1
|
Huan F, Gao S, Gu Y, Ni L, Wu M, Li Y, Liu M, Yang Y, Xiao A, Liu G. Molecular Allergology: Epitope Discovery and Its Application for Allergen-Specific Immunotherapy of Food Allergy. Clin Rev Allergy Immunol 2025; 68:37. [PMID: 40198416 DOI: 10.1007/s12016-025-09052-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2025] [Indexed: 04/10/2025]
Abstract
The prevalence of food allergy continues to rise, posing a significant burden on health and quality of life. Research on antigenic epitope identification and hypoallergenic agent design is advancing allergen-specific immunotherapy (AIT). This review focuses on food allergens from the perspective of molecular allergology, provides an overview of integration of bioinformatics and experimental validation for epitope identification, highlights hypoallergenic agents designed based on epitope information, and offers a valuable guidance to the application of hypoallergenic agents in AIT. With the development of molecular allergology, the characterization of the amino acid sequence and structure of the allergen at the molecular level facilitates T-/B-cell epitope identification. Alignment of the identified epitopes in food allergens revealed that the amino acid sequence of T-/B-cell epitopes barely overlapped, providing crucial data to design allergen molecules as a promising form for treating (FA) food allergy. Manipulating antigenic epitopes can reduce the allergenicity of allergens to obtain hypoallergenic agents, thereby minimizing the severe side effects associated with AIT. Currently, hypoallergenic agents are mainly developed through synthetic epitope peptides, genetic engineering, or food processing methods based on the identified epitope. New strategies such as DNA vaccines, signaling molecules coupling, and nanoparticles are emerging to improve efficiency. Although significant progress has been made in designing hypoallergenic agents for AIT, the challenge in clinical translation is to determine the appropriate dose and duration of treatment to induce long-term immune tolerance.
Collapse
Affiliation(s)
- Fei Huan
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, 361021, Fujian, China
| | - Shuai Gao
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, 361021, Fujian, China
| | - Yi Gu
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, 361021, Fujian, China
| | - Lingna Ni
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, 361021, Fujian, China
| | - Mingxuan Wu
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, 361021, Fujian, China
| | - Yongpeng Li
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, 361021, Fujian, China
| | - Meng Liu
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, 361021, Fujian, China
- School of Marine Biology, Xiamen Ocean Vocational College, Applied Technology Engineering Center of Fujian Provincial Higher Education for Marine Food Nutrition Safety and Advanced Processing, Applied Technology Engineering Center of Fujian Provincial Higher Education for Marine Resource Protection and Ecological Governance, Xiamen Key Laboratory of Intelligent Fishery, Xiamen, 361100, Fujian, China
| | - Yang Yang
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, 361021, Fujian, China
- College of Environment and Public Health, Xiamen Huaxia University, 288 Tianma Road, Xiamen, 361024, Fujian, China
| | - Anfeng Xiao
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, 361021, Fujian, China
| | - Guangming Liu
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, 361021, Fujian, China.
- School of Marine Biology, Xiamen Ocean Vocational College, Applied Technology Engineering Center of Fujian Provincial Higher Education for Marine Food Nutrition Safety and Advanced Processing, Applied Technology Engineering Center of Fujian Provincial Higher Education for Marine Resource Protection and Ecological Governance, Xiamen Key Laboratory of Intelligent Fishery, Xiamen, 361100, Fujian, China.
| |
Collapse
|
2
|
Liu Q, Lin S, Liu K, Jia S, Wang S, Sun N. Fucoidan-Mediated Covalent Modification Induces Oral Tolerance to Shrimp by Generating Tolerogenic Peptides and Reducing Antigen Responsiveness. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:5548-5561. [PMID: 39967261 DOI: 10.1021/acs.jafc.4c12218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Food allergy has become a global food safety issue, and inducing tolerance of the immune system to allergens is seen as an effective way to address this problem. In this study, shrimp (Penaeus vannamei) was covalently modified with fucoidan to explore its potential as an oral tolerance inducer. The results showed that this strategy not only had no adverse effect on the growth of mice but also achieved significant immune tolerance induction effects. Specifically, it significantly reduced specific antibody levels, improved vascular permeability and intestinal barrier function, and inhibited mast cell degranulation. Further studies showed that these positive results were related to tolerogenic peptides (SLLKANIQL, GLTEFQAV, GDFPGAFKVF, ALNLNPTLALI, and AALDIDSKPF) produced in shrimp allergens. Moreover, this strategy mainly down-regulated gene expression in exogenous substance metabolic and immune-related signaling pathways, thereby reducing immune response to antigens. Overall, fucoidan-mediated covalent modification promises to be an efficient method for producing oral tolerance inducers.
Collapse
Affiliation(s)
- Qiaozhen Liu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Songyi Lin
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- Engineering Research Center of Food, Dalian Polytechnic University, Dalian 116034, China
| | - Kexin Liu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Shuqi Jia
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Shuya Wang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Na Sun
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- Engineering Research Center of Food, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
3
|
Fernandes AMS, da Silva ES, Silva RC, Silveira EF, Santiago LF, de Andrade Belitardo EMM, Alves VDS, Bôas DSV, de Freitas LAR, Ferreira F, Jacquet A, Pacheco LGC, Alcantara-Neves NM, Pinheiro CS. Therapeutic potential of a novel hybrid protein: Mitigating allergy and airway remodeling in chronic asthma models induced by Dermatophagoides pteronyssinus. Mol Immunol 2024; 175:121-131. [PMID: 39357098 DOI: 10.1016/j.molimm.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/23/2024] [Accepted: 09/12/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND The house-dust mite Dermatophagoides pteronyssinus is a key trigger of allergic asthma. Therefore, it is essential to develop new vaccines that can alter inflammatory processes and airway remodeling. The goal of this study was to test the hypoallergenic and immunogenic characteristics of the hypoallergen rDer p 2231 in a murine model of chronic asthma induced by D. pteronyssinus. METHODS For this, we measured the levels of IgE, IgG1, IgG2a, and cytokines produced by mice receiving the rDer p 2231 protein. Histopathological parameters of the chronic inflammatory response were also investigated by assessing inflammation and airway remodeling. RESULTS rDer p 2231 given as a therapeutic vaccine, led to a reduction in the production of IgE, eosinophils, and neutrophils, a lower activity of eosinophilic peroxidase in the airways, and an increase in the production of IgG1 and IgG2a antibodies. IgG antibodies blocked IgE binding to parental allergens in sera from atopic patients. Splenocytes, BALF, and lung from mice treated with rDer p 2231 secreted higher levels of Th1 and regulatory cytokines, as well as reduced levels of Th2 cytokines. Histopathological investigation of the lower airways demonstrated reductions in the thickness of the bronchiolar smooth muscle layer, in the subepithelial fibrosis, and in the goblet cells hyperplasia. CONCLUSIONS Our preclinical studies suggest that rDer p 2231 is a promising candidate for the treatment of D. pteronyssinus allergy, as the hypoallergen has demonstrated the ability to reduce IgE production, induce specific blocking antibodies, restore and balance Th1/Th2 immune responses, and significantly reduce airway remodeling factors. However, additional clinical studies are needed to more accurately assess the efficacy and safety of rDer p 2231 as a vaccine against D. pteronyssinus-induced allergy.
