1
|
Oloyede IP, Ullah A, Murray CS, Fontanella S, Simpson A, Custovic A. Association of urinary eosinophilic protein X at age 3 years and subsequent persistence of wheezing and asthma diagnosis in adolescence. Pediatr Allergy Immunol 2024; 35:e70013. [PMID: 39629929 PMCID: PMC11616470 DOI: 10.1111/pai.70013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/29/2024] [Accepted: 11/26/2024] [Indexed: 12/08/2024]
Abstract
BACKGROUND Wheezing is common in early life, but most children stop wheezing by school age. However, the prediction of course of wheezing through childhood is difficult. OBJECTIVE To investigate whether urinary EPX (a marker of eosinophil activation) in children at age 3 years may be useful for the prediction of wheeze persistence and future asthma diagnosis. METHODS U-EPX was measured at age 3 years (radioimmunoassay) in 906 participants in the population-based birth cohort. Children attended follow-ups to age 16 years. We investigate the discriminative ability of u-EPX and other factors in predicting asthma diagnosis at age 16 using receiver operating characteristic [ROC] curves. RESULTS Of 613 children with follow-up information at age 16, 511 had data on u-EPX at age 3 and asthma diagnosis at age 16 years; of those; 133 (21.7%) had asthma. Based on longitudinal data, children were assigned to wheeze clusters: No wheeze (NWZ), early transient (ETW), late-onset (LOW), intermittent (INT) and persistent wheeze (PEW). U-EPX levels differed significantly between different wheeze clusters (p = .003), with clusters characterised with persistent symptoms having higher u-EPX. In the whole cohort, the best performing classification model for asthma diagnosis at age 16 years included sex, u-EPX, sensitisation and wheeze (area under the curve (AUC) = 0.82, 95% CI: 0.76-0.88). u-EPX and allergic sensitisation alone had similar predictive power (AUC [95%CI]: 0.64 [0.58-0.71] and 0.65 [0.60-0.71]). The best performing classification model for asthma prediction among children with doctor-confirmed wheeze in the first 3 years included child's u-EPX and sensitisation at age 3 years, sex, gestational age and maternal atopy (AUC: 0.76, 95%CI: 0.67-0.85). CONCLUSIONS Early-life u-EPX may be a useful non-invasive marker for asthma prediction in adolescence.
Collapse
Affiliation(s)
| | - Anhar Ullah
- National Heart and Lung InstituteImperial College LondonLondonUK
| | - Clare S. Murray
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, Manchester Academic Health Sciences CentreUniversity of Manchester and University Hospital of South Manchester NHS Foundation TrustManchesterUK
| | - Sara Fontanella
- National Heart and Lung InstituteImperial College LondonLondonUK
| | - Angela Simpson
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, Manchester Academic Health Sciences CentreUniversity of Manchester and University Hospital of South Manchester NHS Foundation TrustManchesterUK
| | - Adnan Custovic
- National Heart and Lung InstituteImperial College LondonLondonUK
| |
Collapse
|
2
|
Petat H, Marguet C. Three-year outcome of a very young severe uncontrolled preschool wheezers cohort, a real-life study. Respir Med 2024; 235:107875. [PMID: 39577748 DOI: 10.1016/j.rmed.2024.107875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/21/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024]
Abstract
Preschool wheeze is a public health issue. Disease control can be difficult to obtain in this population, in which no biologic therapy is indicated. We studied the evolution of severe preschool wheezers in real-life and identified the factors leading to no-control. We conducted a retrospective study at our tertiary asthma center. Each child under 3 years of age with severe, uncontrolled preschool wheeze was admitted to a pediatric day hospital for further investigations. We collected the results of clinical, biological and radiological exams, and follow-up data at 1 (Y+1), 2 (Y+2) and 3 years (Y+3). We included 135 patients; 63 (47 %) were still being followed at Y+3; 53 % were discontinued due to disease control. The median age at inclusion was 12 months. 29 % of patients followed up still had severe uncontrolled wheezing at Y+3. Eosinophils greater than 0.23G/L (p = 0.03) and a first case of bronchiolitis before the age of 2 months (p = 0.01) were factors in uncontrolled wheezing at Y1. Tobacco exposure was a factor associated with uncontrolled wheezing at Y+2 (p < 0.001). A first case of bronchiolitis before the age of 2 months (p = 0.007), male sex (p < 0.001) and a familial history of atopy (p = 0.05) were factors in uncontrolled disease at Y+3. We report a real-life study, with a very young population and very severe wheezing. Our therapeutic approach is original, enabling us to study the evolution of "therapeutic pressure" in the early years of this frequent disease, the pathophysiology of which is still poorly understood.
