1
|
Wang MS, Sussman J, Xu JA, Patel R, Elghawy O, Rawla P. Pharmacological Advancements of PRC2 in Cancer Therapy: A Narrative Review. Life (Basel) 2024; 14:1645. [PMID: 39768352 PMCID: PMC11678550 DOI: 10.3390/life14121645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/25/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025] Open
Abstract
Polycomb repressive complex 2 (PRC2) is known to regulate gene expression and chromatin structure as it methylates H3K27, resulting in gene silencing. Studies have shown that PRC2 has dual functions in oncogenesis that allow it to function as both an oncogene and a tumor suppressor. Because of this, nuanced strategies are necessary to promote or inhibit PRC2 activity therapeutically. Given the therapeutic vulnerabilities and associated risks in oncological applications, a structured literature review on PRC2 was conducted to showcase similar cofactor competitor inhibitors of PRC2. Key inhibitors such as Tazemetostat, GSK126, Valemetostat, and UNC1999 have shown promise for clinical use within various studies. Tazemetostat and GSK126 are both highly selective for wild-type and lymphoma-associated EZH2 mutants. Valemetostat and UNC1999 have shown promise as orally bioavailable and SAM-competitive inhibitors of both EZH1 and EZH2, giving them greater efficacy against potential drug resistance. The development of other PRC2 inhibitors, particularly inhibitors targeting the EED or SUZ12 subunit, is also being explored with the development of drugs like EED 226. This review aims to bridge gaps in the current literature and provide a unified perspective on promising PRC2 inhibitors as therapeutic agents in the treatment of lymphomas and solid tumors.
Collapse
Affiliation(s)
- Michael S. Wang
- Hospital of the University of Pennsylvania, HUP 3400 Spruce St., Philadelphia, PA 19104, USA; (M.S.W.)
| | - Jonathan Sussman
- Hospital of the University of Pennsylvania, HUP 3400 Spruce St., Philadelphia, PA 19104, USA; (M.S.W.)
| | - Jessica A. Xu
- Hospital of the University of Pennsylvania, HUP 3400 Spruce St., Philadelphia, PA 19104, USA; (M.S.W.)
| | - Reema Patel
- University of Virginia School of Medicine, Charlottesville, VA 22903, USA;
| | - Omar Elghawy
- Hospital of the University of Pennsylvania, HUP 3400 Spruce St., Philadelphia, PA 19104, USA; (M.S.W.)
| | - Prashanth Rawla
- Parrish Healthcare, 951 North Washington Ave., Titusville, FL 32796, USA
| |
Collapse
|
2
|
Dai W, Qiao X, Fang Y, Guo R, Bai P, Liu S, Li T, Jiang Y, Wei S, Na Z, Xiao X, Li D. Epigenetics-targeted drugs: current paradigms and future challenges. Signal Transduct Target Ther 2024; 9:332. [PMID: 39592582 PMCID: PMC11627502 DOI: 10.1038/s41392-024-02039-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/14/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
Epigenetics governs a chromatin state regulatory system through five key mechanisms: DNA modification, histone modification, RNA modification, chromatin remodeling, and non-coding RNA regulation. These mechanisms and their associated enzymes convey genetic information independently of DNA base sequences, playing essential roles in organismal development and homeostasis. Conversely, disruptions in epigenetic landscapes critically influence the pathogenesis of various human diseases. This understanding has laid a robust theoretical groundwork for developing drugs that target epigenetics-modifying enzymes in pathological conditions. Over the past two decades, a growing array of small molecule drugs targeting epigenetic enzymes such as DNA methyltransferase, histone deacetylase, isocitrate dehydrogenase, and enhancer of zeste homolog 2, have been thoroughly investigated and implemented as therapeutic options, particularly in oncology. Additionally, numerous epigenetics-targeted drugs are undergoing clinical trials, offering promising prospects for clinical benefits. This review delineates the roles of epigenetics in physiological and pathological contexts and underscores pioneering studies on the discovery and clinical implementation of epigenetics-targeted drugs. These include inhibitors, agonists, degraders, and multitarget agents, aiming to identify practical challenges and promising avenues for future research. Ultimately, this review aims to deepen the understanding of epigenetics-oriented therapeutic strategies and their further application in clinical settings.
Collapse
Affiliation(s)
- Wanlin Dai
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xinbo Qiao
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yuanyuan Fang
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Renhao Guo
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Peng Bai
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Shuang Liu
- Shenyang Maternity and Child Health Hospital, Shenyang, China
| | - Tingting Li
- Department of General Internal Medicine VIP Ward, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Yutao Jiang
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shuang Wei
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhijing Na
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.
- NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, China.
| | - Xue Xiao
- Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu, China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China.
| | - Da Li
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.
- NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, China.
