1
|
Shriwas P, Revnew A, Roo S, Bender A, Miller K, Hadad CM, Lane TR, Ekins S, McElroy CA. Development and Characterization of pFluor50, a Fluorogenic-Based Kinetic Assay System for High-Throughput Inhibition Screening and Characterization of Time-Dependent Inhibition and Inhibition Type for Six Human CYPs. Molecules 2025; 30:2032. [PMID: 40363839 PMCID: PMC12074421 DOI: 10.3390/molecules30092032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2025] [Revised: 04/28/2025] [Accepted: 04/30/2025] [Indexed: 05/15/2025] Open
Abstract
Cytochrome P450s (CYPs) play an integral role in drug and xenobiotic metabolism in humans, and thus, understanding CYP inhibition and/or activation by new therapeutic candidates is an important step in the drug development process. Ideally, CYP inhibition/activation assays should be high-throughput, use commercially available components, allow for analysis of metabolism by the majority of human CYPs, and allow for kinetic analysis of inhibition type and time-dependent inhibition. Here, we developed pFluor50, a 384-well microtiter plate-based fluorogenic kinetic enzyme assay system using substrates metabolized by six human CYPs to generate fluorescent products and determined the Michaelis-Menten kinetics constants (KM) and product formation rates (Vmax) for each substrate-CYP pair. The pFluor50 assay was also used to elucidate inhibition type and time-dependent inhibition for some inhibitors, demonstrating its utility for characterizing the observed inhibition, even mechanism-based inhibition. The pFluor50 assay system developed in this study using commercially available components should be very useful for high-throughput screening and further characterization of potential therapeutic candidates for inhibition/activation with the most prevalent human CYPs.
Collapse
Affiliation(s)
- Pratik Shriwas
- Division of Medical Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Andre Revnew
- Division of Medical Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Sarah Roo
- Division of Medical Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Alex Bender
- Division of Medical Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Kevin Miller
- Department of Chemistry and Biochemistry, College of Arts and Sciences, The Ohio State University, Columbus, OH 43210, USA (C.M.H.)
| | - Christopher M. Hadad
- Department of Chemistry and Biochemistry, College of Arts and Sciences, The Ohio State University, Columbus, OH 43210, USA (C.M.H.)
| | - Thomas R. Lane
- Collaborations Pharmaceuticals, Raleigh, NC 27606, USA; (T.R.L.); (S.E.)
| | - Sean Ekins
- Collaborations Pharmaceuticals, Raleigh, NC 27606, USA; (T.R.L.); (S.E.)
| | - Craig A. McElroy
- Division of Medical Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
2
|
Lenich AK, Nilles J, Scherer V, Li F, Ruez S. Assessing granisetron as a specific CYP1A1 substrate in primary human hepatocytes: A comprehensive evaluation for drug development studies. Drug Metab Dispos 2025; 53:100064. [PMID: 40286384 DOI: 10.1016/j.dmd.2025.100064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/14/2025] [Accepted: 03/05/2025] [Indexed: 04/29/2025] Open
Abstract
Cytochrome P450 (CYP) enzymes are essential in metabolic pathways and drug-drug interactions, making their investigation highly relevant during drug development. These studies are typically conducted in liver systems, where primary human hepatocytes (PHH) are considered the gold standard. Current regulatory guidelines focus primarily on CYP1A2 for drug interaction studies, neglecting CYP1A1, which is highly inducible and particularly relevant in populations exposed to pollutants like polycyclic aromatic hydrocarbons, commonly found in tobacco smoke. This study applied granisetron as a specific substrate for CYP1A1 in drug interaction research, establishing assay parameters for its use in PHH, with the aim of providing clear recommendations for measuring CYP1A1 enzyme activity in industry applications. It was confirmed that 7-OH-granisetron is representative of CYP1A1 enzyme activity in PHH. Furthermore, enzyme kinetics indicated biphasic Michaelis-Menten kinetics for granisetron-7-hydroxylation, with Vmax = 0.3 pmol/(min× million cells) and Km = 5.5 μM. Optimal incubation conditions for measurements under Vmax conditions were determined to be 30-40 μM granisetron, with a minimum incubation time of 90 minutes. These conditions were validated in a CYP1A induction experiment, confirming the effectiveness of the parameters. CYP1A1 exhibited high inducibility, which is relevant in clinical settings for patients exposed to CYP1A1 inducers. In conclusion, this study developed an assay to investigate CYP1A1 enzyme activity in PHH during drug interaction studies such as enzyme induction or enzyme inhibition. This work highlights granisetron-7-hydroxylation as a marker reaction to uncover specific CYP1A1 reactions in vitro and enhance the understanding of metabolic variations in systems involving CYP1A1 induction. SIGNIFICANCE STATEMENT: This study applied granisetron as a specific substrate for CYP1A1 in drug interaction studies and determined the assay parameters for the use of granisetron in primary human hepatocytes. This work contributes to the field by yielding clear recommendations for the application of granisetron in primary human hepatocytes for enzymatic activity measurements under Vmax conditions, providing guidance for industry applications on measuring specific CYP1A1 enzyme activity in induction studies.
