1
|
Bryant N, Muehling LM, Wavell K, Teague WG, Woodfolk JA. Rhinovirus as a driver of airway T cell dynamics in children with treatment-refractory recurrent wheeze. JCI Insight 2025; 10:e189480. [PMID: 40337866 DOI: 10.1172/jci.insight.189480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 03/27/2025] [Indexed: 05/09/2025] Open
Abstract
Severe asthma in children is notoriously difficult to treat, and its immunopathogenesis is complex. In particular, the contribution of T cells and relationships to antiviral immunity remain enigmatic. Here, we coupled deep phenotyping with machine learning methods to elucidate the dynamics of T cells in the lower airways of children with treatment-refractory recurrent wheeze, and examine rhinovirus (RV) as a driver. Our strategy revealed a T cell landscape dominated by type 1 and type 17 CD8+ signatures. Interrogation of phenotypic relationships coupled with trajectory mapping identified T cell migratory and differentiation pathways spanning the blood and airways that culminated in tissue residency, and involved transitions between type 1 and type 17 tissue-resident types. These dynamics were reflected in cytokine polyfunctionality. Use of machine learning tools to cross-compare T cell populations that were enriched in the airways of RV-positive children with those induced in the blood following experimental RV challenge precisely pinpointed RV-responsive signatures that contributed to T cell migratory and differentiation pathways. Despite their rarity, these signatures were also detected in the airways of RV-negative children. Together, our results underscore the aberrant nature of type 1 immunity in the airways of children with recurrent wheeze, and implicate an important viral trigger as a driver.
Collapse
Affiliation(s)
- Naomi Bryant
- Department of Medicine
- Department of Microbiology, Immunology, and Cancer Biology, and
| | | | - Kristin Wavell
- Child Health Research Center, Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - W Gerald Teague
- Child Health Research Center, Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Judith A Woodfolk
- Department of Medicine
- Department of Microbiology, Immunology, and Cancer Biology, and
| |
Collapse
|
2
|
Grunwell JR, Fitzpatrick AM. Asthma Phenotypes and Biomarkers. Respir Care 2025. [PMID: 40013975 DOI: 10.1089/respcare.12352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Asthma experienced by both adults and children is a phenotypically heterogeneous condition. Severe asthma, characterized by ongoing symptoms and airway inflammation despite high doses of inhaled and/or systemic corticosteroids, is the focus of research efforts to understand this underlying heterogeneity. Clinical phenotypes in both adult and pediatric asthma have been determined using supervised definition-driven classification and unsupervised data-driven clustering methods. Efforts to understand the underlying inflammatory patterns of severe asthma have led to the seminal discovery of type 2-high versus type 2-low phenotypes and to the development of biologics targeted at type 2-high inflammation to reduce the rates of severe asthma exacerbations. Type 2-high asthma is characterized by upregulation of T helper 2 immune pathways including interleukin (IL)-4, IL-5, and IL-13 along with eosinophilic airway inflammation, sometimes allergic sensitization, and responsiveness to treatment with corticosteroids. Type 2-low asthma is poorly responsive to corticosteroids and is not as well characterized as type 2-high asthma. Type 2-low asthma is limited by being defined as the absence of type 2-high inflammatory markers. Choosing a biologic for the treatment of severe asthma involves the evaluation of a panel of biomarkers such as blood eosinophils, total and specific immunoglobulin E/allergic sensitization, and fractional exhaled nitric oxide. In this review, we focus on the underlying pathobiology of adult and pediatric asthma, discuss the different phenotype-based treatment options for adult and pediatric type 2-high with or without allergic asthma and type 2-low asthma, and describe a clinical phenotyping approach to patients to guide out-patient therapy. Finally, we end with a discussion of whether pediatric asthma exacerbations necessitating admission to an ICU constitute their own high-risk phenotype and/or whether it is a part of other previously defined high-risk subgroups such as difficult-to-control asthma, exacerbation-prone asthma, and severe treatment-resistant asthma.
Collapse
Affiliation(s)
- Jocelyn R Grunwell
- Dr. Grunwell is affiliated with Division of Critical Care Medicine, Department of Pediatrics, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, Georgia
| | - Anne M Fitzpatrick
- Dr. Fitzpatrick is affiliated with Division of Pulmonary, Allergy/Immunology, Cystic Fibrosis, and Sleep Medicine, Department of Pediatrics, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
3
|
Tsai YG, Chio CP, Yang KD, Lin CH, Yeh YP, Chang YJ, Chien JW, Wang SL, Huang SK, Chan CC. Long-term PM 2.5 exposure is associated with asthma prevalence and exhaled nitric oxide levels in children. Pediatr Res 2025; 97:370-377. [PMID: 38263452 DOI: 10.1038/s41390-023-02977-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/19/2023] [Accepted: 11/26/2023] [Indexed: 01/25/2024]
Abstract
BACKGROUND Exhaled nitric oxide concentration (FENO) is a marker of airway inflammation. This study aimed to evaluate the association of air pollution exposure with FENO levels and asthma prevalence with respiratory symptoms in school children. METHODS We analyzed 4736 school children who reside in six townships near industrial areas in central Taiwan. We evaluated asthmatic symptoms, FENO, and conducted the environmental questionnaire. The personal exposure of PM2.5, NO, and SO2 was estimated using land-use regression models data on children's school and home addresses. RESULTS Annual exposure to PM2.5 was associated with increased odds of physician-diagnosed asthma (OR = 1.595), exercise-induced wheezing (OR = 1.726), itchy eyes (OR = 1.417), and current nasal problems (OR = 1.334) (P < 0.05). FENO levels in the absence of infection were positively correlated with age, previous wheezing, allergic rhinitis, atopic eczema, near the road, and for children with high exposure to PM2.5 (P < 0.05). An increase of 1 μg/m3 PM2.5 exposure was significantly associated with a 1.0% increase in FENO levels for children after adjusting for potential confounding variables, including exposures to NO and SO2. CONCLUSIONS Long-term exposures to PM2.5 posed a significant risk of asthma prevalence and airway inflammation in a community-based population of children. IMPACT Annual exposure to PM2.5 was associated with increased odds of physician-diagnosed asthma and nasal problems and itchy eyes. Long-term exposures to PM2.5 were significantly associated with FENO levels after adjusting for potential confounding variables. This is first study to assess the association between FENO levels and long-term air pollution exposures in children near coal-based power plants. An increase of 1 μg/m3 annual PM2.5 exposure was significantly associated with a 1.0% increase in FENO levels. Long-term exposures to PM2.5 posed a significant risk of asthma prevalence and airway inflammation in a community-based population of children.
Collapse
Affiliation(s)
- Yi-Giien Tsai
- Department of Pediatrics, Changhua Christian Children's Hospital, Changhua, Taiwan, ROC
- School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan, ROC
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan, ROC
| | - Chia-Pin Chio
- Department of Medical Research, Tungs' Taichung MetroHarbor Hospital, Taichung, Taiwan, ROC
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan, ROC
| | - Kuender D Yang
- Department of Pediatrics, Mackay Memorial Hospital, and Department of Microbiology & Immunology, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Ching-Hsiung Lin
- Division of Chest Medicine, Department of Internal Medicine, Changhua Christian Hospital, Changhua, Taiwan, ROC
- Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung, Taiwan, ROC
- Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan, ROC
- Department of Recreation and Holistic Wellness, MingDao University, Changhua, Taiwan, ROC
| | - Yen-Po Yeh
- Changhua County Public Health Bureau, Changhua, Taiwan, ROC
| | - Yu-Jun Chang
- Epidemiology and Biostatistics Center, Changhua Christian Hospital, Changhua, Taiwan, ROC
| | - Jien-Wen Chien
- Department of Pediatrics, Changhua Christian Children's Hospital, Changhua, Taiwan, ROC
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan, ROC
| | - Shu-Li Wang
- National Institute of Environmental Health Sciences, National Health Research Institutes, 35 Keyan Rd, Zhunan, Miaoli County, Miaoli, Taiwan, ROC.
| | - Shau-Ku Huang
- National Institute of Environmental Health Sciences, National Health Research Institutes, 35 Keyan Rd, Zhunan, Miaoli County, Miaoli, Taiwan, ROC.
- Johns Hopkins Asthma and Allergy Center, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| | - Chang-Chuan Chan
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan, ROC.
| |
Collapse
|
4
|
Bryant N, Muehling LM, Wavell K, Teague WG, Woodfolk JA. Rhinovirus as a Driver of Airway T-Cell Dynamics in Children with Severe Asthma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.15.623877. [PMID: 39605344 PMCID: PMC11601360 DOI: 10.1101/2024.11.15.623877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Severe asthma in children is notoriously difficult to treat, and its immunopathogenesis is complex. In particular, the contribution of T cells and relationships to anti-viral immunity, remain enigmatic. Here, we coupled deep phenotyping with machine learning methods to resolve the dynamics of T cells in the diseased lower airways, and examined rhinovirus (RV) as a driver. Our strategy revealed a T-cell landscape dominated by type 1 and type 17 CD8+ signatures. Interrogation of phenotypic relationships coupled with trajectory mapping identified T-cell migratory and differentiation pathways spanning the blood and airways that culminated in tissue residency, and included transitions between type 1 and type 17 tissue-resident types. These T-cell dynamics were reflected in cytokine polyfunctionality in situ . Use of machine learning to cross-compare T-cell populations that were enriched in the airways of RV-positive children with those induced in the blood after RV challenge in an experimental infection model, precisely pinpointed RV-responsive signatures that mapped to T-cell differentiation pathways. Despite their rarity, these signatures were detected in the airways of uninfected children. Together, our results underscore the aberrant nature of type 1 immunity in the airways of children with severe asthma, and implicate an important viral trigger as a driver.
Collapse
|
5
|
Pasha MA, Hopp RJ, Habib N, Tang DD. Biomarkers in asthma, potential for therapeutic intervention. J Asthma 2024; 61:1376-1391. [PMID: 38805392 DOI: 10.1080/02770903.2024.2361783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/09/2024] [Accepted: 05/26/2024] [Indexed: 05/30/2024]
Abstract
Asthma is a heterogeneous disease characterized by multiple phenotypes with varying risk factors and therapeutic responses. This Commentary describes research on biomarkers for T2-"high" and T2-"low" inflammation, a hallmark of the disease. Patients with asthma who exhibit an increase in airway T2 inflammation are classified as having T2-high asthma. In this endotype, Type 2 cytokines interleukins (IL)-4, IL-5, and IL-13, plus other inflammatory mediators, lead to increased eosinophilic inflammation and elevated fractional exhaled nitric oxide (FeNO). In contrast, T2-low asthma has no clear definition. Biomarkers are considered valuable tools as they can help identify various phenotypes and endotypes, as well as treatment response to standard treatment or potential therapeutic targets, particularly for biologics. As our knowledge of phenotypes and endotypes expands, biologics are increasingly integrated into treatment strategies for severe asthma. These treatments block specific inflammatory pathways or single mediators. While single or composite biomarkers may help to identify subsets of patients who might benefit from these treatments, only a few inflammatory biomarkers have been validated for clinical application. One example is sputum eosinophilia, a particularly useful biomarker, as it may suggest corticosteroid responsiveness or reflect non-compliance to inhaled corticosteroids. As knowledge develops, a meaningful goal would be to provide individualized care to patients with asthma.
Collapse
Affiliation(s)
- M Asghar Pasha
- Department of Medicine, Division of Allergy and Immunology, Albany Medical College, Albany, NY, USA
| | - Russell J Hopp
- Department of Pediatrics, University of NE Medical Center and Children's Hospital and Medical Center, Omaha, NE, USA
| | - Nazia Habib
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Dale D Tang
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| |
Collapse
|
6
|
Jin Y, Pan Z, Zhou J, Wang K, Zhu P, Wang Y, Xu X, Zhang J, Hao C. Hedgehog signaling pathway regulates Th17 cell differentiation in asthma via IL-6/STAT3 signaling. Int Immunopharmacol 2024; 139:112771. [PMID: 39074418 DOI: 10.1016/j.intimp.2024.112771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/10/2024] [Accepted: 07/22/2024] [Indexed: 07/31/2024]
Abstract
Asthma is the most prevalent chronic inflammatory disease of the airways in children. The most prevalent phenotype of asthma is eosinophilic asthma, which is driven by a Th2 immune response and can be effectively managed by inhaled corticosteroid therapy. However, there are phenotypes of asthma with Th17 immune response that are insensitive to corticosteroid therapy and manifest a more severe phenotype. The treatment of this corticosteroid-insensitive asthma is currently immature and requires further attention. The objective of this study is to elucidate the regulation of the Hedgehog signaling pathway in Th17 cell differentiation in asthma. The study demonstrated that both Smo and Gli3, key components of the Hedgehog signaling pathway, were upregulated in Th17 polarization in vitro and in a Th17-dominant asthma model in vivo. Inhibiting Smo with a small molecule inhibitor or genetically knocking down Gli3 was found to suppress Th17 polarization. Smo was found to increase in Th1, Th2, Th17 and Treg polarization, while Gli3 specifically increased in Th17 polarization. ChIP-qPCR analyses indicated that Gli3 can directly interact with IL-6 in T cells, inducing STAT3 phosphorylation and promoting Th17 cell differentiation. Furthermore, the study demonstrated a correlation between elevated Gli3 expression and IL-17A and IL-6 expression in children with asthma. In conclusion, the study demonstrated that the Hedgehog signaling pathway plays an important role in the pathogenesis of asthma, as it regulates the differentiation of Th17 cells through the IL-6/STAT3 signaling. This may provide a potential therapeutic target for corticosteroid-insensitive asthma driven by Th17 cells.