Collapse
Affiliation(s)
| | - Eduardo Santos da Silva
- Laboratory of Allergology and Acarology (LAA), Institute of Health Sciences, Federal University of Bahia, Salvador, BA, Brazil; Post-Graduate Program in Immunology (PPGIm) of the Federal University of Bahia, Salvador, BA, Brazil.
| | - Raphael Chagas Silva
- Laboratory of Allergology and Acarology (LAA), Institute of Health Sciences, Federal University of Bahia, Salvador, BA, Brazil; Post-Graduate Program in Immunology (PPGIm) of the Federal University of Bahia, Salvador, BA, Brazil.
| | - Elisânia Fontes Silveira
- Laboratory of Allergology and Acarology (LAA), Institute of Health Sciences, Federal University of Bahia, Salvador, BA, Brazil.
| | - Leonardo Freire Santiago
- Laboratory of Allergology and Acarology (LAA), Institute of Health Sciences, Federal University of Bahia, Salvador, BA, Brazil.
| | | | - Vítor Dos Santos Alves
- Laboratory of Allergology and Acarology (LAA), Institute of Health Sciences, Federal University of Bahia, Salvador, BA, Brazil.
| | - Deise Souza Vilas Bôas
- Post-Graduate Program in Immunology (PPGIm) of the Federal University of Bahia, Salvador, BA, Brazil; Laboratory of Histotechnology, Institute of Health Sciences, Federal University of Bahia, Salvador, BA, Brazil.
| | - Luiz Antônio Rodrigues de Freitas
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FioCruz), Salvador, BA, Brazil; Department of Pathology and Forensic Medicine, School of Medicine, Federal University of Bahia, Salvador, BA, Brazil.
| | - Fatima Ferreira
- Department of Biosciences and Medical Biology, University of Salzburg, Salzburg, Austria.
| | - Alain Jacquet
- Department of Biochemistry, Chulalongkorn University, Bangkok, Thailand.
| | - Luis Gustavo Carvalho Pacheco
- Laboratory of Allergology and Acarology (LAA), Institute of Health Sciences, Federal University of Bahia, Salvador, BA, Brazil.
| | - Neuza Maria Alcantara-Neves
- Laboratory of Allergology and Acarology (LAA), Institute of Health Sciences, Federal University of Bahia, Salvador, BA, Brazil; Post-Graduate Program in Immunology (PPGIm) of the Federal University of Bahia, Salvador, BA, Brazil.
| | - Carina Silva Pinheiro
- Laboratory of Allergology and Acarology (LAA), Institute of Health Sciences, Federal University of Bahia, Salvador, BA, Brazil; Post-Graduate Program in Immunology (PPGIm) of the Federal University of Bahia, Salvador, BA, Brazil.
| |
Collapse
|
4
|
Shams MH, Sohrabi SM, Jafari R, Sheikhian A, Motedayyen H, Baharvand PA, Hasanvand A, Fouladvand A, Assarehzadegan MA. Designing a T-cell epitope-based vaccine using in silico approaches against the Sal k 1 allergen of Salsola kali plant. Sci Rep 2024; 14:5040. [PMID: 38424208 PMCID: PMC10904830 DOI: 10.1038/s41598-024-55788-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 02/27/2024] [Indexed: 03/02/2024] Open
Abstract
Allergens originated from Salsola kali (Russian thistle) pollen grains are one of the most important sources of aeroallergens causing pollinosis in desert and semi-desert regions. T-cell epitope-based vaccines (TEV) are more effective among different therapeutic approaches developed to alleviate allergic diseases. The physicochemical properties, and B as well as T cell epitopes of Sal k 1 (a major allergen of S. kali) were predicted using immunoinformatic tools. A TEV was constructed using the linkers EAAAK, GPGPG and the most suitable CD4+ T cell epitopes. RS04 adjuvant was added as a TLR4 agonist to the amino (N) and carboxyl (C) terminus of the TEV protein. The secondary and tertiary structures, solubility, allergenicity, toxicity, stability, physicochemical properties, docking with immune receptors, BLASTp against the human and microbiota proteomes, and in silico cloning of the designed TEV were assessed using immunoinformatic analyses. Two CD4+ T cell epitopes of Sal k1 that had high affinity with different alleles of MHC-II were selected and used in the TEV. The molecular docking of the TEV with HLADRB1, and TLR4 showed TEV strong interactions and stable binding pose to these receptors. Moreover, the codon optimized TEV sequence was cloned between NcoI and XhoI restriction sites of pET-28a(+) expression plasmid. The designed TEV can be used as a promising candidate in allergen-specific immunotherapy against S. kali. Nonetheless, effectiveness of this vaccine should be validated through immunological bioassays.
