1
|
Zhang Y, Liao X, Xu J, Yin J, Li S, Li M, Shi X, Zhang S, Li C, Xu W, Yu X, Yang Y. The Promising Potency of Sodium-Glucose Cotransporter 2 Inhibitors in the Prevention of and as Treatment for Cognitive Impairment Among Type 2 Diabetes Patients. Biomedicines 2024; 12:2783. [PMID: 39767690 PMCID: PMC11673520 DOI: 10.3390/biomedicines12122783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 11/28/2024] [Accepted: 12/04/2024] [Indexed: 01/03/2025] Open
Abstract
Type 2 diabetes mellitus (T2DM), accounting for the majority of diabetes mellitus prevalence, is associated with an increased risk of cognition decline and deterioration of cognition function in diabetic patients. The sodium-glucose cotransporter 2 (SGLT2), located in the renal proximal tubule, plays a role in urine glucose reabsorption. SGLT2 inhibitors (SGLT2i), have shown potential benefits beyond cardiac and renal improvement in preventing and treating cognitive impairment (CI), including mild cognitive impairment, Alzheimer's disease and vascular dementia in T2DM patients. Studies suggest that SGLT2i may ameliorate diabetic CI through metabolism pathways, inflammation, oxidative stress, neurotrophic factors and AChE inhibition. Clinical trials and meta-analyses have reported significant and insignificant results. Given their vascular effects, SGLT2i may offer unique protection against vascular CI. This review compiles mechanisms and clinical evidence, emphasizing the need for future analysis, evaluation, trials and meta-analyses to verify and recommend optimal SGLT2i selection and dosage for specific patients.
Collapse
Affiliation(s)
- Yibin Zhang
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.Z.); (X.L.); (J.X.); (J.Y.); (S.L.); (M.L.); (X.S.); (S.Z.); (C.L.); (W.X.); (X.Y.)
- Second Clinical College, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaobin Liao
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.Z.); (X.L.); (J.X.); (J.Y.); (S.L.); (M.L.); (X.S.); (S.Z.); (C.L.); (W.X.); (X.Y.)
- Second Clinical College, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jialu Xu
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.Z.); (X.L.); (J.X.); (J.Y.); (S.L.); (M.L.); (X.S.); (S.Z.); (C.L.); (W.X.); (X.Y.)
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan 430030, China
| | - Jiaxin Yin
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.Z.); (X.L.); (J.X.); (J.Y.); (S.L.); (M.L.); (X.S.); (S.Z.); (C.L.); (W.X.); (X.Y.)
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan 430030, China
| | - Shan Li
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.Z.); (X.L.); (J.X.); (J.Y.); (S.L.); (M.L.); (X.S.); (S.Z.); (C.L.); (W.X.); (X.Y.)
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan 430030, China
| | - Mengni Li
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.Z.); (X.L.); (J.X.); (J.Y.); (S.L.); (M.L.); (X.S.); (S.Z.); (C.L.); (W.X.); (X.Y.)
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan 430030, China
| | - Xiaoli Shi
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.Z.); (X.L.); (J.X.); (J.Y.); (S.L.); (M.L.); (X.S.); (S.Z.); (C.L.); (W.X.); (X.Y.)
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan 430030, China
| | - Shujun Zhang
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.Z.); (X.L.); (J.X.); (J.Y.); (S.L.); (M.L.); (X.S.); (S.Z.); (C.L.); (W.X.); (X.Y.)
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan 430030, China
| | - Chunyu Li
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.Z.); (X.L.); (J.X.); (J.Y.); (S.L.); (M.L.); (X.S.); (S.Z.); (C.L.); (W.X.); (X.Y.)
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan 430030, China
| | - Weijie Xu
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.Z.); (X.L.); (J.X.); (J.Y.); (S.L.); (M.L.); (X.S.); (S.Z.); (C.L.); (W.X.); (X.Y.)
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan 430030, China
| | - Xuefeng Yu
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.Z.); (X.L.); (J.X.); (J.Y.); (S.L.); (M.L.); (X.S.); (S.Z.); (C.L.); (W.X.); (X.Y.)
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan 430030, China
| | - Yan Yang
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.Z.); (X.L.); (J.X.); (J.Y.); (S.L.); (M.L.); (X.S.); (S.Z.); (C.L.); (W.X.); (X.Y.)
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan 430030, China
| |
Collapse
|
2
|
Zhao J, Wei M, Guo M, Wang M, Niu H, Xu T, Zhou Y. GSK3: A potential target and pending issues for treatment of Alzheimer's disease. CNS Neurosci Ther 2024; 30:e14818. [PMID: 38946682 PMCID: PMC11215492 DOI: 10.1111/cns.14818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/21/2024] [Accepted: 05/27/2024] [Indexed: 07/02/2024] Open
Abstract
Glycogen synthase kinase-3 (GSK3), consisting of GSK3α and GSK3β subtypes, is a complex protein kinase that regulates numerous substrates. Research has observed increased GSK3 expression in the brains of Alzheimer's disease (AD) patients and models. AD is a neurodegenerative disorder with diverse pathogenesis and notable cognitive impairments, characterized by Aβ aggregation and excessive tau phosphorylation. This article provides an overview of GSK3's structure and regulation, extensively analyzing its relationship with AD factors. GSK3 overactivation disrupts neural growth, development, and function. It directly promotes tau phosphorylation, regulates amyloid precursor protein (APP) cleavage, leading to Aβ formation, and directly or indirectly triggers neuroinflammation and oxidative damage. We also summarize preclinical research highlighting the inhibition of GSK3 activity as a primary therapeutic approach for AD. Finally, pending issues like the lack of highly specific and affinity-driven GSK3 inhibitors, are raised and expected to be addressed in future research. In conclusion, GSK3 represents a target in AD treatment, filled with hope, challenges, opportunities, and obstacles.
Collapse
Affiliation(s)
- Jiahui Zhao
- School of Basic Medical SciencesZhejiang Chinese Medical UniversityHangzhouChina
| | - Mengying Wei
- College of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
- Future Health Laboratory, Innovation Center of Yangtze River DeltaZhejiang UniversityJiaxingChina
| | - Minsong Guo
- College of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
- Cangnan County Qiushi Innovation Research Institute of Traditional Chinese MedicineWenzhouChina
| | - Mengyao Wang
- School of Basic Medical SciencesZhejiang Chinese Medical UniversityHangzhouChina
| | - Hongxia Niu
- School of Basic Medical SciencesZhejiang Chinese Medical UniversityHangzhouChina
- Key Laboratory of Blood‐stasis‐toxin Syndrome of Zhejiang ProvinceHangzhouChina
| | - Tengfei Xu
- College of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
- Cangnan County Qiushi Innovation Research Institute of Traditional Chinese MedicineWenzhouChina
| | - Yuan Zhou
- School of Basic Medical SciencesZhejiang Chinese Medical UniversityHangzhouChina
- Key Laboratory of Blood‐stasis‐toxin Syndrome of Zhejiang ProvinceHangzhouChina
| |
Collapse
|
3
|
Hou Z, Sun L, Jiang Z, Zeng T, Wu P, Huang J, Liu H, Xiao P. Neuropharmacological insights into Gardenia jasminoides Ellis: Harnessing therapeutic potential for central nervous system disorders. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 125:155374. [PMID: 38301302 DOI: 10.1016/j.phymed.2024.155374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/10/2024] [Accepted: 01/16/2024] [Indexed: 02/03/2024]
Abstract
BACKGROUND In China, Gardenia jasminoides Ellis (GJE) has a longstanding history of application. The Ministry of Health has listed it as one of the first pharmaceutical or food resources. In ethnic, traditional, and folk medicine, GJE has been used to treat fever and cold and relieve nervous anxiety. Recent studies have confirmed the significant efficacy of GJE for treating central nervous system (CNS) disorders, including Alzheimer's disease, Parkinson's disease, and major depressive disorder; however, GJE has not been systematically evaluated. PURPOSE This research systematically summarizes global studies on the use of GJE for treating CNS disorders and explores the potential applications and underlying mechanisms via intestinal flora analysis and network pharmacology, aiming to establish a scientific basis for innovative CNS disorder treatment with GJE. METHODS The PRISMA guidelines were used, and electronic databases such as the Web of Science, PubMed, and China National Knowledge Infrastructure were searched using the following search terms: "Gardenia jasminoides Ellis" with "central nervous system disease," "neuroprotection," "Alzheimer's disease," "Parkinson's disease," "ischemic stroke," "Epilepsy," and "major depressive disorder." The published literature up to September 2023 was searched to obtain relevant information on the application of GJE for treating CNS disorders. RESULTS There has been an increase in research on the material formulation and mechanisms of action of GJE for treating CNS disorders, with marked effects on CNS disorder treatment in different countries and regions. We summarized the research results related to the role of GJE in vitro and in vivo via multitargeted interventions in response to the complex mechanisms of action of CNS disorders. CONCLUSION We systematically reviewed the research progress on traditional treatment for GJE and preclinical mechanisms of CNS disorders and explored the potential of optimizing network pharmacology strategies and intestinal flora analysis to elucidate the mechanisms of action of GJE. The remarkable therapeutic efficacy of GJE, an important resource in traditional medicine, has been well documented in the literature, highlighting its significant medicinal potential.