Collapse
Affiliation(s)
- Yuting Jin
- Department of Respiratory Medicine, Children's Hospital of Soochow University, Suzhou, China; Department of Pediatrics, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Zhenzhen Pan
- Department of Respiration, Wuxi Children's Hospital, Wuxi, China
| | - Ji Zhou
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Kai Wang
- Department of Pediatrics, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Peijie Zhu
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Yufeng Wang
- Department of Respiratory Medicine, Children's Hospital of Soochow University, Suzhou, China
| | - Xuena Xu
- Department of Respiratory Medicine, Children's Hospital of Soochow University, Suzhou, China
| | - Jinping Zhang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China.
| | - Chuangli Hao
- Department of Respiratory Medicine, Children's Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
7
|
Li Y, Yu C, Li P, Qian X, Song P, Gao X. A Preliminary Report on the Correlation Between Nasal Function and the Different Phases of the Nasal Cycle. EAR, NOSE & THROAT JOURNAL 2024; 103:339-343. [PMID: 34463151 DOI: 10.1177/01455613211041788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE To explore whether the different phases of the nasal cycle have a significant effect on nasal temperature, the nasal mucosal clearance rate, and levels of nasal nitric oxide (nNO) and to investigate the correlation between these nasal conditions. METHODS The study participants were divided into 2 groups: the control group and the rhinitis group. The participants' nasal temperature, cilia clearance rate, and nNO levels were measured during different phases of the nasal cycle (the congestion phase and decongestion phase) in the control group and before and after undergoing inferior turbinate ablation in the rhinitis group. RESULTS The temperature of the nasal cavity in the control group was significantly higher in the congestion phase than in the decongestion phase (P = .0025), while in the rhinitis group, the temperature of the nasal cavity decreased significantly after inferior turbinate ablation (P = .001). In the control group, the nasal mucosa clearance time was significantly shorter in the congestion phase than in the decongestion phase (P = .001), and in the rhinitis group, the clearance time of the nasal mucosa was significantly shortened after the operation (P = .0025). In the control group, the levels of nNO were significantly higher in the congestion phase than in the decongestion phase (P = .025), while in the rhinitis group, nNO levels decreased significantly after the operation (P = .005). CONCLUSION The function of the nasal cavity changes in different phases of the nasal cycle. Therefore, when evaluating the impact of various factors on nasal function, factors associated with the nasal cycle should also be considered. Inferior turbinate plasma ablation can improve the ciliary function of the nasal mucosa, reduce the temperature of the nasal cavity, and reduce nNO levels.
Collapse
Affiliation(s)
- Yihan Li
- Department of Otolaryngology, HUADONG Sanatorium, Wuxi, Jiangsu Province, China
| | - Chenjie Yu
- Department of Otorhinolaryngology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, China
| | - Peizhong Li
- Department of Otolaryngology, Head and Neck Surgery, The No 1 Hospital of Huaian, Nanjing Medical University, Nanjing, China
| | - Xiaoyun Qian
- Department of Otorhinolaryngology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, China
| | - Panpan Song
- Department of Otorhinolaryngology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, China
| | - Xia Gao
- Department of Otorhinolaryngology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, China
| |
Collapse
|
8
|
Chang TM, Chen Y, Yang KD, Wang JY, Lin CY, Chang YJ, Chen CH, Tsai YG. Asthma control associated with anxiety and depression in asthmatic children following post-acute COVID-19. Pediatr Allergy Immunol 2024; 35:e14168. [PMID: 38873913 DOI: 10.1111/pai.14168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND Poor asthma control may adversely affect mental health. Our study investigates the correlation between inadequate asthma control, exhaled nitric oxide (FENO) levels, and anxiety and depression among pediatric asthma patients with COVID-19. METHODS This prospective case-control study enrolled 520 asthmatic children (8-15 years), including 336 patients diagnosed with COVID-19 after rapid antigen testing at home and 184 age-matched asthmatic patients without COVID-19 infection. FENO and spirometry were performed 1 month after COVID-19 infection. Scores for Child Anxiety-Related Disorders (SCARED) and depression screen derived from Patient Health Questionnaire-9 (PHQ-9) to assess their mental health status. Childhood asthma control test (C-ACT), FENO levels, and spirometry were correlated with the SCARED and PHQ-9 questionnaires. RESULTS SCARED subscales, including generalized anxiety disorder, social anxiety disorder, school avoidance, and depression scores from PHQ-9, exhibited a significant increase in asthmatic patients diagnosed with COVID-19 (p < .05). Among asthmatic children with SARS-CoV-2 infection, the poor asthma control group exhibited the highest SCARED and PHQ-9 measurements (p < .01). Multiple linear regression analysis indicated that reduced C-ACT scores and elevated FENO levels in asthmatic children with COVID-19 were significant risk factors for both anxiety and depression scores (p < .05). Lower C-ACT scales were associated with high scores of SCARED (r = -0.471) and PHQ-9 (r = -0.329) in asthmatic children (p < .001). CONCLUSIONS The current study emphasizes the need for healthcare professionals to closely monitor asthma control in asthmatic children to prevent heightened risks of depression and anxiety during the ongoing COVID-19 pandemic.
Collapse
Affiliation(s)
- Tung-Ming Chang
- Department of Pediatrics, Changhua Christian Children's Hospital, Changhua, Taiwan
- Child Development Center, Changhua Christian Children's Hospital, Changhua, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Yun Chen
- Child Development Center, Changhua Christian Children's Hospital, Changhua, Taiwan
| | - Kuender D Yang
- Department of Pediatrics, Mackay Memorial Hospital, New Taipei City, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jiu-Yao Wang
- Allergy, Immunology, and Microbiome (A.I.M.) Research Center, China Medical University, Taichung, Taiwan
- Department of Allergy, Immunology and Rheumatology, China Medical University Children's Hospital, Taichung, Taiwan
| | - Ching-Yuang Lin
- Department of Allergy, Immunology and Rheumatology, China Medical University Children's Hospital, Taichung, Taiwan
- Clinical Immunological Center, Division of Pediatric Nephrology, China Medical University Children's Hospital, Taichung, Taiwan
| | - Yu-Jun Chang
- Epidemiology and Biostatistics and Big Data Center, Changhua Christian Hospital, Changhua, Taiwan
| | - Chang-Hua Chen
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
- Department of Internal Medicine, Division of Infectious Diseases, Changhua Christian Hospital, Changhua, Taiwan
| | - Yi-Giien Tsai
- Department of Pediatrics, Changhua Christian Children's Hospital, Changhua, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
- School of Medicine, Kaohsiung Medical University, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| |
Collapse
|
9
|
Ouyang L, Su G, Quan J, Xiong Z, Lai T. Emerging roles and therapeutic implications of HDAC2 and IL-17A in steroid-resistant asthma. CHINESE MEDICAL JOURNAL PULMONARY AND CRITICAL CARE MEDICINE 2023; 1:108-112. [PMID: 39170824 PMCID: PMC11332885 DOI: 10.1016/j.pccm.2023.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Indexed: 08/23/2024]
Abstract
Steroid resistance represents a major clinical problem in the treatment of severe asthma, and therefore a better understanding of its pathogenesis is warranted. Recent studies indicated that histone deacetylase 2 (HDAC2) and interleukin 17A (IL-17A) play important roles in severe asthma. HDAC2 activity is reduced in patients with severe asthma and smoking-induced asthma, perhaps accounting for the amplified expression of inflammatory genes, which is associated with increased acetylation of glucocorticoid receptors. Neutrophilic inflammation contributes to severe asthma and may be related to T helper (Th) 17 rather than Th2 cytokines. IL-17A levels are elevated in severe asthma and correlate with the presence of neutrophils. Restoring the activity of HDAC2 or targeting the Th17 signaling pathway is a potential therapeutic approach to reverse steroid insensitivity.
Collapse
Affiliation(s)
- Lihuan Ouyang
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Guomei Su
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Jingyun Quan
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Zhilin Xiong
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Tianwen Lai
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| |
Collapse
|
10
|
Wang J, Zhou Y, Zhang H, Hu L, Liu J, Wang L, Wang T, Zhang H, Cong L, Wang Q. Pathogenesis of allergic diseases and implications for therapeutic interventions. Signal Transduct Target Ther 2023; 8:138. [PMID: 36964157 PMCID: PMC10039055 DOI: 10.1038/s41392-023-01344-4] [Citation(s) in RCA: 106] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/20/2023] [Accepted: 02/03/2023] [Indexed: 03/26/2023] Open
Abstract
Allergic diseases such as allergic rhinitis (AR), allergic asthma (AAS), atopic dermatitis (AD), food allergy (FA), and eczema are systemic diseases caused by an impaired immune system. Accompanied by high recurrence rates, the steadily rising incidence rates of these diseases are attracting increasing attention. The pathogenesis of allergic diseases is complex and involves many factors, including maternal-fetal environment, living environment, genetics, epigenetics, and the body's immune status. The pathogenesis of allergic diseases exhibits a marked heterogeneity, with phenotype and endotype defining visible features and associated molecular mechanisms, respectively. With the rapid development of immunology, molecular biology, and biotechnology, many new biological drugs have been designed for the treatment of allergic diseases, including anti-immunoglobulin E (IgE), anti-interleukin (IL)-5, and anti-thymic stromal lymphopoietin (TSLP)/IL-4, to control symptoms. For doctors and scientists, it is becoming more and more important to understand the influencing factors, pathogenesis, and treatment progress of allergic diseases. This review aimed to assess the epidemiology, pathogenesis, and therapeutic interventions of allergic diseases, including AR, AAS, AD, and FA. We hope to help doctors and scientists understand allergic diseases systematically.
Collapse
Affiliation(s)
- Ji Wang
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Yumei Zhou
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Honglei Zhang
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Linhan Hu
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Juntong Liu
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Lei Wang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 1000210, China
| | - Tianyi Wang
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Haiyun Zhang
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Linpeng Cong
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Qi Wang
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China.
| |
Collapse
|
11
|
Ahmad JG, Marino MJ, Luong AU. Unified Airway Disease. Otolaryngol Clin North Am 2023; 56:181-195. [DOI: 10.1016/j.otc.2022.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
12
|
Di Cicco M, Ghezzi M, Kantar A, Song WJ, Bush A, Peroni D, D'Auria E. Pediatric obesity and severe asthma: Targeting pathways driving inflammation. Pharmacol Res 2023; 188:106658. [PMID: 36642111 DOI: 10.1016/j.phrs.2023.106658] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 01/04/2023] [Accepted: 01/10/2023] [Indexed: 01/13/2023]
Abstract
Asthma affects more than 300 million people of all ages worldwide, including about 10-15% of school-aged children, and its prevalence is increasing. Severe asthma (SA) is a particular and rare phenotype requiring treatment with high-dose inhaled corticosteroids plus a second controller and/or systemic glucocorticoid courses to achieve symptom control or remaining "uncontrolled" despite this therapy. In SA, other diagnoses have been excluded, and potential exacerbating factors have been addressed. Notably, obese asthmatics are at higher risk of developing SA. Obesity is both a major risk factor and a disease modifier of asthma in children and adults: two main "obese asthma" phenotypes have been described in childhood with high or low levels of Type 2 inflammation biomarkers, respectively, the former characterized by early onset and eosinophilic inflammation and the latter by neutrophilic inflammation and late-onset. Nevertheless, the interplay between obesity and asthma is far more complex and includes obese tissue-driven inflammatory pathways, mechanical factors, comorbidities, and poor response to corticosteroids. This review outlines the most recent findings on SA in obese children, particularly focusing on inflammatory pathways, which are becoming of pivotal importance in order to identify selective targets for specific treatments, such as biological agents.
Collapse
Affiliation(s)
- Maria Di Cicco
- Pediatric Clinic, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Michele Ghezzi
- Department of Pediatrics, Vittore Buzzi Children's Hospital, University of Milan, Milan, Italy
| | - Ahmad Kantar
- Pediatric Asthma and Cough Centre, Gruppo Ospedaliero San Donato, Bergamo, Italy and Università Vita Salute San Raffaele, Milan, Italy
| | - Woo-Jung Song
- Department of Allergy and Clinical Immunology, University of Ulsan College of Medicine, Seoul, South Korea
| | - Andrew Bush
- Dept of Paediatric Respiratory Medicine, Royal Brompton Hospital and National Heart and Lung Institute, School of Medicine, Imperial College London, London, UK
| | - Diego Peroni
- Pediatric Clinic, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Enza D'Auria
- Department of Pediatrics, Vittore Buzzi Children's Hospital, University of Milan, Milan, Italy.
| |
Collapse
|
13
|
Altieri A, Piyadasa H, Hemshekhar M, Osawa N, Recksiedler B, Spicer V, Hiemstra PS, Halayko AJ, Mookherjee N. Combination of IL-17A/F and TNF-α uniquely alters the bronchial epithelial cell proteome to enhance proteins that augment neutrophil migration. J Inflamm (Lond) 2022; 19:26. [PMCID: PMC9749191 DOI: 10.1186/s12950-022-00323-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 12/05/2022] [Indexed: 12/16/2022] Open
Abstract
Background The heterodimer interleukin (IL)-17A/F is elevated in the lungs in chronic respiratory disease such as severe asthma, along with the pro-inflammatory cytokine tumor necrosis factor-α (TNF-α). Although IL-17A/F and TNF-α are known to functionally cooperate to exacerbate airway inflammation, proteins altered by their interaction in the lungs are not fully elucidated. Results We used Slow Off-rate Modified Aptamer-based proteomic array to identify proteins that are uniquely and/or synergistically enhanced by concurrent stimulation with IL-17A/F and TNF-α in human bronchial epithelial cells (HBEC). The abundance of 38 proteins was significantly enhanced by the combination of IL-17A/F and TNF-α, compared to either cytokine alone. Four out of seven proteins that were increased > 2-fold were those that promote neutrophil migration; host defence peptides (HDP; Lipocalin-2 (LCN-2) and Elafin) and chemokines (IL-8, GROα). We independently confirmed the synergistic increase of these four proteins by western blots and ELISA. We also functionally confirmed that factors secreted by HBEC stimulated with the combination of IL-17A/F and TNF-α uniquely enhances neutrophil migration. We further showed that PI3K and PKC pathways selectively control IL-17A/F + TNF-α-mediated synergistic production of HDPs LCN-2 and Elafin, but not chemokines IL-8 and GROα. Using a murine model of airway inflammation, we demonstrated enhancement of IL-17A/F, TNF-α, LCN-2 and neutrophil chemokine KC in the lungs, thus corroborating our findings in-vivo. Conclusion This study identifies proteins and signaling mediated by concurrent IL-17A/F and TNF-α exposure in the lungs, relevant to respiratory diseases characterized by chronic inflammation, especially neutrophilic airway inflammation such as severe asthma. Supplementary Information The online version contains supplementary material available at 10.1186/s12950-022-00323-w.
