1
|
Han H, Wen Z, Yang M, Wang C, Ma Y, Chen Q, Jiang D, Xu Y, Fazal A, Jie W, Lv X, Yin T, Lin H, Lu G, Qi J, Yang Y, Xu G. Shikonin Derivative Suppresses Colorectal Cancer Cells Growth via Reactive Oxygen Species-Mediated Mitochondrial Apoptosis and PI3K/AKT Pathway. Chem Biodivers 2025; 22:e202403291. [PMID: 40022742 DOI: 10.1002/cbdv.202403291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/07/2025] [Accepted: 02/10/2025] [Indexed: 03/04/2025]
Abstract
Colorectal cancer (CRC) is one of the deadliest cancers globally, ranking as the third most prevalent and second most lethal malignancy worldwide. The standard treatment for CRC typically involves a combination of surgery, radiotherapy, and chemotherapy. Despite advancements in CRC treatment, the prognosis remains unsatisfactory, primarily due to unclear mechanisms underlying tumorigenesis and the aggression of CRC. The aberrant activation of the PI3K/AKT pathway is frequently implicated in the initiation, progression, and metastasis of CRC. Studies have demonstrated that shikonin (SK) exerts anti-cancer effects. In this study, we evaluated the anti-tumor activities of a series of semi-synthesized SK derivatives against CRC cells. Our findings revealed that the SK derivative (M12) significantly inhibited the proliferation and colony formation of CRC cells, reduced cell migration, and induced apoptosis. Mechanistically, M12 enhanced the production of reactive oxygen species and downregulated the mitochondrial membrane potential, ultimately leading to mitochondrial apoptosis. Furthermore, M12 exhibited anti-CRC effects by modulating the PI3K/AKT signaling pathway and significantly suppressed tumorigenicity without causing notable adverse effects in mice. Therefore, targeting the PI3K/AKT pathway could be a promising treatment for CRC. M12 appears to be a promising candidate for the effective and safe treatment of CRC.
Collapse
Affiliation(s)
- Hongwei Han
- School of Life Sciences and Chemical Engineering, Jiangsu Second Normal University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Zhongling Wen
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Minkai Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Changyi Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Yudi Ma
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Qingqing Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Dexing Jiang
- School of Life Sciences and Chemical Engineering, Jiangsu Second Normal University, Nanjing, China
| | - Ye Xu
- School of Life Sciences and Chemical Engineering, Jiangsu Second Normal University, Nanjing, China
| | - Aliya Fazal
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Wencai Jie
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Xiaoran Lv
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Tongming Yin
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Hongyan Lin
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- School of Pharmacy, Changzhou University, Changzhou, China
| | - Guihua Lu
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian, China
| | - Jinliang Qi
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Yonghua Yang
- School of Life Sciences and Chemical Engineering, Jiangsu Second Normal University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Guohua Xu
- School of Life Sciences and Chemical Engineering, Jiangsu Second Normal University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, China
| |
Collapse
|
2
|
Han H, Yang M, Wen Z, Mei F, Chen Q, Ma Y, Lai X, Zhang Y, Fang R, Yin T, Sun S, Wang X, Qi J, Lin H, Yang Y. Trametinib and M17, a novel small molecule inhibitor of AKT, display a synergistic antitumor effect in triple negative breast cancer cells through the AKT/mTOR and MEK/ERK pathways. Bioorg Chem 2025; 154:107981. [PMID: 39591692 DOI: 10.1016/j.bioorg.2024.107981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/02/2024] [Accepted: 11/17/2024] [Indexed: 11/28/2024]
Abstract
Triple negative breast cancer (TNBC) is associated with a poor prognosis and limited response to traditional chemotherapy, necessitating the exploration of novel treatment approaches. Recent researches have highlighted the interconnected roles of the PI3K/AKT pathway and MAPK pathway in TNBC cells, contributing to the efficacy of treatments. Therefore, the concurrent inhibition of both pathways presents a potential new therapeutic strategy for TNBC patients. This study aimed to evaluate the antitumor efficacy of M17, an AKT allosteric inhibitor and a new synthesized shikonin derivative, both alone and in combination with the MEK inhibitor trametinib. We applied various cellular assays and a subcutaneous 4T1 tumor bearing BALB/c mice model were utilized to assess the in vitro and in vivo antitumor effects. Computational docking and Bio-Layer Interferometry (BLI) were employed to investigate the binding of M17 with AKT. Additionally, flow cytometry, transwell assays, western blotting, and tumor xenograft assays were conducted to explore the potential synergistic mechanisms of the combined therapy. The results demonstrated that M17 exhibited moderate antitumor activity against TNBC cells, but significantly enhanced the apoptotic effects and inhibited proliferation and migration when combined with trametinib. Furthermore, the combination of M17 and trametinib showed even more pronounced antitumor activity in vivo. Mechanistically, the dual therapy synergistically suppressed TNBC by targeting the AKT/mTOR and MEK/ERK signaling pathways and inhibiting epithelial-mesenchymal transition. In conclusion, the findings suggested that the combination of M17 and trametinib holds promise as a synergistic treatment option for TNBC patients.
Collapse
Affiliation(s)
- Hongwei Han
- School of Life Sciences and Chemical Engineering, Jiangsu Second Normal University, Nanjing 210013, China; State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Minkai Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Zhongling Wen
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Feng Mei
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Qingqing Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Yudi Ma
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaohui Lai
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Yahan Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Rongjun Fang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Tongming Yin
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Shucun Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Xiaoming Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Jinliang Qi
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Hongyan Lin
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China; School of Pharmacy, Changzhou University, Changzhou 213164, China.