Collapse
Affiliation(s)
- Ziyu Hou
- Chinese Academy of Medical Sciences & Peking Union Medical College, Institute of Medicinal Plant Development (IMPLAD), No. 151 Malianwa North Road, Haidian District, Beijing 100193, PR China
| | - Le Sun
- Chinese Academy of Medical Sciences & Peking Union Medical College, Institute of Medicinal Plant Development (IMPLAD), No. 151 Malianwa North Road, Haidian District, Beijing 100193, PR China.
| | - Zheyu Jiang
- Chinese Academy of Medical Sciences & Peking Union Medical College, Institute of Medicinal Plant Development (IMPLAD), No. 151 Malianwa North Road, Haidian District, Beijing 100193, PR China
| | - Tiexin Zeng
- Chinese Academy of Medical Sciences & Peking Union Medical College, Institute of Medicinal Plant Development (IMPLAD), No. 151 Malianwa North Road, Haidian District, Beijing 100193, PR China
| | - Peiling Wu
- Chinese Academy of Medical Sciences & Peking Union Medical College, Institute of Medicinal Plant Development (IMPLAD), No. 151 Malianwa North Road, Haidian District, Beijing 100193, PR China
| | - Jiali Huang
- Chinese Academy of Medical Sciences & Peking Union Medical College, Institute of Medicinal Plant Development (IMPLAD), No. 151 Malianwa North Road, Haidian District, Beijing 100193, PR China
| | - Haibo Liu
- Chinese Academy of Medical Sciences & Peking Union Medical College, Institute of Medicinal Plant Development (IMPLAD), No. 151 Malianwa North Road, Haidian District, Beijing 100193, PR China.
| | - Peigen Xiao
- Chinese Academy of Medical Sciences & Peking Union Medical College, Institute of Medicinal Plant Development (IMPLAD), No. 151 Malianwa North Road, Haidian District, Beijing 100193, PR China
| |
Collapse
|
4
|
Shi Y, Chen Z, Huang L, Gong Y, Shi L. A network pharmacology approach to reveal the key ingredients in Scrophulariae Radix (SR) and their effects against Alzheimer's disease. Heliyon 2024; 10:e24785. [PMID: 38322920 PMCID: PMC10844110 DOI: 10.1016/j.heliyon.2024.e24785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/20/2023] [Accepted: 01/15/2024] [Indexed: 02/08/2024] Open
Abstract
Background Scrophulariae Radix (SR) is a commonly used medicinal plant. Alzheimer's disease (AD) is a neurodegenerative disease for which there is no effective treatment. This study aims to initially clarify the potential mechanism of SR in the treatment of AD based on network pharmacology and molecular docking techniques. Methods The principal components and corresponding protein targets of SR were conducted by HPLC analysis and searched on TCMSP. AD targets were searched on DrugBank, Chemogenomics, TTD, OMIM and GeneCards databases. The compound-target network was constructed by Cytoscape3.8.2. The intersection of compound target and disease target was obtained and the coincidence target was imported into STRING database to construct a PPI network. We further performed GO and KEGG enrichment analysis on the targets. Meanwhile, molecular docking study and cell experiments were approved for the core target and the active compound. Results Through multidatabase retrieval and integration, it was found that 17 components of SR could exert anti-AD effects against 40 targets. KEGG enrichment analysis indicated that Alzheimer's disease (hsa05010) was one of the most significant AD enrichment signalling pathways. Combined with the gene expression profile information in the AlzData database, 15 targets were found to be associated with tau or beta-amyloid protein (Aβ). GO analysis indicated that the primary molecular functions of SR in the treatment of AD were neurotransmitter receptor activity (GO:0007268), postsynaptic neurotransmitter receptor activity (GO:0070997), and acetylcholine receptor activity (GO:0050435). Moreover, we explored the anti-AD effects of SR extract and ursolic acid (UA) using SH-SY5Y cells. Treatment of SH-SY5Y cells with 20 μM UA significantly reduced the oxidative damage to these neuronal cells. Conclusion This study reveals the active ingredients and potential molecular mechanism of SR in the treatment of AD, and provides a theoretical basis for further basic research and clinical application.
Collapse
Affiliation(s)
- Yingying Shi
- Department of Immunology, School of Medicine, Jianghan University, Wuhan, Hubei, 430056, China
| | - Zhongqiang Chen
- Department of Pharmacy, School of Medicine, Jianghan University, Wuhan, Hubei, 430056, China
| | - Lixia Huang
- Department of Immunology, School of Medicine, Jianghan University, Wuhan, Hubei, 430056, China
| | - Yeli Gong
- Department of Immunology, School of Medicine, Jianghan University, Wuhan, Hubei, 430056, China
| | - Lu Shi
- Department of Pharmacy, School of Medicine, Jianghan University, Wuhan, Hubei, 430056, China
| |
Collapse
|
5
|
Hu M, Ying X, Zheng M, Wang C, Li Q, Gu L, Zhang X. Therapeutic potential of natural products against Alzheimer's disease via autophagic removal of Aβ. Brain Res Bull 2024; 206:110835. [PMID: 38043648 DOI: 10.1016/j.brainresbull.2023.110835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/17/2023] [Accepted: 11/30/2023] [Indexed: 12/05/2023]
Abstract
The pathological features of Alzheimer's disease (AD), a progressive neurodegenerative disorder, include the deposition of extracellular amyloid beta (Aβ) plaques and intracellular tau neurofibrillary tangles. A decline in cognitive ability is related to the accumulation of Aβ in patients with AD. Autophagy, which is a primary intracellular mechanism for degrading aggregated proteins and damaged organelles, plays a crucial role in AD. In this review, we summarize the most recent research progress regarding the process of autophagy and the effect of autophagy on Aβ. We further discuss some typical monomers of natural products that contribute to the clearance of Aβ by autophagy, which can alleviate AD. This provides a new perspective for the application of autophagy modulation in natural product therapy for AD.