Collapse
Affiliation(s)
- Ann-Kathrin Lenich
- Department of Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Julie Nilles
- Department of Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Vanessa Scherer
- Department of Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Fangjie Li
- Department of Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Stephanie Ruez
- Department of Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany.
| |
Collapse
|
3
|
Rude CI, Wilson LB, La Du J, Lalli PM, Colby SM, Schultz KJ, Smith JN, Waters KM, Tanguay RL. Aryl hydrocarbon receptor-dependent toxicity by retene requires metabolic competence. Toxicol Sci 2024; 202:50-68. [PMID: 39107868 PMCID: PMC11514837 DOI: 10.1093/toxsci/kfae098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a class of organic compounds frequently detected in the environment with widely varying toxicities. Many PAHs activate the aryl hydrocarbon receptor (AHR), inducing the expression of a battery of genes, including xenobiotic metabolizing enzymes like cytochrome P450s (CYPs); however, not all PAHs act via this mechanism. We screened several parent and substituted PAHs in in vitro AHR activation assays to classify their unique activity. Retene (1-methyl-7-isopropylphenanthrene) displays Ahr2-dependent teratogenicity in zebrafish, but did not activate human AHR or zebrafish Ahr2, suggesting a retene metabolite activates Ahr2 in zebrafish to induce developmental toxicity. To investigate the role of metabolism in retene toxicity, studies were performed to determine the functional role of cyp1a, cyp1b1, and the microbiome in retene toxicity, identify the zebrafish window of susceptibility, and measure retene uptake, loss, and metabolite formation in vivo. Cyp1a-null fish were generated using CRISPR-Cas9. Cyp1a-null fish showed increased sensitivity to retene toxicity, whereas Cyp1b1-null fish were less susceptible, and microbiome elimination had no significant effect. Zebrafish required exposure to retene between 24 and 48 hours post fertilization (hpf) to exhibit toxicity. After static exposure, retene concentrations in zebrafish embryos increased until 24 hpf, peaked between 24 and 36 hpf, and decreased rapidly thereafter. We detected retene metabolites at 36 and 48 hpf, indicating metabolic onset preceding toxicity. This study highlights the value of combining molecular and systems biology approaches with mechanistic and predictive toxicology to interrogate the role of biotransformation in AHR-dependent toxicity.
Collapse
Affiliation(s)
- Christian I Rude
- Environmental and Molecular Toxicology Department, Oregon State University, Corvallis, OR 97333, United States
| | - Lindsay B Wilson
- Environmental and Molecular Toxicology Department, Oregon State University, Corvallis, OR 97333, United States
| | - Jane La Du
- Environmental and Molecular Toxicology Department, Oregon State University, Corvallis, OR 97333, United States
| | - Priscila M Lalli
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, United States
| | - Sean M Colby
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, United States
| | - Katherine J Schultz
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, United States
| | - Jordan N Smith
- Environmental and Molecular Toxicology Department, Oregon State University, Corvallis, OR 97333, United States
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, United States
| | - Katrina M Waters
- Environmental and Molecular Toxicology Department, Oregon State University, Corvallis, OR 97333, United States
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, United States
| | - Robyn L Tanguay
- Environmental and Molecular Toxicology Department, Oregon State University, Corvallis, OR 97333, United States
| |
Collapse
|
4
|
Xie B, Liu Y, Chen C, Velkov T, Tang S, Shen J, Dai C. Colistin Induces Oxidative Stress and Apoptotic Cell Death through the Activation of the AhR/CYP1A1 Pathway in PC12 Cells. Antioxidants (Basel) 2024; 13:827. [PMID: 39061896 PMCID: PMC11273690 DOI: 10.3390/antiox13070827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Colistin is commonly regarded as the "last-resort" antibiotic for combating life-threatening infections caused by multidrug-resistant (MDR) gram-negative bacteria. Neurotoxicity is a potential adverse event associated with colistin application in clinical settings, yet the exact molecular mechanisms remain unclear. This study examined the detrimental impact of colistin exposure on PC12 cells and the associated molecular mechanisms. Colistin treatment at concentrations of 0-400 μM decreased cell viability and induced apoptotic cell death in both time- and concentration-dependent manners. Exposure to colistin triggered the production of reactive oxygen species (ROS) and caused oxidative stress damage in PC12 cells. N-acetylcysteine (NAC) supplementation partially mitigated the cytotoxic and apoptotic outcomes of colistin. Evidence of mitochondrial dysfunction was observed through the dissipation of membrane potential. Additionally, colistin treatment upregulated the expression of AhR and CYP1A1 mRNAs in PC12 cells. Pharmacological inhibition of AhR (e.g., using α-naphthoflavone) or intervention with the CYP1A1 gene significantly decreased the production of ROS induced by colistin, subsequently lowering caspase activation and cell apoptosis. In conclusion, our findings demonstrate, for the first time, that the activation of the AhR/CYP1A1 pathway contributes partially to colistin-induced oxidative stress and apoptosis, offering insights into the cytotoxic effects of colistin.