Collapse
Affiliation(s)
- Mohammad Hossein Shams
- Hepatitis Research Center and Department of Medical Immunology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran.
| | - Seyyed Mohsen Sohrabi
- Department of Production Engineering and Plant Genetic, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Box 6814993165, Ahvaz, Iran
| | - Reza Jafari
- School of Allied Medical Sciences, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Ali Sheikhian
- Hepatitis Research Center and Department of Medical Immunology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Hossein Motedayyen
- Autoimmune Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Peyman Amanolahi Baharvand
- Hepatitis Research Center and Department of Medical Immunology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Amin Hasanvand
- Department of Physiology and Pharmacology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Ali Fouladvand
- Hepatitis Research Center and Department of Medical Immunology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mohammad-Ali Assarehzadegan
- Immunology Research Center, Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Liu Q, Chen G, Liu X, Tao L, Fan Y, Xia T. Tolerogenic Nano-/Microparticle Vaccines for Immunotherapy. ACS NANO 2024. [PMID: 38323542 DOI: 10.1021/acsnano.3c11647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Autoimmune diseases, allergies, transplant rejections, generation of antidrug antibodies, and chronic inflammatory diseases have impacted a large group of people across the globe. Conventional treatments and therapies often use systemic or broad immunosuppression with serious efficacy and safety issues. Tolerogenic vaccines represent a concept that has been extended from their traditional immune-modulating function to induction of antigen-specific tolerance through the generation of regulatory T cells. Without impairing immune homeostasis, tolerogenic vaccines dampen inflammation and induce tolerogenic regulation. However, achieving the desired potency of tolerogenic vaccines as preventive and therapeutic modalities calls for precise manipulation of the immune microenvironment and control over the tolerogenic responses against the autoantigens, allergens, and/or alloantigens. Engineered nano-/microparticles possess desirable design features that can bolster targeted immune regulation and enhance the induction of antigen-specific tolerance. Thus, particle-based tolerogenic vaccines hold great promise in clinical translation for future treatment of aforementioned immune disorders. In this review, we highlight the main strategies to employ particles as exciting tolerogenic vaccines, with a focus on the particles' role in facilitating the induction of antigen-specific tolerance. We describe the particle design features that facilitate their usage and discuss the challenges and opportunities for designing next-generation particle-based tolerogenic vaccines with robust efficacy to promote antigen-specific tolerance for immunotherapy.
Collapse
Affiliation(s)
- Qi Liu
- School of Engineering Medicine, Beihang University, Beijing 100191, China
| | - Guoqiang Chen
- State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
| | - Xingchi Liu
- School of Engineering Medicine, Beihang University, Beijing 100191, China
| | - Lu Tao
- State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
| | - Yubo Fan
- School of Engineering Medicine, Beihang University, Beijing 100191, China
| | - Tian Xia
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
6
|
Voskamp AL, Khosa S, Phan T, DeBerg HA, Bingham J, Hew M, Smith W, Abramovitch J, Rolland JM, Moyle M, Nadeau KC, Lack G, Larché M, Wambre E, O'Hehir RE, Hickey P, Prickett SR. Phase 1 trial supports safety and mechanism of action of peptide immunotherapy for peanut allergy. Allergy 2024; 79:485-498. [PMID: 38112286 DOI: 10.1111/all.15966] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 10/12/2023] [Accepted: 11/06/2023] [Indexed: 12/21/2023]
Abstract
BACKGROUND Food allergy is a leading cause of anaphylaxis worldwide. Allergen-specific immunotherapy is the only treatment shown to modify the natural history of allergic disease, but application to food allergy has been hindered by risk of severe allergic reactions and short-lived efficacy. Allergen-derived peptides could provide a solution. PVX108 comprises seven short peptides representing immunodominant T-cell epitopes of major peanut allergens for treatment of peanut allergy. METHODS Pre-clinical safety of PVX108 was assessed using ex vivo basophil activation tests (n = 185). Clinical safety and tolerability of single and repeat PVX108 doses were evaluated in a first-in-human, randomized, double-blind, placebo-controlled trial in peanut-allergic adults (46 active, 21 placebo). The repeat-dose cohort received six doses over 16 weeks with safety monitored to 21 weeks. Exploratory immunological analyses were performed at pre-dose, Week 21 and Month 18 after treatment. RESULTS PVX108 induced negligible activation of peanut-sensitised basophils. PVX108 was safe and well tolerated in peanut-allergic adults. There were no treatment-related hypersensitivity events or AEs of clinical concern. The only events occurring more frequently in active than placebo were mild injection site reactions. Exploratory immunological analyses revealed a decrease in the ratio of ST2+ Th2A:CCR6+ Th17-like cells within the peanut-reactive Th pool which strengthened following treatment. CONCLUSION This study supports the concept that PVX108 could provide a safe alternative to whole peanut immunotherapies and provides evidence of durable peanut-specific T-cell modulation. Translation of these findings to clinical efficacy in ongoing Phase 2 trials would provide important proof-of-concept for using peptides to treat food allergy.
Collapse
Affiliation(s)
- Astrid L Voskamp
- Aravax Pty Ltd, Melbourne, Victoria, Australia
- Monash University, Melbourne, Victoria, Australia
- Alfred Health, Melbourne, Victoria, Australia
- WhiteFox Science Consulting, Nelson, New Zealand
| | | | - Tracy Phan
- Aravax Pty Ltd, Melbourne, Victoria, Australia
- Monash University, Melbourne, Victoria, Australia
- Alfred Health, Melbourne, Victoria, Australia
| | | | - Judy Bingham
- Aravax Pty Ltd, Melbourne, Victoria, Australia
- Easington Pty Ltd, Melbourne, Victoria, Australia
| | - Mark Hew
- Monash University, Melbourne, Victoria, Australia
- Alfred Health, Melbourne, Victoria, Australia
| | | | - Jodie Abramovitch
- Monash University, Melbourne, Victoria, Australia
- Alfred Health, Melbourne, Victoria, Australia
| | | | | | | | | | - Mark Larché
- Schroeder Allergy & Immunology Research Institute, Firestone Institute for Respiratory Health, McMaster University, Hamilton, Ontario, Canada
| | - Erik Wambre
- Benaroya Research Institute, Seattle, Washington, USA
| | - Robyn E O'Hehir
- Aravax Pty Ltd, Melbourne, Victoria, Australia
- Monash University, Melbourne, Victoria, Australia
- Alfred Health, Melbourne, Victoria, Australia
| | | | - Sara R Prickett
- Aravax Pty Ltd, Melbourne, Victoria, Australia
- Monash University, Melbourne, Victoria, Australia
- Alfred Health, Melbourne, Victoria, Australia
| |
Collapse
|
7
|
Xu X, Wang X, Liao YP, Luo L, Xia T, Nel AE. Use of a Liver-Targeting Immune-Tolerogenic mRNA Lipid Nanoparticle Platform to Treat Peanut-Induced Anaphylaxis by Single- and Multiple-Epitope Nucleotide Sequence Delivery. ACS NANO 2023; 17:4942-4957. [PMID: 36853930 PMCID: PMC10019335 DOI: 10.1021/acsnano.2c12420] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/17/2023] [Indexed: 05/22/2023]
Abstract
While oral desensitization is capable of alleviating peanut allergen anaphylaxis, long-term immune tolerance is the sought-after goal. We developed a liver-targeting lipid nanoparticle (LNP) platform to deliver mRNA-encoded peanut allergen epitopes to liver sinusoidal endothelial cells (LSECs), which function as robust tolerogenic antigen-presenting cells that induce FoxP3+ regulatory T-cells (Tregs). The mRNA strand was constructed by including nucleotide sequences encoding for nonallergenic MHC-II binding T-cell epitopes, identified in the dominant peanut allergen, Ara h2. These epitopes were inserted in the mRNA strand downstream of an MHC-II targeting sequence, further endowed in vitro with 5' and 3' capping sequences, a PolyA tail, and uridine substitution. Codon-optimized mRNA was used for microfluidics synthesis of LNPs with an ionizable cationic lipid, also decorated with a lipid-anchored mannose ligand for LSEC targeting. Biodistribution to the liver was confirmed by in vivo imaging, while ELISpot assays demonstrated an increase in IL-10-producing Tregs in the spleen. Prophylactic administration of tandem-repeat or a combination of encapsulated Ara h2 epitopes induced robust tolerogenic effects in C3H/HeJ mice, sensitized to and subsequently challenged with crude peanut allergen extract. In addition to alleviating physical manifestations of anaphylaxis, there was suppression of Th2-mediated cytokine production, IgE synthesis, and mast cell release, accompanied by increased IL-10 and TGF-β production in the peritoneum. Similar efficacy was demonstrated during LNP administration postsensitization. While nondecorated particles had lesser but significant effects, PolyA/LNP-Man lacked protective effects. These results demonstrate an exciting application of mRNA/LNP for treatment of food allergen anaphylaxis, with the promise to be widely applicable to the allergy field.
