of Surgery, School of Dentistry, Aichi-gakuin University Graduate School of Medicine, Nagoya, Japan
| | - Dai Shimizu
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Masahiko Koike
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Yasuhiro Kodera
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Tsutomu Fujii
- Department of Surgery and Science, Academic Assembly, University of Toyama, Toyama, Japan
| |
Collapse
|
37
|
Lian N, Zhang Q, Chen J, Chen M, Huang J, Lin Q. The Role of Ferroptosis in Bronchoalveolar Epithelial Cell Injury Induced by Cigarette Smoke Extract. Front Physiol 2021; 12:751206. [PMID: 34658933 PMCID: PMC8511776 DOI: 10.3389/fphys.2021.751206] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/08/2021] [Indexed: 01/31/2023] Open
Abstract
Background: Cigarette smoking is a major risk factor for bronchoalveolar epithelial cell (BAEC) injury. Understanding the relevant pathogenesis is important for the treatment of cigarette smoke–related chronic airway diseases such as chronic obstructive pulmonary disease. Methods: In this study, BAECs were cultured in 5% cigarette smoke extract (CSE) or regular culture medium for 24 h. Differentially expressed genes (DEGs) were detected by next-generation RNA sequencing (RNA-seq) and validated by quantitative reverse transcription polymerase chain reaction (qRT-PCR). Bioinformatic analysis was performed on DEGs. Co-treated BAECs with 5% CSE and the ferroptosis inhibitor, ferrostatin-1 was applied to observe the role of ferroptosis. Results: In the CSE group, 210 upregulated genes and 159 downregulated genes were identified compared with the control group. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses showed that the DEGs were related to oxidative stress and ferroptosis. Ferroptosis-related genes were further verified by qRT-PCR. The mRNA level of GPX4 decreased; the mRNA levels of ACSL4, FTH1 and SLC7A11 increased (p < 0.05). Pretreatment with the ferroptosis inhibitor ferrostatin-1 mitigated CSE-induced ROS accumulation and inflammatory mediator expression in BAECs (p < 0.05). Conclusion: CSE treatment altered ferroptosis-related gene expression patterns in cultured BAECs. Inhibition of ferroptosis reduced the inflammatory response of CSE-treated BAECs. These data provide a better understanding of the underlying molecular mechanisms of CSE-related lung injury.
Collapse
Affiliation(s)
- Ningfang Lian
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Fujian Medical University, Institute of Respiratory Disease, Fujian Medical University, Fuzhou, China
| | - Qiaoxian Zhang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Fujian Medical University, Institute of Respiratory Disease, Fujian Medical University, Fuzhou, China
| | - Jia Chen
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Fujian Medical University, Institute of Respiratory Disease, Fujian Medical University, Fuzhou, China
| | - Mengxue Chen
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Fujian Medical University, Institute of Respiratory Disease, Fujian Medical University, Fuzhou, China
| | - Jiefeng Huang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Fujian Medical University, Institute of Respiratory Disease, Fujian Medical University, Fuzhou, China
| | - Qichang Lin
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Fujian Medical University, Institute of Respiratory Disease, Fujian Medical University, Fuzhou, China
| |
Collapse
|
38
|
Liu MR, Zhu WT, Pei DS. System Xc -: a key regulatory target of ferroptosis in cancer. Invest New Drugs 2021; 39:1123-1131. [PMID: 33506324 DOI: 10.1007/s10637-021-01070-0/tables/1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 01/15/2021] [Indexed: 05/26/2023]
Abstract
Ferroptosis is a type of oxidative stress-dependent regulated necrosis characterized by excessive lipid peroxide accumulation. This novel cell death modality has been implicated in preventing cancer progression. Cancer cells tend to modulate their redox state to prevent excessive peroxidation, eventually facilitating tumor growth. System Xc- (a cystine/glutamate antiporter system) is a promising target in cancer cells for ferroptosis induction. The overexpression of system Xc-, especially its core subunit xCT, has been reported in several tumors, and these high expression levels were closely related to cancer cell proliferation, invasion, metastasis and the tumor microenvironment. xCT might serve as a novel biomarker, and its upregulation almost always indicates drug tolerance and poor survival. Therefore, system Xc- inhibition may enhance chemotherapy sensitivity and optimize patient prognosis. Here, we elaborate on the mediation of ferroptosis by suppressing system Xc- and the relevant underlying molecular mechanism in cancer cells. The spotlight on this approach to cancer treatment is creating a new horizon and pointing to future opportunities.