- Key Laboratory of Reproductive Dysfunction Diseases and Fertility Remodeling of Liaoning Province, Shenyang, China.
| |
Collapse
|
3
|
Yang C, Yan Z, Sun Z, Hu F, Xu W. FOXO3 Inhibits the Cisplatin Resistance and Progression of Melanoma Cells by Promoting CDKN1C Transcription. Appl Biochem Biotechnol 2024; 196:7834-7848. [PMID: 38568329 DOI: 10.1007/s12010-024-04909-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2024] [Indexed: 12/14/2024]
Abstract
BACKGROUND Forkhead box O3 (FOXO3) and cyclin dependent kinase inhibitor 1 C Gene (CDKN1C) have been shown to be involved in the melanoma process, but their roles in the cisplatin (DDP) resistance of melanoma remain unclear. METHODS The mRNA levels of CDKN1C and FOXO3 were measured using quantitative real-time PCR. The protein levels of CDKN1C, FOXO3 and mitochondrial oxidative phosphorylation (mtOXPHOS)-related markers were determinant by western blot analysis. The DDP resistance, proliferation, and apoptosis of melanoma cells were assessed by cell counting kit 8 assay, colony formation assay and flow cytometry. Glucose consumption, lactate production and ATP level were detected to assess glycolysis. The regulation of FOXO3 on CDKN1C was confirmed by ChIP assay and dual-luciferase reporter assay. In vivo experiments were performed to evaluate the effect of FOXO3 on DDP sensitivity in melanoma tumor tissues. RESULTS CDKN1C and FOXO3 were downregulated in chemoresistant melanoma tissues, and their low expression levels were related to the poor prognosis of melanoma patients. Overexpression of CDKN1C and FOXO3 repressed DDP resistance, proliferation, and glycolysis, while promoted apoptosis and mtOXPHOS in DDP-resistant melanoma cells. Further analysis suggested that FOXO3 could bind to CDKN1C promoter region to enhance its transcription. Besides, CDKN1C knockdown reversed the regulation of FOXO3 on melanoma cell DDP resistance and progression. Moreover, FOXO3 overexpression enhanced the DDP sensitivity of melanoma tumor tissues in vivo. CONCLUSION FOXO3 promoted the transcription of CDKN1C, thereby inhibiting the DDP resistance and progression of melanoma cells.
Collapse
Affiliation(s)
- Chao Yang
- Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang City, Hubei, 441021, China
| | - Zeqiang Yan
- Department of Gastroenterology, Affiliated Hospital of Hubei, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang City, Hubei, 441021, China
| | - Zhihua Sun
- Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang City, Hubei, 441021, China
| | - Fen Hu
- Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang City, Hubei, 441021, China
| | - Wei Xu
- Department of Dermatology, Affiliated Hospital of Hubei, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang City, Hubei, 441021, China.
| |
Collapse
|
4
|
Zheng L, Shen Q, Fang G, Robertson IJ, Long Q. Bioinformatics study of bortezomib resistance-related proteins and signaling pathways in mantle cell lymphoma. Transl Cancer Res 2024; 13:5087-5096. [PMID: 39430832 PMCID: PMC11483405 DOI: 10.21037/tcr-24-1482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 09/14/2024] [Indexed: 10/22/2024]
Abstract
Background The bortezomib (BTZ) resistance mechanisms in mantle cell lymphoma (MCL) are complex, involving various genes and signaling pathways. This study used bioinformatical tools to identify and analyze differentially expressed genes (DEGs) associated with BTZ resistance. Methods Gene chip datasets containing MCL BTZ-resistant and normal control cohorts (GSE20915 and GSE51371) were selected from the Gene Expression Omnibus (GEO) database. GEO2R was used to identify the upregulated DEGs in the microarray datasets, using a significance threshold of P<0.05. Subsequently, these DEGs were subjected to a Gene Ontology (GO) functional analysis, a Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, and a protein-protein interaction (PPI) network assessment. Additionally, 40 MCL patients who underwent second-line BTZ treatment were included in this study. The patients were categorized into resistant and sensitive groups based on treatment response. The enzyme-linked immunosorbent assay (ELISA) technique was employed to evaluate the expression levels of specific DEGs in the serum of the patients in both groups. Results In the GSE20915 dataset, 144 upregulated genes were identified as DEGs. Similarly, in the GSE51371 dataset, 219 upregulated genes were identified as DEGs. By employing a Venn diagram to compare the upregulated DEGs from both datasets, we identified 11 DEGs linked to BTZ resistance in MCL. The enrichment analysis of the KEGG signaling pathways revealed that the DEGs were predominantly enriched in key biological processes (BP), including the cell cycle, cellular senescence, the p53 signaling pathway, the interleukin 17 (IL-17) signaling pathway, and the nuclear factor kappa-B (NF-κB) signaling pathway. A distinct cluster was revealed by creating a PPI network and performing a module analysis of a set of typical DEGs. This cluster comprised four candidate genes; that is, cyclin-dependent kinase inhibitor 1A (CDKN1A), CDKN1C, midkine (MDK), and TNF alpha induced protein 3 (TNFAIP3). Among these genes, MDK was found to be the key gene. The serum concentration of MDK in the resistant group [1,539 (1,212, 2,023) ng/L] was significantly higher than that in the sensitive group [1,175 (786, 1,502) ng/L] (P<0.05). Conclusion Identifying the key gene MDK and its associated signaling pathways extends our understanding of the molecular processes that underlie resistance to BTZ in MCL. This discovery establishes a theoretical framework for future investigations of targeted therapy in clinical settings.