Collapse
Affiliation(s)
- Hortense Petat
- Univ Rouen Normandie, Dynamicure INSERM UMR 1311, CHU Rouen, Department of Paediatrics and Adolescent Medicine, F-76000, Rouen, France.
| | - Christophe Marguet
- Univ Rouen Normandie, Dynamicure INSERM UMR 1311, CHU Rouen, Department of Paediatrics and Adolescent Medicine, F-76000, Rouen, France
| |
Collapse
|
3
|
Lejeune S, Kaushik A, Parsons ES, Chinthrajah S, Snyder M, Desai M, Manohar M, Prunicki M, Contrepois K, Gosset P, Deschildre A, Nadeau K. Untargeted metabolomic profiling in children identifies novel pathways in asthma and atopy. J Allergy Clin Immunol 2024; 153:418-434. [PMID: 38344970 DOI: 10.1016/j.jaci.2023.09.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 09/19/2023] [Accepted: 09/25/2023] [Indexed: 02/15/2024]
Abstract
BACKGROUND Asthma and other atopic disorders can present with varying clinical phenotypes marked by differential metabolomic manifestations and enriched biological pathways. OBJECTIVE We sought to identify these unique metabolomic profiles in atopy and asthma. METHODS We analyzed baseline nonfasted plasma samples from a large multisite pediatric population of 470 children aged <13 years from 3 different sites in the United States and France. Atopy positivity (At+) was defined as skin prick test result of ≥3 mm and/or specific IgE ≥ 0.35 IU/mL and/or total IgE ≥ 173 IU/mL. Asthma positivity (As+) was based on physician diagnosis. The cohort was divided into 4 groups of varying combinations of asthma and atopy, and 6 pairwise analyses were conducted to best assess the differential metabolomic profiles between groups. RESULTS Two hundred ten children were classified as At-As-, 42 as At+As-, 74 as At-As+, and 144 as At+As+. Untargeted global metabolomic profiles were generated through ultra-high-performance liquid chromatography-tandem mass spectroscopy. We applied 2 independent machine learning classifiers and short-listed 362 metabolites as discriminant features. Our analysis showed the most diverse metabolomic profile in the At+As+/At-As- comparison, followed by the At-As+/At-As- comparison, indicating that asthma is the most discriminant condition associated with metabolomic changes. At+As+ metabolomic profiles were characterized by higher levels of bile acids, sphingolipids, and phospholipids, and lower levels of polyamine, tryptophan, and gamma-glutamyl amino acids. CONCLUSION The At+As+ phenotype displays a distinct metabolomic profile suggesting underlying mechanisms such as modulation of host-pathogen and gut microbiota interactions, epigenetic changes in T-cell differentiation, and lower antioxidant properties of the airway epithelium.
Collapse
Affiliation(s)
- Stéphanie Lejeune
- Department of Medicine, Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, Calif; University of Lille, Pediatric Pulmonology and Allergy Department, Hôpital Jeanne de Flandre, CHU Lille, Lille, France; University of Lille, INSERM Unit 1019, CNRS UMR 9017, CHU Lille, Institut Pasteur de Lille, Center for Infection and Immunity of Lille, Lille, France.
| | - Abhinav Kaushik
- Department of Medicine, Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, Calif; Department of Environmental Health, T. H. Chan School of Public Health, Harvard University, Boston, Mass
| | - Ella S Parsons
- Department of Medicine, Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, Calif
| | - Sharon Chinthrajah
- Department of Medicine, Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, Calif
| | - Michael Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, Calif
| | - Manisha Desai
- Quantitative Science Unit, Department of Medicine, Stanford University School of Medicine, Stanford, Calif
| | - Monali Manohar
- Department of Medicine, Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, Calif
| | - Mary Prunicki
- Department of Medicine, Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, Calif; Department of Environmental Health, T. H. Chan School of Public Health, Harvard University, Boston, Mass
| | - Kévin Contrepois
- Department of Genetics, Stanford University School of Medicine, Stanford, Calif
| | - Philippe Gosset
- University of Lille, INSERM Unit 1019, CNRS UMR 9017, CHU Lille, Institut Pasteur de Lille, Center for Infection and Immunity of Lille, Lille, France
| | - Antoine Deschildre
- University of Lille, Pediatric Pulmonology and Allergy Department, Hôpital Jeanne de Flandre, CHU Lille, Lille, France; University of Lille, INSERM Unit 1019, CNRS UMR 9017, CHU Lille, Institut Pasteur de Lille, Center for Infection and Immunity of Lille, Lille, France
| | - Kari Nadeau
- Department of Environmental Health, T. H. Chan School of Public Health, Harvard University, Boston, Mass
| |
Collapse
|
4
|
Romero-Tapia SDJ, Becerril-Negrete JR, Castro-Rodriguez JA, Del-Río-Navarro BE. Early Prediction of Asthma. J Clin Med 2023; 12:5404. [PMID: 37629446 PMCID: PMC10455492 DOI: 10.3390/jcm12165404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/26/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
The clinical manifestations of asthma in children are highly variable, are associated with different molecular and cellular mechanisms, and are characterized by common symptoms that may diversify in frequency and intensity throughout life. It is a disease that generally begins in the first five years of life, and it is essential to promptly identify patients at high risk of developing asthma by using different prediction models. The aim of this review regarding the early prediction of asthma is to summarize predictive factors for the course of asthma, including lung function, allergic comorbidity, and relevant data from the patient's medical history, among other factors. This review also highlights the epigenetic factors that are involved, such as DNA methylation and asthma risk, microRNA expression, and histone modification. The different tools that have been developed in recent years for use in asthma prediction, including machine learning approaches, are presented and compared. In this review, emphasis is placed on molecular mechanisms and biomarkers that can be used as predictors of asthma in children.