Collapse
Affiliation(s)
- Baofu Xie
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yue Liu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Chunhong Chen
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Tony Velkov
- Department of Pharmacology, Biodiscovery Institute, Monash University Clayton, Melbourne, VIC 3800, Australia
| | - Shusheng Tang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jianzhong Shen
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Chongshan Dai
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| |
Collapse
|
5
|
Liu Y, Chen Y, Zhang J, Ran G, Cheng Z, Wang X, Liao Y, Mao X, Peng Y, Li W, Zheng J. Dihydrotanshinone I-Induced CYP1 Enzyme Inhibition and Alteration of Estradiol Metabolism. Drug Metab Dispos 2024; 52:188-197. [PMID: 38123940 DOI: 10.1124/dmd.123.001490] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
Dihydrotanshinone I (DHTI) is a pharmacologically active component occurring in the roots of the herbal medicine Salvia miltiorrhiza Bunge. This study investigated DHTI-induced inhibition of CYP1A1, CYP1A2, and CYP1B1 with the aim to determine the potential effects of DHTI on the bioactivation of estradiol (E2), possibly related to preventive/therapeutic strategy for E2-associated breast cancer. Ethoxyresorufin as a specific substrate for CYP1s was incubated with human recombinant CYP1A1, CYP1A2, or CYP1B1 in the presence of DHTI at various concentrations. Enzymatic inhibition and kinetic behaviors were examined by monitoring the formation of the corresponding product. Molecular docking was further conducted to define the interactions between DHTI and the three CYP1s. The same method and procedure were employed to examine the DHTI-induced alteration of E2 metabolism. DHTI showed significant inhibition of ethoxyresorufin O-deethylation activity catalyzed by CYP1A1, CYP1A2 and CYP1B1 in a concentration-dependent manner (IC50 = 0.56, 0.44, and 0.11 μM, respectively). Kinetic analysis showed that DHTI acted as a competitive type of inhibitor of CYP1A1 and CYP1B1, whereas it noncompetitively inhibited CYP1A2. The observed enzyme inhibition was independent of NADPH and time. Molecular docking analysis revealed hydrogen bonding interactions between DHTI and Asp-326 of CYP1B1. Moreover, DHTI displayed preferential activity to inhibit 4-hydroxylation of E2 (a genotoxic pathway) mediated by CYP1B1. Exposure to DHTI could reduce the risk of genotoxicity induced by E2. SIGNIFICANCE STATEMENT: CYP1A1, CYP1A2, and CYP1B1 enzymes are involved in the conversion of estradiol (E2) into 2-hydroxyestradiol (2-OHE2) and 4-hydroxyestradiol (4-OHE2) through oxidation. 2-OHE2 is negatively correlated with breast cancer risk, and 4-OHE2 may be a significant initiator and promoter of breast cancer. The present study revealed that dihydrotanshinone I (DHTI) competitively inhibits CYP1A1/CYP1B1 and noncompetitively inhibits CYP1A2. DHTI exhibits a preference for inhibiting the genotoxicity associated with E2 4-hydroxylation pathway mediated by CYP1B1, potentially reducing the risk of 4-OHE2-induced genotoxicity.
Collapse
Affiliation(s)
- Ying Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics (Y.L., Y.C., J.Zha., G.R., Z.C., X.W., Y.L., W.L., J.Zhe.), Key Laboratory of Environmental Pollution, Monitoring and Disease Control, Ministry of Education (J.Zhe.), School of Basic Medical Sciences (Y.L., Y.C., J.Zhe.), and School of Pharmacy (J.Zha., G.R., Z.C., X.W., Y.L., W.L., J.Zhe.), Guizhou Medical University, Guiyang, Guizhou, China; Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, China (Y.P., J.Zhe.); and Department of Pharmaceutical Analysis, College of Pharmacy, Mudanjiang Medical University, Mudanjiang, China (X.M.)
| | - Yu Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics (Y.L., Y.C., J.Zha., G.R., Z.C., X.W., Y.L., W.L., J.Zhe.), Key Laboratory of Environmental Pollution, Monitoring and Disease Control, Ministry of Education (J.Zhe.), School of Basic Medical Sciences (Y.L., Y.C., J.Zhe.), and School of Pharmacy (J.Zha., G.R., Z.C., X.W., Y.L., W.L., J.Zhe.), Guizhou Medical University, Guiyang, Guizhou, China; Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, China (Y.P., J.Zhe.); and Department of Pharmaceutical Analysis, College of Pharmacy, Mudanjiang Medical University, Mudanjiang, China (X.M.)
| | - Jingyu Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics (Y.L., Y.C., J.Zha., G.R., Z.C., X.W., Y.L., W.L., J.Zhe.), Key Laboratory of Environmental Pollution, Monitoring and Disease Control, Ministry of Education (J.Zhe.), School of Basic Medical Sciences (Y.L., Y.C., J.Zhe.), and School of Pharmacy (J.Zha., G.R., Z.C., X.W., Y.L., W.L., J.Zhe.), Guizhou Medical University, Guiyang, Guizhou, China; Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, China (Y.P., J.Zhe.); and Department of Pharmaceutical Analysis, College of Pharmacy, Mudanjiang Medical University, Mudanjiang, China (X.M.)
| | - Guangyun Ran
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics (Y.L., Y.C., J.Zha., G.R., Z.C., X.W., Y.L., W.L., J.Zhe.), Key Laboratory of Environmental Pollution, Monitoring and Disease Control, Ministry of Education (J.Zhe.), School of Basic Medical Sciences (Y.L., Y.C., J.Zhe.), and School of Pharmacy (J.Zha., G.R., Z.C., X.W., Y.L., W.L., J.Zhe.), Guizhou Medical University, Guiyang, Guizhou, China; Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, China (Y.P., J.Zhe.); and Department of Pharmaceutical Analysis, College of Pharmacy, Mudanjiang Medical University, Mudanjiang, China (X.M.)
| | - Zihao Cheng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics (Y.L., Y.C., J.Zha., G.R., Z.C., X.W., Y.L., W.L., J.Zhe.), Key Laboratory of Environmental Pollution, Monitoring and Disease Control, Ministry of Education (J.Zhe.), School of Basic Medical Sciences (Y.L., Y.C., J.Zhe.), and School of Pharmacy (J.Zha., G.R., Z.C., X.W., Y.L., W.L., J.Zhe.), Guizhou Medical University, Guiyang, Guizhou, China; Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, China (Y.P., J.Zhe.); and Department of Pharmaceutical Analysis, College of Pharmacy, Mudanjiang Medical University, Mudanjiang, China (X.M.)