Collapse
Affiliation(s)
- Anthony Altieri
- grid.21613.370000 0004 1936 9609Manitoba Centre for Proteomics and Systems Biology, Department of Internal Medicine, University of Manitoba, Winnipeg, MB Canada ,grid.21613.370000 0004 1936 9609Department of Immunology, University of Manitoba, Winnipeg, MB Canada
| | - Hadeesha Piyadasa
- grid.21613.370000 0004 1936 9609Manitoba Centre for Proteomics and Systems Biology, Department of Internal Medicine, University of Manitoba, Winnipeg, MB Canada ,grid.21613.370000 0004 1936 9609Department of Immunology, University of Manitoba, Winnipeg, MB Canada ,grid.168010.e0000000419368956Department of Pathology, School of Medicine, Stanford University, Palo Alto, CA USA
| | - Mahadevappa Hemshekhar
- grid.21613.370000 0004 1936 9609Manitoba Centre for Proteomics and Systems Biology, Department of Internal Medicine, University of Manitoba, Winnipeg, MB Canada
| | - Natasha Osawa
- grid.21613.370000 0004 1936 9609Manitoba Centre for Proteomics and Systems Biology, Department of Internal Medicine, University of Manitoba, Winnipeg, MB Canada
| | - Breann Recksiedler
- grid.21613.370000 0004 1936 9609Manitoba Centre for Proteomics and Systems Biology, Department of Internal Medicine, University of Manitoba, Winnipeg, MB Canada
| | - Victor Spicer
- grid.21613.370000 0004 1936 9609Manitoba Centre for Proteomics and Systems Biology, Department of Internal Medicine, University of Manitoba, Winnipeg, MB Canada
| | - Pieter S Hiemstra
- grid.10419.3d0000000089452978Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| | - Andrew J Halayko
- grid.21613.370000 0004 1936 9609Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB Canada ,grid.460198.20000 0004 4685 0561Biology of Breathing Group, The Children’s Hospital Research Institute of Manitoba, Winnipeg, MB Canada
| | - Neeloffer Mookherjee
- grid.21613.370000 0004 1936 9609Manitoba Centre for Proteomics and Systems Biology, Department of Internal Medicine, University of Manitoba, Winnipeg, MB Canada ,grid.21613.370000 0004 1936 9609Department of Immunology, University of Manitoba, Winnipeg, MB Canada ,grid.460198.20000 0004 4685 0561Biology of Breathing Group, The Children’s Hospital Research Institute of Manitoba, Winnipeg, MB Canada
| |
Collapse
|
14
|
Lebold KM, Drake MG, Pincus AB, Pierce AB, Fryer AD, Jacoby DB. Unique Allergic Asthma Phenotypes in Offspring of House Dust Mite-exposed Mice. Am J Respir Cell Mol Biol 2022; 67:89-98. [PMID: 35363997 PMCID: PMC9273226 DOI: 10.1165/rcmb.2021-0535oc] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 04/01/2022] [Indexed: 11/24/2022] Open
Abstract
Asthma is a heterogeneous inflammatory airway disease that develops in response to a combination of genetic predisposition and environmental exposures. Patients with asthma are grouped into phenotypes with shared clinical features and biomarker profiles to help tailor specific therapies. However, factors driving development of specific phenotypes are poorly understood. Prenatal exposure to maternal asthma is a unique risk factor for childhood asthma. Here we tested whether maternal asthma skews asthma phenotypes in offspring. We compared airway hyperreactivity and inflammatory and neurotrophin lung signatures before and after allergen challenge in offspring born to mice exposed to house dust mite (HDM) or vehicle during pregnancy. Maternal HDM exposure potentiated offspring responses to HDM allergen, significantly increasing both airway hyperreactivity and airway eosinophilia compared with control mice. Maternal HDM exposure broadly skewed the offspring cytokine response from a classic allergen-induced T-helper cell type 2 (Th2)-predominant signature in HDM-treated offspring of vehicle-exposed mothers, toward a mixed Th17/Th1 phenotype in HDM-treated offspring of HDM-exposed mothers. Morphologic analysis determined that maternal HDM exposure also increased airway epithelial sensory nerve density and induced distinct neurotrophin signatures to support airway hyperinnervation. Our results demonstrate that maternal allergen exposure alters fetal lung development and promotes a unique inflammatory phenotype at baseline and in response to allergen that persists into adulthood.
Collapse
Affiliation(s)
- Katie M. Lebold
- Department of Emergency Medicine, Stanford University School of Medicine, Palo Alto, California; and
| | - Matthew G. Drake
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Health and Science University, Portland, Oregon
| | - Alexandra B. Pincus
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Health and Science University, Portland, Oregon
| | - Aubrey B. Pierce
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Health and Science University, Portland, Oregon
| | - Allison D. Fryer
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Health and Science University, Portland, Oregon
| | - David B. Jacoby
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
15
|
Mesenchymal stem cells exert their anti-asthmatic effects through macrophage modulation in a murine chronic asthma model. Sci Rep 2022; 12:9811. [PMID: 35697721 PMCID: PMC9192777 DOI: 10.1038/s41598-022-14027-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 05/31/2022] [Indexed: 12/11/2022] Open
Abstract
Despite numerous previous studies, the full action mechanism of the pathogenesis of asthma remains undiscovered, and the need for further investigation is increasing in order to identify more effective target molecules. Recent attempts to develop more efficacious treatments for asthma have incorporated mesenchymal stem cell (MSC)-based cell therapies. This study aimed to evaluate the anti-asthmatic effects of MSCs primed with Liproxstatin-1, a potent ferroptosis inhibitor. In addition, we sought to examine the changes within macrophage populations and their characteristics in asthmatic conditions. Seven-week-old transgenic mice, constitutively overexpressing lung-specific interleukin (IL)-13, were used to simulate chronic asthma. Human umbilical cord-derived MSCs (hUC-MSCs) primed with Liproxstatin-1 were intratracheally administered four days prior to sampling. IL-13 transgenic mice demonstrated phenotypes of chronic asthma, including severe inflammation, goblet cell hyperplasia, and subepithelial fibrosis. Ly6C+M2 macrophages, found within the pro-inflammatory CD11c+CD11b+ macrophages, were upregulated and showed a strong correlation with lung eosinophil counts. Liproxstatin-1-primed hUC-MSCs showed enhanced ability to downregulate the activation of T helper type 2 cells compared to naïve MSCs in vitro and reduced airway inflammation, particularly Ly6C+M2 macrophages population, and fibrosis in vivo. In conclusion, intratracheal administration is an effective method of MSC delivery, and macrophages hold great potential as an additional therapeutic target for asthma.
Collapse
|
16
|
Vollmer CM, Dias ASO, Lopes LM, Kasahara TM, Delphim L, Silva JCC, Lourenço LP, Gonçalves HC, Linhares UC, Gupta S, Bento CAM. Leptin favors Th17/Treg cell subsets imbalance associated with allergic asthma severity. Clin Transl Allergy 2022; 12:e12153. [PMID: 35734271 PMCID: PMC9194742 DOI: 10.1002/clt2.12153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/29/2022] [Accepted: 04/29/2022] [Indexed: 11/19/2022] Open
Abstract
Background Obesity has often been associated with severe allergic asthma (AA). Here, we analyzed the frequency of different circulating CD4+T-cell subsets from lean, overweight and obese AA patients. Methods Mononuclear cells from peripheral blood were obtained from 60 AA patients and the frequency of different CD4+T-cell subsets and type 1 regulatory B cells (Br1) was determined by cytometry. The effect of obese-related leptin dose on cytokine production and Treg cell function in AA-derived CD4+ T cell cultures was evaluated by ELISA and 3H thymidine uptake, respectively. Leptin levels were quantified in the plasma by ELISA. According to the BMI, patients were stratified as lean, overweight and obese. Results AA severity, mainly among obese patients, was associated with an expansion of hybrid Th2/Th17 and Th17-like cells rather than classic Th2-like cells. On the other hand, the frequencies of Th1-like, Br1 cells and regulatory CD4+ T-cell subsets were lower in patients with severe AA. While percentages of the hybrid Th2/Th17 phenotype and Th17-like cells positively correlated with leptin levels, the frequencies of regulatory CD4+ T-cell subsets and Br1 cells negatively correlated with this adipokine. Interestingly, the obesity-related leptin dose not only elevated Th2 and Th17 cytokine levels, but also directly reduced the Treg function in CD4+ T cell cultures from lean AA patients. Conclusion In summary, our results indicated that obesity might increase AA severity by favoring the expansion of Th17-like and Th2/Th17 cells and decreasing regulatory CD4+T cell subsets, being adverse effects probably mediated by leptin overproduction.
Collapse
Affiliation(s)
- Carolina M. Vollmer
- Department of Microbiology and ParasitologyFederal University of the State of Rio de JaneiroRio de JaneiroBrazil
| | - Aleida S. O. Dias
- Department of Microbiology and ParasitologyFederal University of the State of Rio de JaneiroRio de JaneiroBrazil
- Post‐graduate Program in MicrobiologyUniversity of the State of Rio de JaneiroRio de JaneiroBrazil
| | - Lana M. Lopes
- Department of Microbiology and ParasitologyFederal University of the State of Rio de JaneiroRio de JaneiroBrazil
- Post‐graduate Program in MicrobiologyUniversity of the State of Rio de JaneiroRio de JaneiroBrazil
| | - Taissa M. Kasahara
- Department of Microbiology and ParasitologyFederal University of the State of Rio de JaneiroRio de JaneiroBrazil
| | - Letícia Delphim
- Department of Microbiology and ParasitologyFederal University of the State of Rio de JaneiroRio de JaneiroBrazil
| | - Júlio Cesar C. Silva
- Department of Microbiology and ParasitologyFederal University of the State of Rio de JaneiroRio de JaneiroBrazil
| | - Lucas Paulo Lourenço
- Department of Microbiology and ParasitologyFederal University of the State of Rio de JaneiroRio de JaneiroBrazil
| | | | - Ulisses C. Linhares
- Department of Morphological SciencesFederal University of the State of Rio de JaneiroRio de JaneiroBrazil
| | - Sudhir Gupta
- Department of MedicineUniversity of CaliforniaIrvineCaliforniaUSA
| | - Cleonice A. M. Bento
- Department of Microbiology and ParasitologyFederal University of the State of Rio de JaneiroRio de JaneiroBrazil
- Post‐graduate Program in MicrobiologyUniversity of the State of Rio de JaneiroRio de JaneiroBrazil
| |
Collapse
|
17
|
Xie Y, Abel PW, Casale TB, Tu Y. T H17 cells and corticosteroid insensitivity in severe asthma. J Allergy Clin Immunol 2022; 149:467-479. [PMID: 34953791 PMCID: PMC8821175 DOI: 10.1016/j.jaci.2021.12.769] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/30/2021] [Accepted: 12/15/2021] [Indexed: 02/03/2023]
Abstract
Asthma is classically described as having either a type 2 (T2) eosinophilic phenotype or a non-T2 neutrophilic phenotype. T2 asthma usually responds to classical bronchodilation therapy and corticosteroid treatment. Non-T2 neutrophilic asthma is often more severe. Patients with non-T2 asthma or late-onset T2 asthma show poor response to the currently available anti-inflammatory therapies. These therapeutic failures result in increased morbidity and cost associated with asthma and pose a major health care problem. Recent evidence suggests that some non-T2 asthma is associated with elevated TH17 cell immune responses. TH17 cells producing Il-17A and IL-17F are involved in the neutrophilic inflammation and airway remodeling processes in severe asthma and have been suggested to contribute to the development of subsets of corticosteroid-insensitive asthma. This review explores the pathologic role of TH17 cells in corticosteroid insensitivity of severe asthma and potential targets to treat this endotype of asthma.