Collapse
Affiliation(s)
- Sergio de Jesus Romero-Tapia
- Health Sciences Academic Division (DACS), Juarez Autonomous University of Tabasco (UJAT), Villahermosa 86040, Mexico
| | - José Raúl Becerril-Negrete
- Department of Clinical Immunopathology, Universidad Autónoma del Estado de México, Toluca 50000, Mexico;
| | - Jose A. Castro-Rodriguez
- Department of Pediatric Pulmonology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330077, Chile;
| | | |
Collapse
|
5
|
Kienhorst S, van Aarle MHD, Jöbsis Q, Bannier MAGE, Kersten ETG, Damoiseaux J, van Schayck OCP, Merkus PJFM, Koppelman GH, van Schooten FJ, Smolinska A, Dompeling E. The ADEM2 project: early pathogenic mechanisms of preschool wheeze and a randomised controlled trial assessing the gain in health and cost-effectiveness by application of the breath test for the diagnosis of asthma in wheezing preschool children. BMC Public Health 2023; 23:629. [PMID: 37013496 PMCID: PMC10068201 DOI: 10.1186/s12889-023-15465-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 03/17/2023] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND The prevalence of asthma-like symptoms in preschool children is high. Despite numerous efforts, there still is no clinically available diagnostic tool to discriminate asthmatic children from children with transient wheeze at preschool age. This leads to potential overtreatment of children outgrowing their symptoms, and to potential undertreatment of children who turn out to have asthma. Our research group developed a breath test (using GC-tof-MS for VOC-analysis in exhaled breath) that is able to predict a diagnosis of asthma at preschool age. The ADEM2 study assesses the improvement in health gain and costs of care with the application of this breath test in wheezing preschool children. METHODS This study is a combination of a multi-centre, parallel group, two arm, randomised controlled trial and a multi-centre longitudinal observational cohort study. The preschool children randomised into the treatment arm of the RCT receive a probability diagnosis (and corresponding treatment recommendations) of either asthma or transient wheeze based on the exhaled breath test. Children in the usual care arm do not receive a probability diagnosis. Participants are longitudinally followed up until the age of 6 years. The primary outcome is disease control after 1 and 2 years of follow-up. Participants of the RCT, together with a group of healthy preschool children, also contribute to the parallel observational cohort study developed to assess the validity of alternative VOC-sensing techniques and to explore numerous other potential discriminating biological parameters (such as allergic sensitisation, immunological markers, epigenetics, transcriptomics, microbiomics) and the subsequent identification of underlying disease pathways and relation to the discriminative VOCs in exhaled breath. DISCUSSION The potential societal and clinical impact of the diagnostic tool for wheezing preschool children is substantial. By means of the breath test, it will become possible to deliver customized and high qualitative care to the large group of vulnerable preschool children with asthma-like symptoms. By applying a multi-omics approach to an extensive set of biological parameters we aim to explore (new) pathogenic mechanisms in the early development of asthma, creating potentially interesting targets for the development of new therapies. TRIAL REGISTRATION Netherlands Trial Register, NL7336, Date registered 11-10-2018.
Collapse
Affiliation(s)
- Sophie Kienhorst
- Department of Paediatric Pulmonology, Maastricht University Medical Centre, Maastricht, The Netherlands.
| | - Moniek H D van Aarle
- Department of Paediatric Pulmonology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Quirijn Jöbsis
- Department of Paediatric Pulmonology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Michiel A G E Bannier
- Department of Paediatric Pulmonology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Elin T G Kersten
- Department of Paediatric Pulmonology and Pediatric Allergology, Beatrix Children's Hospital, and GRIAC Research Institute, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Jan Damoiseaux
- Central Diagnostic Laboratory, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Onno C P van Schayck
- Department of Family Medicine, Care and Public Health Research Institute (CAPHRI), Maastricht University, Maastricht, The Netherlands
| | - Peter J F M Merkus
- Department of Paediatric Pulmonology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Gerard H Koppelman
- Department of Paediatric Pulmonology and Pediatric Allergology, Beatrix Children's Hospital, and GRIAC Research Institute, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Frederik-Jan van Schooten
- Department Pharmacology and Toxicology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Agnieszka Smolinska
- Department Pharmacology and Toxicology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Edward Dompeling
- Department of Paediatric Pulmonology, Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
6
|
Liang L, Hu M, Chen Y, Liu L, Wu L, Hang C, Luo X, Xu X. Metabolomics of bronchoalveolar lavage in children with persistent wheezing. Respir Res 2022; 23:161. [PMID: 35718784 PMCID: PMC9208141 DOI: 10.1186/s12931-022-02087-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/11/2022] [Indexed: 11/28/2022] Open
Abstract
Background Recent studies have demonstrated the important role of metabolomics in the pathogenesis of asthma. However, the role of lung metabolomics in childhood persistent wheezing (PW) or wheezing recurrence remains poorly understood. Methods In this prospective observational study, we performed a liquid chromatography/mass spectrometry-based metabolomic survey on bronchoalveolar lavage samples collected from 30 children with PW and 30 age-matched infants (control group). A 2-year follow-up study on these PW children was conducted. Results Children with PW showed a distinct characterization of respiratory metabolome compared with control group. Children with PW had higher abundances of choline, oleamide, nepetalactam, butyrylcarnitine, l-palmitoylcarnitine, palmitoylethanolamide, and various phosphatidylcholines. The glycerophospholipid metabolism pathway was the most relevant pathway involving in PW pathophysiologic process. Additionally, different gender, prematurity, and systemic corticoids use demonstrated a greater impact in airway metabolite compositions. Furthermore, for PW children with recurrence during the follow-up period, children who were born prematurely had an increased abundance of butyrylcarnitine relative to those who were carried to term. Conclusions This study suggests that the alterations of lung metabolites could be associated with the development of wheezing, and this early alteration could also be correlated with wheezing recurrence later in life. Supplementary Information The online version contains supplementary material available at 10.1186/s12931-022-02087-6.