Collapse
Affiliation(s)
- Man-Ru Liu
- Department of Pathology, Xuzhou Medical University, 209 Tong-shan Road, Jiangsu, 221004, Xuzhou, China
| | - Wen-Tao Zhu
- Department of Pathology, Xuzhou Medical University, 209 Tong-shan Road, Jiangsu, 221004, Xuzhou, China
| | - Dong-Sheng Pei
- Department of Pathology, Xuzhou Medical University, 209 Tong-shan Road, Jiangsu, 221004, Xuzhou, China.
| |
Collapse
|
39
|
Saito Y, Soga T. Amino acid transporters as emerging therapeutic targets in cancer. Cancer Sci 2021; 112:2958-2965. [PMID: 34091991 PMCID: PMC8353895 DOI: 10.1111/cas.15006] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/13/2021] [Accepted: 05/31/2021] [Indexed: 01/17/2023] Open
Abstract
Amino acids are indispensable nutrients for both normal and cancer cells. Cancer cells are unable to synthesize essential amino acids as well as some non‐essential amino acids adequately to support rapid proliferation, and must take up amino acids from the surroundings. To meet the increased demand for the amino acid needed for proliferation, high levels of amino acid transporters are expressed on the surface of cancer cells. Cancer cells utilize amino acids to synthesize proteins and nucleotides, as well as to obtain energy. In addition, amino acids are known to play pathological roles in cancer cells. Interestingly, breast cancer cells limit the use of amino acids for cell proliferation based on amino acid availability, which depends on estrogen receptor status. Here, we present a summarized literature review of novel amino acid functions in cancer cells. This review organizes the available knowledge on 2 amino acid transporters, SLC7A5 and SLC7A11, which are considered essential for breast cancer cell growth in a cell‐dependent manner. In particular, we propose the glutamine recycling model to clarify the mechanism underlying aberrant SLC7A5 activation. Finally, we overview the pathological significances of SLC7A5 and SLC7A11 in cancer tissues.
Collapse
Affiliation(s)
- Yasuhiro Saito
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| |
Collapse
|
40
|
You JH, Lee J, Roh JL. Mitochondrial pyruvate carrier 1 regulates ferroptosis in drug-tolerant persister head and neck cancer cells via epithelial-mesenchymal transition. Cancer Lett 2021; 507:40-54. [PMID: 33741422 DOI: 10.1016/j.canlet.2021.03.013] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/07/2021] [Accepted: 03/09/2021] [Indexed: 02/06/2023]
Abstract
Cancer cells evolve to survive as 'persister cells' resistant to various chemotherapeutic agents. Persister cancer cells retain mesenchymal traits that are vulnerable to ferroptosis by iron-dependent accumulation of lethal lipid peroxidation. Regulation of the KDM5A-MPC1 axis might shift cancer cells to have mesenchymal traits via epithelial-mesenchymal transition process. Therefore, we examined the therapeutic potentiality of KDM5A-MPC1 axis regulation in promoting ferroptosis in erlotinib-tolerant persister head and neck cancer cells (erPCC). ErPCC acquired mesenchymal traits and disabled antioxidant program that were more vulnerable to ferroptosis inducers of RSL3, ML210, sulfasalazine, and erastin. GPX4 and xCT suppression caused increased sensitivity to ferroptosis in vivo models of GPX4 genetic silencing. KDM5A expression increased and MPC1 expression decreased in erPCC. KDM5A inhibition increased MPC1 expression and decreased sensitivity to ferroptosis inducers in erPCC. MPC1 suppression increased vulnerability to ferroptosis in vitro and in vivo by retaining mesenchymal traits and glutaminolysis. Low expression of MPC1 was associated with low overall survival from the TCGA data. Our data suggest that regulation of the KDM5A-MPC1 axis contributes to promoting cancer ferroptosis susceptibility.