| | - Xin Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics (Y.L., Y.C., J.Zha., G.R., Z.C., X.W., Y.L., W.L., J.Zhe.), Key Laboratory of Environmental Pollution, Monitoring and Disease Control, Ministry of Education (J.Zhe.), School of Basic Medical Sciences (Y.L., Y.C., J.Zhe.), and School of Pharmacy (J.Zha., G.R., Z.C., X.W., Y.L., W.L., J.Zhe.), Guizhou Medical University, Guiyang, Guizhou, China; Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, China (Y.P., J.Zhe.); and Department of Pharmaceutical Analysis, College of Pharmacy, Mudanjiang Medical University, Mudanjiang, China (X.M.)
| | - Yufen Liao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics (Y.L., Y.C., J.Zha., G.R., Z.C., X.W., Y.L., W.L., J.Zhe.), Key Laboratory of Environmental Pollution, Monitoring and Disease Control, Ministry of Education (J.Zhe.), School of Basic Medical Sciences (Y.L., Y.C., J.Zhe.), and School of Pharmacy (J.Zha., G.R., Z.C., X.W., Y.L., W.L., J.Zhe.), Guizhou Medical University, Guiyang, Guizhou, China; Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, China (Y.P., J.Zhe.); and Department of Pharmaceutical Analysis, College of Pharmacy, Mudanjiang Medical University, Mudanjiang, China (X.M.)
| | - Xu Mao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics (Y.L., Y.C., J.Zha., G.R., Z.C., X.W., Y.L., W.L., J.Zhe.), Key Laboratory of Environmental Pollution, Monitoring and Disease Control, Ministry of Education (J.Zhe.), School of Basic Medical Sciences (Y.L., Y.C., J.Zhe.), and School of Pharmacy (J.Zha., G.R., Z.C., X.W., Y.L., W.L., J.Zhe.), Guizhou Medical University, Guiyang, Guizhou, China; Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, China (Y.P., J.Zhe.); and Department of Pharmaceutical Analysis, College of Pharmacy, Mudanjiang Medical University, Mudanjiang, China (X.M.)
| | - Ying Peng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics (Y.L., Y.C., J.Zha., G.R., Z.C., X.W., Y.L., W.L., J.Zhe.), Key Laboratory of Environmental Pollution, Monitoring and Disease Control, Ministry of Education (J.Zhe.), School of Basic Medical Sciences (Y.L., Y.C., J.Zhe.), and School of Pharmacy (J.Zha., G.R., Z.C., X.W., Y.L., W.L., J.Zhe.), Guizhou Medical University, Guiyang, Guizhou, China; Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, China (Y.P., J.Zhe.); and Department of Pharmaceutical Analysis, College of Pharmacy, Mudanjiang Medical University, Mudanjiang, China (X.M.)
| | - Weiwei Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics (Y.L., Y.C., J.Zha., G.R., Z.C., X.W., Y.L., W.L., J.Zhe.), Key Laboratory of Environmental Pollution, Monitoring and Disease Control, Ministry of Education (J.Zhe.), School of Basic Medical Sciences (Y.L., Y.C., J.Zhe.), and School of Pharmacy (J.Zha., G.R., Z.C., X.W., Y.L., W.L., J.Zhe.), Guizhou Medical University, Guiyang, Guizhou, China; Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, China (Y.P., J.Zhe.); and Department of Pharmaceutical Analysis, College of Pharmacy, Mudanjiang Medical University, Mudanjiang, China (X.M.)
| | - Jiang Zheng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics (Y.L., Y.C., J.Zha., G.R., Z.C., X.W., Y.L., W.L., J.Zhe.), Key Laboratory of Environmental Pollution, Monitoring and Disease Control, Ministry of Education (J.Zhe.), School of Basic Medical Sciences (Y.L., Y.C., J.Zhe.), and School of Pharmacy (J.Zha., G.R., Z.C., X.W., Y.L., W.L., J.Zhe.), Guizhou Medical University, Guiyang, Guizhou, China; Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, China (Y.P., J.Zhe.); and Department of Pharmaceutical Analysis, College of Pharmacy, Mudanjiang Medical University, Mudanjiang, China (X.M.)
| |
Collapse
|
6
|
Lee J, Beers JL, Geffert RM, Jackson KD. A Review of CYP-Mediated Drug Interactions: Mechanisms and In Vitro Drug-Drug Interaction Assessment. Biomolecules 2024; 14:99. [PMID: 38254699 PMCID: PMC10813492 DOI: 10.3390/biom14010099] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/02/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Drug metabolism is a major determinant of drug concentrations in the body. Drug-drug interactions (DDIs) caused by the co-administration of multiple drugs can lead to alteration in the exposure of the victim drug, raising safety or effectiveness concerns. Assessment of the DDI potential starts with in vitro experiments to determine kinetic parameters and identify risks associated with the use of comedication that can inform future clinical studies. The diverse range of experimental models and techniques has significantly contributed to the examination of potential DDIs. Cytochrome P450 (CYP) enzymes are responsible for the biotransformation of many drugs on the market, making them frequently implicated in drug metabolism and DDIs. Consequently, there has been a growing focus on the assessment of DDI risk for CYPs. This review article provides mechanistic insights underlying CYP inhibition/induction and an overview of the in vitro assessment of CYP-mediated DDIs.