Collapse
Affiliation(s)
- Linyi Zheng
- Department of Hematology, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qian Shen
- Department of Hematologic Lymphoma, Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Guanghong Fang
- Department of Rehabilitation Medicine, Minghe Rehabilitation Hospital, Shuyang, China
| | - Ian J. Robertson
- Department of Internal Medicine, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Qiqiang Long
- Department of Hematology, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
5
|
Wei L, Mei D, Hu S, Du S. Dual-target EZH2 inhibitor: latest advances in medicinal chemistry. Future Med Chem 2024; 16:1561-1582. [PMID: 39082677 PMCID: PMC11370917 DOI: 10.1080/17568919.2024.2380243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/09/2024] [Indexed: 09/03/2024] Open
Abstract
Enhancer of zeste homolog 2 (EZH2), a histone methyltransferase, plays a crucial role in tumor progression by regulating gene expression. EZH2 inhibitors have emerged as promising anti-tumor agents due to their potential in cancer treatment strategies. However, single-target inhibitors often face limitations such as drug resistance and side effects. Dual-target inhibitors, exemplified by EZH1/2 inhibitor HH-2853(28), offer enhanced efficacy and reduced adverse effects. This review highlights recent advancements in dual inhibitors targeting EZH2 and other proteins like BRD4, PARP1, and EHMT2, emphasizing rational design, structure-activity relationships, and safety profiles, suggesting their potential in clinical applications.
Collapse
Affiliation(s)
- Lai Wei
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology Department of Orthodontics, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Dan Mei
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology Department of Orthodontics, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Sijia Hu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology Department of Orthodontics, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Shufang Du
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology Department of Orthodontics, Sichuan University, Chengdu, 610041, Sichuan, China
| |
Collapse
|
6
|
Sircar A, Singh S, Xu-Monette ZY, Coyle KM, Hilton LK, Chavdoula E, Ranganathan P, Jain N, Hanel W, Tsichlis P, Alinari L, Peterson BR, Tao J, Muthusamy N, Baiocchi R, Epperla N, Young KH, Morin R, Sehgal L. Exploiting the fibroblast growth factor receptor-1 vulnerability to therapeutically restrict the MYC-EZH2-CDKN1C axis-driven proliferation in Mantle cell lymphoma. Leukemia 2023; 37:2094-2106. [PMID: 37598282 PMCID: PMC10539170 DOI: 10.1038/s41375-023-02006-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 08/08/2023] [Indexed: 08/21/2023]
Abstract
Mantle cell lymphoma (MCL) is a lethal hematological malignancy with a median survival of 4 years. Its lethality is mainly attributed to a limited understanding of clinical tumor progression and resistance to current therapeutic regimes. Intrinsic, prolonged drug treatment and tumor-microenvironment (TME) facilitated factors impart pro-tumorigenic and drug-insensitivity properties to MCL cells. Hence, elucidating neoteric pharmacotherapeutic molecular targets involved in MCL progression utilizing a global "unified" analysis for improved disease prevention is an earnest need. Using integrated transcriptomic analyses in MCL patients, we identified a Fibroblast Growth Factor Receptor-1 (FGFR1), and analyses of MCL patient samples showed that high FGFR1 expression was associated with shorter overall survival in MCL patient cohorts. Functional studies using pharmacological intervention and loss of function identify a novel MYC-EZH2-CDKN1C axis-driven proliferation in MCL. Further, pharmacological targeting with erdafitinib, a selective small molecule targeting FGFRs, induced cell-cycle arrest and cell death in-vitro, inhibited tumor progression, and improved overall survival in-vivo. We performed extensive pre-clinical assessments in multiple in-vivo model systems to confirm the therapeutic potential of erdafitinib in MCL and demonstrated FGFR1 as a viable therapeutic target in MCL.