Collapse
Affiliation(s)
- Yan Xie
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE, USA
| | - Peter W. Abel
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE, USA
| | - Thomas B. Casale
- Department of Internal Medicine, University of South Florida School of Medicine, Tampa, FL, USA
| | - Yaping Tu
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE, USA
| |
Collapse
|
18
|
Al Heialy S, Ramakrishnan RK, Hamid Q. Recent advances in the immunopathogenesis of severe asthma. J Allergy Clin Immunol 2022; 149:455-465. [DOI: 10.1016/j.jaci.2021.12.765] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 12/18/2022]
|
19
|
Lin LM, Chang YJ, Yang KD, Lin CH, Chien JW, Kao JK, Lee MS, Chiang TI, Lin CY, Tsai YG. Small Airway Dysfunction Measured by Impulse Oscillometry and Fractional Exhaled Nitric Oxide Is Associated With Asthma Control in Children. Front Pediatr 2022; 10:877681. [PMID: 35783300 PMCID: PMC9247317 DOI: 10.3389/fped.2022.877681] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Impulse oscillometry (IOS) and fractional exhaled nitric oxide (FeNO) are sensitive and non-invasive methods to measure airway resistance and inflammation, although there are limited population-based studies using IOS and FeNO to predict asthma control. OBJECTIVE This study aimed to investigate the utility of IOS and FeNO for assessing childhood asthma control in terms of small airway dysfunction and airway inflammation. METHODS This prospective observational cohort study enrolled 5,018 school children (aged 6-12 years), including 560 asthmatic children and 140 normal participants. FeNO, spirometry, IOS, bronchial dilation test, total IgE, and childhood asthma control test (C-ACT) were measured. FeNO, IOS, spirometry, and C-ACT results were correlated with childhood asthma with and without control. RESULTS Uncontrolled asthmatic children had abnormal FeNO, IOS, and spirometric values compared with control subjects (P < 0.05). IOS parameters with R5, R5-R20, X5, Ax, △R5, and FeNO can predict lower C-ACT scales by the areas under receiver operating characteristic curves (AUCs) (0.616, 0.625, 0.609, 0.622, 0.625, and 0.714). A combination of FeNO (>20 ppb) with IOS measure significantly increased the specificity for predicting uncontrolled asthma patients compared with FeNO alone (P < 0.01). A multiple regression model showed that small airway parameter (R5-R20) was the strongest risk factor [OR (95% CI): 87.26 (7.67-993.31)] for uncontrolled asthma patients. Poor control with lower C-ACT scales correlated with high FeNO (r = -0.394), R5 (r = -0.106), and R5-R20 (r = -0.129) in asthmatic children (P < 0.05). CONCLUSION A combined use of FeNO and IOS measurements strongly predicts childhood asthma with or without control.
Collapse
Affiliation(s)
- Liang-Mei Lin
- Respiratory Therapy Section for Children, Changhua Christian Children's Hospital, Changhua, Taiwan
| | - Yu-Jun Chang
- Epidemiology and Biostatistics Center and Big Data Center, Changhua Christian Hospital, Changhua, Taiwan
| | - Kuender D Yang
- Departments of Pediatrics, Mackay Memorial Hospital, Taipei City, Taiwan.,Department of Microbiology and Immunology, National Defense Medical Center, Taipei City, Taiwan
| | - Ching-Hsiung Lin
- Division of Chest Medicine, Department of Internal Medicine, Changhua Christian Hospital, Changhua, Taiwan.,Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung, Taiwan.,Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan.,Department of Recreation and Holistic Wellness, MingDao University, Changhua, Taiwan
| | - Jien-Wen Chien
- Department of Pediatrics, Changhua Christian Children's Hospital, Changhua, Taiwan.,Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Jun-Kai Kao
- Department of Pediatrics, Changhua Christian Children's Hospital, Changhua, Taiwan.,Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan.,Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan.,Frontier Molecular Medical Research Center in Children, Changhua Christian Children Hospital, Changhua, Taiwan.,School of Medicine, Kaohsiung Medical University, Taichung, Taiwan
| | - Ming-Sheng Lee
- Department of Pediatrics, Changhua Christian Children's Hospital, Changhua, Taiwan
| | - Tsay-I Chiang
- College of Nursing, Hungkuang University, Taichung, Taiwan
| | - Ching-Yuang Lin
- Division of Pediatric Nephrology, Children's Hospital, China Medical University, Taichung, Taiwan
| | - Yi-Giien Tsai
- Department of Pediatrics, Changhua Christian Children's Hospital, Changhua, Taiwan.,Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan.,School of Medicine, Kaohsiung Medical University, Taichung, Taiwan.,School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| |
Collapse
|
20
|
Schuliga M, Read J, Knight DA. Ageing mechanisms that contribute to tissue remodeling in lung disease. Ageing Res Rev 2021; 70:101405. [PMID: 34242806 DOI: 10.1016/j.arr.2021.101405] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/13/2021] [Accepted: 07/02/2021] [Indexed: 12/12/2022]
Abstract
Age is a major risk factor for chronic respiratory diseases such as idiopathic pulmonary fibrosis (IPF), chronic obstructive pulmonary disease (COPD) and certain phenotypes of asthma. The recent COVID-19 pandemic also highlights the increased susceptibility of the elderly to acute respiratory distress syndrome (ARDS), a diffuse inflammatory lung injury with often long-term effects (ie parenchymal fibrosis). Collectively, these lung conditions are characterized by a pathogenic reparative process that, rather than restoring organ function, contributes to structural and functional tissue decline. In the ageing lung, the homeostatic control of wound healing following challenge or injury has an increased likelihood of being perturbed, increasing susceptibility to disease. This loss of fidelity is a consequence of a diverse range of underlying ageing mechanisms including senescence, mitochondrial dysfunction, proteostatic stress and diminished autophagy that occur within the lung, as well as in other tissues, organs and systems of the body. These ageing pathways are highly interconnected, involving localized and systemic increases in inflammatory mediators and damage associated molecular patterns (DAMPs); along with corresponding changes in immune cell function, metabolism and composition of the pulmonary and gut microbiomes. Here we comprehensively review the roles of ageing mechanisms in the tissue remodeling of lung disease.
Collapse
Affiliation(s)
- Michael Schuliga
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.
| | - Jane Read
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Darryl A Knight
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW, Australia; Providence Health Care Research Institute, Vancouver, British Columbia, Canada
| |
Collapse
|
21
|
Izumi G, Nakano H, Nakano K, Whitehead GS, Grimm SA, Fessler MB, Karmaus PW, Cook DN. CD11b + lung dendritic cells at different stages of maturation induce Th17 or Th2 differentiation. Nat Commun 2021; 12:5029. [PMID: 34413303 PMCID: PMC8377117 DOI: 10.1038/s41467-021-25307-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 07/30/2021] [Indexed: 12/12/2022] Open
Abstract
Dendritic cells (DC) in the lung that induce Th17 differentiation remain incompletely understood, in part because conventional CD11b+ DCs (cDC2) are heterogeneous. Here, we report a population of cDCs that rapidly accumulates in lungs of mice following house dust extract inhalation. These cells are Ly-6C+, are developmentally and phenotypically similar to cDC2, and strongly promote Th17 differentiation ex vivo. Single cell RNA-sequencing (scRNA-Seq) of lung cDC2 indicates 5 distinct clusters. Pseudotime analysis of scRNA-Seq data and adoptive transfer experiments with purified cDC2 subpopulations suggest stepwise developmental progression of immature Ly-6C+Ly-6A/E+ cDC2 to mature Ly-6C-CD301b+ lung resident cDC2 lacking Ccr7 expression, which then further mature into CD200+ migratory cDC2 expressing Ccr7. Partially mature Ly-6C+Ly-6A/E-CD301b- cDC2, which express Il1b, promote Th17 differentiation. By contrast, CD200+ mature cDC2 strongly induce Th2, but not Th17, differentiation. Thus, Th17 and Th2 differentiation are promoted by lung cDC2 at distinct stages of maturation.
Collapse
Affiliation(s)
- Gentaro Izumi
- Immunity, Inflammation and Disease Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Hideki Nakano
- Immunity, Inflammation and Disease Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA.
| | - Keiko Nakano
- Immunity, Inflammation and Disease Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Gregory S Whitehead
- Immunity, Inflammation and Disease Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Sara A Grimm
- Integrative Bioinformatics Support Group, Division of Intramural Research, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Michael B Fessler
- Immunity, Inflammation and Disease Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Peer W Karmaus
- Immunity, Inflammation and Disease Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Donald N Cook
- Immunity, Inflammation and Disease Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA.
| |
Collapse
|
22
|
Hofmann MA, Fluhr JW, Ruwwe‐Glösenkamp C, Stevanovic K, Bergmann K, Zuberbier T. Role of IL-17 in atopy-A systematic review. Clin Transl Allergy 2021; 11:e12047. [PMID: 34429872 PMCID: PMC8361814 DOI: 10.1002/clt2.12047] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/25/2021] [Accepted: 06/25/2021] [Indexed: 02/05/2023] Open
Abstract
PURPOSE OF REVIEW Atopy is defined as the genetic predisposition to react with type I allergic diseases such as food-, skin-, and respiratory allergies. Distinct molecular mechanisms have been described, including the known Th2 driven immune response. IL-17A (IL-17) is mainly produced by Th17 cells and belongs to the IL-17 family of cytokines, IL-17A to F. While IL-17 plays a major role in inflammatory and autoimmune disorders, more data was published in recent years elucidating the role of IL-17 in allergic diseases. The present study aimed to elaborate specifically the role of IL-17 in atopy. METHODS A systematic literature search was conducted in MEDLINE, Embase, and Cochrane Central Register of Controlled Trials, regarding IL-17 and atopy/allergic diseases. RESULTS In total, 31 novel publications could be identified (food allergy n = 3, allergic asthma n = 7, allergic rhinitis [AR] n = 10, atopic dermatitis [AD] n = 11). In all allergic diseases, the IL-17 pathway has been investigated. Serum IL-17 was elevated in all allergic diseases. In AR, serum and nasal IL-17 levels correlated with the severity of the disease. In food allergies, serum IL-17E was also elevated in children. In AD, there is a trend for higher IL-17 values in the serum and skin specimen, while it is more expressed in acute lesions. In allergic asthma, serum IL-17 levels were increased. In two studies, higher serum IL-17 levels were found in severe persistent asthmatic patients than in intermittent asthmatics or healthy controls. Only one therapeutic clinical study exists on allergic diseases (asthma patients) using a monoclonal antibody against the IL-17 receptor A. No clinical efficacy was found in the total study population, except for a subgroup of patients with (post-bronchodilator) high reversibility. SUMMARY The role of IL 17 in the pathogenesis of allergic diseases is evident, but the involvement of the Th17 cytokine in the pathophysiological pathway is not conclusively defined. IL-17 is most likely relevant and will be a clinical target in subgroups of patients. The current data indicates that IL-17 is elevated more often in acute and severe forms of allergic diseases.
Collapse
Affiliation(s)
- Maja A. Hofmann
- Department of Dermatology and AllergyCharité ‐ Universitätsmedizin BerlinBerlinGermany
| | - Joachim W. Fluhr
- Department of Dermatology and AllergyCharité ‐ Universitätsmedizin BerlinBerlinGermany
| | | | - Katarina Stevanovic
- Department of Dermatology and AllergyCharité ‐ Universitätsmedizin BerlinBerlinGermany
| | | | - Torsten Zuberbier
- Department of Dermatology and AllergyCharité ‐ Universitätsmedizin BerlinBerlinGermany
| |
Collapse
|
23
|
Adel‐Patient K, Grauso M, Abou‐Taam R, Guillon B, Dietrich C, Machavoine F, Garcelon N, Briard M, Faour H, Neuraz A, Delacourt C, Molina TJ, Leite‐de‐Moraes M, Lezmi G. Immune signatures distinguish frequent from non-frequent exacerbators among children with severe asthma. Allergy 2021; 76:2261-2264. [PMID: 33544926 DOI: 10.1111/all.14759] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/05/2021] [Accepted: 02/01/2021] [Indexed: 12/13/2022]
Affiliation(s)
- Karine Adel‐Patient
- Université Paris‐Saclay CEA INRAE, Département Médicaments et Technologies pour la Santé (DMTS) SPI Laboratoire d'Immuno‐Allergie Alimentaire Gif‐sur‐Yvette France
| | - Marta Grauso
- Université Paris‐Saclay CEA INRAE, Département Médicaments et Technologies pour la Santé (DMTS) SPI Laboratoire d'Immuno‐Allergie Alimentaire Gif‐sur‐Yvette France
| | - Rola Abou‐Taam
- AP‐HP Hôpital Necker‐Enfants Malades Service de Pneumologie et Allergologie Pédiatriques Paris France
| | - Blanche Guillon
- Université Paris‐Saclay CEA INRAE, Département Médicaments et Technologies pour la Santé (DMTS) SPI Laboratoire d'Immuno‐Allergie Alimentaire Gif‐sur‐Yvette France
| | - Céline Dietrich
- Université de Paris Institut Necker Enfants Malades Equipe Immunorégulation et Immunopathologie Inserm UMR1151 CNRS UMR8253 Paris France
| | - François Machavoine
- Université de Paris Institut Necker Enfants Malades Equipe Immunorégulation et Immunopathologie Inserm UMR1151 CNRS UMR8253 Paris France
| | - Nicolas Garcelon
- Université de Paris UMRS 1138 INSERM Sorbonne Paris‐Cité Paris France
- AP‐HP Hôpital Necker‐Enfants Malades Service Informatique Médicale Paris France
| | - Mélanie Briard
- Université Paris‐Saclay CEA INRAE, Département Médicaments et Technologies pour la Santé (DMTS) SPI Laboratoire d'Immuno‐Allergie Alimentaire Gif‐sur‐Yvette France
| | - Hassan Faour
- Université de Paris UMRS 1138 INSERM Sorbonne Paris‐Cité Paris France
- AP‐HP Hôpital Necker‐Enfants Malades Service Informatique Médicale Paris France
| | - Antoine Neuraz
- Université de Paris UMRS 1138 INSERM Sorbonne Paris‐Cité Paris France
- AP‐HP Hôpital Necker‐Enfants Malades Service Informatique Médicale Paris France
| | - Christophe Delacourt
- AP‐HP Hôpital Necker‐Enfants Malades Service de Pneumologie et Allergologie Pédiatriques Paris France
| | - Thierry J. Molina
- Université de Paris UMRS 1138 INSERM Sorbonne Paris‐Cité Paris France
- AP‐HP Centre‐Université de Paris Hôpital Necker‐Enfant‐Malades Service d'Anatomie et Cytologie Pathologiques Paris France
| | - Maria Leite‐de‐Moraes
- Université de Paris Institut Necker Enfants Malades Equipe Immunorégulation et Immunopathologie Inserm UMR1151 CNRS UMR8253 Paris France
| | - Guillaume Lezmi
- AP‐HP Hôpital Necker‐Enfants Malades Service de Pneumologie et Allergologie Pédiatriques Paris France
- Université de Paris Institut Necker Enfants Malades Equipe Immunorégulation et Immunopathologie Inserm UMR1151 CNRS UMR8253 Paris France
| |
Collapse
|
24
|
Chang JE, Lee HM, Kim J, Rhew K. Prevalence of Anemia in Pediatric Patients According to Asthma Control: Propensity Score Analysis. J Asthma Allergy 2021; 14:743-751. [PMID: 34234469 PMCID: PMC8254559 DOI: 10.2147/jaa.s318641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/11/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose To investigate whether the degree of asthma control is associated with anemia in pediatric patients. Patients and Methods A cross-sectional study was performed using a dataset from the Health Insurance Reviews & Assessment Service (HIRA) of South Korea in 2016, which included children and adolescent patients diagnosed with asthma. Binary logistic regression was used to assess the association between asthma control and the prevalence of anemia. Results A total of 236,429 patients under 18 years old were included in the study, including 233,975 patients with controlled and 2454 with uncontrolled asthma. Binary logistic regression after adjustment for confounding factors showed that patients with uncontrolled asthma had a 2.64-fold higher prevalence of anemia than those with well-controlled asthma (OR = 2.64, 95% CI: 2.16-3.22). While there was no effect of gender on the results, there was a statistically significant association between the prevalence of anemia and asthma control in patients under 13 years old. Conclusion These findings suggest that the prevalence of anemia is inversely correlated with asthma control in pediatric patients. Further studies are necessary to obtain pathophysiological insight into the relationship between severe inflammatory diseases and anemia.