Collapse
Affiliation(s)
- Jonghwa Lee
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (J.L.B.); (R.M.G.)
| | | | | | - Klarissa D. Jackson
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (J.L.B.); (R.M.G.)
| |
Collapse
|
7
|
Fais A, Pintus F, Era B, Floris S, Kumar A, Sarmadhikari D, Sogos V, Uriarte E, Asthana S, Matos MJ. Design of 3-Phenylcoumarins and 3-Thienylcoumarins as Potent Xanthine Oxidase Inhibitors: Synthesis, Biological Evaluation, and Docking Studies. ChemMedChem 2023; 18:e202300400. [PMID: 37801332 DOI: 10.1002/cmdc.202300400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/07/2023]
Abstract
Coumarin scaffold has proven to be promising in the development of bioactive agents, such as xanthine oxidase (XO) inhibitors. Novel hydroxylated 3-arylcoumarins were designed, synthesized, and evaluated for their XO inhibition and antioxidant properties. 3-(3'-Bromophenyl)-5,7-dihydroxycoumarin (compound 11) proved to be the most potent XO inhibitor, with an IC50 of 91 nM, being 162 times better than allopurinol, one of the reference controls. Kinetic analysis of compound 11 and compound 5 [3-(4'-bromothien-2'-yl)-5,7-dihydroxycoumarin], the second-best compound within the series (IC50 of 280 nM), has been performed, and both compounds showed a mixed-type inhibition. Both compounds present good antioxidant activity (ability to scavenge ABTS radical) and are able to reduce reactive oxygen species (ROS) levels in H2 O2 -treated cells. In addition, they proved to be non-cytotoxic in a Caco-2 cells viability assay. Molecular docking studies have been carried out to correlate the compounds' theoretical and experimental binding affinity to the XO binding pocket.
Collapse
Affiliation(s)
- Antonella Fais
- Department of Life and Environmental Sciences, University of Cagliari, S.P. 8 km 0.700, 09042, Cagliari, Italy
| | - Francesca Pintus
- Department of Life and Environmental Sciences, University of Cagliari, S.P. 8 km 0.700, 09042, Cagliari, Italy
| | - Benedetta Era
- Department of Life and Environmental Sciences, University of Cagliari, S.P. 8 km 0.700, 09042, Cagliari, Italy
| | - Sonia Floris
- Department of Life and Environmental Sciences, University of Cagliari, S.P. 8 km 0.700, 09042, Cagliari, Italy
| | - Amit Kumar
- Department of Electrical and Electronic Engineering, University of Cagliari, Via Marengo 2, 09123, Cagliari, Italy
| | - Debapriyo Sarmadhikari
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, 121001, India
| | - Valeria Sogos
- Department of Biomedical Sciences, University of Cagliari, S.P. 8 km 0.700, 09042, Monserrato, Italy
| | - Eugenio Uriarte
- Departamento de Química Orgánica, Facultade de Farmacia, Universidade Santiago de Compostela, 15782, Santiago de Compostela, Spain
- Instituto de Ciencias Químicas Aplicadas, Universidad Autónoma de Chile, 7500912, Santiago, Chile
| | - Shailendra Asthana
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, 121001, India
| | - Maria João Matos
- Departamento de Química Orgánica, Facultade de Farmacia, Universidade Santiago de Compostela, 15782, Santiago de Compostela, Spain
| |
Collapse
|
8
|
Pintus F, Floris S, Fais A, Era B, Kumar A, Gatto G, Uriarte E, Matos MJ. Hydroxy-3-Phenylcoumarins as Multitarget Compounds for Skin Aging Diseases: Synthesis, Molecular Docking and Tyrosinase, Elastase, Collagenase and Hyaluronidase Inhibition, and Sun Protection Factor. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27206914. [PMID: 36296507 PMCID: PMC9611449 DOI: 10.3390/molecules27206914] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/21/2022]
Abstract
Skin aging is a progressive biological process of the human body, and it is not only time-dependent. Differently substituted 3-phenylcoumarins proved to efficiently inhibit tyrosinase. In the current work, new substitution patterns have been explored, and the biological studies were extended to other important enzymes involved in the processes of skin aging, as elastase, collagenase and hyaluronidase. From the studied series, five compounds presented inhibitory activity against tyrosinase, one compound against elastase, eight compounds against collagenase and two compounds against hyaluronidase, being five compounds dual inhibitors. The 3-(4'-Bromophenyl)-5,7-dihydroxycoumarin (1) and 3-(3'-bromophenyl)-5,7-dihydroxycoumarin (2) presented the best profiles against tyrosinase (IC50 = 1.05 µM and 7.03 µM) and collagenase (IC50 = 123.4 µM and 110.4 µM); the 3-(4'-bromophenyl)-6,7-dihydroxycoumarin (4) presented a good inhibition against tyrosinase and hyaluronidase; the 3-(3'-bromophenyl)-6,7-dihydroxycoumarin (5) showed an effective tyrosinase and elastase inhibition; and 6,7-dihydroxy-3-(3'-hydroxyphenyl)coumarin (11) presented a dual profile inhibition against collagenase and hyaluronidase. Furthermore, considering the overall activities tested, compounds 1 and 2 proved to be the most promising anti-aging compounds. These compounds also showed to have a photo-protective effect, without being cytotoxic to human skin keratinocyte cells. To predict the binding site with the target enzymes, computational studies were also carried out.