Collapse
Affiliation(s)
- Lingfang Liang
- Department of Rheumatology Immunology and Allergy, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310003, People's Republic of China
| | - Minfei Hu
- Department of Rheumatology Immunology and Allergy, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310003, People's Republic of China
| | - Yuanling Chen
- Department of Rheumatology Immunology and Allergy, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310003, People's Republic of China
| | - Lingke Liu
- Department of Rheumatology Immunology and Allergy, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310003, People's Republic of China
| | - Lei Wu
- Department of Rheumatology Immunology and Allergy, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310003, People's Republic of China
| | - Chengcheng Hang
- Department of Rheumatology Immunology and Allergy, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310003, People's Republic of China
| | - Xiaofei Luo
- Department of Rheumatology Immunology and Allergy, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310003, People's Republic of China
| | - Xuefeng Xu
- Department of Rheumatology Immunology and Allergy, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310003, People's Republic of China.
| |
Collapse
|
7
|
Lukianenko N, Kens O, Nurgaliyeva Z, Toguzbayeva D, Sakhipov M. Finding a molecular genetic marker for the incidence of recurrent episodes of acute obstructive bronchitis in children. J Med Life 2021; 14:695-699. [PMID: 35027973 PMCID: PMC8742891 DOI: 10.25122/jml-2021-0052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/25/2021] [Indexed: 11/17/2022] Open
Abstract
Over the last ten years, the incidence of the pathology of the bronchus-pulmonary system in children has increased 3.6 times, mainly due to acute and recurrent inflammatory diseases of the upper and lower respiratory tract. Thus, the problem of identifying children with recurrent episodes of acute obstructive bronchitis and an increased risk of developing asthma is relevant and promising. The goal of this study was to find molecular genetic markers associated with increased susceptibility of children to repeated episodes of acute obstructive bronchitis. The molecular genetic testing of the IL4 gene of a single nucleotide polymorphism C-33T was performed in 35 children with recurrent episodes of acute obstructive bronchitis and 35 children with acute bronchitis. The results were statistically processed on a personal computer with the calculation of values the arithmetic mean (M), of the errors arithmetic mean (m), Student criterion (t), the degree of probability (p), Pearson criterion (χ2), and the odds ratio (OR). Statistically significant differences were figured at p<0.01 and p<0.05. It has been proved that the presence of a child's genotype 33CT IL4 increases the risk of recurrent acute obstructive bronchitis four times.
Collapse
Affiliation(s)
- Nataliia Lukianenko
- Department of Clinical Genetics, Institute of Hereditary Pathology of the National Academy of Medical Sciences of Ukraine, Lviv, Ukraine
- Department of Propaedeutics of Pediatrics and Medical Genetics, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Olena Kens
- Department of Clinical Genetics, Institute of Hereditary Pathology of the National Academy of Medical Sciences of Ukraine, Lviv, Ukraine
| | - Zhansulu Nurgaliyeva
- Department of Pharmacology, West Kazakhstan Marat Ospanov State Medical University, Aktobe, Republic of Kazakhstan
| | - Dinara Toguzbayeva
- Department of Otorhinolaryngology, Kazakh Medical University of Continuing Education, Almaty, Republic of Kazakhstan
| | - Musa Sakhipov
- Department of Surgery with a Course of Anesthesiology and Resuscitation, Kazakh-Russian Medical University, Almaty, Republic of Kazakhstan
| |
Collapse
|
8
|
Segers K, Slosse A, Viaene J, Bannier MAGE, Van de Kant KDG, Dompeling E, Van Eeckhaut A, Vercammen J, Vander Heyden Y. Feasibility study on exhaled-breath analysis by untargeted Selected-Ion Flow-Tube Mass Spectrometry in children with cystic fibrosis, asthma, and healthy controls: Comparison of data pretreatment and classification techniques. Talanta 2021; 225:122080. [PMID: 33592793 DOI: 10.1016/j.talanta.2021.122080] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/29/2020] [Accepted: 12/31/2020] [Indexed: 01/26/2023]
Abstract
Selected-Ion Flow-Tube Mass Spectrometry (SIFT-MS) has been applied in a clinical context as diagnostic tool for breath samples using target biomarkers. Exhaled breath sampling is non-invasive and therefore much more patient friendly compared to bronchoscopy, which is the golden standard for evaluating airway inflammation. In the actual pilot study, 55 exhaled breath samples of children with asthma, cystic-fibrosis and healthy individuals were included. Rather than focusing on the analysis of target biomarkers or on the identification of biomarkers, different data analysis strategies, including a variety of pretreatment, classification and discrimination techniques, are evaluated regarding their capacity to distinguish the three classes based on subtle differences in their full scan SIFT-MS spectra. Proper data-analysis strategies are required because these full scan spectra contain much external, i.e. unwanted, variation. Each SIFT-MS analysis generates three spectra resulting from ion-molecule reactions of analyte molecules with H3O+, NO+ and O2+. Models were built with Linear Discriminant Analysis, Quadratic Discriminant Analysis, Soft Independent Modelling by Class Analogy, Partial Least Squares - Discriminant Analysis, K-Nearest Neighbours, and Classification and Regression Trees. Perfect models, concerning overall sensitivity and specificity (100% for both) were found using Direct Orthogonal Signal Correction (DOSC) pretreatment. Given the uncertainty related to the classification models associated with DOSC pretreatments (i.e. good classification found also for random classes), other models are built applying other preprocessing approaches. A Partial Least Squares - Discriminant Analysis model with a combined pre-processing method considering single value imputation results in 100% sensitivity and specificity for calibration, but was less good predictive. Pareto scaling prior to Quadratic Discriminant Analysis resulted in 41/55 correctly classified samples for calibration and 34/55 for cross-validation. In future, the uncertainty with DOSC and the applicability of the promising preprocessing methods and models must be further studied applying a larger representative data set with a more extensive number of samples for each class. Nevertheless, this pilot study showed already some potential for the untargeted SIFT-MS application as a rapid pattern-recognition technique, useful in the diagnosis of clinical breath samples.