Collapse
Affiliation(s)
- Ji-Eun Chang
- College of Pharmacy, Dongduk Women's University, Seoul, Republic of Korea
| | - Hyang-Mi Lee
- College of Pharmacy, Dongduk Women's University, Seoul, Republic of Korea
| | - Jongyoon Kim
- College of Pharmacy, Dongduk Women's University, Seoul, Republic of Korea
| | - Kiyon Rhew
- College of Pharmacy, Dongduk Women's University, Seoul, Republic of Korea
| |
Collapse
|
25
|
Fitzpatrick AM, Chipps BE, Holguin F, Woodruff PG. T2-"Low" Asthma: Overview and Management Strategies. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2021; 8:452-463. [PMID: 32037109 DOI: 10.1016/j.jaip.2019.11.006] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/11/2019] [Accepted: 11/11/2019] [Indexed: 02/07/2023]
Abstract
Although the term "asthma" has been applied to all patients with airway lability and variable chest symptoms for centuries, phenotypes of asthma with distinct clinical and molecular features that may warrant different treatment approaches are well recognized. Patients with type 2 (T2)-"high" asthma are characterized by upregulation of T2 immune pathways (ie, IL-4 and IL-13 gene sets) and eosinophilic airway inflammation, whereas these features are absent in patients with T2-"low" asthma and may contribute to poor responsiveness to corticosteroid treatment. This review details definitions and clinical features of T2-"low" asthma, potential mechanisms and metabolic aspects, pediatric considerations, and potential treatment approaches. Priority research questions for T2-"low" asthma are also discussed.
Collapse
Affiliation(s)
| | - Bradley E Chipps
- Capital Allergy and Respiratory Disease Center, Sacramento, Calif
| | - Fernando Holguin
- University of Colorado, Pulmonary Sciences and Critical Care Medicine, Denver, Colo
| | - Prescott G Woodruff
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, and the Cardiovascular Research Institute, University of California, San Francisco, Calif
| |
Collapse
|
26
|
Lütfioğlu M, Sakallıoğlu U, Sakallıoğlu EE, Özden FO, Ürkmez SS, Bilgici B. Effects of smoking on the gingival crevicular fluid levels of interleukin-17A, interleukin-17E, and oxidative stress following periodontal treatment process. J Periodontal Res 2021; 56:388-396. [PMID: 33458831 DOI: 10.1111/jre.12831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 10/13/2020] [Accepted: 11/12/2020] [Indexed: 12/19/2022]
Abstract
OBJECTIVE AND BACKGROUND How smoking affects periodontal inflammation and healing still needs to be revealed with all its mechanisms. In this study, the gingival crevicular fluid (GCF) levels of: (a) interleukin-17A (IL-17A) and interleukin-17E(IL-17E) with their ratios and (b) oxidative stress by means of total oxidative stress (TOS), total anti-oxidant capacity (TAOC), and their ratios as the oxidative stress index (OSI) were evaluated and compared for smoking and non-smoking periodontitis patients after a periodontitis management process including both the non-surgical and surgical treatments. MATERIALS AND METHODS Fifteen smoker and 15 non-smoker generalized periodontitis patients as 2 distinct groups participated in the study. Conventional clinical and radiographical examinations were utilized for the periodontitis diagnosis. The clinical data and GCF samples were collected at baseline, 4 week after non-surgical periodontal treatment (NSPT), and 4 weeks after surgical periodontal treatment (SPT). IL-17A, IL-17E, TOS, and TAOC were determined by ELISA and Rel Assay. RESULTS Clinical parameters in both smokers and non-smokers improved following periodontal treatment (P < .001) and their clinical data were similar for all the examination times (baseline, NSPT, and SPT) (P > .05). Following the treatment phases, the IL-17A concentration decreased and the IL-17E concentration increased in both the smokers and non-smokers (P < .01). The total amount of IL-17A decreased while the total amount of IL-17E increased in smokers throughout NSPT and SPT (P < .01). Such an alteration was seen only at SPT compared to NSPT and baseline in non-smokers (P < .01). The concentration and total amount of IL-17A were higher at baseline, and the concentration and total amount of IL-17E were lower at all examination time points in non-smokers as compared to smokers (P < .01). The 17A/E ratio decreased in both groups following the treatment phases and was higher in smokers at all the examination times (P < .01). TOS were higher and TAOC were lower in smokers versus non-smokers at all the time points, but the differences were significant only for TOS levels (P < .01). Throughout the treatment phases, the concentration and total amount of TOS decreased in smokers(P < .01) and only the total amount of TOS decreased in non-smokers (P < .01). The concentration and total amounts of TAOC increased throughout the treatments in both smokers and non-smokers without significant changes (P > .05). The baseline OSI was higher in smokers, and it decreased only in smokers following the treatment phases (P < .01). CONCLUSIONS Smoking and periodontal inflammation were found to alter IL-17A, IL-17E, and oxidant/anti-oxidant statuses in periodontitis patients. The intra-group assessments in smokers demonstrated more apparent alterations in the oxidant/anti-oxidant statuses and IL-17A and IL-17E levels after periodontitis management.
Collapse
Affiliation(s)
- Muge Lütfioğlu
- Department of Periodontology, Ondokuz Mayis University Dental Faculty, Samsun, Turkey
| | - Umur Sakallıoğlu
- Department of Periodontology, Ondokuz Mayis University Dental Faculty, Samsun, Turkey
| | - Eser Elif Sakallıoğlu
- Department of Periodontology, Ondokuz Mayis University Dental Faculty, Samsun, Turkey
| | - Feyza O Özden
- Department of Periodontology, Ondokuz Mayis University Dental Faculty, Samsun, Turkey
| | - Sebati Sinan Ürkmez
- Department of Biochemistry, Ondokuz Mayis University Medical Faculty, Samsun, Turkey
| | - Birsen Bilgici
- Department of Biochemistry, Ondokuz Mayis University Medical Faculty, Samsun, Turkey
| |
Collapse
|
27
|
Vandenborght LE, Enaud R, Urien C, Coron N, Girodet PO, Ferreira S, Berger P, Delhaes L. Type 2-high asthma is associated with a specific indoor mycobiome and microbiome. J Allergy Clin Immunol 2020; 147:1296-1305.e6. [PMID: 32926879 PMCID: PMC7486598 DOI: 10.1016/j.jaci.2020.08.035] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 12/17/2022]
Abstract
Background The links between microbial environmental exposures and asthma are well documented, but no study has combined deep sequencing results from pulmonary and indoor microbiomes of patients with asthma with spirometry, clinical, and endotype parameters. Objective The goal of this study was to investigate the links between indoor microbial exposures and pulmonary microbial communities and to document the role of microbial exposures on inflammatory and clinical outcomes of patients with severe asthma (SA). Methods A total of 55 patients with SA from the national Cohort of Bronchial Obstruction and Asthma cohort were enrolled for analyzing their indoor microbial flora through the use of electrostatic dust collectors (EDCs). Among these patients, 22 were able to produce sputum during “stable” or pulmonary “exacerbation” periods and had complete pairs of EDC and sputum samples, both collected and analyzed. We used amplicon targeted metagenomics to compare microbial communities from EDC and sputum samples of patients according to type 2 (T2)-asthma endotypes. Results Compared with patients with T2-low SA, patients with T2-high SA exhibited an increase in bacterial α-diversity and a decrease in fungal α-diversity of their indoor microbial florae, the latter being significantly correlated with fraction of exhaled nitric oxide levels. The β-diversity of the EDC mycobiome clustered significantly according to T2 endotypes. Moreover, the proportion of fungal taxa in common between the sputum and EDC samples was significantly higher when patients exhibited acute exacerbation. Conclusion These results illustrated, for the first time, a potential association between the indoor mycobiome and clinical features of patients with SA, which should renew interest in deciphering the interactions between indoor environment, fungi, and host in asthma.
Collapse
Affiliation(s)
- Louise-Eva Vandenborght
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC 1401, F-33000 Bordeaux, France; Centre de Recherche Cardio-thoracique de Bordeaux, INSERM, U1045, CIC 1401, F-33000 Bordeaux, France; Microbiota Team, Research and Development Department, GenoScreen, Lille, France
| | - Raphaël Enaud
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC 1401, F-33000 Bordeaux, France; Centre de Recherche Cardio-thoracique de Bordeaux, INSERM, U1045, CIC 1401, F-33000 Bordeaux, France; Laboratoire de Parasitologie-Mycologie, Service D'exploration Fonctionnelle Respiratoire, Service de pharmacologie, CIC 1401, CHU de Bordeaux, F-33604 Pessac, France
| | - Charlotte Urien
- Microbiota Team, Research and Development Department, GenoScreen, Lille, France
| | - Noémie Coron
- Laboratoire de Parasitologie-Mycologie, Service D'exploration Fonctionnelle Respiratoire, Service de pharmacologie, CIC 1401, CHU de Bordeaux, F-33604 Pessac, France
| | - Pierre-Olivier Girodet
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC 1401, F-33000 Bordeaux, France; Centre de Recherche Cardio-thoracique de Bordeaux, INSERM, U1045, CIC 1401, F-33000 Bordeaux, France; Laboratoire de Parasitologie-Mycologie, Service D'exploration Fonctionnelle Respiratoire, Service de pharmacologie, CIC 1401, CHU de Bordeaux, F-33604 Pessac, France
| | - Stéphanie Ferreira
- Microbiota Team, Research and Development Department, GenoScreen, Lille, France
| | - Patrick Berger
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC 1401, F-33000 Bordeaux, France; Centre de Recherche Cardio-thoracique de Bordeaux, INSERM, U1045, CIC 1401, F-33000 Bordeaux, France; Laboratoire de Parasitologie-Mycologie, Service D'exploration Fonctionnelle Respiratoire, Service de pharmacologie, CIC 1401, CHU de Bordeaux, F-33604 Pessac, France
| | - Laurence Delhaes
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC 1401, F-33000 Bordeaux, France; Centre de Recherche Cardio-thoracique de Bordeaux, INSERM, U1045, CIC 1401, F-33000 Bordeaux, France; Laboratoire de Parasitologie-Mycologie, Service D'exploration Fonctionnelle Respiratoire, Service de pharmacologie, CIC 1401, CHU de Bordeaux, F-33604 Pessac, France.
| |
Collapse
|
28
|
Abstract
PURPOSE OF REVIEW This review summarizes recent progress in our understanding how environmental adjuvants promote the development of asthma. RECENT FINDINGS Asthma is a heterogeneous set of lung pathologies with overlapping features. Human studies and animal models suggest that exposure to different environmental adjuvants activate distinct immune pathways, which in turn give rise to distinct forms, or endotypes, of allergic asthma. Depending on their concentrations, inhaled TLR ligands can activate either type 2 inflammation, or Th17 differentiation, along with regulatory responses that function to attenuate inflammation. By contrast, a different category of environmental adjuvants, proteases, activate distinct immune pathways and prime predominantly type 2 immune responses. Asthma is not a single disease, but rather a group of pathologies with overlapping features. Different endotypes of asthma likely arise from perturbations of distinct immunologic pathways during allergic sensitization.
Collapse
Affiliation(s)
- Donald N Cook
- Immunogenetics Group, Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Dr., Research Triangle Park, Durham, NC, 27709, USA.
| |
Collapse
|
29
|
Wu J, Zhong W, Zhang H, Yin Y. Mammalian Target of Rapamycin Signaling Enhances Ovalbumin-Induced Neutrophilic Airway Inflammation by Promoting Th17 Cell Polarization in Murine Noneosinophilic Asthma Model. PEDIATRIC ALLERGY IMMUNOLOGY AND PULMONOLOGY 2020; 33:25-32. [PMID: 33406024 DOI: 10.1089/ped.2019.1088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Background: T helper 17 (Th17) is regarded as key immune cell in the pathogenesis of noneosinophilic asthma (NEA) due to the recruitment of neutrophils into the airways. The mammalian target of rapamycin (mTOR) is an important signaling molecule that plays a critical role in immune regulation. This study focused on mTOR signaling pathway in the regulation of Th17-mediated neutrophilic airway inflammation. Methods: Ovalbumin (OVA) T cell receptor transgenic DO11.10 mice (DO11.10 mice) were used to establish NEA model, and few mice received specific mTORC1 inhibitor rapamycin (RAPA) before intranasal administration of OVA. The severity of airway inflammation was determined by differential cell counts in bronchoalveolar lavage (BAL) fluids and histopathologic lung analysis. The levels of various cytokines in BAL fluids and lung tissues were measured. To determine the role of mTORC1 signaling in Th17 differentiation, naive T cells from wild-type (WT) and TSC1 knockout (KO) mice were cultured in Th17 skewing condition with or without RAPA in vitro and the production of IL-17A was compared. Results: Treatment with RAPA markedly attenuated OVA-induced neutrophilic airway inflammation in DO11.10 mice. Also the production of IL-17A was inhibited without affecting the production of interferon-γ (IFN-γ) and IL-4 in lungs. Furthermore, RAPA suppressed differentiation of Th17 cells in vitro, whereas enhanced activity of mTORC1 promoted Th17 cell differentiation and increased the expression of Th17-related transcription factors RORγt and RORα. Conclusion: These results suggested that mTOR promoted Th17 cell polarization and enhanced OVA-induced neutrophilic airway inflammation in experimental NEA.