Collapse
Affiliation(s)
- Francesca Pintus
- Department of Life and Environmental Sciences, University of Cagliari, 09042 Monserrato, Italy
| | - Sonia Floris
- Department of Life and Environmental Sciences, University of Cagliari, 09042 Monserrato, Italy
| | - Antonella Fais
- Department of Life and Environmental Sciences, University of Cagliari, 09042 Monserrato, Italy
- Correspondence: (A.F.); (M.J.M.)
| | - Benedetta Era
- Department of Life and Environmental Sciences, University of Cagliari, 09042 Monserrato, Italy
| | - Amit Kumar
- Department of Electrical and Electronic Engineering, University of Cagliari, 09123 Cagliari, Italy
| | - Gianluca Gatto
- Department of Electrical and Electronic Engineering, University of Cagliari, 09123 Cagliari, Italy
| | - Eugenio Uriarte
- Departamento de Química Orgánica, Facultade de Farmacia, Universidade Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Instituto de Ciencias Químicas Aplicadas, Universidad Autónoma de Chile, Santiago 7500912, Chile
| | - Maria João Matos
- Departamento de Química Orgánica, Facultade de Farmacia, Universidade Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Correspondence: (A.F.); (M.J.M.)
| |
Collapse
|
9
|
Bhatt S, Dhiman S, Kumar V, Gour A, Manhas D, Sharma K, Ojha PK, Nandi U. Assessment of the CYP1A2 Inhibition-Mediated Drug Interaction Potential for Pinocembrin Using In Silico, In Vitro, and In Vivo Approaches. ACS OMEGA 2022; 7:20321-20331. [PMID: 35721953 PMCID: PMC9202019 DOI: 10.1021/acsomega.2c02315] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/24/2022] [Indexed: 05/23/2023]
Abstract
Pinocembrin, a bioflavonoid, is extensively used in complementary/alternative medicine. It turns out as a promising candidate against neurodegenerative diseases because of its multifaceted pharmacological action toward neuroprotection. However, literature evidence is still lacking for its inhibitory action on CYP1A2, which is responsible for xenobiotic metabolism leading to the generation of toxic metabolites and bioactivation of procarcinogens. In the present study, our aim was to evaluate the CYP1A2 inhibitory potential of pinocembrin via in silico, in vitro, and in vivo investigations. From the results of in vitro studies, pinocembrin is found to be a potent and competitive inhibitor of CYP1A2. In vitro-in vivo extrapolation results indicate the potential of pinocembrin to interact with CYP1A2 substrate drugs clinically. Molecular docking-based in silico studies demonstrate the strong interaction of pinocembrin with human CYP1A2. In in vivo investigations using a rat model, pinocembrin displayed a marked alteration in the plasma exposure of CYP1A2 substrate drugs, namely, caffeine and tacrine. In conclusion, pinocembrin has a potent CYP1A2 inhibitory action to cause drug interactions, and further confirmatory study is warranted at the clinical level.
Collapse
Affiliation(s)
- Shipra Bhatt
- PK-PD
Toxicology (PPT) Division, CSIR-Indian Institute
of Integrative Medicine, Jammu 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sumit Dhiman
- PK-PD
Toxicology (PPT) Division, CSIR-Indian Institute
of Integrative Medicine, Jammu 180001, India
| | - Vinay Kumar
- Drug Theoretics
and Chemoinformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Abhishek Gour
- PK-PD
Toxicology (PPT) Division, CSIR-Indian Institute
of Integrative Medicine, Jammu 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Diksha Manhas
- PK-PD
Toxicology (PPT) Division, CSIR-Indian Institute
of Integrative Medicine, Jammu 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Kuhu Sharma
- PK-PD
Toxicology (PPT) Division, CSIR-Indian Institute
of Integrative Medicine, Jammu 180001, India
| | - Probir Kumar Ojha
- Drug Theoretics
and Chemoinformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Utpal Nandi
- PK-PD
Toxicology (PPT) Division, CSIR-Indian Institute
of Integrative Medicine, Jammu 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
10
|
Alov P, Al Sharif M, Aluani D, Chegaev K, Dinic J, Divac Rankov A, Fernandes MX, Fusi F, García-Sosa AT, Juvonen R, Kondeva-Burdina M, Padrón JM, Pajeva I, Pencheva T, Puerta A, Raunio H, Riganti C, Tsakovska I, Tzankova V, Yordanov Y, Saponara S. A Comprehensive Evaluation of Sdox, a Promising H2S-Releasing Doxorubicin for the Treatment of Chemoresistant Tumors. Front Pharmacol 2022; 13:831791. [PMID: 35321325 PMCID: PMC8936434 DOI: 10.3389/fphar.2022.831791] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/25/2022] [Indexed: 12/11/2022] Open
Abstract
Sdox is a hydrogen sulfide (H2S)-releasing doxorubicin effective in P-glycoprotein-overexpressing/doxorubicin-resistant tumor models and not cytotoxic, as the parental drug, in H9c2 cardiomyocytes. The aim of this study was the assessment of Sdox drug-like features and its absorption, distribution, metabolism, and excretion (ADME)/toxicity properties, by a multi- and transdisciplinary in silico, in vitro, and in vivo approach. Doxorubicin was used as the reference compound. The in silico profiling suggested that Sdox possesses higher lipophilicity and lower solubility compared to doxorubicin, and the off-targets prediction revealed relevant differences between Dox and Sdox towards several cancer targets, suggesting different toxicological profiles. In vitro data showed that Sdox is a substrate with lower affinity for P-glycoprotein, less hepatotoxic, and causes less oxidative damage than doxorubicin. Both anthracyclines inhibited CYP3A4, but not hERG currents. Unlike doxorubicin, the percentage of zebrafish live embryos at 72 hpf was not affected by Sdox treatment. In conclusion, these findings demonstrate that Sdox displays a more favorable drug-like ADME/toxicity profile than doxorubicin, different selectivity towards cancer targets, along with a greater preclinical efficacy in resistant tumors. Therefore, Sdox represents a prototype of innovative anthracyclines, worthy of further investigations in clinical settings.