Collapse
Affiliation(s)
- Ji Hyeon You
- Department of Otorhinolaryngology-Head Neck Surgery, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Republic of Korea
| | - Jaewang Lee
- Department of Otorhinolaryngology-Head Neck Surgery, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Republic of Korea
| | - Jong-Lyel Roh
- Department of Otorhinolaryngology-Head Neck Surgery, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Republic of Korea.
| |
Collapse
|
41
|
Yin G, Huang J, Guo W, Huang Z. Metabolomics of Oral/Head and Neck Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1280:277-290. [PMID: 33791989 DOI: 10.1007/978-3-030-51652-9_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
Oral/head and neck cancer is the sixth most common human malignancies in the world. Despite the treatment advances in surgery, chemotherapy, and radiotherapy, the patient survival has not been significantly improved in the past several decades. As a new methodological approach, metabolomics may help reveal the metabolic reprogramming mechanisms underlying head and neck cancer cell proliferation, invasion, and metastasis and may be used to identify metabolite biomarkers for clinical applications of the disease. In this chapter, we briefly review recent metabolomic applications in head and neck cancer.
Collapse
Affiliation(s)
- Gaofei Yin
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China
| | - Junwei Huang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China
| | - Wei Guo
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China
| | - Zhigang Huang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China.
| |
Collapse
|
42
|
Aleshin VA, Zhou X, Krishnan S, Karlsson A, Bunik VI. Interplay Between Thiamine and p53/p21 Axes Affects Antiproliferative Action of Cisplatin in Lung Adenocarcinoma Cells by Changing Metabolism of 2-Oxoglutarate/Glutamate. Front Genet 2021; 12:658446. [PMID: 33868388 PMCID: PMC8047112 DOI: 10.3389/fgene.2021.658446] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/05/2021] [Indexed: 12/14/2022] Open
Abstract
Thiamine (vitamin B1) is often deficient in oncopatients, particularly those undergoing chemotherapy. However, interaction between the thiamine deficiency and anticancer action of drugs has not been characterized. A major natural thiamine derivative, thiamine diphosphate (ThDP), is a coenzyme of central metabolism, also known to affect transcriptional activity of the master metabolic regulator and genome guardian p53. A direct transcriptional target of p53, p21, regulates cell cycle dynamics and DNA damage response. Our work focuses on dependence of the action of the DNA damaging anticancer drug cisplatin on metabolic regulation through p53/p21 axes and cellular thiamine status in human lung adenocarcinoma cells A549. These cells are used as a model of a hardly curable cancer, known to develop chemoresistance to platinum drugs, such as cisplatin. Compared to wild type (A549WT), a stable line with a 60% knockdown of p21 (A549p21-) is less sensitive to antiproliferative action of cisplatin. In contrast, in the thiamine-deficient medium, cisplatin impairs the viability of A549p21- cells more than that of A549WT cells. Analysis of the associated metabolic changes in the cells indicates that (i) p21 knockdown restricts the production of 2-oxoglutarate via glutamate oxidation, stimulating that within the tricarboxylic acid (TCA) cycle; (ii) cellular cisplatin sensitivity is associated with a 4-fold upregulation of glutamic-oxaloacetic transaminase (GOT2) by cisplatin; (iii) cellular cisplatin resistance is associated with a 2-fold upregulation of p53 by cisplatin. Correlation analysis of the p53 expression and enzymatic activities upon variations in cellular thiamine/ThDP levels indicates that p21 knockdown substitutes positive correlation of the p53 expression with the activity of 2-oxoglutarate dehydrogenase complex (OGDHC) for that with the activity of glutamate dehydrogenase (GDH). The knockdown also changes correlations of the levels of OGDHC, GDH and GOT2 with those of the malate and isocitrate dehydrogenases. Thus, a p53/p21-dependent change in partitioning of the glutamate conversion to 2-oxoglutarate through GOT2 or GDH, linked to NAD(P)-dependent metabolism of 2-oxoglutarate in affiliated pathways, adapts A549 cells to thiamine deficiency or cisplatin treatment. Cellular thiamine deficiency may interfere with antiproliferative action of cisplatin due to their common modulation of the p53/p21-dependent metabolic switch between the glutamate oxidation and transamination.