Collapse
Affiliation(s)
- Jinhong Wu
- Department of Pulmonary, Shanghai Children's Medical Center Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wenwei Zhong
- Department of Pulmonary, Shanghai Children's Medical Center Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hao Zhang
- Department of Pulmonary, Shanghai Children's Medical Center Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yong Yin
- Department of Pulmonary, Shanghai Children's Medical Center Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
30
|
|
31
|
Lebold KM, Jacoby DB, Drake MG. Inflammatory mechanisms linking maternal and childhood asthma. J Leukoc Biol 2020; 108:113-121. [PMID: 32040236 DOI: 10.1002/jlb.3mr1219-338r] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 12/26/2022] Open
Abstract
Asthma is a chronic inflammatory airway disease characterized by airway hyperresponsiveness, inflammation, and remodeling. Asthma often develops during childhood and causes lifelong decrements in lung function and quality of life. Risk factors for childhood asthma are numerous and include genetic, epigenetic, developmental, and environmental factors. Uncontrolled maternal asthma during pregnancy exposes the developing fetus to inflammatory insults, which further increase the risk of childhood asthma independent of genetic predisposition. This review focuses on the role of maternal asthma in the development of asthma in offspring. We will present maternal asthma as a targetable and modifiable risk factor for childhood asthma and discuss the mechanisms by which maternal inflammation increases childhood asthma risk. Topics include how exposure to maternal asthma in utero shapes structural lung development with a special emphasis on airway nerves, how maternal type-2 cytokines such as IL-5 activate the fetal immune system, and how changes in lung and immune cell development inform responses to aero-allergens later in life. Finally, we highlight emerging evidence that maternal asthma establishes a unique "asthma signature" in the airways of children, leading to novel mechanisms of airway hyperreactivity and inflammatory cell responses.
Collapse
Affiliation(s)
- Katie M Lebold
- Division of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, Oregon, USA
| | - David B Jacoby
- Division of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, Oregon, USA
| | - Matthew G Drake
- Division of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, Oregon, USA
| |
Collapse
|
32
|
Wang SC, Yang KD, Lin CY, Huang AY, Hsiao CC, Lin MT, Tsai YG. Intravenous immunoglobulin therapy enhances suppressive regulatory T cells and decreases innate lymphoid cells in children with immune thrombocytopenia. Pediatr Blood Cancer 2020; 67:e28075. [PMID: 31736241 DOI: 10.1002/pbc.28075] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 10/18/2019] [Accepted: 10/21/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND This study aimed to investigate the relationship between CD4+ regulatory T cells (Tregs) and innate lymphoid cells (ILCs) in children with primary immune thrombocytopenia (ITP) undergoing high-dose intravenous immunoglobulin (IVIG) therapy. METHODS We enrolled a cohort of 30 children with newly diagnosed ITP and 30 healthy controls and collected blood samples for levels of Tregs, ILCs, relevant cytokines, and Treg suppression assay at the diagnosis, two days, four weeks, and one year (only platelet count) after high-dose IVIG treatment. IVIG partial responders was defined by a platelet count less than 100 × 109 /L at 12 months after IVIG treatment. RESULTS Children with newly diagnosed ITP exhibited elevated levels of ILC1, ILC2, ILC3, Th17, myeloid dendritic cells (DCs), plasmacytoid DCs, and serum IFN-γ and IL-17A levels, accompanied by a decrease in IL-10-producing Tregs. High-dose IVIG therapy reversed these aberrations. Platelet counts positively correlated with Tregs (rho = 0.72) and negatively correlated with both ILC1 (rho = -0.49) and ILC3 (rho = -0.60) (P < 0.05). Significantly lower Tregs and higher ILC1, ILC3, DCs, and serum IL-17A levels were noted in the partial responders (n = 8) versus responders (n = 22; P < 0.05). We found that Tregs suppressed proliferation of ILCs and CD4+ T cells in CD25-depleted peripheral PBMCs and enhanced the apoptosis of CD4+ CD45RO+ T cells in vitro following IVIG therapy. CONCLUSIONS Effective high-dose IVIG therapy for children with newly diagnosed ITP appears to result in the induction of Tregs, which suppresses ILC proliferation in vitro and is associated with platelet response.
Collapse
Affiliation(s)
- Shih-Chung Wang
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, Changhua Christian Children's Hospital, Changhua City, Taiwan
| | - Kuender D Yang
- Mackay Children's Hospital, and Institute of Biomedical Sciences, Mackay Medical College, Taipei, Taiwan.,Department of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| | - Ching-Yuang Lin
- Clinical Immunological Center, China Medical University Hospital, Taichung, Taiwan.,Division of Pediatric Nephrology, Childrens' Hospital, China Medical University, Taichung, Taiwan
| | - Alex Y Huang
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, UH Rainbow Babies and Children's Hospital; Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Chien-Chou Hsiao
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, Changhua Christian Children's Hospital, Changhua City, Taiwan.,School of Medicine, Chung Shan Medical University, Taichung, Taiwan.,School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Tsan Lin
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, Changhua Christian Children's Hospital, Changhua City, Taiwan
| | - Yi-Giien Tsai
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, Changhua Christian Children's Hospital, Changhua City, Taiwan.,School of Medicine, Chung Shan Medical University, Taichung, Taiwan.,School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
33
|
Liu Z, Niu C, Ying L, Zhang Q, Long M, Fu Z. Exploration of the Serum Interleukin-17 and Interleukin-27 Expression Levels in Children with Bronchial Asthma and Their Correlation with Indicators of Lung Function. Genet Test Mol Biomarkers 2019; 24:10-16. [PMID: 31880470 DOI: 10.1089/gtmb.2019.0155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Aims: To investigate the expression levels of serum interleukin-17 (IL-17) and interleukin-27 (IL-27) in children with bronchial asthma and to correlate these expression levels with lung function indicators. Methods: A total of 106 children with bronchial asthma (observation group: 76 in the acute attack phase, 30 in remission) and 60 healthy children (control group) aged 1-10 years were enrolled. Results: Levels of IL-17, IL-27, and fractional exhaled nitric oxide (FeNO) in the peripheral blood of children with bronchial asthma were higher compared to the control group. In addition, blood IL-17, IL-27, and FeNO levels in the children in the acute stage of bronchial asthma were higher compared with those in remission. The respiratory rate of children in the remission stage was lower compared with those in the acute stage, however, the other indicators were higher. IL-17, IL-27, and FeNO levels positively correlated with the respiratory rate and were negatively correlated with inspiratory time, expiratory time, peak time, and time to reach peak tidal expiratory flow/total expiratory time (TPTEF/TE; all p < 0.05). Conclusion: IL-17 and IL-27 levels are associated with the incidence and the development of bronchial asthma in children, and could be useful diagnostic markers. They may also effectively improve the specificity of FeNO for diagnosing the extent of lung injury in children.
Collapse
Affiliation(s)
- Zheng Liu
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing City, China.,Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing City, China
| | - Chao Niu
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing City, China.,Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing City, China
| | - Linyan Ying
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing City, China.,Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing City, China
| | - Qiao Zhang
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing City, China.,Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing City, China
| | - Meiling Long
- Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing City, China
| | - Zhou Fu
- Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing City, China
| |
Collapse
|
34
|
Abstract
Current management of severe asthma relying either on guidelines (bulk approach) or on disease phenotypes (stratified approach) did not improve the burden of the disease. Several severe phenotypes are described: clinical, functional, morphological, inflammatory, molecular and microbiome-related. However, phenotypes do not necessarily relate to or give insights into the underlying pathogenetic mechanisms which are described by the disease endotypes. Based on the major immune-inflammatory pathway involved type-2 high, type-2 low and mixed endotypes are described for severe asthma, with several shared pathogenetic pathways such as genetic and epigenetic, metabolic, neurogenic and remodelling subtypes. The concept of multidimensional endotyping as un unbiased approach to severe asthma is discussed, together with new tools and targets facilitating the shift from the stratified to the precision medicine approach.
Collapse
|
35
|
Licari A, Manti S, Castagnoli R, Marseglia A, Foiadelli T, Brambilla I, Marseglia GL. Immunomodulation in Pediatric Asthma. Front Pediatr 2019; 7:289. [PMID: 31355170 PMCID: PMC6640202 DOI: 10.3389/fped.2019.00289] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 06/27/2019] [Indexed: 01/20/2023] Open
Abstract
Childhood asthma is actually defined as a heterogeneous disease, including different clinical variants and partially sharing similar immune mechanisms. Asthma management is mainly focused on maintaining the control of the disease and reducing the risk of adverse outcomes. Most children achieve good control with standard therapies, such as low doses of inhaled corticosteroids (ICS) and/or one or more controller. These medications are targeted to suppress bronchial inflammation and to restore airway responsiveness. However, they are not disease-modifying and do not specifically target inflammatory pathways of asthma; in addition, they are not significantly effective in patients with severe uncontrolled asthma. The aim of this review is to update knowledge on current and novel therapeutic options targeted to immunomodulate inflammatory pathways underlying pediatric asthma, with particular reference on biologic therapies.
Collapse
Affiliation(s)
- Amelia Licari
- Department of Pediatrics, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - Sara Manti
- Unit of Pediatric Genetics and Immunology, Department of Pediatrics, University of Messina, Messina, Italy
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Riccardo Castagnoli
- Department of Pediatrics, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - Alessia Marseglia
- Department of Pediatrics, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - Thomas Foiadelli
- Department of Pediatrics, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - Ilaria Brambilla
- Department of Pediatrics, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - Gian Luigi Marseglia
- Department of Pediatrics, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| |
Collapse
|
36
|
Abstract
Asthma is a genetically and phenotypically complex disease that has a major impact on global health. Signs and symptoms of asthma are caused by the obstruction of airflow through the airways. The epithelium that lines the airways plays a major role in maintaining airway patency and in host defense. The epithelium initiates responses to inhaled or aspirated substances, including allergens, viruses, and bacteria, and epithelial-derived cytokines are important in the recruitment and activation of immune cells in the airway. Changes in the structure and function of the airway epithelium are a prominent feature of asthma. Approximately half of individuals with asthma have evidence of active type 2 immune responses in the airway. In these individuals, epithelial cytokines promote type 2 responses, and responses to type 2 cytokines result in increased epithelial mucus production and other effects that cause airway obstruction. Recent work also implicates other epithelial responses, including interleukin-17, interferon and ER stress responses, that may contribute to asthma pathogenesis and provide new targets for therapy.
Collapse
Affiliation(s)
- Luke R Bonser
- Lung Biology Center, University of California San Francisco, San Francisco, CA, United States
| | - David J Erle
- Lung Biology Center, University of California San Francisco, San Francisco, CA, United States.
| |
Collapse
|
37
|
Wen YS, Lin CY, Yang KD, Hung CH, Chang YJ, Tsai YG. Nasal nitric oxide is a useful biomarker for acute unilateral maxillary sinusitis in pediatric allergic rhinitis: A prospective observational cohort study. World Allergy Organ J 2019; 12:100027. [PMID: 31193296 PMCID: PMC6526296 DOI: 10.1016/j.waojou.2019.100027] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 03/08/2019] [Accepted: 03/15/2019] [Indexed: 12/19/2022] Open
Abstract
Background Nasal nitric oxide (nNO) could be a biomarker for nasal passage inflammation and sinus ostial patency. We have aimed to investigate the nNO concentration and the effect of antibiotic therapy in children with perennial allergic rhinitis (PAR) children with/without acute bacterial sinusitis. Methods We enrolled a cohort of 90 and 31 children with PAR, without and with acute unilateral maxillary sinusitis, and 79 normal children. Acute bacterial maxillary sinusitis was diagnosed based on clinical signs and symptoms, radiographic examination and nasal fibroendoscopy. Rhinitis control assessment test (RCAT), rhinomanometry, nNO and fractional exhaled NO (FENO) measurements were performed before and 2 weeks after antibiotic therapy. Results We found significantly higher mean nNO levels, FENO values, and total nasal resistance in children with PAR than in normal children (p < 0.05). Acute unilateral maxillary sinusitis was associated with lower lesion-side nNO levels, higher FENO values, total nasal resistance, and poor RCAT scores (p < 0.05). In multivariate analysis, age, IgE, and acute maxillary sinusitis were significant factors influencing nNO levels in children with PAR. The lesion-side nNO levels, FENO values, total nasal resistance, and RCAT scores were reversed after antibiotic therapy (p < 0.05). The lesion-side nNO levels were significantly correlated to nasal obstructive scores (r = 0.59, p < 0.05) and expiratory nasal resistance (r = -0.54, p < 0.05) in the acute maxillary sinusitis. A cut-off nNO value of 538 ppb showed 100% sensitivity and 94.9% specificity, to predict PAR from normal children. An nNO value of 462 ppb showed 100% sensitivity and 100% specificity to discriminate between the lesion-side and the unaffected sinus-side in PAR children with acute unilateral maxillary sinusitis. Conclusions We conclude that the obstruction of NO from the sinus into the nasal passage is the likely explanation for the decreased lesion-side nNO levels in acute unilateral maxillary sinusitis. nNO is a non-invasive biomarker with high sensitivity to diagnose and monitor treatment responses of PAR patients with acute rhinosinusitis. Both nNO and FENO levels return to baseline following antibiotic therapy, supporting the "one airway one disease" concept.