Collapse
Affiliation(s)
- Petko Alov
- Department of QSAR and Molecular Modelling, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Merilin Al Sharif
- Department of QSAR and Molecular Modelling, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Denitsa Aluani
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, Sofia, Bulgaria
| | - Konstantin Chegaev
- Department of Drug Science and Technology, University of Torino, Torino, Italy
| | - Jelena Dinic
- Department of Neurobiology, Institute for Biological Research Siniša Stanković, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Aleksandra Divac Rankov
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Miguel X. Fernandes
- BioLab, Instituto Universitario de Bio-Orgánica Antonio González, Universidad de La Laguna, La Laguna, Spain
| | - Fabio Fusi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | | | - Risto Juvonen
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Magdalena Kondeva-Burdina
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, Sofia, Bulgaria
| | - José M. Padrón
- BioLab, Instituto Universitario de Bio-Orgánica Antonio González, Universidad de La Laguna, La Laguna, Spain
| | - Ilza Pajeva
- Department of QSAR and Molecular Modelling, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Tania Pencheva
- Department of QSAR and Molecular Modelling, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Adrián Puerta
- BioLab, Instituto Universitario de Bio-Orgánica Antonio González, Universidad de La Laguna, La Laguna, Spain
| | - Hannu Raunio
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Chiara Riganti
- Department of Oncology, University of Torino, Torino, Italy
| | - Ivanka Tsakovska
- Department of QSAR and Molecular Modelling, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Virginia Tzankova
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, Sofia, Bulgaria
| | - Yordan Yordanov
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, Sofia, Bulgaria
| | - Simona Saponara
- Department of Life Sciences, University of Siena, Siena, Italy
- *Correspondence: Simona Saponara,
| |
Collapse
|
11
|
Synthesis and study of the trypanocidal activity of catechol-containing 3-arylcoumarins, inclusion in β-cyclodextrin complexes and combination with benznidazole. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
12
|
Juvonen RO, Ahinko M, Jokinen EM, Huuskonen J, Raunio H, Pentikäinen OT. Substrate Selectivity of Coumarin Derivatives by Human CYP1 Enzymes: In Vitro Enzyme Kinetics and In Silico Modeling. ACS OMEGA 2021; 6:11286-11296. [PMID: 34056284 PMCID: PMC8153946 DOI: 10.1021/acsomega.1c00123] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/08/2021] [Indexed: 05/05/2023]
Abstract
Of the three enzymes in the human cytochrome P450 family 1, CYP1A2 is an important enzyme mediating metabolism of xenobiotics including drugs in the liver, while CYP1A1 and CYP1B1 are expressed in extrahepatic tissues. Currently used CYP substrates, such as 7-ethoxycoumarin and 7-ethoxyresorufin, are oxidized by all individual CYP1 forms. The main aim of this study was to find profluorescent coumarin substrates that are more selective for the individual CYP1 forms. Eleven 3-phenylcoumarin derivatives were synthetized, their enzyme kinetic parameters were determined, and their interactions in the active sites of CYP1 enzymes were analyzed by docking and molecular dynamic simulations. All coumarin derivatives and 7-ethoxyresorufin and 7-pentoxyresorufin were oxidized by at least one CYP1 enzyme. 3-(3-Methoxyphenyl)-6-methoxycoumarin (19) was 7-O-demethylated by similar high efficiency [21-30 ML/(min·mol CYP)] by all CYP1 forms and displayed similar binding in the enzyme active sites. 3-(3-Fluoro-4-acetoxyphenyl)coumarin (14) was selectively 7-O-demethylated by CYP1A1, but with low efficiency [0.16 ML/(min mol)]. This was explained by better orientation and stronger H-bond interactions in the active site of CYP1A1 than that of CYP1A2 and CYP1B1. 3-(4-Acetoxyphenyl)-6-chlorocoumarin (20) was 7-O-demethylated most efficiently by CYP1B1 [53 ML/(min·mol CYP)], followed by CYP1A1 [16 ML/(min·mol CYP)] and CYP1A2 [0.6 ML/(min·mol CYP)]. Variations in stabilities of complexes between 20 and the individual CYP enzymes explained these differences. Compounds 14, 19, and 20 are candidates to replace traditional substrates in measuring activity of human CYP1 enzymes.