Collapse
Affiliation(s)
- Min Hu
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang 310013, PR China
| | - Xinyi Ying
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang 310013, PR China
| | - Miao Zheng
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang 310013, PR China
| | - Can Wang
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang 310013, PR China
| | - Qin Li
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang 310013, PR China
| | - Lili Gu
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang 310013, PR China.
| | - Xinyue Zhang
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang 310013, PR China.
| |
Collapse
|
6
|
Fukuyama Y, Kubo M, Harada K. Neurotrophic Natural Products. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2024; 123:1-473. [PMID: 38340248 DOI: 10.1007/978-3-031-42422-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Neurotrophins (NGF, BDNF, NT3, NT4) can decrease cell death, induce differentiation, as well as sustain the structure and function of neurons, which make them promising therapeutic agents for the treatment of neurodegenerative disorders. However, neurotrophins have not been very effective in clinical trials mostly because they cannot pass through the blood-brain barrier owing to being high-molecular-weight proteins. Thus, neurotrophin-mimic small molecules, which stimulate the synthesis of endogenous neurotrophins or enhance neurotrophic actions, may serve as promising alternatives to neurotrophins. Small-molecular-weight natural products, which have been used in dietary functional foods or in traditional medicines over the course of human history, have a great potential for the development of new therapeutic agents against neurodegenerative diseases such as Alzheimer's disease. In this contribution, a variety of natural products possessing neurotrophic properties such as neurogenesis, neurite outgrowth promotion (neuritogenesis), and neuroprotection are described, and a focus is made on the chemistry and biology of several neurotrophic natural products.
Collapse
Affiliation(s)
- Yoshiyasu Fukuyama
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan.
| | - Miwa Kubo
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan
| | - Kenichi Harada
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan
| |
Collapse
|
7
|
Kim S, Hyun DG, Nam Y, Shin SJ, Im D, Kim HS, Leem SH, Park HH, Kim BH, Park YH, Cho E, Goddard WA, Kim DH, Kim HI, Moon M. Genipin and pyrogallol: Two natural small molecules targeting the modulation of disordered proteins in Alzheimer's disease. Biomed Pharmacother 2023; 168:115770. [PMID: 37865990 DOI: 10.1016/j.biopha.2023.115770] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/03/2023] [Accepted: 10/18/2023] [Indexed: 10/24/2023] Open
Abstract
Alzheimer's disease (AD) is characterized by the aggregation of disordered proteins, such as amyloid beta (Aβ) and tau, leading to neurotoxicity and disease progression. Despite numerous efforts, effective inhibitors of Aβ and tau aggregates have not been developed. Thus, we aimed to screen natural small molecules from crude extracts that target various pathologies and are prescribed for patients with neurological diseases. In this study, we screened 162 natural small molecules prescribed for neurological diseases and identified genipin and pyrogallol as hit compounds capable of simultaneously regulating the aggregation of Aβ and tau K18. Moreover, we confirmed the dual modulatory effects of these compounds on the reduction of amyloid-mediated neurotoxicity in vitro and the disassembly of preformed Aβ42 and tau K18 fibrils. Furthermore, we observed the alleviatory effects of genipin and pyrogallol against AD-related pathologies in triple transgenic AD mice. Molecular dynamics and docking simulations revealed the molecular interaction dynamics of genipin and pyrogallol with Aβ42 and tau K18, providing insights into their suppression of aggregation. Our findings suggest the therapeutic potential of genipin and pyrogallol as dual modulators for the treatment of AD by inhibiting aggregation or promoting dissociation of Aβ and tau.
Collapse
Affiliation(s)
- Sujin Kim
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, the Republic of Korea; Research Institute for Dementia Science, Konyang University, Daejeon 35365, the Republic of Korea
| | - Da Gyeong Hyun
- Department of Chemistry, Korea University, Seoul 02841, the Republic of Korea; Center for Proteogenome Research, Korea University, Seoul 02841, the Republic of Korea; Single Cell Analysis Laboratory, Korea University, Seoul 02841, the Republic of Korea; Division of Chemistry and Chemical Engineering and Materials Process and Simulation Center, California Institute of Technology, Pasadena, CA 91125, United States
| | - Yunkwon Nam
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, the Republic of Korea
| | - Soo Jung Shin
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, the Republic of Korea
| | - Dongjoon Im
- Department of Chemistry, Korea University, Seoul 02841, the Republic of Korea; Center for Proteogenome Research, Korea University, Seoul 02841, the Republic of Korea; Single Cell Analysis Laboratory, Korea University, Seoul 02841, the Republic of Korea; Division of Chemistry and Chemical Engineering and Materials Process and Simulation Center, California Institute of Technology, Pasadena, CA 91125, United States
| | - Hyeon Soo Kim
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, the Republic of Korea
| | - Seol Hwa Leem
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, the Republic of Korea
| | - Hyun Ha Park
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, the Republic of Korea
| | - Byeong-Hyeon Kim
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, the Republic of Korea
| | - Yong Ho Park
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, the Republic of Korea
| | - Eunbi Cho
- Department of Pharmacology, School of Medicine, Konkuk University, Seoul 05029, the Republic of Korea
| | - William A Goddard
- Division of Chemistry and Chemical Engineering and Materials Process and Simulation Center, California Institute of Technology, Pasadena, CA 91125, United States
| | - Dong Hyun Kim
- Department of Pharmacology, School of Medicine, Konkuk University, Seoul 05029, the Republic of Korea.
| | - Hugh I Kim
- Department of Chemistry, Korea University, Seoul 02841, the Republic of Korea; Center for Proteogenome Research, Korea University, Seoul 02841, the Republic of Korea; Single Cell Analysis Laboratory, Korea University, Seoul 02841, the Republic of Korea; Division of Chemistry and Chemical Engineering and Materials Process and Simulation Center, California Institute of Technology, Pasadena, CA 91125, United States.
| | - Minho Moon
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, the Republic of Korea; Research Institute for Dementia Science, Konyang University, Daejeon 35365, the Republic of Korea.
| |
Collapse
|
8
|
Wang Y, Hu H, Liu X, Guo X. Hypoglycemic medicines in the treatment of Alzheimer's disease: Pathophysiological links between AD and glucose metabolism. Front Pharmacol 2023; 14:1138499. [PMID: 36909158 PMCID: PMC9995522 DOI: 10.3389/fphar.2023.1138499] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/13/2023] [Indexed: 02/25/2023] Open
Abstract
Alzheimer's Disease (AD) is a global chronic disease in adults with beta-amyloid (Aβ) deposits and hyperphosphorylated tau protein as the pathologic characteristics. Although the exact etiology of AD is still not fully elucidated, aberrant metabolism including insulin signaling and mitochondria dysfunction plays an important role in the development of AD. Binding to insulin receptor substrates, insulin can transport through the blood-brain barrier (BBB), thus mediating insulin signaling pathways to regulate physiological functions. Impaired insulin signaling pathways, including PI3K/Akt/GSK3β and MAPK pathways, could cause damage to the brain in the pathogenesis of AD. Mitochondrial dysfunction and overexpression of TXNIP could also be causative links between AD and DM. Some antidiabetic medicines may have benefits in the treatment of AD. Metformin can be beneficial for cognition improvement in AD patients, although results from clinical trials were inconsistent. Exendin-4 may affect AD in animal models but there is a lack of clinical trials. Liraglutide and dulaglutide could also benefit AD patients in adequate clinical studies but not semaglutide. Dipeptidyl peptidase IV inhibitors (DPP4is) such as saxagliptin, vildagliptin, linagliptin, and sitagliptin could boost cognitive function in animal models. And SGLT2 inhibitors such as empagliflozin and dapagliflozin were also considerably protective against new-onset dementia in T2DM patients. Insulin therapy is a promising therapy but some studies indicated that it may increase the risk of AD. Herbal medicines are helpful for cognitive function and neuroprotection in the brain. For example, polyphenols, alkaloids, glycosides, and flavonoids have protective benefits in cognition function and glucose metabolism. Focusing on glucose metabolism, we summarized the pharmacological mechanism of hypoglycemic drugs and herbal medicines. New treatment approaches including antidiabetic synthesized drugs and herbal medicines would be provided to patients with AD. More clinical trials are needed to produce definite evidence for the effectiveness of hypoglycemic medications.