Collapse
Affiliation(s)
- Xiao Xu
- Division
of NanoMedicine, Department of Medicine, University of California, Los Angeles, California 90095, United States
| | - Xiang Wang
- Division
of NanoMedicine, Department of Medicine, University of California, Los Angeles, California 90095, United States
- Center
of Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, California 90095, United States
- California
NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Yu-Pei Liao
- Division
of NanoMedicine, Department of Medicine, University of California, Los Angeles, California 90095, United States
| | - Lijia Luo
- Division
of NanoMedicine, Department of Medicine, University of California, Los Angeles, California 90095, United States
| | - Tian Xia
- Division
of NanoMedicine, Department of Medicine, University of California, Los Angeles, California 90095, United States
- Center
of Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, California 90095, United States
- California
NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Andre E. Nel
- Division
of NanoMedicine, Department of Medicine, University of California, Los Angeles, California 90095, United States
- Center
of Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, California 90095, United States
- California
NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
8
|
Fernandes AMS, da Silva ES, Silveira EF, Belitardo EMMDA, Santiago LF, Silva RC, Dos Santos Alves V, Carneiro DM, Ferreira F, Jacquet A, Pacheco LGC, Alcantara-Neves NM, Pinheiro CS. Recombinant T-cell epitope conjugation: A new approach for Dermatophagoides hypoallergen design. Clin Exp Allergy 2023; 53:198-209. [PMID: 36176209 DOI: 10.1111/cea.14238] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/15/2022] [Accepted: 09/25/2022] [Indexed: 12/01/2022]
Abstract
BACKGROUND Allergen-specific immunotherapy (AIT) is the only clinical approach that can potentially cure some allergic diseases by inducing immunological tolerance. Dermatophagoides pteronyssinus is considered as the most important source of mite allergens worldwide, with high sensitization rates for the major allergens Der p 1, Der p 2 and Der p 23. The aim of this work is to generate a hypoallergenic hybrid molecule containing T-cell epitopes from these three major allergens. METHODS The hybrid protein termed Der p 2231 containing T-cell epitopes was purified by affinity chromatography. The human IgE reactivity was verified by comparing those with the parental allergens. The hybrid was also characterized immunologically through an in vivo mice model. RESULTS The hybrid rDer p 2231 stimulated in peripheral blood mononuclear cells (PBMCs) isolated from allergic patients with higher levels of IL- 2, IL-10, IL-15 and IFN-γ, as well as lower levels of IL-4, IL-5, IL-13, TNF-α and GM-CSF. The use of hybrid molecules as a therapeutic model in D. pteronyssinus allergic mice led to the reduction of IgE production and lower eosinophilic peroxidase activity in the airways. We found increased levels of IgG antibodies that blocked the IgE binding to the parental allergens in the serum of allergic patients. Furthermore, the stimulation of splenocytes from mice treated with rDer p 2231 induced higher levels of IL-10 and IFN-γ and decreased the secretion of IL-4 and IL-5, when compared with parental allergens and D. pteronyssinus extract. CONCLUSIONS rDer p 2231 has the potential to be used in AIT in patients co-sensitized with D. pteronyssinus major allergens, once it was able to reduce IgE production, inducing allergen-specific blocking antibodies, restoring and balancing Th1/Th2 immune responses, and inducing regulatory T-cells.
Collapse
Affiliation(s)
- Antônio Márcio Santana Fernandes
- Laboratório de Alergia e Acarologia, Departamento de Ciências da Biointeração, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil.,Programas de Pós-Graduação em Biotecnologia da Universidade Federal da Bahia, Salvador, Brazil
| | - Eduardo Santos da Silva
- Laboratório de Alergia e Acarologia, Departamento de Ciências da Biointeração, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil
| | - Elisânia Fontes Silveira
- Laboratório de Alergia e Acarologia, Departamento de Ciências da Biointeração, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil
| | | | - Leonardo Freire Santiago
- Laboratório de Alergia e Acarologia, Departamento de Ciências da Biointeração, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil
| | - Raphael Chagas Silva
- Laboratório de Alergia e Acarologia, Departamento de Ciências da Biointeração, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil
| | - Vitor Dos Santos Alves
- Laboratório de Alergia e Acarologia, Departamento de Ciências da Biointeração, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil
| | - Deise Malta Carneiro
- Laboratório de Alergia e Acarologia, Departamento de Ciências da Biointeração, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil
| | - Fatima Ferreira
- Department of Biosciences and Medical Biology, University of Salzburg, Salzburg, Austria
| | - Alain Jacquet
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Luis Gustavo Carvalho Pacheco
- Laboratório de Alergia e Acarologia, Departamento de Ciências da Biointeração, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil.,Programas de Pós-Graduação em Biotecnologia da Universidade Federal da Bahia, Salvador, Brazil
| | - Neuza Maria Alcantara-Neves
- Laboratório de Alergia e Acarologia, Departamento de Ciências da Biointeração, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil.,Programas de Pós-Graduação em Biotecnologia da Universidade Federal da Bahia, Salvador, Brazil
| | - Carina Silva Pinheiro
- Laboratório de Alergia e Acarologia, Departamento de Ciências da Biointeração, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil.,Programas de Pós-Graduação em Biotecnologia da Universidade Federal da Bahia, Salvador, Brazil
| |
Collapse
|
9
|
Reddy S. V. V, Mudnakudu-Nagaraju KK. Screening of B-cell epitopes of Der-p1 and Der-p2 major aeroallergens by computational approach for designing immunotherapeutics. Biomedicine (Taipei) 2022. [DOI: 10.51248/.v42i5.2126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Introduction and Aim: Allergic diseases are IgE-mediated hypersensitivity reactions affecting approximately 30% of the general population globally. Dermatophagoides pteronyssinus (Der-p) is the most prevalent house dust mite (HDM) species consisting of 23 mite allergen groups. Among these, group 1 and 2 are major allergenic proteins, which causes allergic asthma in 80% of sensitized individuals, with elevated IgE titres in the serum. This study involves in silico analysis of potential B-cell epitopes of group 1 and group 2 of Der-p, which can be utilized in designing immunotherapeutic vaccines.