Collapse
Affiliation(s)
- Vasily A. Aleshin
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Xiaoshan Zhou
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska University Hospital, Karolinska Institute, Stockholm, Sweden
| | - Shuba Krishnan
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska University Hospital, Karolinska Institute, Stockholm, Sweden
| | - Anna Karlsson
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska University Hospital, Karolinska Institute, Stockholm, Sweden
| | - Victoria I. Bunik
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
- Department of Biological Chemistry, Sechenov University, Moscow, Russia
| |
Collapse
|
43
|
Metabolic Reprogramming in Anticancer Drug Resistance: A Focus on Amino Acids. Trends Cancer 2021; 7:682-699. [PMID: 33736962 DOI: 10.1016/j.trecan.2021.02.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/12/2021] [Accepted: 02/16/2021] [Indexed: 11/22/2022]
Abstract
Overcoming anticancer drug resistance is a major challenge in cancer therapy, requiring innovative strategies that consider the extensive tumor heterogeneity and adaptability. We provide recent evidence highlighting the key role of amino acid (AA) metabolic reprogramming in cancer cells and the supportive microenvironment in driving resistance to anticancer therapies. AAs sustain the acquisition of anticancer resistance by providing essential building blocks for biosynthetic pathways and for maintaining a balanced redox status, and modulating the epigenetic profile of both malignant and non-malignant cells. In addition, AAs support the reduced intrinsic susceptibility of cancer stem cells to antineoplastic therapies. These findings shed new light on the possibility of targeting nonresponding tumors by modulating AA availability through pharmacological or dietary interventions.
Collapse
|
44
|
Bonifácio VDB, Pereira SA, Serpa J, Vicente JB. Cysteine metabolic circuitries: druggable targets in cancer. Br J Cancer 2021; 124:862-879. [PMID: 33223534 PMCID: PMC7921671 DOI: 10.1038/s41416-020-01156-1] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 09/03/2020] [Accepted: 10/22/2020] [Indexed: 02/07/2023] Open
Abstract
To enable survival in adverse conditions, cancer cells undergo global metabolic adaptations. The amino acid cysteine actively contributes to cancer metabolic remodelling on three different levels: first, in its free form, in redox control, as a component of the antioxidant glutathione or its involvement in protein s-cysteinylation, a reversible post-translational modification; second, as a substrate for the production of hydrogen sulphide (H2S), which feeds the mitochondrial electron transfer chain and mediates per-sulphidation of ATPase and glycolytic enzymes, thereby stimulating cellular bioenergetics; and, finally, as a carbon source for epigenetic regulation, biomass production and energy production. This review will provide a systematic portrayal of the role of cysteine in cancer biology as a source of carbon and sulphur atoms, the pivotal role of cysteine in different metabolic pathways and the importance of H2S as an energetic substrate and signalling molecule. The different pools of cysteine in the cell and within the body, and their putative use as prognostic cancer markers will be also addressed. Finally, we will discuss the pharmacological means and potential of targeting cysteine metabolism for the treatment of cancer.
Collapse
Affiliation(s)
- Vasco D B Bonifácio
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001, Lisboa, Portugal
| | - Sofia A Pereira
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056, Lisboa, Portugal
| | - Jacinta Serpa
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056, Lisboa, Portugal.