Collapse
Affiliation(s)
- Yixuan Wang
- Dongfang Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Hao Hu
- Dongfang Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Xinyu Liu
- Dongfang Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Xiangyu Guo
- Dongfang Hospital of Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
9
|
Zhang W, Zhang F, Hu Q, Xiao X, Ou L, Chen Y, Luo S, Cheng Y, Jiang Y, Ma X, Zhao Y. The emerging possibility of the use of geniposide in the treatment of cerebral diseases: a review. Chin Med 2021; 16:86. [PMID: 34454545 PMCID: PMC8400848 DOI: 10.1186/s13020-021-00486-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 08/01/2021] [Indexed: 12/19/2022] Open
Abstract
With the advanced discoveries in the field of pathogenesis, a series of cerebral diseases, such as cerebral ischaemia, Alzheimer's disease, and depression, have been found to have multiple signalling targets in the microenvironment. Only a few existing agents have been shown to have curative effects due to this specific circumstance. In recent decades, active ingredients isolated from natural plants have been shown to be crucial for original drug development. Geniposide, mainly extracted from Gardenia jasminoides Ellis, is representative of these natural products. Geniposide demonstrates various biological activities in the treatment of cerebral, cardiovascular, hepatic, tumorous, and other diseases. The multiple protective effects of geniposide on the brain have especially drawn increasing attention. Thus, this article specifically reviews the characteristics of current models of cerebral ischaemia and illustrates the possible effects of geniposide and its pathogenetic mechanisms on these models. Geniposide has been shown to significantly reduce the area of cerebral infarction and alleviate neuronal damage and necrosis mainly by inhibiting inflammatory signals, including NLRP3, TNF-α, IL-6, and IL-1β. Neuronal protection was also involved in activating the PI3K/Akt and Wnt/catenin pathways. Geniposide was able to increase autophagy and inhibit apoptosis by regulating the function of mTOR in treating Alzheimer's disease. Geniposide has also been shown to act as a glucagon-like peptide-1 receptor (GLP-1R) agonist to reduce amyloid plaques and inhibit oxidative stress to alleviate memory impairment as well as synaptic loss. Moreover, geniposide has been shown to exert antidepressant effects primarily by regulating the hypothalamic-pituitary-adrenal (HPA) axis. Detailed explorations have shown that the biological activities of inhibiting inflammatory cytokine secretion, alleviating oxidative stress, and suppressing mitochondrial damage are also involved in the mechanism of action of geniposide. Therefore, geniposide is a promising agent awaiting further exploration for the treatment of cerebral diseases via various phenotypes or signalling pathways.
Collapse
Affiliation(s)
- Wenwen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Fangling Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qichao Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xiaolin Xiao
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Linbo Ou
- College of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yuan Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Shiqing Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yonghong Cheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yinxiao Jiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Yanling Zhao
- Department of Pharmacy, The Fifth Medical Centre of PLA General Hospital, Beijing, 100039, China.
| |
Collapse
|
10
|
Gong X, Liang Z, Liu W, Zhao Y, Yang Y, Wu M, Shang J, Xiao Y, Mei Y, Su Q, Sun B, Bao J, Shu X. High fat diet aggravates AD-related pathogenic processes in APP/PS1 mice. Curr Alzheimer Res 2021; 18:310-325. [PMID: 34212829 DOI: 10.2174/1567205018666210628100812] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 04/10/2021] [Accepted: 05/04/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common neurodegenerative disorder and negative life-style factors may contribute to its etiopathogenesis. Substantial evidence from humans and murine models reveal that Insulin Resistance (IR) associated with high fat diet (HFD) increase the risk of developing AD and age-related amyloidogenesis. OBJECTIVE To corroborate and clarify the influence of HFD on amyloidogenesis and cognitive deficits in AD model mice. RESULTS We here show that a four months HFD-feeding increases IR in both the periphery and brain of APP/PS1 mice, which are used as AD model. Meanwhile, long term HFD exacerbates cognitive defects and impairs dendritic integrity and expressions of synaptic proteins in APP/PS1 mice. Furthermore, HFD induces an increase in β-secretase (BACE1) expression and a decrease in insulin degrading enzyme (IDE) expression, resulting in β-amyloid (Aβ) accumulation. CONCLUSION Our data suggests that long term HFD, with the accompanying IR, promotes Aβ toxicity and cognitive deficits, indicating that modifiable life-style hazards such as HFD-induced IR might contribute to AD pathogenesis.
Collapse
Affiliation(s)
- Xiaokang Gong
- Institutes of Biomedical Sciences, School of Medicine, Jianghan University, China
| | - Zheng Liang
- Institutes of Biomedical Sciences, School of Medicine, Jianghan University, China
| | - Wei Liu
- Institutes of Biomedical Sciences, School of Medicine, Jianghan University, China
| | - Yang Zhao
- Institute of bioengineering and food, Hubei University of Technology, Wuhan, China
| | - Youhua Yang
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, China
| | - Mengjuan Wu
- Institutes of Biomedical Sciences, School of Medicine, Jianghan University, China
| | - Jinting Shang
- Institutes of Biomedical Sciences, School of Medicine, Jianghan University, China
| | - Yifan Xiao
- Institutes of Biomedical Sciences, School of Medicine, Jianghan University, China
| | - Yong Mei
- Institutes of Biomedical Sciences, School of Medicine, Jianghan University, China
| | - Qiqi Su
- Institutes of Biomedical Sciences, School of Medicine, Jianghan University, China
| | - Binlian Sun
- Institutes of Biomedical Sciences, School of Medicine, Jianghan University, China
| | - Jian Bao
- Institutes of Biomedical Sciences, School of Medicine, Jianghan University, China
| | - Xiji Shu
- Institutes of Biomedical Sciences, School of Medicine, Jianghan University, China
| |
Collapse
|
11
|
Ran D, Hong W, Yan W, Mengdie W. Properties and molecular mechanisms underlying geniposide-mediated therapeutic effects in chronic inflammatory diseases. JOURNAL OF ETHNOPHARMACOLOGY 2021; 273:113958. [PMID: 33639206 DOI: 10.1016/j.jep.2021.113958] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 01/25/2021] [Accepted: 02/16/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Geniposide (GE) is ubiquitous in nearly 40 species of plants, among which Gardenia jasminoides J. Ellis has the highest content, and has been used ethnopharmacologically to treat chronic inflammatory diseases. As a traditional Chinese medicine, Gardenia jasminoides J. Ellis has a long history of usage in detumescence and sedation, liver protection and cholestasis, hypotension and hemostasis. It is commonly used in the treatment of diabetes, hypertension, jaundice hepatitis, sprain and contusion. As a type of iridoid glycosides extracted from Gardenia jasminoides J. Ellis, GE has many pharmacological effects, such as anti-inflammatory, anti-angiogenesic, anti-oxidative, etc. AIM OF THE REVIEW: In this article, we reviewed the sources, traditional usage, pharmacokinetics, toxicity and therapeutic effect of GE on chronic inflammatory diseases, and discussed its potential regulatory mechanisms and clinical application. RESULTS GE is a common iridoid glycoside in medicinal plants, which has strong activity in the treatment of chronic inflammatory diseases. A large number of in vivo and in vitro experiments confirmed that GE has certain therapeutic value for a variety of chronic inflammation disease. Its mechanism of function is mainly based on its anti-inflammatory, anti-oxidant, neuroprotective properties, as well as regulation of apoptotsis. GE plays a role in the treatment of chronic inflammatory diseases by regulating cell proliferation and apoptosis, realizing the dynamic balance of pro/anti-inflammatory factors, improving the state of oxidative stress, and restoring abnormally expressed inflammation-related pathways. CONCLUSION According to its extensive pharmacological effects, GE is a promising drug for the treatment of chronic inflammatory diseases.