Collapse
Affiliation(s)
- Anuvrat Sircar
- Division of Hematology, College of Medicine, The Ohio State University, Columbus, OH, USA
- The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA
| | - Satishkumar Singh
- Division of Hematology, College of Medicine, The Ohio State University, Columbus, OH, USA
- The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA
| | - Zijun Y Xu-Monette
- Division of Hematopathology, Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - Krysta Mila Coyle
- Department of Molecular Biology & Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Laura K Hilton
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, BC, Canada
| | - Evangelia Chavdoula
- The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, USA
| | - Parvathi Ranganathan
- Division of Hematology, College of Medicine, The Ohio State University, Columbus, OH, USA
- The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA
| | - Neeraj Jain
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India
| | - Walter Hanel
- Division of Hematology, College of Medicine, The Ohio State University, Columbus, OH, USA
- The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA
| | - Philip Tsichlis
- The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, USA
| | - Lapo Alinari
- Division of Hematology, College of Medicine, The Ohio State University, Columbus, OH, USA
- The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA
| | - Blake R Peterson
- The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Jianguo Tao
- Division of Pathology, University of Virginia, Charlottesville, VA, USA
| | - Natarajan Muthusamy
- Division of Hematology, College of Medicine, The Ohio State University, Columbus, OH, USA
- The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA
| | - Robert Baiocchi
- Division of Hematology, College of Medicine, The Ohio State University, Columbus, OH, USA
- The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA
| | - Narendranath Epperla
- Division of Hematology, College of Medicine, The Ohio State University, Columbus, OH, USA
- The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA
| | - Ken H Young
- Division of Hematopathology, Department of Pathology, Duke University Medical Center, Durham, NC, USA
- Duke Cancer Institute, Durham, NC, USA
| | - Ryan Morin
- Department of Molecular Biology & Biochemistry, Simon Fraser University, Burnaby, BC, Canada
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer, Vancouver, BC, Canada
| | - Lalit Sehgal
- Division of Hematology, College of Medicine, The Ohio State University, Columbus, OH, USA.
- The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA.
| |
Collapse
|
7
|
Wei Z, Zhou C, Shen Y, Deng H, Shen Z. Identification of a new anoikis-related gene signature for prognostic significance in head and neck squamous carcinomas. Medicine (Baltimore) 2023; 102:e34790. [PMID: 37682196 PMCID: PMC10489427 DOI: 10.1097/md.0000000000034790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/26/2023] [Indexed: 09/09/2023] Open
Abstract
Anoikis, a mode of programmed cell death, is essential for normal development and homeostasis in the organism and plays an important role in the onset and progression of cancers. The authors of this research sought to establish a gene signature associated with anoikis to predict therapy outcomes and patient prognosis for individuals with head and neck squamous cell carcinoma (HNSCC). Transcriptome data of anoikis-related genes (ARGs) in individuals with HNSCC were retrieved from public databases to aid in the formulation of the gene signature. A novel ARG signature was then created using a combination of the Least Absolute Shrinkage and Selection Operator regression and Cox regression analysis. The relationship between ARGs and tumor immune microenvironment in HNSCC was explored using single-cell analysis. HNSCC individuals were classified into high-risk and low-risk groups as per the median value of risk score. The study also investigated the variations in the infiltration status of immune cells, tumor microenvironment, sensitivity to immunotherapy and chemotherapeutics, as well as functional enrichment between the low-risk and high-risk categories. A total of 18 ARGs were incorporated in the formulation of the signature. Our signature's validity as a standalone predictive predictor was validated by multivariate Cox regression analysis and Kaplan-Meier survival analysis. Generally, the prognosis was worse for high-risk individuals. Subjects in the low-risk groups had a better prognosis and responded in a better way to combination immunotherapy, had higher immunological ratings and activity levels, and had more immune cell infiltration. In addition, gene set enrichment analysis findings showed that the low-risk subjects exhibited heightened activity in several immune-related pathways. However, the high-risk patients responded better to chemotherapy. The aim of this research was to develop a new ARG signature to predict the prognosis and sensitivity to immunotherapeutic and chemotherapeutic schemes for HNSCC patient. As a result, this could help spur the creation of new chemotherapeutics and immunotherapeutic approaches for patients with HNSCC.