Collapse
Affiliation(s)
- Risto O. Juvonen
- School
of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Box 1627, 70211 Kuopio, Finland
| | - Mira Ahinko
- Department
of Biological and Environmental Science & Nanoscience Center, University of Jyvaskyla, P.O. Box 35, FI-40014 Jyvaskyla, Finland
| | - Elmeri M. Jokinen
- Institute
of Biomedicine, Faculty of Medicine, Integrative Physiology and Pharmacology, University of Turku, Kiinamyllynkatu 10, FI-20520 Turku, Finland
| | - Juhani Huuskonen
- Department
of Chemistry, University of Jyvaskyla, P.O. Box 35, FI-40014 Jyvaskyla, Finland
| | - Hannu Raunio
- School
of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Box 1627, 70211 Kuopio, Finland
| | - Olli T. Pentikäinen
- Department
of Biological and Environmental Science & Nanoscience Center, University of Jyvaskyla, P.O. Box 35, FI-40014 Jyvaskyla, Finland
- Institute
of Biomedicine, Faculty of Medicine, Integrative Physiology and Pharmacology, University of Turku, Kiinamyllynkatu 10, FI-20520 Turku, Finland
| |
Collapse
|
13
|
Gastelum G, Jiang W, Wang L, Zhou G, Borkar R, Putluri N, Moorthy B. Polycyclic Aromatic Hydrocarbon-induced Pulmonary Carcinogenesis in Cytochrome P450 (CYP)1A1- and 1A2-Null Mice: Roles of CYP1A1 and CYP1A2. Toxicol Sci 2020; 177:347-361. [PMID: 32726451 PMCID: PMC7818899 DOI: 10.1093/toxsci/kfaa107] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In 2019, lung cancer was estimated to be the leading cause of cancer deaths in humans. Polycyclic aromatic hydrocarbons (PAHs) are known to increase the risk of lung cancer. PAHs are metabolized by the cytochrome P450 (CYP)1A subfamily, comprised of the CYP1A1 and 1A2 monooxygenases. These enzymes bioactivate PAHs into reactive metabolites that induce mutagenic DNA adducts, which can lead to cancer. Past studies have investigated the role of CYP1A1 in PAH bioactivation; however, the individual roles of each CYP1A enzyme are still unknown. In this investigation, we tested the hypothesis that mice lacking the genes for Cyp1a1 or Cyp1a2 will display altered susceptibilities to PAH-induced pulmonary carcinogenesis. Wild-type, Cyp1a1-null (Cyp1a1-/-), and Cyp1a2-null (Cyp1a2-/-) male and female mice were treated with 3-methylcholanthrene for cancer initiation and tumor formation studies. In wild-type mice, CYP1A1 and 1A2 expression was induced by 3-methylcholanthrene. Cyp1a1-/- and Cyp1a2-/- mice treated with PAHs displayed a compensatory pattern, where knocking out 1 Cyp1a gene led to increased expression of the other. Cyp1a1-/- mice were resistant to DNA adduct and tumor formation, whereas Cyp1a2-/- mice displayed increased levels of both. UALCAN analysis revealed that lung adenocarcinoma patients with high levels of CYP1A2 expression survive significantly better than patients with low/medium expression. In conclusion, Cyp1a1-/- mice were less susceptible to PAH-induced pulmonary carcinogenesis, whereas Cyp1a2-/- mice were more susceptible. In addition, high CYP1A2 expression was found to be protective for lung adenocarcinoma patients. These results support the need to develop novel CYP1A1 inhibitors to mitigate human lung cancer.
Collapse
Affiliation(s)
- Grady Gastelum
- Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas 77030
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030
| | - Weiwu Jiang
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030
| | - Lihua Wang
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030
| | - Guodong Zhou
- Institute of Biosciences and Technology, Texas A&M University, Houston, Texas 77030
| | - Roshan Borkar
- Dan L. Duncan Cancer Center, Advanced Technology Core, Alkek Center for Molecular Discovery, Baylor College of Medicine, Houston, Texas 77030
| | - Nagireddy Putluri
- Dan L. Duncan Cancer Center, Advanced Technology Core, Alkek Center for Molecular Discovery, Baylor College of Medicine, Houston, Texas 77030
| | - Bhagavatula Moorthy
- Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas 77030
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
14
|
Raunio H, Pentikäinen O, Juvonen RO. Coumarin-Based Profluorescent and Fluorescent Substrates for Determining Xenobiotic-Metabolizing Enzyme Activities In Vitro. Int J Mol Sci 2020; 21:ijms21134708. [PMID: 32630278 PMCID: PMC7369699 DOI: 10.3390/ijms21134708] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 01/03/2023] Open
Abstract
Activities of xenobiotic-metabolizing enzymes have been measured with various in vitro and in vivo methods, such as spectrophotometric, fluorometric, mass spectrometric, and radioactivity-based techniques. In fluorescence-based assays, the reaction produces a fluorescent product from a nonfluorescent substrate or vice versa. Fluorescence-based enzyme assays are usually highly sensitive and specific, allowing measurements on small specimens of tissues with low enzyme activities. Fluorescence assays are also amenable to miniaturization of the reaction mixtures and can thus be done in high throughput. 7-Hydroxycoumarin and its derivatives are widely used as fluorophores due to their desirable photophysical properties. They possess a large π-π conjugated system with electron-rich and charge transfer properties. This conjugated structure leads to applications of 7-hydroxycoumarins as fluorescent sensors for biological activities. We describe in this review historical highlights and current use of coumarins and their derivatives in evaluating activities of the major types of xenobiotic-metabolizing enzyme systems. Traditionally, coumarin substrates have been used to measure oxidative activities of cytochrome P450 (CYP) enzymes. For this purpose, profluorescent coumarins are very sensitive, but generally lack selectivity for individual CYP forms. With the aid of molecular modeling, we have recently described several new coumarin-based substrates for measuring activities of CYP and conjugating enzymes with improved selectivity.
Collapse
Affiliation(s)
- Hannu Raunio
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70600 Kuopio, Finland;
- Correspondence:
| | - Olli Pentikäinen
- Institute of Biomedicine, Faculty of Medicine, University of Turku, 20520 Turku, Finland;
| | - Risto O. Juvonen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70600 Kuopio, Finland;
| |
Collapse
|