Collapse
Affiliation(s)
- Deng Ran
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, 230012, China; College of Pharmacy, Anhui University of Chinese Medicine, Qian Jiang Road 1, Hefei, 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, 230012, China
| | - Wu Hong
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, 230012, China; College of Pharmacy, Anhui University of Chinese Medicine, Qian Jiang Road 1, Hefei, 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, 230012, China.
| | - Wang Yan
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, 230012, China; College of Pharmacy, Anhui University of Chinese Medicine, Qian Jiang Road 1, Hefei, 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, 230012, China
| | - Wang Mengdie
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, 230012, China; College of Pharmacy, Anhui University of Chinese Medicine, Qian Jiang Road 1, Hefei, 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, 230012, China
| |
Collapse
|
12
|
Genipin Attenuates Tau Phosphorylation and Aβ Levels in Cellular Models of Alzheimer's Disease. Mol Neurobiol 2021; 58:4134-4144. [PMID: 33948899 DOI: 10.1007/s12035-021-02389-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 04/05/2021] [Indexed: 10/21/2022]
Abstract
Alzheimer's disease (AD) is a devastating brain disorder characterized by neurofibrillary tangles and amyloid plaques. Inhibiting Tau protein and amyloid-beta (Aβ) production or removing these molecules is considered potential therapeutic strategies for AD. Genipin is an aglycone and is isolated from the extract of Gardenia jasminoides Ellis fruit. In this study, the effect and molecular mechanisms of genipin on the inhibition of Tau aggregation and Aβ generation were investigated. The results showed that genipin bound to Tau and protected against heparin-induced Tau fibril formation. Moreover, genipin suppressed Tau phosphorylation probably by downregulating the expression of CDK5 and GSK-3β, and activated mTOR-dependent autophagy via the SIRT1/LKB1/AMPK signaling pathway in Tau-overexpressing cells. In addition, genipin decreased Aβ production by inhibiting BACE1 expression through the PERK/eIF2α signaling pathway in N2a/SweAPP cells. These data indicated that genipin could effectively lead to a significant reduction of phosphorylated Tau level and Aβ generation in vitro, suggesting that genipin might be developed into an effective therapeutic complement or a potential nutraceutical for preventing AD.
Collapse
|
13
|
Guo T, Zhang D, Zeng Y, Huang TY, Xu H, Zhao Y. Molecular and cellular mechanisms underlying the pathogenesis of Alzheimer's disease. Mol Neurodegener 2020; 15:40. [PMID: 32677986 PMCID: PMC7364557 DOI: 10.1186/s13024-020-00391-7] [Citation(s) in RCA: 541] [Impact Index Per Article: 108.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 06/17/2020] [Indexed: 12/11/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common neurodegenerative disorder seen in age-dependent dementia. There is currently no effective treatment for AD, which may be attributed in part to lack of a clear underlying mechanism. Studies within the last few decades provide growing evidence for a central role of amyloid β (Aβ) and tau, as well as glial contributions to various molecular and cellular pathways in AD pathogenesis. Herein, we review recent progress with respect to Aβ- and tau-associated mechanisms, and discuss glial dysfunction in AD with emphasis on neuronal and glial receptors that mediate Aβ-induced toxicity. We also discuss other critical factors that may affect AD pathogenesis, including genetics, aging, variables related to environment, lifestyle habits, and describe the potential role of apolipoprotein E (APOE), viral and bacterial infection, sleep, and microbiota. Although we have gained much towards understanding various aspects underlying this devastating neurodegenerative disorder, greater commitment towards research in molecular mechanism, diagnostics and treatment will be needed in future AD research.
Collapse
Affiliation(s)
- Tiantian Guo
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Denghong Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Yuzhe Zeng
- Department of Orthopaedics, Orthopaedic Center of People's Liberation Army, The Affiliated Southeast Hospital of Xiamen University, Zhangzhou, China
| | - Timothy Y Huang
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA.
| | - Huaxi Xu
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA.
| | - Yingjun Zhao
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China.
| |
Collapse
|
14
|
Bracko O, Vinarcsik LK, Cruz Hernández JC, Ruiz-Uribe NE, Haft-Javaherian M, Falkenhain K, Ramanauskaite EM, Ali M, Mohapatra A, Swallow MA, Njiru BN, Muse V, Michelucci PE, Nishimura N, Schaffer CB. High fat diet worsens Alzheimer's disease-related behavioral abnormalities and neuropathology in APP/PS1 mice, but not by synergistically decreasing cerebral blood flow. Sci Rep 2020; 10:9884. [PMID: 32555372 PMCID: PMC7303150 DOI: 10.1038/s41598-020-65908-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 05/07/2020] [Indexed: 12/18/2022] Open
Abstract
Obesity is linked to increased risk for and severity of Alzheimer's disease (AD). Cerebral blood flow (CBF) reductions are an early feature of AD and are also linked to obesity. We recently showed that non-flowing capillaries, caused by adhered neutrophils, contribute to CBF reduction in mouse models of AD. Because obesity could exacerbate the vascular inflammation likely underlying this neutrophil adhesion, we tested links between obesity and AD by feeding APP/PS1 mice a high fat diet (Hfd) and evaluating behavioral, physiological, and pathological changes. We found trends toward poorer memory performance in APP/PS1 mice fed a Hfd, impaired social interactions with either APP/PS1 genotype or a Hfd, and synergistic impairment of sensory-motor function in APP/PS1 mice fed a Hfd. The Hfd led to increases in amyloid-beta monomers and plaques in APP/PS1 mice, as well as increased brain inflammation. These results agree with previous reports showing obesity exacerbates AD-related pathology and symptoms in mice. We used a crowd-sourced, citizen science approach to analyze imaging data to determine the impact of the APP/PS1 genotype and a Hfd on capillary stalling and CBF. Surprisingly, we did not see an increase in the number of non-flowing capillaries or a worsening of the CBF deficit in APP/PS1 mice fed a Hfd as compared to controls, suggesting that capillary stalling is not a mechanistic link between a Hfd and increased severity of AD in mice. Reducing capillary stalling by blocking neutrophil adhesion improved CBF and short-term memory function in APP/PS1 mice, even when fed a Hfd.