Materials and Methods: Allergen sequences obtained from the database- International Union of Immunological Societies (IUIS), for predicting of B-cell epitopes. The physiochemical properties and secondary structures of the obtained sequence were evaluated. The sequences were further subjected to determining antigenicity, surface accessibility, and prediction of linear and discontinuous B-cell epitope by utilizing IEDB tools.
Results: The linear and discontinuous B-cell epitopes of Der-p1 and Der-p2 aeroallergen were predicted. Further, Der-p1 and Der-p2 showed 6 linear epitopes each respectively. Conformational epitopes predicted were 123 of Der-p1 and 72 of Der-p2 respectively, by the ElliPro tool. Based on the structure, antigenicity, and surface accessibility, only 10% of Der-p1 and Der-p2 which binds to B-cell epitopes are linear and the majority are discontinuous.
Conclusion: The linear and conformational epitopes of Der-p1 and Der-p2 are predicted using in silico tools. These identified epitopes might be useful for developing epitope-based immunotherapeutics for HDM allergy.
Collapse
|
10
|
Hesse L, Oude Elberink J, van Oosterhout AJ, Nawijn MC. Allergen immunotherapy for allergic airway diseases: Use lessons from the past to design a brighter future. Pharmacol Ther 2022; 237:108115. [DOI: 10.1016/j.pharmthera.2022.108115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 12/23/2021] [Accepted: 01/11/2022] [Indexed: 10/19/2022]
|
11
|
Sircar G, Ghosh N, Saha S. Designing Next-Generation Vaccines Against Common Pan-Allergens Using In Silico Approaches. Monoclon Antib Immunodiagn Immunother 2022; 41:231-242. [PMID: 35852870 DOI: 10.1089/mab.2021.0033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Next-generation allergy vaccines refer to allergen-derived attenuated molecules that can boost allergen-blocking IgG response. These IgG antibodies are specifically directed toward the IgE epitope of allergens and interfere in allergen-IgE interaction. Our study is a computational approach to design such vaccines against four widespread pan-allergens families. Pan-allergens display extensive immunological cross-reactivity due to the presence of conserved IgE epitope and T cell epitope. In this study, the vaccine design is based on hapten-carrier concept in which the carrier protein is an immunogenic component providing T cell help. Either PreS protein of hepatitis B or cholera enterotoxin B (CTB) fused with three tetanus toxoid fragments (TTFrC) was used here as the carrier. The hapten components are nonanaphylactic peptides (NAPs) derived from experimentally determined antigenic regions of the allergens. The charged residues of NAPs are selectively modified to obliterate IgE, as well as T cell reaction, and hence, are safe to apply in allergy patients. Various combinations of vaccine constructs (PreS/CTB+TTFrC and NAPs) were designed with intermediate linker motifs. Screening of constructs was performed through a three-step method such as physicochemical parameters, secondary structures, and tertiary structures using various bioinformatic tools. The final construct with best quality and stability was selected for each allergen family. Suitability of these constructs for being expressed in recombinant form was checked at DNA, RNA, and protein level. Presence of putative epitopes inducing tolerogenic interleukin-10 was also predicted for these constructs. The present work led to the design of putative vaccines with immunotherapeutic potential and broad applicability for allergic diseases caused by a wide array of cross-reactive allergens.
Collapse
Affiliation(s)
- Gaurab Sircar
- Department of Botany, Visva-Bharati, Santiniketan, India
| | - Nandini Ghosh
- Department of Microbiology, Vidyasagar University, Paschim Medinipur, India
| | - Sudipto Saha
- Division of Bioinformatics, Bose Institute (Centenary Building), Kolkata, India
| |
Collapse
|
12
|
Lombe BP, Saito T, Miyamoto H, Mori-Kajihara A, Kajihara M, Saijo M, Masumu J, Hattori T, Igarashi M, Takada A. Mapping of Antibody Epitopes on the Crimean-Congo Hemorrhagic Fever Virus Nucleoprotein. Viruses 2022; 14:v14030544. [PMID: 35336951 PMCID: PMC8955205 DOI: 10.3390/v14030544] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 02/05/2023] Open
Abstract
Crimean-Congo hemorrhagic fever virus (CCHFV), a nairovirus, is a tick-borne zoonotic virus that causes hemorrhagic fever in humans. The CCHFV nucleoprotein (NP) is the antigen most used for serological screening of CCHFV infection in animals and humans. To gain insights into antibody epitopes on the NP molecule, we produced recombinant chimeric NPs between CCHFV and Nairobi sheep disease virus (NSDV), which is another nairovirus, and tested rabbit and mouse antisera/immune ascites, anti-NP monoclonal antibodies, and CCHFV-infected animal/human sera for their reactivities to the NP antigens. We found that the amino acids at positions 161–320 might include dominant epitopes recognized by anti-CCHFV IgG antibodies, whereas cross-reactivity between anti-CCHFV and anti-NSDV antibodies was limited. Their binding capacities were further tested using a series of synthetic peptides whose sequences were derived from CCHFV NP. IgG antibodies in CCHFV-infected monkeys and patients were reactive to some of the synthetic peptide antigens (e.g., amino acid residues at positions 131–150 and 211–230). Only a few peptides were recognized by IgG antibodies in the anti-NSDV serum. These results provide useful information to improve NP-based antibody detection assays as well as antigen detection tests relying on anti-NP monoclonal antibodies.