Collapse
Affiliation(s)
- Zhengyu Wei
- Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Centre Lihuili Hospital, Ningbo, China
- Health Science Center, Ningbo University, Ningbo, China
| | - Chongchang Zhou
- Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Centre Lihuili Hospital, Ningbo, China
| | - Yi Shen
- Health Science Center, Ningbo University, Ningbo, China
| | - Hongxia Deng
- Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Centre Lihuili Hospital, Ningbo, China
| | - Zhisen Shen
- Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Centre Lihuili Hospital, Ningbo, China
- Health Science Center, Ningbo University, Ningbo, China
| |
Collapse
|
8
|
Jain N, Mamgain M, Chowdhury SM, Jindal U, Sharma I, Sehgal L, Epperla N. Beyond Bruton's tyrosine kinase inhibitors in mantle cell lymphoma: bispecific antibodies, antibody-drug conjugates, CAR T-cells, and novel agents. J Hematol Oncol 2023; 16:99. [PMID: 37626420 PMCID: PMC10463717 DOI: 10.1186/s13045-023-01496-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 08/21/2023] [Indexed: 08/27/2023] Open
Abstract
Mantle cell lymphoma is a B cell non-Hodgkin lymphoma (NHL), representing 2-6% of all NHLs and characterized by overexpression of cyclin D1. The last decade has seen the development of many novel treatment approaches in MCL, most notably the class of Bruton's tyrosine kinase inhibitors (BTKi). BTKi has shown excellent outcomes for patients with relapsed or refractory MCL and is now being studied in the first-line setting. However, patients eventually progress on BTKi due to the development of resistance. Additionally, there is an alteration in the tumor microenvironment in these patients with varying biological and therapeutic implications. Hence, it is necessary to explore novel therapeutic strategies that can be effective in those who progressed on BTKi or potentially circumvent resistance. In this review, we provide a brief overview of BTKi, then discuss the various mechanisms of BTK resistance including the role of genetic alteration, cancer stem cells, tumor microenvironment, and adaptive reprogramming bypassing the effect of BTK inhibition, and then provide a comprehensive review of current and emerging therapeutic options beyond BTKi including novel agents, CAR T cells, bispecific antibodies, and antibody-drug conjugates.
Collapse
Affiliation(s)
- Neeraj Jain
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India
| | - Mukesh Mamgain
- Department of Medical Oncology and Hematology, All India Institute of Medical Sciences, Rishikesh, India
| | - Sayan Mullick Chowdhury
- Division of Hematology, Department of Medicine, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, OH, USA
| | - Udita Jindal
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India
| | - Isha Sharma
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Lalit Sehgal
- Division of Hematology, Department of Medicine, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, OH, USA
| | - Narendranath Epperla
- The Ohio State University Comprehensive Cancer Center, Suite 7198, 2121 Kenny Rd, Columbus, OH, 43221, USA.
| |
Collapse
|
9
|
Abstract
The enhancer of zeste homolog 2 (EZH2) and its highly related homolog EZH1 are considered to be epigenetic silencing factors, and they play key roles in the growth and differentiation of cells as the core components of polycomb repressive complex 2 (PRC2). EZH1 and EZH2 are known to have a role in human malignancies, and alterations in these two genes have been implicated in transformation of human malignancies. Inhibition of EZH1/2 has been shown to result in tumor regression in humans and has been studied and evaluated in the preclinical setting and in multiple clinical trials at various levels. Our work thus contributes to the understanding of the relationship between regulatory molecules associated with EZH1/2 proteins and tumor progression, and may provide new insights for mechanism-based EZH1/2-targeted therapy in tumors.
Collapse
|
10
|
Dual inhibition of EZH1/2 induces cell cycle arrest of B cell acute lymphoblastic leukemia cells through upregulation of CDKN1C and TP53INP1. Int J Hematol 2023; 117:78-89. [PMID: 36280659 DOI: 10.1007/s12185-022-03469-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/06/2022] [Accepted: 10/06/2022] [Indexed: 01/07/2023]
Abstract
Disease-risk stratification and development of intensified chemotherapy protocols have substantially improved the outcome of acute lymphoblastic leukemia (ALL). However, outcomes of relapsed or refractory cases remain poor. Previous studies have discussed the oncogenic role of enhancer of zeste homolog 1 and 2 (EZH1/2), and the efficacy of dual inhibition of EZH1/2 as a treatment for hematological malignancy. Here, we investigated whether an EZH1/2 dual inhibitor, DS-3201 (valemetostat), has antitumor effects on B cell ALL (B-ALL). DS-3201 inhibited growth of B-ALL cell lines more significantly and strongly than the EZH2-specific inhibitor EPZ-6438, and induced cell cycle arrest and apoptosis in vitro. RNA-seq analysis to determine the effect of DS-3201 on cell cycle arrest-related genes expressed by B-ALL cell lines showed that DS-3201 upregulated CDKN1C and TP53INP1. CRIPSR/Cas9 knockout confirmed that CDKN1C and TP53INP1 are direct targets of EZH1/2 and are responsible for the antitumor effects of DS-3201 against B-ALL. Furthermore, a patient-derived xenograft (PDX) mouse model showed that DS-3201 inhibited the growth of B-ALL harboring MLL-AF4 significantly. Thus, DS-3201 provides another option for treatment of B-ALL.