Collapse
Affiliation(s)
- Karen Segers
- Department of Analytical Chemistry, Applied Chemometrics and Molecular Modelling, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090, Brussels, Belgium; Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090, Brussels, Belgium.
| | - Amorn Slosse
- Department of Analytical Chemistry, Applied Chemometrics and Molecular Modelling, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090, Brussels, Belgium.
| | - Johan Viaene
- Department of Analytical Chemistry, Applied Chemometrics and Molecular Modelling, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090, Brussels, Belgium.
| | - Michiel A G E Bannier
- Department of Paediatric Respiratory Medicine, School for Public Health and Primary Care, Maastricht University Medical Centre+, Maastricht, the Netherlands.
| | - Kim D G Van de Kant
- Department of Paediatric Respiratory Medicine, School for Public Health and Primary Care, Maastricht University Medical Centre+, Maastricht, the Netherlands.
| | - Edward Dompeling
- Department of Paediatric Respiratory Medicine, School for Public Health and Primary Care, Maastricht University Medical Centre+, Maastricht, the Netherlands.
| | - Ann Van Eeckhaut
- Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090, Brussels, Belgium.
| | - Joeri Vercammen
- Interscience Expert Center (IS-X), Avenue Jean-Etienne Lenoir 2, 1348, Louvain-la-Neuve, Belgium; Industrial Catalysis and Adsorption Technology (INCAT), Faculty of Engineering and Architecture, Ghent University, Valentin Vaerwyckweg 1, 9000, Ghent, Belgium.
| | - Yvan Vander Heyden
- Department of Analytical Chemistry, Applied Chemometrics and Molecular Modelling, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090, Brussels, Belgium.
| |
Collapse
|
9
|
Li Y, Li X, Zhou W, Yu Q, Lu Y. ORMDL3 modulates airway epithelial cell repair in children with asthma under glucocorticoid treatment via regulating IL-33. Pulm Pharmacol Ther 2020; 64:101963. [PMID: 33035699 DOI: 10.1016/j.pupt.2020.101963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 09/30/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND Study found that glucocorticoids, as first-line treatments for asthma, fails to prevent asthma recurrence. Orosomucoid-like (ORMDL) 3 is associated to childhood asthma onset and involved in the inflammation and repair of airway epithelium. We explored the functional role of ORMDL3 in glucocorticoid treatment for childhood asthma. METHODS Mice were sensitized with Ovalbumin (OVA) and treated with Dexamethasone (Dex), followed by OVA challenge to establish a mouse model of asthma. Histopathological changes in lung tissues were observed by hematoxylin-eosin and masson staining. Human bronchial epithelial (16HBE-14°) cells were transfected with ORMDL3 overexpression plasmid and siRNA-interleukin (IL)-33 alone or in combination, followed by Dex. Cell viability was measured by MTT assay. Cell migration was evaluated by wound healing assay. The expressions of E-cadherin and Vimentin and the activation of NF-κB and MAPK/ERK in 16HBE-14° cells were assessed by Western blot. The expressions of ORMDL3 and IL-33 in lung tissues and 16HBE-14° cells were analyzed by qRT-PCR or Western blot. RESULTS Dex treatment alleviated the histopathological abnormality and reversed the overexpressions of ORMDL3 and IL-33 in the lung tissues of asthmatic mice. Overexpressed ORMDL3 enhanced migration and viability, decreased E-cadherin level, increased the levels of IL-33 and Vimentin, and promoted the phosphorylation of NF-κB and MAPK/ERK in Dex-treated 16HBE-14° cells, thus reversing the effect of Dex treatment. However, siRNA-IL-33 inhibited viability and migration, increased E-cadherin level, decreased Vimentin level, and suppressed the phosphorylation of NF-κB and MAPK/ERK, thus reversing the effect of overexpressed ORMDL3 in Dex-treated 16HBE-14° cells. CONCLUSION ORMDL3 overexpression helped airway epithelial cellrepairin asthma via regulating IL-33 expression.
Collapse
Affiliation(s)
- Yaqin Li
- Department of Pediatrics, South Campus, Renji Hospital, Shanghai Jiao Tong University School of Medicine, No.2000, Jiangyue Road, Pujiang, Minhang District, Shanghai, 201112, China
| | - Xiaoyan Li
- Department of Pediatrics, South Campus, Renji Hospital, Shanghai Jiao Tong University School of Medicine, No.2000, Jiangyue Road, Pujiang, Minhang District, Shanghai, 201112, China
| | - Wenjing Zhou
- Department of Pediatrics, South Campus, Renji Hospital, Shanghai Jiao Tong University School of Medicine, No.2000, Jiangyue Road, Pujiang, Minhang District, Shanghai, 201112, China
| | - Qing Yu
- Department of Pediatrics, South Campus, Renji Hospital, Shanghai Jiao Tong University School of Medicine, No.2000, Jiangyue Road, Pujiang, Minhang District, Shanghai, 201112, China
| | - Yanming Lu
- Department of Pediatrics, South Campus, Renji Hospital, Shanghai Jiao Tong University School of Medicine, No.2000, Jiangyue Road, Pujiang, Minhang District, Shanghai, 201112, China.