Collapse
Affiliation(s)
- Boniface Pongombo Lombe
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan; (B.P.L.); (T.S.); (H.M.); (A.M.-K.); (M.K.); (T.H.); (M.I.)
- Central Veterinary Laboratory of Kinshasa, Kinshasa B.P. 8842, Democratic Republic of the Congo;
- Faculty of Veterinary Medicine, National Pedagogic University, Kinshasa B.P. 8815, Democratic Republic of the Congo
| | - Takeshi Saito
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan; (B.P.L.); (T.S.); (H.M.); (A.M.-K.); (M.K.); (T.H.); (M.I.)
| | - Hiroko Miyamoto
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan; (B.P.L.); (T.S.); (H.M.); (A.M.-K.); (M.K.); (T.H.); (M.I.)
| | - Akina Mori-Kajihara
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan; (B.P.L.); (T.S.); (H.M.); (A.M.-K.); (M.K.); (T.H.); (M.I.)
| | - Masahiro Kajihara
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan; (B.P.L.); (T.S.); (H.M.); (A.M.-K.); (M.K.); (T.H.); (M.I.)
| | - Masayuki Saijo
- Department of Virology 1, National Institute of Infectious Diseases, Musashimurayama 208-0011, Japan;
| | - Justin Masumu
- Central Veterinary Laboratory of Kinshasa, Kinshasa B.P. 8842, Democratic Republic of the Congo;
- Faculty of Veterinary Medicine, National Pedagogic University, Kinshasa B.P. 8815, Democratic Republic of the Congo
- National Institute of Biomedical Research, Kinshasa B.P. 1197, Democratic Republic of the Congo
| | - Takanari Hattori
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan; (B.P.L.); (T.S.); (H.M.); (A.M.-K.); (M.K.); (T.H.); (M.I.)
| | - Manabu Igarashi
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan; (B.P.L.); (T.S.); (H.M.); (A.M.-K.); (M.K.); (T.H.); (M.I.)
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan
| | - Ayato Takada
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan; (B.P.L.); (T.S.); (H.M.); (A.M.-K.); (M.K.); (T.H.); (M.I.)
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan
- Department of Disease Control, School of Veterinary Medicine, The University of Zambia, Lusaka 10101, Zambia
- Correspondence:
| |
Collapse
|
13
|
Liu Q, Wang X, Liao YP, Chang CH, Li J, Xia T, Nel AE. Use of a Liver-targeting Nanoparticle Platform to Intervene in Peanut-induced anaphylaxis through delivery of an Ara h2 T-cell Epitope. NANO TODAY 2022; 42:101370. [PMID: 36969911 PMCID: PMC10038170 DOI: 10.1016/j.nantod.2021.101370] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
To address the urgent need for safe food allergen immunotherapy, we have developed a liver-targeting nanoparticle platform, capable of intervening in allergic inflammation, mast cell release and anaphylaxis through the generation of regulatory T-cells (Treg). In this communication, we demonstrate the use of a poly (lactide-co-glycolide acid) (PLGA) nanoparticle platform for intervening in peanut anaphylaxis through the encapsulation and delivery of a dominant protein allergen, Ara h 2 and representative T-cell epitopes, to liver sinusoidal endothelial cells (LSECs). These cells have the capacity to act as natural tolerogenic antigen-presenting cells (APC), capable of Treg generation by T-cell epitope presentation by histocompatibility (MHC) type II complexes on the LSEC surface. This allowed us to address the hypothesis that the tolerogenic nanoparticles platform could be used as an effective, safe, and scalable intervention for suppressing anaphylaxis to crude peanut allergen extract. Following the analysis of purified Ara h 2 and representative MHC-II epitopes Treg generation in vivo, a study was carried out to compare the best-performing Ara h 2 T-cell epitope with a purified Ara h 2 allergen, a crude peanut protein extract (CPPE) and a control peptide in an oral sensitization model. Prophylactic as well as post-sensitization administration of the dominant encapsulated Ara h 2 T-cell epitope was more effective than the purified Ara h2 in eliminating anaphylactic manifestations, hypothermia, and mast cell protease release in a frequently used peanut anaphylaxis model. This was accompanied by decreased peanut-specific IgE blood levels and increased TGF-β release in the abdominal cavity. The duration of the prophylactic effect was sustained for two months. These results demonstrate that targeted delivery of carefully selected T-cell epitopes to natural tolerogenic liver APC could serve as an effective platform for the treatment of peanut allergen anaphylaxis.
Collapse
Affiliation(s)
- Qi Liu
- Center of Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Xiang Wang
- Center of Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Yu-Pei Liao
- Center of Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Chong Hyun Chang
- Center of Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Jiulong Li
- Center of Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Tian Xia
- Center of Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Andre E. Nel
- Center of Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
14
|
Akinfenwa O, Huang HJ, Linhart B, Focke-Tejkl M, Vrtala S, Poroshina A, Nikonova A, Khaitov M, Campion NJ, Eckl-Dorna J, Niederberger-Leppin V, Kratzer B, Tauber PA, Pickl WF, Kundi M, Campana R, Valenta R. Preventive Administration of Non-Allergenic Bet v 1 Peptides Reduces Allergic Sensitization to Major Birch Pollen Allergen, Bet v 1. Front Immunol 2021; 12:744544. [PMID: 34795666 PMCID: PMC8594376 DOI: 10.3389/fimmu.2021.744544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/20/2021] [Indexed: 11/15/2022] Open
Abstract
IgE-mediated allergy to birch pollen affects more than 100 million patients world-wide. Bet v 1, a 17 kDa protein is the major allergen in birch pollen responsible for allergic rhinoconjunctivitis and asthma in birch pollen allergic patients. Allergen-specific immunotherapy (AIT) based on therapeutic administration of Bet v 1-containing vaccines is an effective treatment for birch pollen allergy but no allergen-specific forms of prevention are available. We developed a mouse model for IgE sensitization to Bet v 1 based on subcutaneous injection of aluminum-hydroxide adsorbed recombinant Bet v 1 and performed a detailed characterization of the specificities of the IgE, IgG and CD4+ T cell responses in sensitized mice using seven synthetic peptides of 31-42 amino acids length which comprised the Bet v 1 sequence and the epitopes recognized by human CD4+ T cells. We then demonstrate that preventive systemic administration of a mix of synthetic non-allergenic Bet v 1 peptides to 3-4 week old mice significantly reduced allergic immune responses, including IgE, IgG, IgE-mediated basophil activation, CD4+ T cell and IL-4 responses to the complete Bet v 1 allergen but not to the unrelated major grass pollen allergen Phl p 5, without inducing Bet v 1-specific allergic sensitization or adaptive immunity. Our results thus demonstrate that early preventive administration of non-allergenic synthetic T cell epitope-containing allergen peptides could be a safe strategy for the prevention of allergen-specific IgE sensitization.