Collapse
|
11
|
Peng W, Tang W, Li JD, He RQ, Luo JY, Chen ZX, Zeng JH, Hu XH, Zhong JC, Li Y, Ma FC, Xie TY, Huang SN, Ge LY. Downregulation of the enhancer of zeste homolog 1 transcriptional factor predicts poor prognosis of triple-negative breast cancer patients. PeerJ 2022; 10:e13708. [PMID: 35846880 PMCID: PMC9285492 DOI: 10.7717/peerj.13708] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/19/2022] [Indexed: 01/17/2023] Open
Abstract
Background Triple-negative breast cancer (TNBC) is the most malignant subtype of breast cancer and lacks effective biomarkers. This study seeks to unravel the expression status and the prospective transcriptional mechanisms of EZH1/EZH2 in TNBC tissue samples. Moreover, another objective of this study is to reveal the prognostic molecular signatures for risk stratification in TNBC patients. Methods To determine the expression status of EZH1/EZH2 in TNBC tissue samples, microarray analysis and immunohistochemistry were performed on in house breast cancer tissue samples. External mRNA expression matrices were used to verify its expression patterns. Furthermore, the prospective transcriptional mechanisms of EZH1/EZH2 in TNBC were explored by performing differential expression analysis, co-expression analysis, and chromatin immunoprecipitation sequencing analysis. Kaplan-Meier survival analysis and univariate Cox regression analysis were utilized to detect the prognostic molecular signatures in TNBC patients. Nomogram and time-dependent receiver operating characteristic curves were plotted to predict the risk stratification ability of the prognostic-signatures-based Cox model. Results In-house TMAs (66 TNBC vs. 106 non-TNBC) and external gene microarrays, as well as RNA-seq datasets (1,135 TNBC vs. 6,198 non-TNBC) results, confirmed the downregulation of EZH1 at both the protein and mRNA levels (SMD = -0.59 [-0.80, -0.37]), as is opposite to that of EZH2 (SMD = 0.74 [0.40, 1.08]). The upregulated transcriptional target genes of EZH1 were significantly aggregated in the cell cycle pathway, where CCNA2, CCNB1, MAD2L1, and PKMYT1 were determined as key transcriptional targets. Additionally, the downregulated transcriptional targets of EZH2 were enriched in response to the hormone, where ESR1 was identified as the hub gene. The six-signature-based prognostic model produced an impressive performance in this study, with a training AUC of 0.753, 0.981, and 0.977 at 3-, 5-, and 10-year survival probability, respectively. Conclusion EZH1 downregulation may be a key modulator in the progression of TNBC through negative transcriptional regulation by targeting CCNA2, CCNB1, MAD2L1, and PKMYT1.
Collapse
Affiliation(s)
- Wei Peng
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Wei Tang
- Department of Breast Surgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Jian-Di Li
- Department of Breast Surgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Rong-Quan He
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jia-Yuan Luo
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Zu-Xuan Chen
- Department of Medical Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jiang-Hui Zeng
- Department of Clinical Laboratory, The Third Affiliated Hospital of Guangxi Medical University/Nanning Second People’s Hospital, Nanning, Guangxi, China
| | - Xiao-Hua Hu
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jin-Cai Zhong
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yang Li
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Fu-Chao Ma
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Tian-Yi Xie
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Su-Ning Huang
- Department of Radiotherapy, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Lian-Ying Ge
- Department of Endoscopy, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| |
Collapse
|
12
|
Xia J, Li J, Tian L, Ren X, Liu C, Liang C. Targeting Enhancer of Zeste Homolog 2 for the Treatment of Hematological Malignancies and Solid Tumors: Candidate Structure–Activity Relationships Insights and Evolution Prospects. J Med Chem 2022; 65:7016-7043. [DOI: 10.1021/acs.jmedchem.2c00047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Juan Xia
- Laboratory of Hematologic Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, P. R. China
| | - Jingyi Li
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi’an 710021, P. R. China
| | - Lei Tian
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi’an 710021, P. R. China
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi’an 710021, P. R. China
| | - Xiaodong Ren
- Medical College, Guizhou University, Guiyang 550025, P. R. China
| | - Chang Liu
- Zhuhai Jinan Selenium Source Nanotechnology Co., Ltd., Zhuhai 519030, P. R. China
| | - Chengyuan Liang
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi’an 710021, P. R. China
| |
Collapse
|
13
|
Liu J, Li JN, Wu H, Liu P. The Status and Prospects of Epigenetics in the Treatment of Lymphoma. Front Oncol 2022; 12:874645. [PMID: 35463343 PMCID: PMC9033274 DOI: 10.3389/fonc.2022.874645] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/17/2022] [Indexed: 12/12/2022] Open
Abstract
The regulation of gene transcription by epigenetic modifications is closely related to many important life processes and is a hot research topic in the post-genomic era. Since the emergence of international epigenetic research in the 1990s, scientists have identified a variety of chromatin-modifying enzymes and recognition factors, and have systematically investigated their three-dimensional structures, substrate specificity, and mechanisms of enzyme activity regulation. Studies of the human tumor genome have revealed the close association of epigenetic factors with various malignancies, and we have focused more on mutations in epigenetically related regulatory enzymes and regulatory recognition factors in lymphomas. A number of studies have shown that epigenetic alterations are indeed widespread in the development and progression of lymphoma and understanding these mechanisms can help guide clinical efforts. In contrast to chemotherapy which induces cytotoxicity, epigenetic therapy has the potential to affect multiple cellular processes simultaneously, by reprogramming cells to achieve a therapeutic effect in lymphoma. Epigenetic monotherapy has shown promising results in previous clinical trials, and several epigenetic agents have been approved for use in the treatment of lymphoma. In addition, epigenetic therapies in combination with chemotherapy and/or immunotherapy have been used in various clinical trials. In this review, we present several important epigenetic modalities of regulation associated with lymphoma, summarize the corresponding epigenetic drugs in lymphoma, and look at the future of epigenetic therapies in lymphoma.