Collapse
Affiliation(s)
- Oliver Bracko
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Lindsay K Vinarcsik
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | | | - Nancy E Ruiz-Uribe
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | | | - Kaja Falkenhain
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | | | - Muhammad Ali
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Aditi Mohapatra
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Madisen A Swallow
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Brendah N Njiru
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Victorine Muse
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | | | - Nozomi Nishimura
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Chris B Schaffer
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
15
|
Zhou Z, Hou J, Mo Y, Ren M, Yang G, Qu Z, Hu Y. Geniposidic acid ameliorates spatial learning and memory deficits and alleviates neuroinflammation via inhibiting HMGB-1 and downregulating TLR4/2 signaling pathway in APP/PS1 mice. Eur J Pharmacol 2020; 869:172857. [DOI: 10.1016/j.ejphar.2019.172857] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 11/26/2019] [Accepted: 12/09/2019] [Indexed: 12/11/2022]
|
16
|
Li Y, Pan H, Zhang X, Wang H, Liu S, Zhang H, Qian H, Wang L, Ying H. Geniposide Improves Glucose Homeostasis via Regulating FoxO1/PDK4 in Skeletal Muscle. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:4483-4492. [PMID: 30929433 DOI: 10.1021/acs.jafc.9b00402] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
It is well-known that imbalance state of glucose metabolism triggers many metabolic diseases and glucose uptake in skeletal muscle accounts for 90% of body weight. Geniposide is one of the major natural bioactive constituents of gardenia fruit, and the regulation of geniposide on glucose metabolism in skeletal muscle has not yet been investigated. Here, on the basis of microarray analysis, we discovered that geinposide decreased pyruvate dehydrogenase kinase 4 (PDK4) expression in skeletal muscle of mice and subsequently found that geniposide inhibited the expressions of forkhead box O1 (FoxO1), PDK4, and phosphorylated pyruvate dehydrogenase in vitro and in vivo. Moreover, geniposide promoted a switch of slow-to-fast myofiber type and glucose utilization, suggesting that geniposide improved glucose homeostasis. In addition, mechanistic studies revealed that geniposide played above roles by regulating FoxO1/PDK4, which controlled fuel selection via pyruvate dehydrogenase. Meanwhile, effects of geniposide mentioned above could be reversed by FoxO1 overexpression. Together, these results establish that geniposide confers controls on fuel usage and glucose homeostasis through FoxO1/PDK4 in skeletal muscle.
Collapse
Affiliation(s)
- Yan Li
- Chinese Academy of Sciences (CAS) Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences , Chinese Academy of Sciences , 320 Yueyang Road , Shanghai 200031 , People's Republic of China
| | | | - Xuetong Zhang
- Affiliated Hospital of Jiangnan University (Wuxi No. 4 People's Hospital) , Jiangnan University , Wuxi , Jiangsu 214062 , People's Republic of China
| | - Hui Wang
- Chinese Academy of Sciences (CAS) Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences , Chinese Academy of Sciences , 320 Yueyang Road , Shanghai 200031 , People's Republic of China
| | - Shengnan Liu
- Chinese Academy of Sciences (CAS) Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences , Chinese Academy of Sciences , 320 Yueyang Road , Shanghai 200031 , People's Republic of China
| | | | | | | | - Hao Ying
- Chinese Academy of Sciences (CAS) Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences , Chinese Academy of Sciences , 320 Yueyang Road , Shanghai 200031 , People's Republic of China
| |
Collapse
|
17
|
Diverse Pharmacological Activities and Potential Medicinal Benefits of Geniposide. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:4925682. [PMID: 31118959 PMCID: PMC6500620 DOI: 10.1155/2019/4925682] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 03/19/2019] [Indexed: 12/25/2022]
Abstract
Geniposide is a well-known iridoid glycoside compound and is an essential component of a wide variety of traditional phytomedicines, for example, Gardenia jasminoides Elli (Zhizi in Chinese), Eucommia ulmoides Oliv. (Duzhong in Chinese), Rehmannia glutinosa Libosch. (Dihuang in Chinese), and Achyranthes bidentata Bl. (Niuxi in Chinese). It is also the main bioactive component of Gardeniae Fructus, the dried ripe fruit of Gardenia jasminoides Ellis. Increasing pharmacological evidence supports multiple medicinal properties of geniposide including neuroprotective, antidiabetic, hepatoprotective, anti-inflammatory, analgesic, antidepressant-like, cardioprotective, antioxidant, immune-regulatory, antithrombotic, and antitumoral effects. It has been proposed that geniposide may be a drug or lead compound for the prophylaxis and treatment of several diseases, such as Alzheimer's disease, Parkinson's disease, diabetes and diabetic complications, ischemia and reperfusion injury, and hepatic disorders. The aim of the present review is to give a comprehensive summary and analysis of the pharmacological properties of geniposide, supporting its use as a medicinal agent.
Collapse
|
18
|
Tam C, Wong JH, Ng TB, Tsui SKW, Zuo T. Drugs for Targeted Therapies of Alzheimer's Disease. Curr Med Chem 2019; 26:335-359. [PMID: 29714133 DOI: 10.2174/0929867325666180430150940] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 01/01/2018] [Accepted: 04/24/2018] [Indexed: 01/10/2023]
Abstract
Alzheimer's disease (AD) is one type of neurodegenerative diseases, which is prevalent in the elderly. Beta-amyloid (Aβ) plaques and phosphorylated tau-induced neurofibrillary tangles are two pathological hallmarks of this disease and the corresponding pathological pathways of these hallmarks are considered as the therapeutic targets. There are many drugs scheduled for pre-clinical and clinical trial that target to inhibit the initiators of pathological Aβ and tau aggregates as well as critical Aβ secretases and kinases in tau hyperphosphorylation. In addition, studies in disease gene variations, and detection of key prognostic effectors in early development are also important for AD control. The discovery of potential drug targets contributed to targeted therapy in a stage-dependent manner, However, there are still some issues that cause concern such as the low bioavailability and low efficacy of candidate drugs from clinical trial reports. Therefore, modification of drug candidates and development of delivery agents are essential and critical. With other medical advancements like cell replacement therapy, there is hope for the cure of Alzheimer's disease in the foreseeable future.
Collapse
Affiliation(s)
- Chit Tam
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Jack Ho Wong
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Tzi Bun Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Stephen Kwok Wing Tsui
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Tao Zuo
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| |
Collapse
|
19
|
Lv S, Ding Y, Zhao H, Liu S, Zhang J, Wang J. Therapeutic Potential and Effective Components of the Chinese Herb Gardeniae Fructus in the Treatment of Senile Disease. Aging Dis 2018; 9:1153-1164. [PMID: 30574425 PMCID: PMC6284761 DOI: 10.14336/ad.2018.0112] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 01/12/2018] [Indexed: 12/12/2022] Open
Abstract
Gardeniae fructus (GF), an evergreen Rubiaceae shrub, is one of the most commonly used Chinese herbs in traditional Chinese medicine (TCM) and has been used for over a thousand years. It is usually prescribed for the treatment of brain aging, vascular aging, bone and joint aging, and other age-related diseases. It has been demonstrated that several effective compounds of GF, such as geniposide, genipin and crocin, have neuroprotective or related activities which are involved in senile disease treatment. These bioactivities include the mitochondrion dysfunction, antioxidative activity, apoptosis regulation and an anti-inflammatory activity, which related to multiple signaling pathways such as the nuclear factor-κB pathway, AMP-activated protein kinase signaling pathway, and the mitogen-activated protein kinase pathway. To lay the ground for fully elucidating the potential mechanisms of GF in treating age-related pathologies, we summarized the available research conducted in the last fifteen years about GF and its effective components, which have been studied in vivo and in vitro
Collapse
Affiliation(s)
- Shichao Lv
- 2Department of Geriatric Medicine, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yang Ding
- 3Digestive Disease Center, Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing, China
| | - Haiping Zhao
- 4Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Shihao Liu
- 5Department of Cell and Developmental Biology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, USA
| | - Junping Zhang
- 2Department of Geriatric Medicine, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jun Wang
- 1Institute of Basic Theory, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
20
|
|
21
|
Huang C, Chu H, Ma Y, Zhou Z, Dai C, Huang X, Fang L, Ao Q, Huang D. The neuroprotective effect of deep brain stimulation at nucleus basalis of Meynert in transgenic mice with Alzheimer's disease. Brain Stimul 2018; 12:161-174. [PMID: 30181106 DOI: 10.1016/j.brs.2018.08.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 08/19/2018] [Accepted: 08/22/2018] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common type of dementia and mainly treated by drugs, while the therapeutic outcomes are very limited. This study aimed to determine the optimized parameters of deep brain stimulation (DBS) which was applied to the treatment of AD and propose the involved mechanisms. METHODS Amyloid-β precursor protein/Presenilin1 (APP/PS1) transgenic mice were used and received DBS at nucleus basalis of Meynert (NBM). The optimized parameters of DBS were determined by using different stimulation frequencies, durations and ages of mice under Morris water maze test. The involved mechanisms and the possible signal pathways were also investigated. RESULTS The optimized parameters for DBS were high frequency (100 Hz) for 21 days starting from early age (4 months old). Under the above parameters, the soluble Aβ40 and Aβ42 in the hippocampus and cortex were down-regulated significantly. DBS increased survival neurons and reduced apoptotic cells in the hippocampus and cortex. Meanwhile, the apoptosis-related proteins caspase-3, caspase-8 and Bid were down-regulated. Moreover, DBS caused a significant increase of superoxide dismutase, glutathione peroxidase and choline acetyltransferase activity as well as a decrease of methane dicarboxylic aldehyde content and acetylcholine esterase activity. Phosphorylation of Akt (p-Akt)/total Akt (t-Akt) was up-regulated while p-extracellular signal-regulated kinase 1/2 (ERK1/2)/t-ERK1/2 was down-regulated. The neuroprotective effect of DBS was attenuated by their inhibitors. CONCLUSIONS NBM-DBS starting from 4 months of age for 21 days at a high frequency (100 Hz) has therapeutic effects on AD through activating phosphatidylinositol 3'-kinase (PI3K)/Akt pathway and inhibiting ERK1/2 pathway.