| | - Yonghua Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
3
|
Valipour M. Recent advances of antitumor shikonin/alkannin derivatives: A comprehensive overview focusing on structural classification, synthetic approaches, and mechanisms of action. Eur J Med Chem 2022; 235:114314. [DOI: 10.1016/j.ejmech.2022.114314] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/20/2022] [Accepted: 03/20/2022] [Indexed: 12/22/2022]
|
4
|
Mu Z, Guo J, Zhang D, Xu Y, Zhou M, Guo Y, Hou Y, Gao X, Han X, Geng L. Therapeutic Effects of Shikonin on Skin Diseases: A Review. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 49:1871-1895. [PMID: 34961421 DOI: 10.1142/s0192415x21500889] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Shikonin is one of the primary active components extracted from the dried root ofZicao (Lithospermum erythrorhizon, Onosma paniculata, or Arnebia euchroma), a traditional Chinese herbal medicine. Shikonin is known to not only exert anti-proliferative, anti-inflammatory, and anti-angiogenic activities, but also play a crucial role in triggering the production of reactive oxygen species, suppressing the release of exosomes, and inducing apoptosis. Increasing evidence suggests that shikonin has a protective effect against skin diseases, including psoriasis, melanoma, and hypertrophic scars. In order to evaluate the application potential of shikonin in the treatment of skin diseases, this review is the first of its kind to provide comprehensive and up-to-date information regarding the uses of shikonin and its derivatives on skin diseases and its underlying mechanisms. In this review, we have focused on the signaling pathways and cellular targets involved in the anti-dermatosis effects of shikonin to bridge the gaps in the literature, thereby providing scientific support for the research and development of new drugs from a traditional medicinal plant.
Collapse
Affiliation(s)
- Zhenzhen Mu
- China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110000, P. R. China.,Department of Dermatology, No. 1 Hospital of China Medical University, 155N, Nanjing Street, Heping District, Shenyang, Liaoning 110000, P. R. China.,Department of Dermatology, Shengjing Hospital of China Medical University, 36N, Sanhao Street, Heping District, Shenyang, Liaoning 110000, P. R. China
| | - Jinrong Guo
- China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110000, P. R. China.,Department of Dermatology, No. 1 Hospital of China Medical University, 155N, Nanjing Street, Heping District, Shenyang, Liaoning 110000, P. R. China.,Department of Dermatology, Jincheng People's Hospital, 456N, Wenchang East Street, Jincheng, Shanxi 048000, P. R. China
| | - Dongxia Zhang
- Department of Dermatology, Zhongshan Torch Development Zone Hospital, 123N, Yixian Road, Torch Zone, Zhongshan 528400, Guangdong, P. R. China
| | - Yuanyuan Xu
- Department of Dermatology, No. 1 Hospital of China Medical University, 155N, Nanjing Street, Heping District, Shenyang, Liaoning 110000, P. R. China
| | - Mingming Zhou
- China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110000, P. R. China.,Department of Dermatology, No. 1 Hospital of China Medical University, 155N, Nanjing Street, Heping District, Shenyang, Liaoning 110000, P. R. China
| | - Yimeng Guo
- China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110000, P. R. China.,Department of Dermatology, No. 1 Hospital of China Medical University, 155N, Nanjing Street, Heping District, Shenyang, Liaoning 110000, P. R. China
| | - Yuzhu Hou
- China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110000, P. R. China.,Department of Dermatology, No. 1 Hospital of China Medical University, 155N, Nanjing Street, Heping District, Shenyang, Liaoning 110000, P. R. China
| | - Xinghua Gao
- Department of Dermatology, No. 1 Hospital of China Medical University, 155N, Nanjing Street, Heping District, Shenyang, Liaoning 110000, P. R. China
| | - Xiuping Han
- Department of Dermatology, Shengjing Hospital of China Medical University, 36N, Sanhao Street, Heping District, Shenyang, Liaoning 110000, P. R. China
| | - Long Geng
- Department of Dermatology, No. 1 Hospital of China Medical University, 155N, Nanjing Street, Heping District, Shenyang, Liaoning 110000, P. R. China
| |
Collapse
|
5
|
Nathanael J, Suardana P, Vianney YM, Dwi Putra SE. The role of FoxO1 and its modulation with small molecules in the development of diabetes mellitus: A review. Chem Biol Drug Des 2021; 99:344-361. [PMID: 34862852 DOI: 10.1111/cbdd.13989] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/11/2021] [Accepted: 11/21/2021] [Indexed: 12/14/2022]
Abstract
Diabetes mellitus type 2 (T2D) is one of the metabolic disorders suffered by a global human being. Certain factors, such as lifestyle and heredity, can increase a person's tendency for T2D. Various genes and proteins play a role in the development of insulin resistance and ultimately diabetes in which one central protein that is discussed in this review is FoxO1. In this review, we regard FoxO1 activation as detrimental, promote high plasma glucose level, and induce insulin resistance. Indeed, many contrasting studies arise since FoxO1 is an important protein to alleviate oxidative stress and promote cell survival, for example, also by preventing hyperglycemic-induced cell death. Inter-relation to PPARG, another important protein in metabolism, is also discussed. Ultimately, we discussed contrasting approaches of targeting FoxO1 to combat diabetes mellitus by small molecules.
Collapse
Affiliation(s)
- Joshua Nathanael
- Department of Biotechnology, Faculty of Biotechnology, University of Surabaya, Surabaya, East Java, Indonesia
| | - Putu Suardana
- Department of Biotechnology, Faculty of Biotechnology, University of Surabaya, Surabaya, East Java, Indonesia
| | - Yoanes Maria Vianney
- Department of Biotechnology, Faculty of Biotechnology, University of Surabaya, Surabaya, East Java, Indonesia
| | - Sulistyo Emantoko Dwi Putra
- Department of Biotechnology, Faculty of Biotechnology, University of Surabaya, Surabaya, East Java, Indonesia
| |
Collapse
|
6
|
Ma SX, Tang LB, Chen ZH, Wei ML, Tang ZJ, Zheng YH, Zong G, Li J. Effects of shikonin on the development of ovarian follicles and female germline stem cells. J Int Med Res 2021; 49:3000605211029461. [PMID: 34325571 PMCID: PMC8327240 DOI: 10.1177/03000605211029461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Objective To investigate the effects and potential mechanism of action of shikonin (SHK) on the development of ovarian follicles and female germline stem cells (FGSCs). Methods Female Kunming adult mice were administered SHK (0, 20 and 50 mg/kg) by oral gavage. Cultures of FGSCs were treated with SHK 32 μmol/l for 24 h. The ovarian index in mouse ovaries was calculated. Numbers of primordial, primary and atretic follicles were counted. Germline stem cell markers and apoptosis were examined. Levels of glutathione (GSH), superoxide dismutase (SOD) and reactive oxygen species (ROS) were measured. Results Both doses of SHK significantly decreased the ovarian index, the numbers of primordial follicles, primary follicles and antral follicles in mice. SHK significantly increased the numbers of atretic follicles and atretic corpora lutea. SHK promoted apoptosis in vivo and in vitro. SHK significantly decreased the levels of the germline stem cell markers. SHK significantly lowered GSH levels and the activity of SOD in the peripheral blood from mice, whereas SHK significantly elevated cellular ROS content in FGSCs. Conclusions These current results suggested that follicular development and FGSCs were suppressed by SHK through the induction of apoptosis and oxidative stress might be involved in this pathological process.