Collapse
Affiliation(s)
- Oluwatoyin Akinfenwa
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Huey-Jy Huang
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Birgit Linhart
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Margarete Focke-Tejkl
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.,Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Susanne Vrtala
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Alina Poroshina
- National Research Center (NRC) - Institute of Immunology Federal Medical-Biological Agency (FMBA) of Russia, Moscow, Russia
| | - Alexandra Nikonova
- National Research Center (NRC) - Institute of Immunology Federal Medical-Biological Agency (FMBA) of Russia, Moscow, Russia
| | - Musa Khaitov
- National Research Center (NRC) - Institute of Immunology Federal Medical-Biological Agency (FMBA) of Russia, Moscow, Russia.,Immunology Department, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Nicholas J Campion
- Department of Otorhinolaryngology, Medical University of Vienna, Vienna, Austria
| | - Julia Eckl-Dorna
- Department of Otorhinolaryngology, Medical University of Vienna, Vienna, Austria
| | | | - Bernhard Kratzer
- Institute of Immunology, Center for Pathophysiology, Infectiology & Immunology, Medical University of Vienna, Vienna, Austria
| | - Peter Anton Tauber
- Institute of Immunology, Center for Pathophysiology, Infectiology & Immunology, Medical University of Vienna, Vienna, Austria
| | - Winfried F Pickl
- Karl Landsteiner University of Health Sciences, Krems, Austria.,Institute of Immunology, Center for Pathophysiology, Infectiology & Immunology, Medical University of Vienna, Vienna, Austria
| | - Michael Kundi
- Institute for Hygiene and Applied Immunology, Centre for Public Health, Medical University of Vienna, Vienna, Austria
| | - Raffaela Campana
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Rudolf Valenta
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.,Karl Landsteiner University of Health Sciences, Krems, Austria.,National Research Center (NRC) - Institute of Immunology Federal Medical-Biological Agency (FMBA) of Russia, Moscow, Russia.,Laboratory for Immunopathology, Department of Clinical Immunology and Allergy, Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
15
|
van Zelm MC, McKenzie CI, Varese N, Rolland JM, O’Hehir RE. Advances in allergen-specific immune cell measurements for improved detection of allergic sensitization and immunotherapy responses. Allergy 2021; 76:3374-3382. [PMID: 34355403 DOI: 10.1111/all.15036] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/02/2021] [Indexed: 01/10/2023]
Abstract
Over the past two decades, precision medicine has advanced diagnostics and treatment of allergic diseases. Component-resolved analysis of allergen sensitization facilitates stratification of patients. Furthermore, new formulations of allergen immunotherapy (AIT) products can more effectively deliver the relevant components. Molecular insights from the identification of allergen component sensitization and clinical outcomes of treatment with new AIT formulations can now be utilized for a deeper understanding of the nature of the pathogenic immune response in allergy and how this can be corrected by AIT. Fundamental in these processes are the allergen-specific B and T cells. Within the large B- and T-cell compartments, only those that specifically recognize the allergen with their immunoglobulin (Ig) or T-cell receptor (TCR), respectively, are of clinical relevance. With peripheral blood allergen-specific B- and T-cell frequencies below 1%, bulk cell analysis is typically insufficiently sensitive. We here review the latest technologies to detect allergen-specific B and T cells, as well as new developments in utilizing these tools for diagnostics and therapy monitoring to advance precision medicine for allergic diseases.
Collapse
Affiliation(s)
- Menno C. van Zelm
- Department of Immunology and Pathology Central Clinical School Monash University Melbourne VIC Australia
- Department of Allergy, Immunology and Respiratory Medicine Central Clinical School Monash University, and Alfred Hospital Melbourne VIC Australia
| | - Craig I. McKenzie
- Department of Immunology and Pathology Central Clinical School Monash University Melbourne VIC Australia
| | - Nirupama Varese
- Department of Immunology and Pathology Central Clinical School Monash University Melbourne VIC Australia
- Department of Allergy, Immunology and Respiratory Medicine Central Clinical School Monash University, and Alfred Hospital Melbourne VIC Australia
| | - Jennifer M. Rolland
- Department of Immunology and Pathology Central Clinical School Monash University Melbourne VIC Australia
- Department of Allergy, Immunology and Respiratory Medicine Central Clinical School Monash University, and Alfred Hospital Melbourne VIC Australia
| | - Robyn E. O’Hehir
- Department of Immunology and Pathology Central Clinical School Monash University Melbourne VIC Australia
- Department of Allergy, Immunology and Respiratory Medicine Central Clinical School Monash University, and Alfred Hospital Melbourne VIC Australia
| |
Collapse
|
16
|
Xu LL, Gasset M, Lin H, Yu C, Zhao JL, Dang XW, Li ZX. Identification of the Dominant T-Cell Epitopes of Lit v 1 Shrimp Major Allergen and Their Functional Overlap with Known B-Cell Epitopes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7420-7428. [PMID: 34170668 DOI: 10.1021/acs.jafc.1c02231] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Development of efficient peptide-based immunotherapy for shrimp allergy relies on the identification of the dominant T-cell epitopes of its major allergen, tropomyosin. In this study, immunoinformatic tools, T-cell proliferation, cytokine release, IgG/IgE binding, and degranulation assays were used to identify and characterize the T-cell epitopes in Lit v 1 in comparison with previously validated B-cell epitopes. The results showed that of the six in silico predicted T-cell epitopes only one (T2: VQESLLKANIQLVEK, 60-74) promoted T-cell proliferation, the release of IL-2, and upregulated secretion of Th2-associated cytokines in the absence of IgG/IgE binding and degranulation activities. These findings support T2 as a candidate for the development of an efficient peptide-based vaccine for the immunotherapy for shrimp-allergic patients.