Collapse
Affiliation(s)
- Yung-Sung Wen
- Department of Otorhinolaryngology, Head and Neck Surgery, Changhua Christian Hospital, Changhua, Taiwan.,Department of Otorhinolaryngology, Head and Neck Surgery, Yunlin Christian Hospital, Xiluo, Taiwan.,School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Ching-Yuang Lin
- Clinical Immunological Center and College of Medicine, China Medical University Hospital, Taiwan
| | - Kuender D Yang
- Departments of Pediatrics, Mackay Memorial Hospital, and Institute of Biomedical Sciences, Mackay Medical College, Taipei, Taiwan
| | | | - Yu-Jun Chang
- Epidemiology and Biostatistics Center, Changhua Christian Hospital, Changhua, Taiwan
| | - Yi-Giien Tsai
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan.,School of Medicine, Kaohsiung Medical University, Taiwan.,Department of Pediatrics, Changhua Christian Children Hospital, Changhua, Taiwan
| |
Collapse
|
38
|
Biomarkers and asthma management: analysis and potential applications. Curr Opin Allergy Clin Immunol 2019; 18:96-108. [PMID: 29389730 DOI: 10.1097/aci.0000000000000426] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW Asthma features a high degree of heterogeneity in both pathophysiology and therapeutic response, resulting in many asthma patients being treated inadequately. Biomarkers indicative of underlying pathological processes could be used to identify disease subtypes, determine prognosis and to predict or monitor treatment response. However, the newly identified as well as more established biomarkers have different applications and limitations. RECENT FINDINGS Conventional markers for type 2-high asthma, such as blood eosinophils, fraction of exhaled nitric oxide, serum IgE and periostin, feature limited sensitivity and specificity despite their significant correlations. More distinctive models have been developed by combining biomarkers and/or using omics techniques. Recently, a model with a positive predictive value of 100% for identification of type 2-high asthma based on a combination of minimally invasive biomarkers was developed. SUMMARY Individualisation of asthma treatment regimens on the basis of biomarkers is necessary to improve asthma control. However, the suboptimal properties of currently available conventional biomarkers limit its clinical utility. Newly identified biomarkers and models based on combinations and/or omics analysis must be validated and standardised before they can be routinely applied in clinical practice. The development of robust biomarkers will allow development of more efficacious precision medicine-based treatment approaches for asthma.
Collapse
|
39
|
Paul AGA, Muehling LM, Eccles JD, Woodfolk JA. T cells in severe childhood asthma. Clin Exp Allergy 2019; 49:564-581. [PMID: 30793397 DOI: 10.1111/cea.13374] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 02/05/2019] [Accepted: 02/11/2019] [Indexed: 12/17/2022]
Abstract
Severe asthma in children is a debilitating condition that accounts for a disproportionately large health and economic burden of asthma. Reasons for the lack of a response to standard anti-inflammatory therapies remain enigmatic. Work in the last decade has shed new light on the heterogeneous nature of asthma, and the varied immunopathologies of severe disease, which are leading to new treatment approaches for the individual patient. However, most studies to date that explored the immune landscape of the inflamed lower airways have focused on adults. T cells are pivotal to the inception and persistence of inflammatory processes in the diseased lungs, despite a contemporary shift in focus to immune events at the epithelial barrier. This article outlines current knowledge on the types of T cells and related cell types that are implicated in severe asthma. The potential for environmental exposures and other inflammatory cues to condition the immune environment of the lung in early life to favour pathogenic T cells and steroid resistance is discussed. The contributions of T cells and their cytokines to inflammatory processes and treatment resistance are also considered, with an emphasis on new observations in children that argue against conventional type 1 and type 2 T cell paradigms. Finally, the ability for new technologies to revolutionize our understanding of T cells in severe childhood asthma, and to guide future treatment strategies that could mitigate this disease, is highlighted.
Collapse
Affiliation(s)
- Alberta G A Paul
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Lyndsey M Muehling
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Jacob D Eccles
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Judith A Woodfolk
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia
| |
Collapse
|
40
|
Patterson AR, Bolcas P, Lampe K, Cantrell R, Ruff B, Lewkowich I, Hogan SP, Janssen EM, Bleesing J, Khurana Hershey GK, Hoebe K. Loss of GTPase of immunity-associated protein 5 (Gimap5) promotes pathogenic CD4 + T-cell development and allergic airway disease. J Allergy Clin Immunol 2019; 143:245-257.e6. [PMID: 30616774 PMCID: PMC6327968 DOI: 10.1016/j.jaci.2018.10.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 09/14/2018] [Accepted: 10/07/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND GTPase of immunity-associated protein 5 (GIMAP5) is essential for lymphocyte homeostasis and survival. Recently, human GIMAP5 single nucleotide polymorphisms have been linked to an increased risk for asthma, whereas loss of Gimap5 in mice has been associated with severe CD4+ T cell-driven immune pathology. OBJECTIVE We sought to identify the molecular and cellular mechanisms by which Gimap5 deficiency predisposes to allergic airway disease. METHODS CD4+ T-cell polarization and development of pathogenic CD4+ T cells were assessed in Gimap5-deficient mice and a human patient with a GIMAP5 loss-of-function (LOF) mutation. House dust mite-induced airway inflammation was assessed by using a complete Gimap5 LOF (Gimap5sph/sph) and conditional Gimap5fl/flCd4Cre/ert2 mice. RESULTS GIMAP5 LOF mutations in both mice and human subjects are associated with spontaneous polarization toward pathogenic TH17 and TH2 cells in vivo. Mechanistic studies in vitro reveal that impairment of Gimap5-deficient TH cell differentiation is associated with increased DNA damage, particularly during TH1-polarizing conditions. DNA damage in Gimap5-deficient CD4+ T cells could be controlled by TGF-β, thereby promoting TH17 polarization. When challenged with house dust mite in vivo, Gimap5-deficient mice displayed an exacerbated asthma phenotype (inflammation and airway hyperresponsiveness), with increased development of TH2, TH17, and pathogenic TH17/TH2 cells. CONCLUSION Activation of Gimap5-deficient CD4+ T cells is associated with increased DNA damage and reduced survival that can be overcome by TGF-β. This leads to selective survival of pathogenic TH17 cells but also TH2 cells in human subjects and mice, ultimately promoting allergic airway disease.
Collapse
Affiliation(s)
- Andrew R Patterson
- Division of Immunobiology, Cincinnati Children's Hospital Research Foundation, Cincinnati, Ohio; Immunology Graduate Program, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Paige Bolcas
- Division of Asthma Research, Cincinnati Children's Hospital Research Foundation, Cincinnati, Ohio; Immunology Graduate Program, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Kristin Lampe
- Division of Immunobiology, Cincinnati Children's Hospital Research Foundation, Cincinnati, Ohio
| | - Rachel Cantrell
- Division of Immunobiology, Cincinnati Children's Hospital Research Foundation, Cincinnati, Ohio; Immunology Graduate Program, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Brandy Ruff
- Division of Asthma Research, Cincinnati Children's Hospital Research Foundation, Cincinnati, Ohio
| | - Ian Lewkowich
- Division of Immunobiology, Cincinnati Children's Hospital Research Foundation, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Simon P Hogan
- Division of Immunobiology, Cincinnati Children's Hospital Research Foundation, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Edith M Janssen
- Division of Immunobiology, Cincinnati Children's Hospital Research Foundation, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Jack Bleesing
- Division of Bone Marrow Transplantation & Immune Deficiency, Cincinnati Children's Hospital Research Foundation, Cincinnati, Ohio
| | - Gurjit K Khurana Hershey
- Division of Asthma Research, Cincinnati Children's Hospital Research Foundation, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Kasper Hoebe
- Division of Immunobiology, Cincinnati Children's Hospital Research Foundation, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio.
| |
Collapse
|
41
|
Hosoki K, Jaruga P, Itazawa T, Aguilera-Aguirre L, Coskun E, Hazra TK, Boldogh I, Dizdaroglu M, Sur S. Excision release of 5?hydroxycytosine oxidatively induced DNA base lesions from the lung genome by cat dander extract challenge stimulates allergic airway inflammation. Clin Exp Allergy 2018; 48:1676-1687. [PMID: 30244512 DOI: 10.1111/cea.13284] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 06/15/2018] [Accepted: 07/15/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND Ragweed pollen extract (RWPE) induces TLR4-NFκB-CXCL-dependent recruitment of ROS-generating neutrophils to the airway and OGG1 DNA glycosylase-dependent excision of oxidatively induced 8-OH-Gua DNA base lesions from the airway epithelial cell genome. Administration of free 8-OH-Gua base stimulates RWPE-induced allergic lung inflammation. These studies suggest that stimulation of innate receptors and their adaptor by allergenic extracts initiates excision of a set of DNA base lesions that facilitate innate/allergic lung inflammation. OBJECTIVE To test the hypothesis that stimulation of a conserved innate receptor/adaptor pathway by allergenic extracts induces excision of a set of pro-inflammatory oxidatively induced DNA base lesions from the lung genome that stimulate allergic airway inflammation. METHODS Wild-type (WT), Tlr4KO, Tlr2KO, Myd88KO, and TrifKO mice were intranasally challenged once or repeatedly with cat dander extract (CDE), and innate or allergic inflammation and gene expression were quantified. We utilized GC-MS/MS to quantify a set of oxidatively induced DNA base lesions after challenge of naïve mice with CDE. RESULTS A single CDE challenge stimulated innate neutrophil recruitment that was partially dependent on TLR4 and TLR2, and completely on Myd88, but not TRIF. A single CDE challenge stimulated MyD88-dependent excision of DNA base lesions 5-OH-Cyt, FapyAde, and FapyGua from the lung genome. A single challenge of naïve WT mice with 5-OH-Cyt stimulated neutrophilic lung inflammation. Multiple CDE instillations stimulated MyD88-dependent allergic airway inflammation. Multiple administrations of 5-OH-Cyt with CDE stimulated allergic sensitization and allergic airway inflammation. CONCLUSIONS AND CLINICAL RELEVANCE We show for the first time that CDE challenge stimulates MyD88-dependent excision of DNA base lesions. Our data suggest that the resultant-free base(s) contribute to CDE-induced innate/allergic lung inflammation. We suggest that blocking the MyD88 pathway in the airways with specific inhibitors may be a novel targeted strategy of inhibiting amplification of innate and adaptive immune inflammation in allergic diseases by oxidatively induced DNA base lesions.
Collapse
Affiliation(s)
- Koa Hosoki
- Department of Internal Medicine, Division of Allergy and Immunology, University of Texas Medical Branch, Galveston, Texas
| | - Pawel Jaruga
- Biomolecular Measurement Division National Institute of Standards and Technology, Gaithersburg, Maryland
| | - Toshiko Itazawa
- Department of Internal Medicine, Division of Allergy and Immunology, University of Texas Medical Branch, Galveston, Texas
| | | | - Erdem Coskun
- Biomolecular Measurement Division National Institute of Standards and Technology, Gaithersburg, Maryland
| | - Tapas K Hazra
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas.,Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, Texas
| | - Istvan Boldogh
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas.,Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, Texas
| | - Miral Dizdaroglu
- Biomolecular Measurement Division National Institute of Standards and Technology, Gaithersburg, Maryland
| | - Sanjiv Sur
- Department of Internal Medicine, Division of Allergy and Immunology, University of Texas Medical Branch, Galveston, Texas.,Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
42
|
Nadeem A, Al-Harbi NO, Alfardan AS, Ahmad SF, AlAsmari AF, Al-Harbi MM. IL-17A-induced neutrophilic airway inflammation is mediated by oxidant-antioxidant imbalance and inflammatory cytokines in mice. Biomed Pharmacother 2018; 107:1196-1204. [DOI: 10.1016/j.biopha.2018.08.123] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/18/2018] [Accepted: 08/23/2018] [Indexed: 01/05/2023] Open
|
43
|
Increased Sputum IL-17A Level in Non-asthmatic Eosinophilic Bronchitis. Lung 2018; 196:699-705. [PMID: 30276559 DOI: 10.1007/s00408-018-0166-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 09/24/2018] [Indexed: 12/24/2022]
Abstract
BACKGROUND Non-asthmatic eosinophilic bronchitis (NAEB) is one common cause of chronic cough which is characterized as airway eosinophilic inflammation like asthma but lack of airway hyper-responsiveness. Previous studies showed that Th2-pathway plays a role in NAEB, but the role of non-Th2 pathway in mechanism of NAEB remains unknown. Recently, IL-17A, a Th17-pathway cytokine, has been demonstrated to be involved in asthma development. However, the relationship between Th17-pathway and NAEB is unknown. METHODS We aim to assess the airway level of IL-17A in the subjects with NAEB. Relationships between the IL-17A level and airway function in NAEB or asthma are also observed. We measured IL-17A concentrations in the sputum supernatant from 12 subjects with EB, 16 subjects with asthma [9 eosinophilic asthmatic (EA) and 7 non-eosinophilic asthmatic (NEA) according to the sputum eosinophil ≥ 3%], and 9 healthy control subjects. RESULTS Increasing IL-17A level was found in NAEB group (29.65 ± 8.13 pg/ml), EA group (32.45 ± 3.22 pg/ml), and NEA group (29.62 ± 6.91 pg/ml) compared with the healthy control group (17.05 ± 10.30 pg/ml) (P < 0.05, P < 0.01, P < 0.05, respectively). The sputum IL-17A level was correlated with FENO (r = 0.44, P < 0.01), FEV1/FVC% (r = - 0.38, P < 0.05), MMEF%pred (r = - 0.34, P < 0.05), and sputum neutrophil% (r = 0.33, P < 0.05) in total. CONCLUSION Th17-pathway may play a role not only in asthmatics, but also in subjects with NAEB, as reflected by increasing IL-17A concentrations in sputum supernatant.