Collapse
Affiliation(s)
- Jiaxin Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Jia-Nan Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Hongyu Wu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Panpan Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| |
Collapse
|
14
|
Ping M, Wang S, Guo Y, Jia J. TRIM21 improves apatinib treatment in gastric cancer through suppressing EZH1 stability. Biochem Biophys Res Commun 2022; 586:177-184. [PMID: 34856418 DOI: 10.1016/j.bbrc.2021.07.040] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/05/2021] [Accepted: 07/11/2021] [Indexed: 12/26/2022]
Abstract
Gastric cancer (GC) is a common tumor with high metastatic rate worldwide. Promoting chemosensitivity is effective for improving therapeutic outcome and survival rate for GC patients. Tripartite motif-containing 21 (TRIM21), a member of TRIM-containing proteins, plays crucial roles in regulating numerous cellular events involved in tumor progression. However, it's regulatory effects on GC growth and drug sensitivity are still unclear. In the present study, we identified that TRIM21 expression was remarkably decreased in human GC tissues compared with the adjacent normal ones, and its down-regulation was closely linked to higher recurrence and lower overall survival rate among GC patients. We then found that apatinib (APA)-reduced GC cell proliferation was significantly abolished by TRIM21 knockdown; however, promoting TRIM21 expression further improved the sensitivity of GC cells to APA treatment, as proved by the remarkably decreased cell viability and colony formation. Furthermore, TRIM21 over-expression dramatically enhanced apoptosis, while its knockdown markedly diminished apoptotic cell death in APA-incubated GC cells. Moreover, stem cell properties of GC cells were also restrained by TRIM21. Our in vivo experiments showed that APA-repressed tumor growth was considerably abolished by TRIM21 knockdown, whereas being further elevated by TRIM21 over-expression. In addition, we showed that TRIM21 markedly decreased enhancer of zeste homolog 1 (EZH1) protein expression levels in GC cells, and importantly, a direct interaction between TRIM21 and EZH1 was verified. Of note, our in vitro studies revealed that EZH1 over-expression remarkably abolished the function of TRIM21 to restrain cell viability and induce apoptosis in APA-incubated GC cells, indicating that EZH1 suppression was necessary for TRIM21 to inhibit GC progression. Together, our findings demonstrated that TRIM21 may be a novel therapeutic target for GC treatment through reducing EZH1 to improve chemosensitivity.
Collapse
Affiliation(s)
- Mei Ping
- Department of Oncology, The First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi Province, China
| | - Shumin Wang
- Department of Oncology, The First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi Province, China
| | - Yarong Guo
- Department of Oncology, The First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi Province, China
| | - Junmei Jia
- Department of Oncology, The First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi Province, China.
| |
Collapse
|
15
|
Divergent Effects of EZH1 and EZH2 Protein Expression on the Prognosis of Patients with T-Cell Lymphomas. Biomedicines 2021; 9:biomedicines9121842. [PMID: 34944658 PMCID: PMC8698684 DOI: 10.3390/biomedicines9121842] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/29/2021] [Accepted: 12/03/2021] [Indexed: 12/23/2022] Open
Abstract
T-cell lymphomas are highly heterogeneous and their prognosis is poor under the currently available therapies. Enhancers of zeste homologue 1 and 2 (EZH1/2) are histone H3 lysine-27 trimethyltransferases (H3K27me3). Despite the rapid development of new drugs inhibiting EZH2 and/or EZH1, the molecular interplay of these proteins and the impact on disease progression and prognosis of patients with T-cell lymphomas remains insufficiently understood. In this study, EZH1/2 mutation status was evaluated in 33 monomorphic epitheliotropic intestinal T-cell lymphomas by next generation sequencing and EZH1/2 and H3K27me3 protein expression levels were detected by immunohistochemistry in 46 T-cell lymphomas. Correlations with clinicopathologic features were analyzed and survival curves generated. No EZH1 mutations and one (3%) EZH2 missense mutation were identified. In univariable analysis, high EZH1 expression was associated with an improved overall survival (OS) and progression-free survival (PFS) whereas high EZH2 and H3K27me3 expression were associated with poorer OS and PFS. Multivariable analysis revealed EZH1 (hazard ratio (HR) = 0.183; 95% confidence interval (CI): 0.044–0.767; p = 0.020;) and EZH2 (HR = 8.245; 95% CI: 1.898–35.826; p = 0.005) to be independent, divergent prognostic markers for OS. In conclusion, EZH1/2 protein expression had opposing effects on the prognosis of T-cell lymphoma patients.