Collapse
Affiliation(s)
- Chuyi Huang
- Department of Neurology, Shanghai East Hospital, Tongji University School of Medicine, No. 150 Jimo Road, Shanghai 200120, China
| | - Heling Chu
- Department of Neurology, Huashan Hospital, Fudan University, No.12 Mid. Wulumuqi Road, Shanghai 200040, China
| | - Yu Ma
- Department of Neurosurgery, Tsinghua University Yuquan Hospital, No. 5 Shijingshan Road, Shijingshan District, Beijing 100049, China
| | - Zaiying Zhou
- Center for Statistical Science of Tsinghua University, Beijing 100084, China
| | - Chuanfu Dai
- Department of Otolaryngology, Head and Neck Surgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
| | - Xiaowen Huang
- Department of Orthopedics, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Liang Fang
- Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China
| | - Qiang Ao
- Department of Tissue Engineering, China Medical University, No. 77 Puhe Road, Shenyang Liaoning, 110122, China.
| | - Dongya Huang
- Department of Neurology, Shanghai East Hospital, Tongji University School of Medicine, No. 150 Jimo Road, Shanghai 200120, China.
| |
Collapse
|
22
|
Cui H, Deng M, Zhang Y, Yin F, Liu J. Geniposide Increases Unfolded Protein Response-Mediating HRD1 Expression to Accelerate APP Degradation in Primary Cortical Neurons. Neurochem Res 2018; 43:669-680. [DOI: 10.1007/s11064-018-2469-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 12/03/2017] [Accepted: 01/08/2018] [Indexed: 02/20/2023]
|
23
|
Habtemariam S. Iridoids and Other Monoterpenes in the Alzheimer's Brain: Recent Development and Future Prospects. Molecules 2018; 23:molecules23010117. [PMID: 29316661 PMCID: PMC6017424 DOI: 10.3390/molecules23010117] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 01/04/2018] [Accepted: 01/05/2018] [Indexed: 12/14/2022] Open
Abstract
Iridoids are a class of monoterpenoid compounds constructed from 10-carbon skeleton of isoprene building units. These compounds in their aglycones and glycosylated forms exist in nature to contribute to mechanisms related to plant defenses and diverse plant-animal interactions. Recent studies have also shown that iridoids and other structurally related monoterpenes display a vast array of pharmacological effects that make them potential modulators of the Alzheimer’s disease (AD). This review critically evaluates the therapeutic potential of these natural products by assessing key in vitro and in vivo data published in the scientific literature. Mechanistic approach of scrutiny addressing their effects in the Alzheimer’s brain including the τ-protein phosphorylation signaling, amyloid beta (Aβ) formation, aggregation, toxicity and clearance along with various effects from antioxidant to antiinflammatory mechanisms are discussed. The drug likeness of these compounds and future prospects to consider in their development as potential leads are addressed.
Collapse
Affiliation(s)
- Solomon Habtemariam
- Pharmacognosy Research Laboratories & Herbal Analysis Services, University of Greenwich, Central Avenue, Chatham-Maritime, Kent ME4 4TB, UK.
| |
Collapse
|
24
|
Patel SS, Udayabanu M. Effect of natural products on diabetes associated neurological disorders. Rev Neurosci 2018; 28:271-293. [PMID: 28030360 DOI: 10.1515/revneuro-2016-0038] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 10/21/2016] [Indexed: 12/15/2022]
Abstract
Diabetes mellitus, a metabolic disorder, is associated with neurological complications such as depression, anxiety, hypolocomotion, cognitive dysfunction, phobias, anorexia, stroke, pain, etc. Traditional system of medicine is long known for its efficient management of diabetes. The current review discusses the scope of some common medicinal herbs as well as secondary metabolites with a special focus on diabetes-mediated central nervous system complications. Literatures suggest that natural products reduce diabetes-mediated neurological complications partly by reducing oxidative stress and/or inflammation or apoptosis in certain brain regions. Natural products are known to modulate diabetes-mediated alterations in the level of acetylcholinesterase, choline acetyltransferase, monoamine oxidase, serotonin receptors, muscarinic receptors, insulin receptor, nerve growth factor, brain-derived neurotrophic factor, and neuropeptide in brain. Further, there are several natural products reported to manage diabetic complications with unknown mechanism. In conclusion, medicinal plants or their secondary metabolites have a wide scope and possess therapeutic potential to effectively manage neurological complications associated with chronic diabetes.
Collapse
|
25
|
Habtemariam S. Antidiabetic Potential of Monoterpenes: A Case of Small Molecules Punching above Their Weight. Int J Mol Sci 2017; 19:ijms19010004. [PMID: 29267214 PMCID: PMC5795956 DOI: 10.3390/ijms19010004] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 12/06/2017] [Accepted: 12/18/2017] [Indexed: 12/19/2022] Open
Abstract
Monoterpenes belong to the terpenoids class of natural products and are bio-synthesized through the mevalonic acid pathway. Their small molecular weight coupled with high non-polar nature make them the most abundant components of essential oils which are often considered to have some general antioxidant and antimicrobial effects at fairly high concentrations. These compounds are however reported to have antidiabetic effects in recent years. Thanks to the ingenious biosynthetic machinery of nature, they also display a fair degree of structural complexity/diversity for further consideration in structure-activity studies. In the present communication, the merit of monoterpenes as antidiabetic agents is scrutinized by assessing recent in vitro and in vivo studies reported in the scientific literature. Both the aglycones and glycosides of these compounds of rather small structural size appear to display antidiabetic along with antiobesity and lipid lowering effects. The diversity of these effects vis-à-vis their structures and mechanisms of actions are discussed. Some key pharmacological targets include the insulin signaling pathways and/or the associated PI3K-AKT (protein kinase B), peroxisome proliferator activated receptor-γ (PPARγ), glucose transporter-4 (GLUT4) and adenosine monophosphate-activated protein kinase (AMPK) pathways; proinflammatory cytokines and the NF-κB pathway; glycogenolysis and gluconeogenesis in the liver; glucagon-like-1 receptor (GLP-1R); among others.