Collapse
Affiliation(s)
- Shu-Xin Ma
- Key Laboratory of Reproductive Physiology and Pathology of Jiangxi Province, Nanchang University, Nanchang, Jiangxi Province, China.,Queen Mary School, Jiangxi Medical College of Nanchang University, Nanchang, Jiangxi Province, China
| | - Li-Bo Tang
- Second Clinical Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Zhi-Hang Chen
- Key Laboratory of Reproductive Physiology and Pathology of Jiangxi Province, Nanchang University, Nanchang, Jiangxi Province, China.,Queen Mary School, Jiangxi Medical College of Nanchang University, Nanchang, Jiangxi Province, China
| | - Min-Li Wei
- Key Laboratory of Reproductive Physiology and Pathology of Jiangxi Province, Nanchang University, Nanchang, Jiangxi Province, China
| | - Zi-Juan Tang
- Key Laboratory of Reproductive Physiology and Pathology of Jiangxi Province, Nanchang University, Nanchang, Jiangxi Province, China
| | - Yue-Hui Zheng
- Key Laboratory of Reproductive Physiology and Pathology of Jiangxi Province, Nanchang University, Nanchang, Jiangxi Province, China
| | - Guo Zong
- Shanghai Horizon Medical Technology Co., Ltd, Shanghai, China
| | - Jia Li
- Key Laboratory of Reproductive Physiology and Pathology of Jiangxi Province, Nanchang University, Nanchang, Jiangxi Province, China
| |
Collapse
|
7
|
Ma Y, Yang X, Han H, Wen Z, Yang M, Zhang Y, Fu J, Wang X, Yin T, Lu G, Qi J, Lin H, Wang X, Yang Y. Design, synthesis and biological evaluation of anilide (dicarboxylic acid) shikonin esters as antitumor agents through targeting PI3K/Akt/mTOR signaling pathway. Bioorg Chem 2021; 111:104872. [PMID: 33838560 DOI: 10.1016/j.bioorg.2021.104872] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/24/2021] [Accepted: 03/24/2021] [Indexed: 12/24/2022]
Abstract
Triple-negative breast cancer (TNBC) has an unfavorable prognosis attribute to its low differentiation, rapid proliferation and high distant metastasis rate. PI3K/Akt/mTOR as an intracellular signaling pathway plays a key role in the cell proliferation, migration, invasion, metabolism and regeneration. In this work, we designed and synthesized a series of anilide (dicarboxylic acid) shikonin esters targeting PI3K/Akt/mTOR signaling pathway, and assessed their antitumor effects. Through three rounds of screening by computer-aided drug design method (CADD), we preliminarily obtained sixteen novel anilide (dicarboxylic acid) shikonin esters and identified them as excellent compounds. CCK-8 assay results demonstrated that compound M9 exhibited better antiproliferative activities against MDA-MB-231, A549 and HeLa cell lines than shikonin (SK), especially for MDA-MB-231 (M9: IC50 = 4.52 ± 0.28 μM; SK: IC50 = 7.62 ± 0.26 μM). Moreover, the antiproliferative activity of M9 was better than that of paclitaxel. Further pharmacological studies showed that M9 could induce apoptosis of MDA-MB-231 cells and arrest the cell cycle in G2/M phase. M9 also inhibited the migration of MDA-MB-231 cells by inhibiting Wnt/β-catenin signaling pathway. In addition, western blot results showed that M9 could inhibit cell proliferation and migration by down-regulating PI3K/Akt/mTOR signaling pathway. Finally, a three-dimensional quantitative structure-activity relationship (3D-QSAR) model was also constructed to provide a basis for further development of shikonin derivatives as potential antitumor drugs through structure-activity relationship analysis. To sum up, M9 could be a potential candidate for TNBC therapy.
Collapse
Affiliation(s)
- Yingying Ma
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Xiaorong Yang
- School of Biology and Geography Science, Yili Normal University, Yining 835000, China
| | - Hongwei Han
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Zhongling Wen
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Minkai Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Yahan Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Jiangyan Fu
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Xuan Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Tongming Yin
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Guihua Lu
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Jinliang Qi
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Hongyan Lin
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China.
| | - Xiaoming Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China.
| | - Yonghua Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
8
|
Cui J, Zhou X, Huang J, Cui J, Chen J. Selective Antitumor Effect of Shikonin Derived DMAKO-20 on Melanoma through CYP1B1. Curr Cancer Drug Targets 2020; 21:CCDT-EPUB-111521. [PMID: 33200710 DOI: 10.2174/1568009620666201116112937] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/13/2020] [Accepted: 09/22/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND CYP1B1 is recognized as a valuable target for chemotherapy. It catalyzes the bioactivation of naphthoquinone oximes within certain cancer cell lines. However, the expression level of CYP1B1 in melanoma and the functional role regulating the activity of DMAKO-20 as a representative naphthoquinone oxime against skin carcinoma is still unknown. OBJECTIVE We sought to examine the expression level of CYP1B1 in melanoma and explore the molecular mechanism behind the anticancer effects of DMAKO-20 in melanoma. METHODS CYP1B1 expression levels in paraffin specimens taken from melanoma patients, and its expression levels in B16/F10 cancer cells were investigated using immunohistochemical staining. The molecular mechanisms behind DMAKO20 activity against melanoma was investigated by using cytotoxicity, cell scratching, apoptotic, and immunoblotting assays. RESULTS CYP1B1, the P450 isoform was expressed at high levels in melanoma tissues and cultured B16/F10 cells, but was undetectable in normal tissues or fibroblasts. In cell proliferation assays, the shikonin oxime DMAKO-20 exhibited potent and selective antiproliferative effects against B16/F10 melanoma cells and inhibited migration. Several mechanisms for the anticancer effects of DMAKO-20 have been identified in B16/F10 melanoma cells, including apoptosis, upregulation of mitochondrial apoptotic Bax proteins and downregulation of anti-apoptotic Bcl-2. The results from these mechanistic investigations indicated that DMAKO-20 underwent CYP1B1-mediated metabolic activation to activate anticancer metabolites within melanoma cells. CONCLUSION DMAKO-20 exhibited a selective cytotoxic effect on melanoma cells through CYP1B1-mediated activation. Using DMAKO-20 as a lead compound, further structural optimization may provide new drug entities for the treatments of malignant skin carcinomas.