Collapse
|
16
|
Kagiyama Y, Fujita S, Shima Y, Yamagata K, Katsumoto T, Nakagawa M, Honma D, Adachi N, Araki K, Kato A, Inaki K, Ono Y, Fukuhara S, Kobayashi Y, Tobinai K, Kitabayashi I. CDKN1C-mediated growth inhibition by an EZH1/2 dual inhibitor overcomes resistance of mantle cell lymphoma to ibrutinib. Cancer Sci 2021; 112:2314-2324. [PMID: 33792119 PMCID: PMC8177787 DOI: 10.1111/cas.14905] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/26/2021] [Accepted: 03/27/2021] [Indexed: 12/26/2022] Open
Abstract
Mantle cell lymphoma (MCL) is a rare subtype of non‐Hodgkin's lymphoma, which is characterized by overexpression of cyclin D1. Although novel drugs, such as ibrutinib, show promising clinical outcomes, relapsed MCL often acquires drug resistance. Therefore, alternative approaches for refractory and relapsed MCL are needed. Here, we examined whether a novel inhibitor of enhancer of zeste homologs 1 and 2 (EZH1/2), OR‐S1 (a close analog of the clinical‐stage compound valemetostat), had an antitumor effect on MCL cells. In an ibrutinib‐resistant MCL patient–derived xenograft (PDX) mouse model, OR‐S1 treatment by oral administration significantly inhibited MCL tumor growth, whereas ibrutinib did not. In vitro growth assays showed that compared with an established EZH2‐specific inhibitor GSK126, OR‐S1 had a marked antitumor effect on MCL cell lines. Furthermore, comprehensive gene expression analysis was performed using OR‐S1–sensitive or insensitive MCL cell lines and showed that OR‐S1 treatment modulated B‐cell activation, differentiation, and cell cycle. In addition, we identified Cyclin Dependent Kinase Inhibitor 1C (CDKN1C, also known as p57, KIP2), which contributes to cell cycle arrest, as a direct target of EZH1/2 and showed that its expression influenced MCL cell proliferation. These results suggest that EZH1/2 may be a potential novel target for the treatment of aggressive ibrutinib‐resistant MCL via CDKN1C‐mediated cell cycle arrest.
Collapse
Affiliation(s)
- Yuki Kagiyama
- Division of Haematological Malignancy, National Cancer Center Research Institute, Tokyo, Japan
| | - Shuhei Fujita
- Division of Haematological Malignancy, National Cancer Center Research Institute, Tokyo, Japan
| | - Yutaka Shima
- Division of Haematological Malignancy, National Cancer Center Research Institute, Tokyo, Japan
| | - Kazutsune Yamagata
- Division of Haematological Malignancy, National Cancer Center Research Institute, Tokyo, Japan
| | - Takuo Katsumoto
- Division of Haematological Malignancy, National Cancer Center Research Institute, Tokyo, Japan
| | - Makoto Nakagawa
- Division of Haematological Malignancy, National Cancer Center Research Institute, Tokyo, Japan
| | - Daisuke Honma
- Oncology Research Laboratories, Daiichi Sankyo Co., Ltd, Tokyo, Japan
| | - Nobuaki Adachi
- Oncology Research Laboratories, Daiichi Sankyo Co., Ltd, Tokyo, Japan
| | - Kazushi Araki
- Oncology Research Laboratories, Daiichi Sankyo Co., Ltd, Tokyo, Japan
| | - Ayako Kato
- Discovery Science and Technology Department, Daiichi Sankyo RD Novare Co., Ltd, Tokyo, Japan
| | - Koichiro Inaki
- Discovery Science and Technology Department, Daiichi Sankyo RD Novare Co., Ltd, Tokyo, Japan
| | - Yoshimasa Ono
- Discovery Science and Technology Department, Daiichi Sankyo RD Novare Co., Ltd, Tokyo, Japan
| | - Suguru Fukuhara
- Department of Haematology, National Cancer Center Hospital, Tokyo, Japan
| | - Yukio Kobayashi
- Department of Haematology, National Cancer Center Hospital, Tokyo, Japan
| | - Kensei Tobinai
- Department of Haematology, National Cancer Center Hospital, Tokyo, Japan
| | - Issay Kitabayashi
- Division of Haematological Malignancy, National Cancer Center Research Institute, Tokyo, Japan
| |
Collapse
|