Collapse
Affiliation(s)
- Solomon Habtemariam
- Pharmacognosy Research Laboratories & Herbal Analysis Services, University of Greenwich, Central Avenue, Chatham-Maritime, Kent ME4 4TB, UK.
| |
Collapse
|
26
|
Wei H, Duan G, He J, Meng Q, Liu Y, Chen W, Meng Y. Geniposide attenuates epilepsy symptoms in a mouse model through the PI3K/Akt/GSK-3β signaling pathway. Exp Ther Med 2017; 15:1136-1142. [PMID: 29399113 DOI: 10.3892/etm.2017.5512] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 10/18/2017] [Indexed: 11/06/2022] Open
Abstract
Previous reports on the pharmacological actions of geniposide have indicated that it has anti-asthmatic, anti-inflammatory and analgesic effects in the liver and gallbladder, and therapeutic effects in neurological, cardiovascular and cerebrovascular diseases. The results of the current study demonstrate that geniposide attenuates epilepsy in a mouse model through the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt)/glycogen synthase kinase-3β (GSK-3β) signaling pathway. A mouse model of epilepsy was induced by maximal electric shock (50 mA, 50 Hz, 1 sec). Epilepsy mice were intragastrically administered with 0, 5, 10 or 20 mg/kg geniposide. Geniposide significantly reduced the incidence and significantly increased the latency of clonic seizures in epileptic mice compared with non-treated epileptic mice (both P<0.01). Geniposide treatment significantly inhibited cyclooxygenase-2 mRNA expression in epilepsy mice (P<0.01). Furthermore, geniposide significantly suppressed the protein expression of activator protein 1, increased the activation of Akt and increased the protein expression of GSK-3β and PI3K in epilepsy mice (all P<0.01). These results suggest that geniposide attenuates epilepsy in mice through the PI3K/Akt/GSK-3β signaling pathway.
Collapse
Affiliation(s)
- Hongtao Wei
- Department of Neurosurgery, The Second People's Hospital of Gansu Province, Lanzhou, Gansu 730000, P.R. China
| | - Guanghui Duan
- Department of Neurosurgery, The Second People's Hospital of Gansu Province, Lanzhou, Gansu 730000, P.R. China
| | - Jianxun He
- Department of Neurosurgery, The Second People's Hospital of Gansu Province, Lanzhou, Gansu 730000, P.R. China
| | - Qinglong Meng
- Department of Neurosurgery, The Second People's Hospital of Gansu Province, Lanzhou, Gansu 730000, P.R. China
| | - Yuxian Liu
- Department of Neurosurgery, The Second People's Hospital of Gansu Province, Lanzhou, Gansu 730000, P.R. China
| | - Wanqiang Chen
- Department of Neurosurgery, The Second People's Hospital of Gansu Province, Lanzhou, Gansu 730000, P.R. China
| | - Yongpeng Meng
- Department of Neurosurgery, The Second People's Hospital of Gansu Province, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
27
|
Liu Z, Zhang Y, Liu J, Yin F. Geniposide attenuates the level of Aβ 1-42 via enhancing leptin signaling in cellular and APP/PS1 transgenic mice. Arch Pharm Res 2017; 40:571-578. [PMID: 28160136 DOI: 10.1007/s12272-016-0875-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 12/17/2016] [Indexed: 01/29/2023]
Abstract
An large body of evidence indicates that leptin has protective role against Alzheimer's disease, where it reduces β-amyloid (Aβ) production in both cell culture and animal models. Our previous studies revealed that geniposide could attenuate the production of Aβ1-42 and antagonize the neurotoxicity of Aβ1-42 in neurons. However, the mechanism that underlies these effects remains to be clarified. To investigate whether leptin signaling is involved in regulating the production of Aβ1-42 by geniposide, we treated primary neurons with leptin antagonist (LA), and determined the influence of LA on the activities of leptin signaling molecules and the expressions of secretases associated with the production of Aβ1-42. The finding showed that, accompanied with the inhibition on the level of Aβ1-42 in primary neurons and APP/PS1 transgenic mice, geniposide induced the phosphorylation of JAK2 and STAT3, regulated the expression level of α- and β-secretase, and all of these could be prevented by the pre-incubation with LA. The results of this study suggest that geniposide may regulate the production of Aβ1-42 via leptin signaling.
Collapse
Affiliation(s)
- Zixuan Liu
- School of Pharmacy & Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Yonglan Zhang
- School of Pharmacy & Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Jianhui Liu
- School of Pharmacy & Bioengineering, Chongqing University of Technology, Chongqing, 400054, China.
| | - Fei Yin
- School of Pharmacy & Bioengineering, Chongqing University of Technology, Chongqing, 400054, China.
| |
Collapse
|
28
|
Reversal of high fat diet-induced obesity improves glucose tolerance, inflammatory response, β-amyloid accumulation and cognitive decline in the APP/PSEN1 mouse model of Alzheimer's disease. Neurobiol Dis 2017; 100:87-98. [PMID: 28108292 DOI: 10.1016/j.nbd.2017.01.004] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 12/14/2016] [Accepted: 01/16/2017] [Indexed: 02/06/2023] Open
Abstract
This study assessed the extent to which high fat diet (HFD)-induced β-amyloid accumulation and cognitive decline in APP/PSEN1 mice are reversible through control of fat intake. Ten months of HFD (60% calories from fat) led to significant deficits in a 2-trial Y maze task, and nest building assay, and decreased voluntary locomotor activity. The HFD induced an inflammatory response, indicated by increased expression of several inflammatory markers. Substituting a low fat diet led to pronounced weight loss and correction of glucose intolerance, decreases in the inflammatory response, and improved performance on behavioral tasks in both wild-type and APP/PSEN1 transgenic mice. Insoluble β-amyloid levels, and extent of tau phosphorylation were also lower following dietary reversal in APP/PSEN1 mice compared to high fat-fed animals, indicating that the inflammatory response may have contributed to key pathogenic pathways in the Alzheimer's disease model. The data suggest that weight loss can be a vital strategy for cognitive protection, but also highlight potential mechanisms for intervention when sustained weight loss is not possible.
Collapse
|
29
|
Diosgenin and 5-Methoxypsoralen Ameliorate Insulin Resistance through ER-α/PI3K/Akt-Signaling Pathways in HepG2 Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:7493694. [PMID: 27656241 PMCID: PMC5021865 DOI: 10.1155/2016/7493694] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 07/27/2016] [Accepted: 08/02/2016] [Indexed: 12/12/2022]
Abstract
To determine the effects and the underlying mechanism of diosgenin (DSG) and 5-methoxypsoralen (5-MOP), two main active components in the classical Chinese prescription Hu-Lu-Ba-Wan (HLBW), on insulin resistance, HepG2 cells were incubated in medium containing insulin. Treatments with DSG, 5-MOP, and their combination were performed, respectively. The result showed that the incubation of HepG2 cells with high concentration insulin markedly decreased glucose consumption and glycogen synthesis. However, treatment with DSG, 5-MOP, or their combination significantly reversed the condition and increased the phosphorylated expression of estrogen receptor-α (ERα), sarcoma (Src), Akt/protein kinase B, glycogen synthase kinase-3β (GSK-3β), and the p85 regulatory subunit of phosphatidylinositol 3-kinase p85 (PI3Kp85). At the transcriptional level, expression of the genes mentioned above also increased except for the negative regulation of GSK-3β mRNA. The increased expression of glucose transport-4 (GLUT-4) was meanwhile observed through immunofluorescence. Nevertheless, the synergistic effect of DSG and 5-MOP on improving glycometabolism was not obvious in the present study. These results suggested that DSG and 5-MOP may improve insulin resistance through an ER-mediated PI3K/Akt activation pathway which may be a new strategy for type 2 diabetes mellitus, especially for women in an estrogen-deficient condition.
Collapse
|