Collapse
Affiliation(s)
- Junqi Cui
- Shanghai Ninth People's Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Center for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute, Shanghai 200011. China
| | - Xiaobo Zhou
- Shanghai Ninth People's Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Center for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute, Shanghai 200011. China
| | - Jia Huang
- Shanghai Ninth People's Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Center for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute, Shanghai 200011. China
| | - Jiahua Cui
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240. China
| | - Jun Chen
- Shanghai Ninth People's Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Center for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute, Shanghai 200011. China
| |
Collapse
|
9
|
Wang J, Iannarelli R, Pucciarelli S, Laudadio E, Galeazzi R, Giangrossi M, Falconi M, Cui L, Navia AM, Buccioni M, Marucci G, Tomassoni D, Serini L, Sut S, Maggi F, Dall'Acqua S, Marchini C, Amici A. Acetylshikonin isolated from Lithospermum erythrorhizon roots inhibits dihydrofolate reductase and hampers autochthonous mammary carcinogenesis in Δ16HER2 transgenic mice. Pharmacol Res 2020; 161:105123. [PMID: 32822867 DOI: 10.1016/j.phrs.2020.105123] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/16/2020] [Accepted: 07/28/2020] [Indexed: 12/21/2022]
Abstract
Breast cancer (BC) is the most common cancer in women and, among different BC subtypes, triple negative (TN) and human epidermal growth factor receptor 2 (HER2)-positive BCs have the worst prognosis. In this study, we investigated the anticancer activity of the root ethanolic and hexane extracts from Lithospermum erythrorhizon, a traditional Chinese herbal medicine known also as tzu ts'ao or tzu-ken, against in vitro and in vivo models of TNBC and HER2-positive BC. Treatment with L. erythrorhizon root extracts resulted in a dose-dependent inhibition of BC cell viability and in a significant reduction of the growth of TNBC cells transplanted in syngeneic mice. Acetylshikonin, a naphthoquinone, was identified as the main bioactive component in extracts and was responsible for the observed antitumor activity, being able to decrease BC cell viability and to interfere with autochthonous mammary carcinogenesis in Δ16HER2 transgenic mice. Acetylshikonin anticancer effect depends on its ability to act as a potent inhibitor of dihydrofolate reductase (DHFR), to down-regulate key mediators governing cancer growth and progression, such as HER2, Src and STAT3, and to induce apoptosis by caspase-3 activation. The accumulation of acetylshikonin in blood samples as well as in brain, kidney, liver and tumor tissues was also investigated by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) highlighting that L. erythrorhizon treatment is effective in delivering the active compound into the target tissues. These results provide evidence that L. erythrorhizon extract and in particular its main component acetylshikonin are effective against aggressive BC subtypes and reveal new acetylshikonin mechanisms of action.
Collapse
Affiliation(s)
- Junbiao Wang
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032, Camerino, Italy
| | | | - Stefania Pucciarelli
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032, Camerino, Italy
| | - Emiliano Laudadio
- Dipartimento Scienze e Ingegneria della Materia, dell'Ambiente ed Urbanistica, Università Politecnica delle Marche, Ancona, 60128, Italy
| | - Roberta Galeazzi
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, 60128, Italy
| | - Mara Giangrossi
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032, Camerino, Italy
| | - Maurizio Falconi
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032, Camerino, Italy
| | - Lishan Cui
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032, Camerino, Italy
| | | | - Michela Buccioni
- School of Pharmacy, University of Camerino, 62032, Camerino, Italy
| | | | - Daniele Tomassoni
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032, Camerino, Italy
| | - Laura Serini
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032, Camerino, Italy
| | - Stefania Sut
- DAFNAE Dipartimento di Agronomia, Animali, Alimenti, Risorse naturali e Ambiente, University of Padova, 35020, Legnaro, Italy
| | - Filippo Maggi
- School of Pharmacy, University of Camerino, 62032, Camerino, Italy
| | - Stefano Dall'Acqua
- DSF Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35121, Padova, Italy.
| | - Cristina Marchini
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032, Camerino, Italy.
| | - Augusto Amici
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032, Camerino, Italy
| |
Collapse
|
10
|
Stallinger A, Kretschmer N, Kleinegger F, Brvar L, Liegl-Atzwanger B, Prokesch A, Durchschein C, Bauer R, Deutsch A, Rinner B. β,β-Dimethylacrylshikonin Induces Apoptosis in Melanoma Cell Lines by NOXA Upregulation. JOURNAL OF NATURAL PRODUCTS 2020; 83:305-315. [PMID: 31961147 DOI: 10.1021/acs.jnatprod.9b00719] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Melanoma is the most aggressive form of skin cancer, with high metastasis rates and poor prognosis. Survival rates and possible therapies depend on the state of the tumor and its mutational profile. BRAF and NRAS are the most frequent driver mutations. Currently, there is no efficient therapy for NRAS-mutated or late-stage melanoma. In this study, the therapeutic potential of β,β-dimethylacrylshikonin (DMAS) was investigated on melanoma. The influence of DMAS was determined in five different melanoma cell lines with different mutational profiles. The effects of this compound on cell viability, apoptosis, and gene and protein expression were examined. The results obtained were validated in vivo. DMAS significantly reduced the viability of several melanoma cell lines in a concentration- and time-dependent manner. Furthermore, DMAS induced caspase-3-dependent apoptosis via NOXA upregulation, as confirmed by NOXA knockdown experiments. This is the first time that NOXA-dependent apoptosis was shown with respect to a shikonin derivative and melanoma. Additionally, tumor regression and necrosis under DMAS treatment were demonstrated in vivo. Importantly, BRAF as well as NRAS-mutated metastatic human melanoma cell lines were treated successfully in vitro and in vivo. Taken together, DMAS showed promising results and is worthy of further study.