| |
Collapse
|
10
|
Harvey JL, Kumar SAP. Machine Learning for Predicting Development of Asthma in Children. 2019 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI) 2019. [DOI: 10.1109/ssci44817.2019.9002692] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
|
11
|
Bannier MAGE, Rosias PPR, Jöbsis Q, Dompeling E. Exhaled Breath Condensate in Childhood Asthma: A Review and Current Perspective. Front Pediatr 2019; 7:150. [PMID: 31106182 PMCID: PMC6494934 DOI: 10.3389/fped.2019.00150] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 04/01/2019] [Indexed: 11/23/2022] Open
Abstract
Exhaled breath condensate (EBC) was introduced more than two decades ago as a novel, non-invasive tool to assess airway inflammation. This review summarizes the latest literature on the various markers in EBC to predict asthma in children. Despite many recommendations and two comprehensive Task Force reports, there is still large heterogeneity in published data. The biggest issue remains a lack of standardization regarding EBC collection, preservation, processing, and analysis. As a result, published studies show mixed or conflicting results, questioning the reproducibility of findings. A joint, multicenter research study is urgently needed to address the necessary methodological standardization.
Collapse
Affiliation(s)
- Michiel A G E Bannier
- Department of Pediatric Respiratory Medicine, School for Public Health and Primary Care (CAPHRI), Maastricht University Medical Center, Maastricht, Netherlands
| | | | - Quirijn Jöbsis
- Department of Pediatric Respiratory Medicine, School for Public Health and Primary Care (CAPHRI), Maastricht University Medical Center, Maastricht, Netherlands
| | - Edward Dompeling
- Department of Pediatric Respiratory Medicine, School for Public Health and Primary Care (CAPHRI), Maastricht University Medical Center, Maastricht, Netherlands
| |
Collapse
|
12
|
Shores DR, Everett AD. Children as Biomarker Orphans: Progress in the Field of Pediatric Biomarkers. J Pediatr 2018; 193:14-20.e31. [PMID: 29031860 PMCID: PMC5794519 DOI: 10.1016/j.jpeds.2017.08.077] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 08/04/2017] [Accepted: 08/30/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Darla R Shores
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD.
| | - Allen D Everett
- Division of Cardiology, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD
| |
Collapse
|
13
|
Djuric-Filipovic I, Caminati M, Filipovic D, Salvottini C, Zivkovic Z. Effects of specific allergen immunotherapy on biological markers and clinical parameters in asthmatic children: a controlled-real life study. Clin Mol Allergy 2017; 15:7. [PMID: 28392751 PMCID: PMC5376712 DOI: 10.1186/s12948-017-0064-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 03/08/2017] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Allergen-specific immunotherapy (AIT) is the only treatment able to change the natural course of allergic diseases. We aimed at investigating the clinical efficacy of SLITOR (Serbian registered vaccine for sublingual allergen specific immunotherapy). METHODS 7-18 years old children with allergic asthma and rhinitis were enrolled and addressed to the active (AIT plus pharmacological treatment) or control (standard pharmacological treatment only) group. Clinical and medications scores, lung function and exhaled FeNO were measured at baseline and at every follow-up. RESULTS There was a significant improvement in both nasal and asthma symptom scores as well as in medication score in SLIT group. SLIT showed an important influence on lung function and airway inflammation. CONCLUSIONS Our data showed that SLITOR was effective not only in terms of patient reported outcomes but an improvement of pulmonary function and decrease of lower airway inflammation were also observed.
Collapse
Affiliation(s)
- I Djuric-Filipovic
- Faculty of Medical Science, University of Kragujevac, Svetozara Markovica 64, 34000 Kragujevac, Serbia
| | - Marco Caminati
- Allergy Unit and Asthma Center, Verona University and General Hospital, Piazzale Stefani 1, 37126 Verona, Italy
| | - D Filipovic
- Institution for Emergency Medical Care, Bulevar Franša Depera 5, 11000 Belgrade, Serbia
| | - C Salvottini
- Department of Internal Medicine and Therapeutics, University of Pavia, Strada Nuova 65, Pavia, Italy
| | - Z Zivkovic
- Children's Hospital for Lung Diseases and Tuberculosis, Medical Center "Dr. Dragiša Mišović", Belgrade, Pilota Mihajla Tepica 1, 11000 Belgrade, Serbia.,Faculty of Pharmacy, University Business Academy in Novi Sad, Trg Mladenca 5, 2100, Novi Sad, Serbia
| |
Collapse
|
14
|
Identification of infants and preschool children at risk for asthma: predictive scores and biomarkers. Curr Opin Allergy Clin Immunol 2016; 16:120-6. [PMID: 26807784 DOI: 10.1097/aci.0000000000000240] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
PURPOSE OF REVIEW Predictive asthma scores and biomarkers are important tools that help many physicians in the identification of infants and preschool children at high risk for asthma. Our objective was to review recent data regarding this subject. RECENT FINDINGS Recently, two new predictive asthma scores were developed with some innovative features, such as the definition of scales of asthma risk. In a systematic review, 12 asthma-predictive models were identified with heterogeneous performance. Prospective studies have shown that elevated fractional concentration of nitric oxide (FeNO) is a strong risk factor for latter asthma among early wheezers, and a predictive asthma score with FeNO values has been proposed. Plasma cytokines and exhaled volatile organic compounds were also identified as potential asthma predictors. SUMMARY Predictive scores are simple, practical, and inexpensive tools to identify children at high risk for asthma at school age. Whereas some scores are better at identifying asthmatic children, others are better at excluding the diagnosis of asthma. Although promising, clear evidence for FeNO as a robust asthma predictor in comparison to clinical scores is still lacking. Specific IgE and eosinophil counts remain the most consistent biomarkers for the identification of children at risk for asthma, and further studies are necessary to clarify the role of other biomarkers.