Collapse
|
44
|
Licari A, Castagnoli R, Brambilla I, Marseglia A, Tosca MA, Marseglia GL, Ciprandi G. Asthma Endotyping and Biomarkers in Childhood Asthma. PEDIATRIC ALLERGY, IMMUNOLOGY, AND PULMONOLOGY 2018; 31:44-55. [PMID: 30069422 PMCID: PMC6069590 DOI: 10.1089/ped.2018.0886] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 03/23/2018] [Indexed: 12/17/2022]
Abstract
Childhood asthma represents a heterogeneous challenging disease, in particular in its severe forms. The identification of different asthma phenotypes has stimulated research in underlying molecular mechanisms, such as the endotypes, and paved the way to the search for related specific biomarkers, which may guide diagnosis, management, and predict response to treatment. A limited number of biomarkers are currently available in clinical practice in the pediatric population, mostly reflecting type 2-high airway inflammation. The identification of biomarkers of childhood asthma is an active area of research that holds a potential great clinical utility and may represent a step forward toward tailored management and therapy: the so-called Precision Medicine. The aim of the present review is to provide an updated overview of asthma endotyping, mostly focusing on novel noninvasive biomarkers in childhood asthma.
Collapse
Affiliation(s)
- Amelia Licari
- Pediatric Clinic, Fondazione IRCCS San Matteo, Pavia, Italy
| | | | | | | | | | | | | |
Collapse
|
45
|
Hirose K, Iwata A, Tamachi T, Nakajima H. Allergic airway inflammation: key players beyond the Th2 cell pathway. Immunol Rev 2018; 278:145-161. [PMID: 28658544 DOI: 10.1111/imr.12540] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Allergic asthma is characterized by eosinophilic airway inflammation, mucus hyperproduction, and airway hyperreactivity, causing reversible airway obstruction. Accumulating evidence indicates that antigen-specific Th2 cells and their cytokines such as IL-4, IL-5, and IL-13 orchestrate these pathognomonic features of asthma. However, over the past decade, the understanding of asthma pathogenesis has made a significant shift from a Th2 cell-dependent, IgE-mediated disease to a more complicated heterogeneous disease. Recent studies clearly show that not only Th2 cytokines but also other T cell-related cytokines such as IL-17A and IL-22 as well as epithelial cell cytokines such as IL-25, IL-33, and thymic stromal lymphopoietin (TSLP) are involved in the pathogenesis of asthma. In this review, we focus on the roles of these players beyond Th2 pathways in the pathogenesis of asthma.
Collapse
Affiliation(s)
- Koichi Hirose
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Arifumi Iwata
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tomohiro Tamachi
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hiroshi Nakajima
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
46
|
Yan S, Chen L, Zhao Q, Liu YN, Hou R, Yu J, Zhang H. Developmental endothelial locus-1 (Del-1) antagonizes Interleukin-17-mediated allergic asthma. Immunol Cell Biol 2018; 96:526-535. [PMID: 29437247 DOI: 10.1111/imcb.12023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 02/08/2018] [Accepted: 02/08/2018] [Indexed: 01/13/2023]
Abstract
Interleukin (IL)-17 is a major contributor to the pathogenesis of allergic asthma. Developmental endothelial locus-1 (Del-1) is an endothelial cell-secreted protein known to inhibit IL-17 expression. However, little is known about the association between Del-1 and IL-17 in the pathogenesis of allergic asthma. Using bronchoalveolar lavage fluid (BALF) and peripheral blood samples collected from allergic asthmatic patients and controls, we explored the role of Del-1 in relation to IL-17 in allergic asthma. We found that the negative correlation between Del-1 and IL-17 was significant in BALF of allergic asthmatics. Del-1 treatment inhibited the expression of IL-17, the differentiation of IL-17-secreting leukocytes and associated cytokines. Contrarily, IL-17 levels were increased after treatment with anti-Del-1 mAb. Consistent with this, Del-1 treatment led to downregulation of IL-5, CCL5 and IL-4, thus reducing secretion of eosinophil cationic protein. Furthermore, Del-1 significantly downregulated the expression of ICAM-1 and may have the potential to reduce leukocyte transendothelial migration. Our data demonstrate that Del-1 can negatively regulate IL-17 and its proinflammatory function, thereby limiting airway inflammation in allergic asthmatics, and suggest Del-1 as a potential candidate for prevention and treatment of allergic asthma.
Collapse
Affiliation(s)
- Shu Yan
- Department of Clinical Laboratory, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Li Chen
- Department of Clinical Laboratory, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Qi Zhao
- Department of Clinical Laboratory, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ya-Nan Liu
- Department of Clinical Laboratory, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Rui Hou
- Department of Clinical Laboratory, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jing Yu
- Department of Clinical Laboratory, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Hong Zhang
- Department of Clinical Laboratory, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
47
|
Antunes L, Duarte de Souza A, de Araújo P, Pinto L, Jones M, Stein R, Pitrez P. iNKT cells are increased in children with severe therapy-resistant asthma. Allergol Immunopathol (Madr) 2018; 46:175-180. [PMID: 29279262 DOI: 10.1016/j.aller.2017.05.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 05/19/2017] [Indexed: 10/18/2022]
Abstract
BACKGROUND Invariant natural killer T (iNKT) cells play complex functions in the immune system, releasing both Th1 and Th2 cytokines. The role of iNKT cells in human asthma is still controversial and never described in severe therapy-resistant asthma in children. The objective of this work was to analyse iNKT frequency in peripheral blood of children with severe therapy-resistant asthma (STRA), compared to children with milder asthma and healthy controls. METHODS Children with asthma (n=136) (non-severe and STRA) from a referral centre and healthy controls (n=40) were recruited. Peripheral blood mononuclear cells were isolated, stained with anti-CD3 and anti-iNKT (Vα24Jα18), and analysed through flow cytometry. Atopic status was defined by measuring specific IgE in serum. Airway inflammation was assessed by induced sputum. RESULTS Children with asthma presented an increased frequency of CD3+iNKT+ cells (median 0.38% IQR 0.18-1.9), compared to healthy controls (median 0.26% IQR 0.10-0.43) (p=0.025). Children with STRA also showed an increased frequency of iNKT cells (1.5% IQR 1.05-2.73) compared to healthy controls and non-severe asthmatic children (0.35% IQR 0.15-1.6; p=0.002). The frequency of iNKT cells was not different between atopic and non-atopic children. In addition, iNKT cells were not associated with any inflammatory pattern of induced sputum studied. CONCLUSION Our data suggests that iNKT cells play a role in paediatric asthma, which is also associated with the severity of disease, but independent of the atopic status.
Collapse
|
48
|
Tsai YG, Sun HL, Chien JW, Chen CY, Lin CH, Lin CY. High exhaled nitric oxide levels correlate with nonadherence in acute asthmatic children. Ann Allergy Asthma Immunol 2017; 118:521-523.e2. [PMID: 28390588 DOI: 10.1016/j.anai.2017.01.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 01/22/2017] [Accepted: 01/31/2017] [Indexed: 01/02/2023]
Affiliation(s)
- Yi-Giien Tsai
- Department of Pediatrics, Changhua Christian Children Hospital, Changhua, Taiwan, School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Hai-Lun Sun
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Jien-Wen Chien
- Department of Pediatrics, Changhua Christian Children Hospital, Changhua, Taiwan, School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chun-Yu Chen
- Department of Pediatrics, Changhua Christian Children Hospital, Changhua, Taiwan, School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Ching-Hsiung Lin
- Department of Chest Medicine, Changhua Christian Hospital, Changhua, Taiwan
| | - Ching-Yuang Lin
- Clinical Immunological Center and College of Medicine, China Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
49
|
Zaffanello M, Gasperi E, Tenero L, Piazza M, Pietrobelli A, Sacchetto L, Antoniazzi F, Piacentini G. Sleep-Disordered Breathing in Children with Recurrent Wheeze/Asthma: A Single Centre Study. CHILDREN-BASEL 2017; 4:children4110097. [PMID: 29135910 PMCID: PMC5704131 DOI: 10.3390/children4110097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 11/05/2017] [Accepted: 11/06/2017] [Indexed: 12/22/2022]
Abstract
The relationship between asthma and sleep-disordered breathing is bidirectional due to common risk factors that promote airway inflammation. Obstructive sleep-disordered breathing and recurrent wheeze/asthma are conditions that involve the upper and the lower respiratory system, respectively. The aim of the present study was to investigate the sleep disordered breathing in children with recurrent wheeze/asthma. This was a retrospective study concerning children older than 2 years who underwent—between January 2014 and November 2016—an in-laboratory overnight polygraphic study. We match the children between those who do or do not have recurrent wheeze/asthma disease. We examined the clinical records of 137 children. We excluded eight patients because of neurological and genetic conditions. Children with recurrent wheeze/asthma (N = 28) were younger (p = 0.002) and leaner (p = 0.013) compared to non-affected children (N = 98). Children with wheeze/asthma and unaffected ones had a similar obstructive apnea-hypopnea index (p = 0.733) and oxygen desaturation index (p = 0.535). The logistic regression analysis, in which the condition of wheeze/asthma (yes/no) was a dependent variable, while demographic (age, sex, body mass index (BMI) Z-score) and polygraphic results during sleep (obstructive apnea-hypopnea index, central apnea index, peripheral oxygen saturation (SpO2), and snoring) were covariates, showed that children with wheeze/asthma had higher central apnea index (Exp(B) = 2.212; Wald 6.845; p = 0.009). In conclusion, children with recurrent wheeze/asthma showed an increased number of central sleep apneas than unaffected children. This finding may suggest a dysfunction of the breathing control in the central nervous system during sleep. Systemic or central inflammation could be the cause.
Collapse
Affiliation(s)
- Marco Zaffanello
- Department of Surgery, Dentistry, Paediatrics and Gynaecology, Pediatric Division, University of Verona, Piazzale L.A. Scuro, 10, 37134 Verona, Italy.
| | - Emma Gasperi
- Department of Surgery, Dentistry, Paediatrics and Gynaecology, Pediatric Division, University of Verona, Piazzale L.A. Scuro, 10, 37134 Verona, Italy.
| | - Laura Tenero
- Department of Surgery, Dentistry, Paediatrics and Gynaecology, Pediatric Division, University of Verona, Piazzale L.A. Scuro, 10, 37134 Verona, Italy.
| | - Michele Piazza
- Department of Surgery, Dentistry, Paediatrics and Gynaecology, Pediatric Division, University of Verona, Piazzale L.A. Scuro, 10, 37134 Verona, Italy.
| | - Angelo Pietrobelli
- Department of Surgery, Dentistry, Paediatrics and Gynaecology, Pediatric Division, University of Verona, Piazzale L.A. Scuro, 10, 37134 Verona, Italy.
| | - Luca Sacchetto
- Department of Surgery, Dentistry, Paediatrics and Gynaecology, Otorhinolaryngology Unit, University of Verona, 37134 Verona, Italy.
| | - Franco Antoniazzi
- Department of Surgery, Dentistry, Paediatrics and Gynaecology, Pediatric Division, University of Verona, Piazzale L.A. Scuro, 10, 37134 Verona, Italy.
| | - Giorgio Piacentini
- Department of Surgery, Dentistry, Paediatrics and Gynaecology, Pediatric Division, University of Verona, Piazzale L.A. Scuro, 10, 37134 Verona, Italy.
| |
Collapse
|
50
|
Goedicke-Fritz S, Härtel C, Krasteva-Christ G, Kopp MV, Meyer S, Zemlin M. Preterm Birth Affects the Risk of Developing Immune-Mediated Diseases. Front Immunol 2017; 8:1266. [PMID: 29062316 PMCID: PMC5640887 DOI: 10.3389/fimmu.2017.01266] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 09/22/2017] [Indexed: 12/12/2022] Open
Abstract
Prematurity affects approximately 10% of all children, resulting in drastically altered antigen exposure due to premature confrontation with microbes, nutritional antigens, and other environmental factors. During the last trimester of pregnancy, the fetal immune system adapts to tolerate maternal and self-antigens, while also preparing for postnatal immune defense by acquiring passive immunity from the mother. Since the perinatal period is regarded as the most important “window of opportunity” for imprinting metabolism and immunity, preterm birth may have long-term consequences for the development of immune-mediated diseases. Intriguingly, preterm neonates appear to develop bronchial asthma more frequently, but atopic dermatitis less frequently in comparison to term neonates. The longitudinal study of preterm neonates could offer important insights into the process of imprinting for immune-mediated diseases. On the one hand, preterm birth may interrupt influences of the intrauterine environment on the fetus that increase or decrease the risk of later immune disease (e.g., maternal antibodies and placenta-derived factors), whereas on the other hand, it may lead to the premature exposure to protective or harmful extrauterine factors such as microbiota and nutritional antigen. Solving this puzzle may help unravel new preventive and therapeutic approaches for immune diseases.
Collapse
Affiliation(s)
- Sybelle Goedicke-Fritz
- Laboratory of Neonatology and Pediatric Immunology, Department of Pediatrics, Philipps University Marburg, Marburg, Germany.,Department of General Pediatrics and Neonatology, Saarland University Medical School, Homburg, Germany
| | | | | | - Matthias V Kopp
- Department of Pediatric Allergy and Pulmonology, University of Lübeck, Airway Research-Center North (ARCN), Lübeck, Germany
| | - Sascha Meyer
- Department of General Pediatrics and Neonatology, Saarland University Medical School, Homburg, Germany
| | - Michael Zemlin
- Department of General Pediatrics and Neonatology, Saarland University Medical School, Homburg, Germany
| |
Collapse
|