Collapse
Affiliation(s)
- Alexander Stallinger
- Division of Biomedical Research , Medical University of Graz , 8036 Graz , Austria
| | - Nadine Kretschmer
- Division of Biomedical Research , Medical University of Graz , 8036 Graz , Austria
- Institute of Pharmaceutical Sciences, Department of Pharmacognosy , University of Graz , 8010 Graz , Austria
| | - Florian Kleinegger
- Diagnostic and Research Institute of Pathology , Medical University of Graz , 8010 Graz , Austria
| | - Luka Brvar
- Division of Biomedical Research , Medical University of Graz , 8036 Graz , Austria
| | | | - Andreas Prokesch
- Gottfried Schatz Research Center for Cell Signaling, Metabolism & Aging , Medical University of Graz , 8010 Graz , Austria
- Division of Cell Biology, Histology and Embryology , Medical University of Graz , 8010 Graz , Austria
| | - Christin Durchschein
- Institute of Pharmaceutical Sciences, Department of Pharmacognosy , University of Graz , 8010 Graz , Austria
| | - Rudolf Bauer
- Institute of Pharmaceutical Sciences, Department of Pharmacognosy , University of Graz , 8010 Graz , Austria
| | - Alexander Deutsch
- Division of Hematology, Medical University of Graz , 8036 Graz , Austria
| | - Beate Rinner
- Division of Biomedical Research , Medical University of Graz , 8036 Graz , Austria
| |
Collapse
|
11
|
Luo H, Vong CT, Chen H, Gao Y, Lyu P, Qiu L, Zhao M, Liu Q, Cheng Z, Zou J, Yao P, Gao C, Wei J, Ung COL, Wang S, Zhong Z, Wang Y. Naturally occurring anti-cancer compounds: shining from Chinese herbal medicine. Chin Med 2019; 14:48. [PMID: 31719837 PMCID: PMC6836491 DOI: 10.1186/s13020-019-0270-9] [Citation(s) in RCA: 318] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 10/23/2019] [Indexed: 12/24/2022] Open
Abstract
Numerous natural products originated from Chinese herbal medicine exhibit anti-cancer activities, including anti-proliferative, pro-apoptotic, anti-metastatic, anti-angiogenic effects, as well as regulate autophagy, reverse multidrug resistance, balance immunity, and enhance chemotherapy in vitro and in vivo. To provide new insights into the critical path ahead, we systemically reviewed the most recent advances (reported since 2011) on the key compounds with anti-cancer effects derived from Chinese herbal medicine (curcumin, epigallocatechin gallate, berberine, artemisinin, ginsenoside Rg3, ursolic acid, silibinin, emodin, triptolide, cucurbitacin B, tanshinone I, oridonin, shikonin, gambogic acid, artesunate, wogonin, β-elemene, and cepharanthine) in scientific databases (PubMed, Web of Science, Medline, Scopus, and Clinical Trials). With a broader perspective, we focused on their recently discovered and/or investigated pharmacological effects, novel mechanism of action, relevant clinical studies, and their innovative applications in combined therapy and immunomodulation. In addition, the present review has extended to describe other promising compounds including dihydroartemisinin, ginsenoside Rh2, compound K, cucurbitacins D, E, I, tanshinone IIA and cryptotanshinone in view of their potentials in cancer therapy. Up to now, the evidence about the immunomodulatory effects and clinical trials of natural anti-cancer compounds from Chinese herbal medicine is very limited, and further research is needed to monitor their immunoregulatory effects and explore their mechanisms of action as modulators of immune checkpoints.
Collapse
Affiliation(s)
- Hua Luo
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Chi Teng Vong
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Hanbin Chen
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Yan Gao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Peng Lyu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Ling Qiu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Mingming Zhao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Qiao Liu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Zehua Cheng
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Jian Zou
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Peifen Yao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Caifang Gao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Jinchao Wei
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Carolina Oi Lam Ung
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Shengpeng Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Zhangfeng Zhong
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Yitao Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| |
Collapse
|
12
|
Shikonin derivatives for cancer prevention and therapy. Cancer Lett 2019; 459:248-267. [PMID: 31132429 DOI: 10.1016/j.canlet.2019.04.033] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/15/2019] [Accepted: 04/26/2019] [Indexed: 12/25/2022]
Abstract
Phytochemicals gained considerable interest during the past years as source to develop new treatment options for chemoprevention and cancer therapy. Motivated by the fact that a majority of established anticancer drugs are derived in one way or another from natural resources, we focused on shikonin, a naphthoquinone with high potentials to be further developed as preventive or therapeutic drug to fight cancer. Shikonin is the major chemical component of Lithospermum erythrorhizon (Purple Cromwell) roots. Traditionally, the root extract has been applied to cure dermatitis, burns, and wounds. Over the past three decades, the anti-inflammatory and anticancer effects of root extracts, isolated shikonin as well as semi-synthetic and synthetic derivatives and nanoformulations have been described. In vitro and in vivo experiments were conducted to understand the effect of shikonin at cellular and molecular levels. Preliminary clinical trials indicate the potential of shikonin for translation into clinical oncology. Shikonin exerts additive and synergistic interactions in combination with established chemotherapeutics, immunotherapeutic approaches, radiotherapy and other treatment modalities, which further underscores the potential of this phytochemical to be integrated into standard treatment regimens.