Collapse
|
15
|
Zissler UM, Esser-von Bieren J, Jakwerth CA, Chaker AM, Schmidt-Weber CB. Current and future biomarkers in allergic asthma. Allergy 2016; 71:475-94. [PMID: 26706728 DOI: 10.1111/all.12828] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2015] [Indexed: 12/12/2022]
Abstract
Diagnosis early in life, sensitization, asthma endotypes, monitoring of disease and treatment progression are key motivations for the exploration of biomarkers for allergic rhinitis and allergic asthma. The number of genes related to allergic rhinitis and allergic asthma increases steadily; however, prognostic genes have not yet entered clinical application. We hypothesize that the combination of multiple genes may generate biomarkers with prognostic potential. The current review attempts to group more than 161 different potential biomarkers involved in respiratory inflammation to pave the way for future classifiers. The potential biomarkers are categorized into either epithelial or infiltrate-derived or mixed origin, epithelial biomarkers. Furthermore, surface markers were grouped into cell-type-specific categories. The current literature provides multiple biomarkers for potential asthma endotypes that are related to T-cell phenotypes such as Th1, Th2, Th9, Th17, Th22 and Tregs and their lead cytokines. Eosinophilic and neutrophilic asthma endotypes are also classified by epithelium-derived CCL-26 and osteopontin, respectively. There are currently about 20 epithelium-derived biomarkers exclusively derived from epithelium, which are likely to innovate biomarker panels as they are easy to sample. This article systematically reviews and categorizes genes and collects current evidence that may promote these biomarkers to become part of allergic rhinitis or allergic asthma classifiers with high prognostic value.
Collapse
Affiliation(s)
- U. M. Zissler
- Center of Allergy & Environment (ZAUM); Technical University of Munich and Helmholtz Center Munich; German Research Center for Environmental Health member of the German Center for Lung Research (DZL); Munich Germany
| | - J. Esser-von Bieren
- Center of Allergy & Environment (ZAUM); Technical University of Munich and Helmholtz Center Munich; German Research Center for Environmental Health member of the German Center for Lung Research (DZL); Munich Germany
| | - C. A. Jakwerth
- Center of Allergy & Environment (ZAUM); Technical University of Munich and Helmholtz Center Munich; German Research Center for Environmental Health member of the German Center for Lung Research (DZL); Munich Germany
| | - A. M. Chaker
- Center of Allergy & Environment (ZAUM); Technical University of Munich and Helmholtz Center Munich; German Research Center for Environmental Health member of the German Center for Lung Research (DZL); Munich Germany
- Department of Otorhinolaryngology and Head and Neck Surgery; Medical School; Technical University of Munich; Munich Germany
| | - C. B. Schmidt-Weber
- Center of Allergy & Environment (ZAUM); Technical University of Munich and Helmholtz Center Munich; German Research Center for Environmental Health member of the German Center for Lung Research (DZL); Munich Germany
| |
Collapse
|
16
|
Pereira-Fantini PM, Tingay DG. The proteomics of lung injury in childhood: challenges and opportunities. Clin Proteomics 2016; 13:5. [PMID: 26933399 PMCID: PMC4772280 DOI: 10.1186/s12014-016-9106-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 02/15/2016] [Indexed: 12/02/2022] Open
Abstract
Proteomics, the large-scale study of the structure and function of proteins of a cell or organism, is a rapidly developing area of biomedical research which is perfectly suited to the study of pediatric lung injury, where a variety of samples are easily, and repeatedly, accessible including plasma (reflecting a whole body response) and broncheoalveolar lung fluid (reflecting the lungs response). When applied to pediatric lung injury, proteomics could be used to develop much needed early biomarkers of lung injury, elucidate pathological pathways and determine protein alterations associated with specific disease processes. However despite the obvious benefits and need, proteomics is rarely utilized in studies of pediatric injury. This review primarily reports on the last decade of pediatric research into proteomes associated with specific respiratory diseases including bronchopulmonary dysplasia, respiratory infection, cystic fibrosis and asthma whilst also reflecting on the challenges unique to proteomic studies of the pediatric respiratory disease population. We conclude that the number of key pathological differences between the pediatric and adult study populations inhibit inference of results from adult studies onto a pediatric population and necessitate studies of the pediatric proteome. Furthermore the disparity amongst pediatric lung disease in terms of age at onset and underlying pathological mechanism (genetic, immunological, intervention-based, developmental arrest, inhaled toxin) will require proteomic studies which are well designed, with large disease specific patient sets to ensure adequate power as well as matched controls. Regardless of causative agent, pulmonary biomarkers are needed to predict the clinical course of pediatric lung disease, status, progression and response to treatment. Identification of early biomarkers is particularly pertinent in order to understand the natural history of disease and monitor progression so prevention of ongoing lung injury and impact on childhood can targeted.