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023, Lisboa, Portugal.
| | - João B Vicente
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), Avenida da República (EAN), 2780-157, Oeiras, Portugal
| |
Collapse
|
45
|
Raudenská M, Balvan J, Masařík M. Cell death in head and neck cancer pathogenesis and treatment. Cell Death Dis 2021; 12:192. [PMID: 33602906 PMCID: PMC7893032 DOI: 10.1038/s41419-021-03474-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 12/13/2022]
Abstract
Many cancer therapies aim to trigger apoptosis in cancer cells. Nevertheless, the presence of oncogenic alterations in these cells and distorted composition of tumour microenvironment largely limit the clinical efficacy of this type of therapy. Luckily, scientific consensus describes about 10 different cell death subroutines with different regulatory pathways and cancer cells are probably not able to avoid all of cell death types at once. Therefore, a focused and individualised therapy is needed to address the specific advantages and disadvantages of individual tumours. Although much is known about apoptosis, therapeutic opportunities of other cell death pathways are often neglected. Molecular heterogeneity of head and neck squamous cell carcinomas (HNSCC) causing unpredictability of the clinical response represents a grave challenge for oncologists and seems to be a critical component of treatment response. The large proportion of this clinical heterogeneity probably lies in alterations of cell death pathways. How exactly cells die is very important because the predominant type of cell death can have multiple impacts on the therapeutic response as cell death itself acts as a second messenger. In this review, we discuss the different types of programmed cell death (PCD), their connection with HNSCC pathogenesis and possible therapeutic windows that result from specific sensitivity to some form of PCD in some clinically relevant subgroups of HNSCC.
Collapse
Affiliation(s)
- Martina Raudenská
- Department of Physiology, Faculty of Medicine, Masaryk University / Kamenice 5, CZ-625 00, Brno, Czech Republic.,Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic
| | - Jan Balvan
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University / Kamenice 5, CZ-625 00, Brno, Czech Republic
| | - Michal Masařík
- Department of Physiology, Faculty of Medicine, Masaryk University / Kamenice 5, CZ-625 00, Brno, Czech Republic. .,Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic. .,Department of Pathological Physiology, Faculty of Medicine, Masaryk University / Kamenice 5, CZ-625 00, Brno, Czech Republic. .,BIOCEV, First Faculty of Medicine, Charles University, Prumyslova 595, CZ-252 50, Vestec, Czech Republic.
| |
Collapse
|
46
|
Liu MR, Zhu WT, Pei DS. System Xc -: a key regulatory target of ferroptosis in cancer. Invest New Drugs 2021; 39:1123-1131. [PMID: 33506324 DOI: 10.1007/s10637-021-01070-0] [Citation(s) in RCA: 139] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 01/15/2021] [Indexed: 12/11/2022]
Abstract
Ferroptosis is a type of oxidative stress-dependent regulated necrosis characterized by excessive lipid peroxide accumulation. This novel cell death modality has been implicated in preventing cancer progression. Cancer cells tend to modulate their redox state to prevent excessive peroxidation, eventually facilitating tumor growth. System Xc- (a cystine/glutamate antiporter system) is a promising target in cancer cells for ferroptosis induction. The overexpression of system Xc-, especially its core subunit xCT, has been reported in several tumors, and these high expression levels were closely related to cancer cell proliferation, invasion, metastasis and the tumor microenvironment. xCT might serve as a novel biomarker, and its upregulation almost always indicates drug tolerance and poor survival. Therefore, system Xc- inhibition may enhance chemotherapy sensitivity and optimize patient prognosis. Here, we elaborate on the mediation of ferroptosis by suppressing system Xc- and the relevant underlying molecular mechanism in cancer cells. The spotlight on this approach to cancer treatment is creating a new horizon and pointing to future opportunities.