Collapse
|
13
|
Figat R, Zgadzaj A, Geschke S, Sieczka P, Pietrosiuk A, Sommer S, Skrzypczak A. Cytotoxicity and antigenotoxicity evaluation of acetylshikonin and shikonin. Drug Chem Toxicol 2018; 44:140-147. [PMID: 30574814 DOI: 10.1080/01480545.2018.1536710] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Shikonin (SH) is used as a red pigment for food coloring and cosmetics, and has cytotoxic activity towards cancer cells. However, due to strong toxicity SH has limited potential as an anticancer drug. Acetylshikonin (ASH) is one of the SH derivatives with promising anticancer potential. In present study, we attempted to evaluate and compare the cytotoxicity of SH and ASH towards a normal cell line (V79) and in addition to evaluate their antigenotoxic activity. The evaluation was made with the use of the set of cytotoxicity assays with V79 line and the micronucleus test in vitro performed using clinafloxacin (CLFX), ethyl methanesulfonate (EMS) as direct genotoxins and cyclophosphamide (CPA) as indirect genotoxin. For CPA and EMS the simultaneous protocol was used and for CLFX three different variants were performed: pretreatment, simultaneous, and post-treatment. A higher cytotoxic effect was observed for SH. The EC50 values obtained for SH were approximately twofold lower compared to that of ASH. Moreover, ASH exhibited an antigenotoxic potential against CPA-induced genotoxicity, whereas SH has no activity. However, ASH increased the EMS-induced genotoxicity, when SH exhibited no effect. Both compounds decreased the genotoxicity of CLFX in pretreatment and simultaneous protocol. Based on the results of the present study it can be concluded that ASH is less cytotoxic than SH to normal cells and has comparable antigenotoxic potential.
Collapse
Affiliation(s)
- Ramona Figat
- Department of Environmental Health Sciences, Medical University of Warsaw, Poland
| | - Anna Zgadzaj
- Department of Environmental Health Sciences, Medical University of Warsaw, Poland
| | - Sylwia Geschke
- Department of Environmental Health Sciences, Medical University of Warsaw, Poland
| | - Patrycja Sieczka
- Department of Environmental Health Sciences, Medical University of Warsaw, Poland
| | - Agnieszka Pietrosiuk
- Department of Pharmaceutical Biology and Medicinal Plant Biotechnology, Medical University of Warsaw, Poland
| | - Sylwester Sommer
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Warsaw, Poland
| | - Agata Skrzypczak
- Department of Environmental Health Sciences, Medical University of Warsaw, Poland
| |
Collapse
|
14
|
Anti-tumor activity of Shikonin against afatinib resistant non-small cell lung cancer via negative regulation of PI3K/Akt signaling pathway. Biosci Rep 2018; 38:BSR20181693. [PMID: 30420490 PMCID: PMC6294622 DOI: 10.1042/bsr20181693] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 11/05/2018] [Accepted: 11/08/2018] [Indexed: 12/16/2022] Open
Abstract
Acquired resistance of afatinib is a significant challenge for non-small cell lung cancer (NSCLC) therapy and the mechanisms remain unclear. Aberrant activation of epidermal growth factor receptor (EGFR)-dependent downstream pathways, especially phosphatidylinositol-3-kinases/protein kinase B (PI3K/Akt) signaling pathway has been reported to be involved in the occurrence of afatinib resistance. Developing effective anti-cancer agents to overcome afatinib resistance by targetting PI3K/Akt signaling pathway will be a potential strategy for NSCLC treatment. Shikonin is a naphthoquinone compound isolated from the roots of Lithospermum erythrorhizon. In the present study, the anti-cancer activity of Shikonin was evaluated on afatinib-resistant NSCLC in vitro and in vivo. The data showed that Shikonin inhibited the proliferation and induced apoptosis of afatinib-resistant NSCLC cell line by activating apoptosis signaling pathway and negatively regulating PI3K/Akt signaling pathway. These results revealed that Shikonin was a potential apoptosis inducer in afatinib-resistant NSCLC and a promising candidate for treating patients clinically.
Collapse
|
15
|
Synthesis of Novel Shikonin Derivatives and Pharmacological Effects of Cyclopropylacetylshikonin on Melanoma Cells. Molecules 2018; 23:molecules23112820. [PMID: 30380765 PMCID: PMC6278577 DOI: 10.3390/molecules23112820] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 10/19/2018] [Accepted: 10/20/2018] [Indexed: 12/25/2022] Open
Abstract
Despite much research in the last centuries, treatment of malignant melanoma is still challenging because of its mostly unnoticeable metastatic spreading and aggressive growth rate. Therefore, the discovery of novel drug leads is an important goal. In a previous study, we have isolated several shikonin derivatives from the roots of Onosma paniculata Bureau & Franchet (Boraginaceae) which evolved as promising anticancer candidates. β,β-Dimethylacrylshikonin (1) was the most cytotoxic derivative and exhibited strong tumor growth inhibitory activity, in particular, towards melanoma cells. In this study, we synthesized eighteen novel shikonin derivatives in order to obtain compounds which exhibit a higher cytotoxicity than 1. We investigated their cytotoxic potential against various melanoma cell lines and juvenile skin fibroblasts. The most active compound was (R)-1-(1,4-dihydro-5,8-dihydroxy-1,4-dioxonaphthalen-2-yl)-4-methylpent-3-enyl cyclopropylacetate (cyclopropylacetylshikonin) (6). It revealed significant stronger tumor growth inhibitory activity towards two melanoma cell lines derived from metastatic lesions (WM164 and MUG-Mel2). Further investigations have shown that 6 induced apoptosis caspase-dependently, increased the protein levels of cleaved PARP, and led to double-stranded DNA breaks as shown by phosphorylation of H2AX. Cell membrane damage and cell cycle arrest were not observed.