Collapse
Affiliation(s)
- Prue M Pereira-Fantini
- Neonatal Research Group, Murdoch Childrens Research Institute, Royal Children's Hospital, Flemington Road, Parkville, VIC 3052 Australia ; Department of Paediatrics, University of Melbourne, Parkville, Australia
| | - David G Tingay
- Neonatal Research Group, Murdoch Childrens Research Institute, Royal Children's Hospital, Flemington Road, Parkville, VIC 3052 Australia ; Department of Paediatrics, University of Melbourne, Parkville, Australia ; Department of Neonatology, Royal Children's Hospital, Parkville, Australia
| |
Collapse
|
17
|
Caminati M, Durić-Filipović I, Arasi S, Peroni DG, Živković Z, Senna G. Respiratory allergies in childhood: Recent advances and future challenges. Pediatr Allergy Immunol 2015; 26:702-10. [PMID: 26582212 DOI: 10.1111/pai.12509] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/11/2015] [Indexed: 12/17/2022]
Abstract
The burden of allergic airway diseases still represents a major health problem in childhood. Despite many different options are currently available for the diagnostic work-up and management, the overall disease control in terms of impact on quality of life, morbidity and mortality, is not yet satisfactory. The extreme variability of individual risk factors and severity determinants may account for it. On the other side, the knowledge of the multifaceted allergy background could pave the way to primary prevention, early intervention and disease course modification. In fact, most of current research is focusing on the identification of biological and clinical predictive markers of allergy and asthma onset. This review aims at summarizing the latest achievements concerning the complex inter-relation between genetic predisposition and environmental factors, and their impact on prevention strategies and early identification of at risk subjects. An update on the diagnostic and monitoring tools as well as an insight into the newest treatments options is also provided.
Collapse
Affiliation(s)
- Marco Caminati
- Allergy Unit, Verona University and General Hospital, Verona, Italy
| | | | - Stefania Arasi
- Allergy Unit, Department of Pediatrics, University of Messina, Messina, Italy
| | - Diego G Peroni
- Department of Pediatrics, University of Ferrara, Ferrara, Italy.,International Inflammation (in-FLAME) Network of the World Universities Network, Ferrara, Italy
| | - Zorica Živković
- Children's Hospital for Lung Diseases and Tuberculosis, Medical Center 'Dr Dragisa Misovic', Belgrade, Serbia.,Faculty of Pharmacy, European University, Novi Sad, Serbia
| | - Gianenrico Senna
- Allergy Unit, Verona University and General Hospital, Verona, Italy
| |
Collapse
|
18
|
Luo G, Nkoy FL, Stone BL, Schmick D, Johnson MD. A systematic review of predictive models for asthma development in children. BMC Med Inform Decis Mak 2015; 15:99. [PMID: 26615519 PMCID: PMC4662818 DOI: 10.1186/s12911-015-0224-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 11/26/2015] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Asthma is the most common pediatric chronic disease affecting 9.6 % of American children. Delay in asthma diagnosis is prevalent, resulting in suboptimal asthma management. To help avoid delay in asthma diagnosis and advance asthma prevention research, researchers have proposed various models to predict asthma development in children. This paper reviews these models. METHODS A systematic review was conducted through searching in PubMed, EMBASE, CINAHL, Scopus, the Cochrane Library, the ACM Digital Library, IEEE Xplore, and OpenGrey up to June 3, 2015. The literature on predictive models for asthma development in children was retrieved, with search results limited to human subjects and children (birth to 18 years). Two independent reviewers screened the literature, performed data extraction, and assessed article quality. RESULTS The literature search returned 13,101 references in total. After manual review, 32 of these references were determined to be relevant and are discussed in the paper. We identify several limitations of existing predictive models for asthma development in children, and provide preliminary thoughts on how to address these limitations. CONCLUSIONS Existing predictive models for asthma development in children have inadequate accuracy. Efforts to improve these models' performance are needed, but are limited by a lack of a gold standard for asthma development in children.
Collapse
Affiliation(s)
- Gang Luo
- Department of Biomedical Informatics, University of Utah, Suite 140, 421 Wakara Way, Salt Lake City, UT 84108 USA
| | - Flory L. Nkoy
- Department of Pediatrics, University of Utah, 100 N Mario Capecchi Drive, Salt Lake City, UT 84113 USA
| | - Bryan L. Stone
- Department of Pediatrics, University of Utah, 100 N Mario Capecchi Drive, Salt Lake City, UT 84113 USA
| | - Darell Schmick
- Spencer S. Eccles Health Sciences Library, 10 N 1900 E, Salt Lake City, UT 84112 USA
| | - Michael D. Johnson
- Department of Pediatrics, University of Utah, 100 N Mario Capecchi Drive, Salt Lake City, UT 84113 USA
| |
Collapse
|
19
|
Abstract
Complex multifactorial diseases such as allergic rhinitis and asthma are not only becoming an increasing burden to healthcare systems, but especially affect the life quality of children and families suffering from their allergic symptoms. Also physicians are challenged by the multifaceted diseases as their work involves not only the often difficult decisions on case-adapted diagnostics, treatment, and monitoring, but also possible preventive measures. This review gives an outline of the latest scientific developments related to the etiology, diagnosis, and management of allergic airway diseases in childhood, as well as prenatal and early life risk factors and strategies for prevention.
Collapse
Affiliation(s)
- Stephanie Hofmaier
- Department of Paediatric Pneumology & Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|