Collapse
Affiliation(s)
- Man-Ru Liu
- Department of Pathology, Xuzhou Medical University, 209 Tong-shan Road, Jiangsu, 221004, Xuzhou, China
| | - Wen-Tao Zhu
- Department of Pathology, Xuzhou Medical University, 209 Tong-shan Road, Jiangsu, 221004, Xuzhou, China
| | - Dong-Sheng Pei
- Department of Pathology, Xuzhou Medical University, 209 Tong-shan Road, Jiangsu, 221004, Xuzhou, China.
| |
Collapse
|
47
|
The Harmonious Interplay of Amino Acid and Monocarboxylate Transporters Induces the Robustness of Cancer Cells. Metabolites 2021; 11:metabo11010027. [PMID: 33401672 PMCID: PMC7823946 DOI: 10.3390/metabo11010027] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/26/2020] [Accepted: 12/27/2020] [Indexed: 02/07/2023] Open
Abstract
There is a growing body of evidence that metabolic reprogramming contributes to the acquisition and maintenance of robustness associated with malignancy. The fine regulation of expression levels of amino acid and monocarboxylate transporters enables cancer cells to exhibit the metabolic reprogramming that is responsible for therapeutic resistance. Amino acid transporters characterized by xCT (SLC7A11), ASCT2 (SLC1A5), and LAT1 (SLC7A5) function in the uptake and export of amino acids such as cystine and glutamine, thereby regulating glutathione synthesis, autophagy, and glutaminolysis. CD44 variant, a cancer stem-like cell marker, stabilizes the xCT antiporter at the cellular membrane, and tumor cells positive for xCT and/or ASCT2 are susceptible to sulfasalazine, a system Xc(-) inhibitor. Inhibiting the interaction between LAT1 and CD98 heavy chain prevents activation of the mammalian target of rapamycin (mTOR) complex 1 by glutamine and leucine. mTOR signaling regulated by LAT1 is a sensor of dynamic alterations in the nutrient tumor microenvironment. LAT1 is overexpressed in various malignancies and positively correlated with poor clinical outcome. Metabolic reprogramming of glutamine occurs often in cancer cells and manifests as ASCT2-mediated glutamine addiction. Monocarboxylate transporters (MCTs) mediate metabolic symbiosis, by which lactate in cancer cells under hypoxia is exported through MCT4 and imported by MCT1 in less hypoxic regions, where it is used as an oxidative metabolite. Differential expression patterns of transporters cause functional intratumoral heterogeneity leading to the therapeutic resistance. Therefore, metabolic reprogramming based on these transporters may be a promising therapeutic target. This review highlights the pathological function and therapeutic targets of transporters including xCT, ASCT2, LAT1, and MCT.
Collapse
|
48
|
Kahya U, Köseer AS, Dubrovska A. Amino Acid Transporters on the Guard of Cell Genome and Epigenome. Cancers (Basel) 2021; 13:E125. [PMID: 33401748 PMCID: PMC7796306 DOI: 10.3390/cancers13010125] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/26/2020] [Accepted: 12/27/2020] [Indexed: 02/06/2023] Open
Abstract
Tumorigenesis is driven by metabolic reprogramming. Oncogenic mutations and epigenetic alterations that cause metabolic rewiring may also upregulate the reactive oxygen species (ROS). Precise regulation of the intracellular ROS levels is critical for tumor cell growth and survival. High ROS production leads to the damage of vital macromolecules, such as DNA, proteins, and lipids, causing genomic instability and further tumor evolution. One of the hallmarks of cancer metabolism is deregulated amino acid uptake. In fast-growing tumors, amino acids are not only the source of energy and building intermediates but also critical regulators of redox homeostasis. Amino acid uptake regulates the intracellular glutathione (GSH) levels, endoplasmic reticulum stress, unfolded protein response signaling, mTOR-mediated antioxidant defense, and epigenetic adaptations of tumor cells to oxidative stress. This review summarizes the role of amino acid transporters as the defender of tumor antioxidant system and genome integrity and discusses them as promising therapeutic targets and tumor imaging tools.