Collapse
|
16
|
Anti-Inflammatory Activities of Compounds Isolated from the Rhizome of Anemarrhena asphodeloides. Molecules 2018; 23:molecules23102631. [PMID: 30322157 PMCID: PMC6222787 DOI: 10.3390/molecules23102631] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 10/06/2018] [Accepted: 10/10/2018] [Indexed: 01/28/2023] Open
Abstract
Fifteen unreported compounds in Anemarrhena asphodeloides, iriflophene (3), hostaplantagineoside C (7), tuberoside G (8), spicatoside B (9), platycodin D (14), platycoside A (15), platycodin D2 (16), polygalacin D2 (17), platycodin D3 (18), isovitexin (20), vitexin (21), 3,4-dihydroxyallylbenzene-3-O-α-l-rhamnopyranosyl(1→6)-β-d-glucopyranoside (22), iryptophan (24), adenosine (25), α-d-Glucose monoallyl ether (26), together with eleven known compounds (1, 2, 4⁻6, 10⁻13, 19 and 23), were isolated from the rhizomes of Anemarrhena asphodeloides. The chemical structures of these compounds were characterized using HRMS and NMR. The anti-inflammatory activities of the compounds were evaluated by investigating their ability to inhibit LPS-induced NO production in N9 microglial cells. Timosaponin BIII (TBIII) and trans-hinokiresinol (t-HL) exhibited significant inhibitory effects on the NO production in a dose-dependent manner with IC50 values of 11.91 and 39.08 μM, respectively. Immunoblotting demonstrated that TBIII and t-HL suppressed NO production by inhibiting the expressions of iNOS in LPS-stimulated N9 microglial cells. Further results revealed that pretreatment of N9 microglial cells with TBIII and t-HL attenuated the LPS-induced expression tumor necrosis factor (TNF)-α and interleukin-6 (IL-6) at mRNAs and protein levels. Moreover, the activation of nuclear factor-κB (NF-κB) and phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathways were inhibited by TBIII and t-HL, respectively. Our findings indicate that the therapeutic implication of TBIII and t-HL for neurogenerative disease associated with neuroinflammation.
Collapse
|
17
|
Zhang Q, Dong J, Cui J, Huang G, Meng Q, Li S. Cytotoxicity of Synthesized 1,4-Naphthoquinone Oxime Derivatives on Selected Human Cancer Cell Lines. Chem Pharm Bull (Tokyo) 2018; 66:612-619. [PMID: 29863062 DOI: 10.1248/cpb.c18-00013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In an effort to develop potent and selective antitumor agents, a series of 1,4-naphthoquinone oxime derivatives were designed and synthesized. The cytotoxicity of these compounds were evaluated against five human cancer cell lines (colorectal cancer cell: HCT-15, breast cancer cell: MDA-MB-231, liver cancer cell: BEL-7402, colorectal cancer cell: HCT-116 and ovarian cancer cell: A2780) in vitro. Among them, compound 14 was found to be the most potent cytotoxic compound against three cell lines (MDA-MB-231, BEL-7402 and A2780) with IC50 values of 0.66±0.05, 5.11±0.12 and 8.26±0.22 µM, respectively. Additionally, the length of the side chains and the position of the substituent may also affect the cytotoxic activity of the naphthoquinone oxime derivatives. In general, compound 14 effectively inhibited breast cancer cell proliferation and may become a promising anticancer agent.
Collapse
Affiliation(s)
- Qijing Zhang
- School of Pharmacy, Shanghai Jiao Tong University
| | - Jinyun Dong
- School of Pharmacy, Shanghai Jiao Tong University
| | - Jiahua Cui
- School of Pharmacy, Shanghai Jiao Tong University
| | - Guang Huang
- School of Pharmacy, Shanghai Jiao Tong University
| | | | - Shaoshun Li
- School of Pharmacy, Shanghai Jiao Tong University
| |
Collapse
|
18
|
Liang W, Cui J, Zhang K, Xi H, Cai A, Li J, Gao Y, Hu C, Liu Y, Lu Y, Wang N, Wu X, Wei B, Chen L. Shikonin induces ROS-based mitochondria-mediated apoptosis in colon cancer. Oncotarget 2017; 8:109094-109106. [PMID: 29312593 PMCID: PMC5752506 DOI: 10.18632/oncotarget.22618] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 08/26/2017] [Indexed: 12/21/2022] Open
Abstract
Colon cancer is the third most common malignancy worldwide, and chemotherapy is a widely used strategy in clinical therapy. Chemotherapy-resistant of colon cancer is the main cause of recurrence and progression. Novel drugs with efficacy and safety in treating colon cancer are urgently needed. Shikonin, a naphthoquinone derived from the roots of the herbal plant Lithospermum erythrorhizon, has been determined to be a potent anti-tumor agent. The aim of the present study was to detect the underlying anti-tumor mechanism of shikonin in colon cancer. We found that shikonin suppressed the growth of colon cancer cells in a dose-dependent manner in vitro and in vivo. Shikonin induced mitochondria-mediated apoptosis, which was regulated by Bcl-2 family proteins. Shikonin increased the generation of intracellular ROS, which played an upstream role in shikonin-induced apoptosis. Our data indicated that generation of ROS, down-regulated expression of Bcl-2 and Bcl-xL, depolarization of the mitochondrial membrane potential and activation of the caspase cascade were components of the programmed event of shikonin-induced apoptosis in colon cancer cells. In addition, shikonin presented minimal toxicity to non-neoplastic colon cells and no liver injury in xenograft models, showing safety in the control of colon cancer cell growth in vitro and in vivo. Taken together, our findings suggest that shikonin might serve as a potential novel therapeutic drug in the treatment of human colon cancer.