Collapse
Affiliation(s)
- Uğur Kahya
- OncoRay–National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany; (U.K.); (A.S.K.)
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, 01328 Dresden, Germany
| | - Ayşe Sedef Köseer
- OncoRay–National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany; (U.K.); (A.S.K.)
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, 01328 Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Anna Dubrovska
- OncoRay–National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany; (U.K.); (A.S.K.)
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, 01328 Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
49
|
Zheng J, Conrad M. The Metabolic Underpinnings of Ferroptosis. Cell Metab 2020; 32:920-937. [PMID: 33217331 DOI: 10.1016/j.cmet.2020.10.011] [Citation(s) in RCA: 814] [Impact Index Per Article: 162.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/23/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023]
Abstract
Acute or chronic cellular stress resulting from aberrant metabolic and biochemical processes may trigger a pervasive non-apoptotic form of cell death, generally known as ferroptosis. Ferroptosis is unique among the different cell death modalities, as it has been mostly linked to pathophysiological conditions and because several metabolic pathways, such as (seleno)thiol metabolism, fatty acid metabolism, iron handling, mevalonate pathway, and mitochondrial respiration, directly impinge on the cells' sensitivity toward lipid peroxidation and ferroptosis. Additionally, key cellular redox systems, such as selenium-dependent glutathione peroxidase 4 and the NAD(P)H/ferroptosis suppressor protein-1/ubiquinone axis, are at play that constantly surveil and neutralize oxidative damage to cellular membranes. Since this form of cell death emerges to be the root cause of a number of diseases and since it offers various pharmacologically tractable nodes for therapeutic intervention, there has been overwhelming interest in the last few years aiming for a better molecular understanding of the ferroptotic death process.
Collapse
Affiliation(s)
- Jiashuo Zheng
- Helmholtz Zentrum München, Institute of Metabolism and Cell Death, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Marcus Conrad
- Helmholtz Zentrum München, Institute of Metabolism and Cell Death, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany; National Research Medical University, Laboratory of Experimental Oncology, Ostrovityanova 1, Moscow 117997, Russia.
| |
Collapse
|
50
|
Liu L, Liu R, Liu Y, Li G, Chen Q, Liu X, Ma S. Cystine-glutamate antiporter xCT as a therapeutic target for cancer. Cell Biochem Funct 2020; 39:174-179. [PMID: 32749001 DOI: 10.1002/cbf.3581] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 06/17/2020] [Indexed: 01/17/2023]
Abstract
Cystine/glutamic acid reverse transporter (System Xc - ), a member of the amino acid transporter family, consists of two subunits, light chain xCT and heavy chain 4F2hc. xCT is the cystine/glutamate antiporter solute carrier family 7 member 11 (SLC7A11), which promotes cystine uptake and glutathione biosynthetic, thus protecting against oxidative stress and ferroptosis. Studies have confirmed that xCT is highly expressed in a variety of tumour and is associated with tumour proliferation, invasion, metastasis, drug resistance and ferroptosis, and can be used as a potential target for tumour treatment. This review provides insights into the biological effects of xCT and contribute to the development of new xCT-based strategies.
Collapse
Affiliation(s)
- Lin Liu
- Platform for Radiation Protection and Emergency Preparedness of Southern Zhejiang, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Rui Liu
- Key Laboratory of Radiobiology (Ministry of Health), School of Public Health, Jilin University, Changchun, China
| | - Yi Liu
- Platform for Radiation Protection and Emergency Preparedness of Southern Zhejiang, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Guanghui Li
- Platform for Radiation Protection and Emergency Preparedness of Southern Zhejiang, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Qing Chen
- Platform for Radiation Protection and Emergency Preparedness of Southern Zhejiang, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Xiaodong Liu
- Platform for Radiation Protection and Emergency Preparedness of Southern Zhejiang, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Shumei Ma
- Platform for Radiation Protection and Emergency Preparedness of Southern Zhejiang, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|