Collapse
Affiliation(s)
- Wenquan Liang
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing 100853, China.,Institute of General Surgery, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Jianxin Cui
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing 100853, China.,Institute of General Surgery, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Kecheng Zhang
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing 100853, China.,Institute of General Surgery, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Hongqing Xi
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing 100853, China.,Institute of General Surgery, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Aizhen Cai
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Jiyang Li
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing 100853, China.,Institute of General Surgery, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Yunhe Gao
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing 100853, China.,Institute of General Surgery, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Chong Hu
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing 100853, China.,Institute of General Surgery, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Yi Liu
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing 100853, China.,Institute of General Surgery, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Yixun Lu
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing 100853, China.,Institute of General Surgery, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Ning Wang
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Xiaosong Wu
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Bo Wei
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing 100853, China.,Institute of General Surgery, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Lin Chen
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing 100853, China.,Institute of General Surgery, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| |
Collapse
|
19
|
Shikonin suppresses pulmonary fibroblasts proliferation and activation by regulating Akt and p38 MAPK signaling pathways. Biomed Pharmacother 2017; 95:1119-1128. [PMID: 28922731 DOI: 10.1016/j.biopha.2017.09.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 09/03/2017] [Accepted: 09/06/2017] [Indexed: 01/23/2023] Open
Abstract
Fibroblast is believed to be the primary effector in idiopathic pulmonary fibrosis (IPF), a progressive lung disorder characterized by aberrant tissue remodeling and the formation of fibroblastic foci. Due to the complicated etiology and mechanism, there are few effective drugs for this fatal disease. Shikonin (SHI), which is the major ingredient isolated from the plant Lithospermum Erythrorhizon, has long been used as traditional medicine for many diseases including inflammation and cancer. The roles of SHI in attenuating skin scar and renal fibrosis by reducing TGFβ1-stimulated fibroblast activation are also reported. But whether SHI works on IPF which exhibits both inflammatory and carcinoma-like features remains unknown. In this study, using isolated pulmonary fibroblasts, we demonstrated that SHI inhibited the proliferation, migration of fibroblasts, enhanced cell apoptosis and led to cell cycle arrest at G1 and G2/M phase. Moreover, SHI reduced the production of α-SMA, fibronectin, collagen I and III in response to TGF-β induction in pulmonary fibroblasts, and all of these gene production is the key component of extracellular matrix for tissue remodeling for IPF. The phosphorylation of Akt was down-regulated, p53 increased, the mRNA levels of p21 and p27 enhanced after SHI treatments. The phosphorylation of both p38 MAPK and Akt stimulated by TGF-β was reduced after SHI treatments. Collectively, these data indicate that SHI has a strong cytotoxicity in pulmonary fibroblast via inhibiting Akt activation signaling pathway, and attenuates TGF-β induced extracellular matrix genes production in pulmonary fibroblasts via modulating the activities of p38 MAPK and Akt. SHI might serve as a therapeutically candidate for IPF patients.
Collapse
|
20
|
Cerium (IV) ammonium nitrate (CAN)-mediated regioselective synthesis and anticancer activity of 6-substituted 5,8-dimethoxy-1,4-naphthoquinone. CHINESE CHEM LETT 2017. [DOI: 10.1016/j.cclet.2016.10.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
21
|
Wu L, Fan Y, Fan C, Yu Y, Sun L, Jin Y, Zhang Y, Ye RD. Licocoumarone isolated from Glycyrrhiza uralensis selectively alters LPS-induced inflammatory responses in RAW 264.7 macrophages. Eur J Pharmacol 2017; 801:46-53. [PMID: 28263754 DOI: 10.1016/j.ejphar.2017.02.049] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 02/28/2017] [Accepted: 02/28/2017] [Indexed: 01/12/2023]
Abstract
The effects of licocoumarone (LC) isolated from Glycyrrhiza uralensis were studied in LPS-stimulated RAW 264.7 macrophages. Our study demonstrated that LC dose-dependently attenuated LPS-induced NO production by down-regulating iNOS expression. Additionally, the treatment with LC inhibited LPS-induced expression of cytokines including IL-1β, IL-6 and IL-10, but not TNF-α, at both mRNA and protein levels. Similar suppressive effects of LC were observed on LPS-stimulated murine peritoneal macrophages as well. Furthermore, LC significantly reduced LPS-stimulated NF-κB activation by inhibition of IκBα degradation and p65 phosphorylation. The results from NF-κB-luc reporter gene assay further support the inhibitory effect of LC on NF-κB activation. Further studies showed that LC also interfered with the MAPKs and STAT3 signaling pathways, which are typical inflammatory signaling pathways triggered by LPS. Taken together, these results show that LC attenuates LPS-induced cytokine gene expression in RAW 264.7 macrophages through mechanisms that involve NF-κB, MAPKs and STAT3 signaling pathways, but the pattern of inhibition differs from that of a global immunosuppresant. Our study indicates that LC is a functional constituent of Glycyrrhiza uralensis with potential implications in infectious and immune-related diseases.
Collapse
Affiliation(s)
- Lehao Wu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yunpeng Fan
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Chao Fan
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yang Yu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lei Sun
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yu Jin
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| | - Yan Zhang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Richard D Ye
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; Institute of Chinese Medical Sciences, University of Macau, Macau, SAR, China.
| |
Collapse
|
22
|
Shikonin induces mitochondria-mediated apoptosis and enhances chemotherapeutic sensitivity of gastric cancer through reactive oxygen species. Sci Rep 2016; 6:38267. [PMID: 27905569 PMCID: PMC5131274 DOI: 10.1038/srep38267] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 11/07/2016] [Indexed: 12/18/2022] Open
Abstract
The prognosis of gastric cancer remains poor due to clinical drug resistance. Novel drugs are urgently needed. Shikonin (SHK), a natural naphthoquinone, has been reported to trigger cell death and overcome drug resistance in anti-tumour therapy. In this study, we investigated the effectiveness and molecular mechanisms of SHK in treatment with gastric cancer. In vitro, SHK suppresses proliferation and triggers cell death of gastric cancer cells but leads minor damage to gastric epithelial cells. SHK induces the generation of intracellular reactive oxygen species (ROS), depolarizes the mitochondrial membrane potential (MMP) and ultimately triggers mitochondria-mediated apoptosis. We confirmed that SHK induces apoptosis of gastric cancer cells not only in a caspase-dependent manner which releases Cytochrome C and triggers the caspase cascade, but also in a caspase-independent manner which mediates the nuclear translocation of apoptosis-inducing factor and Endonuclease G. Furthermore, we demonstrated that SHK enhanced the chemotherapeutic sensitivity of 5-fluorouracil and oxaliplatin in vitro and in vivo. Taken together, our data show that SHK may be a novel therapeutic agent in the clinical treatment of gastric cancer.
Collapse
|