Collapse
Affiliation(s)
- Li Li Xu
- College of Food Science and Engineering, Ocean University of China, No.5, Yushan Road, Qingdao, Shandong Province 266003, P. R. China
| | - María Gasset
- Institute of Physical Chemistry Rocasolano (IQFR), Spanish National Research Council (CSIC), 28006 Madrid, Spain
| | - Hong Lin
- College of Food Science and Engineering, Ocean University of China, No.5, Yushan Road, Qingdao, Shandong Province 266003, P. R. China
| | - Chuang Yu
- College of Food Science and Engineering, Ocean University of China, No.5, Yushan Road, Qingdao, Shandong Province 266003, P. R. China
| | - Jin Long Zhao
- College of Food Science and Engineering, Ocean University of China, No.5, Yushan Road, Qingdao, Shandong Province 266003, P. R. China
| | - Xue Wen Dang
- College of Food Science and Engineering, Ocean University of China, No.5, Yushan Road, Qingdao, Shandong Province 266003, P. R. China
| | - Zhen Xing Li
- College of Food Science and Engineering, Ocean University of China, No.5, Yushan Road, Qingdao, Shandong Province 266003, P. R. China
| |
Collapse
|
17
|
Takaiwa F. Next-Generation Allergen-Specific Immunotherapy for Japanese Cedar Pollinosis Using Molecular Approaches. Immunotargets Ther 2021; 10:213-224. [PMID: 34239843 PMCID: PMC8259616 DOI: 10.2147/itt.s276874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/02/2021] [Indexed: 11/23/2022] Open
Abstract
Japanese cedar (JC) pollinosis is the most major IgE-mediated type I allergic disease in Japan. Allergen-specific immunotherapy is the only curative treatment for allergic diseases. Subcutaneous immunotherapy and sublingual immunotherapy have been introduced in Japan for JC pollinosis, but do not avoid some adverse side effects, because the natural allergens used as tolerogens cross-link with specific IgE types on mast cells and basophils. To make immunotherapy for JC pollinosis safer, more effective and convenient, rice-based oral allergy vaccines using hybrid peptides composed of multiple T-cell epitopes or recombinant deconstructed hypoallergenic derivatives derived from major allergens — Cry j 1 and Cry j 2 — have been developed and their efficacy and safety evaluated by oral administration of transgenic rice seeds. Furthermore, recombinant modified JC allergens conjugated with various immunomodulatory molecules and DNA-based vaccines have been created and their efficacy assessed.
Collapse
Affiliation(s)
- Fumio Takaiwa
- Soul Signal Institute, Kojyohama, Shiraoi, Hokkaido, 059-0641, Japan.,Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, 305-8602, Japan
| |
Collapse
|
18
|
Wraith DC, Krishna MT. Peptide allergen-specific immunotherapy for allergic airway diseases-State of the art. Clin Exp Allergy 2021; 51:751-769. [PMID: 33529435 DOI: 10.1111/cea.13840] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/24/2021] [Accepted: 01/28/2021] [Indexed: 12/13/2022]
Abstract
Allergen-specific immunotherapy (AIT) is the only means of altering the natural immunological course of allergic diseases and achieving long-term remission. Pharmacological measures are able to suppress the immune response and/or ameliorate the symptoms but there is a risk of relapse soon after these measures are withdrawn. Current AIT approaches depend on the administration of intact allergens, often comprising crude extracts of the allergen. We propose that the challenges arising from current approaches, including the risk of serious side-effects, burdensome duration of treatment, poor compliance and high cost, are overcome by application of peptides based on CD4+ T cell epitopes rather than whole allergens. Here we describe evolving approaches, summarize clinical trials involving peptide AIT in allergic rhinitis and asthma, discuss the putative mechanisms involved in their action, address gaps in evidence and propose future directions for research and clinical development.
Collapse
Affiliation(s)
- David C Wraith
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Mamidipudi T Krishna
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
- Department of Allergy and Immunology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| |
Collapse
|
19
|
Pfaar O, Creticos PS, Kleine-Tebbe J, Canonica GW, Palomares O, Schülke S. One Hundred Ten Years of Allergen Immunotherapy: A Broad Look Into the Future. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2021; 9:1791-1803. [PMID: 33966868 DOI: 10.1016/j.jaip.2020.12.067] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/14/2020] [Accepted: 12/18/2020] [Indexed: 12/15/2022]
Abstract
Allergen immunotherapy (AIT) is the only disease-modifying treatment option for patients with type 1-mediated allergic diseases such as allergic rhinitis/rhinoconjunctivitis with/without allergic asthma. Although many innovations have been developed since the first clinical report of Noon et al in 1911, the improvement of clinical efficacy and tolerability of this treatment is still an important unmet need. Hence, much progress has been made in the characterization of the cell types, cytokines, and intracellular signaling events involved in the development, maintenance, and regulation of allergic reactions, and also in the understanding of the mechanisms of tolerance induction in AIT. This comprehensive review aims to summarize the current innovative approaches in AIT, but also gives an outlook on promising candidates of the future. On the basis of an extensive literature review, integrating a clinical point of view, this article focuses on recent and future innovations regarding biologicals, allergen-derived peptides, recombinant allergens, "Toll"-like receptor agonists and other adjuvants, and novel application routes being developed for future AIT.
Collapse
Affiliation(s)
- Oliver Pfaar
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Marburg, Philipps-Universität Marburg, Marburg, Germany.
| | - Peter S Creticos
- Division of Allergy & Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, Md; Creticos Research Group, Crownsville, Md
| | - Jörg Kleine-Tebbe
- Allergy & Asthma Center Westend, Outpatient & Clinical Research Center, Hanf, Ackermann & Kleine-Tebbe, Berlin, Germany
| | - Giorgio Walter Canonica
- Personalized Medicine Asthma & Allergy Clinic, Humanitas University & Research Hospital-IRCCS, Milano, Italy
| | - Oscar Palomares
- Department of Biochemistry and Molecular Biology, School of Chemistry, Complutense University, Madrid, Spain
| | - Stefan Schülke
- Vice Presidents Research Group, Paul-Ehrlich-Institut, Langen, Germany
| |
Collapse
|
20
|
Liu Q, Wang X, Liu X, Liao YP, Chang CH, Mei KC, Jiang J, Tseng S, Gochman G, Huang M, Thatcher Z, Li J, Allen SD, Lucido L, Xia T, Nel AE. Antigen- and Epitope-Delivering Nanoparticles Targeting Liver Induce Comparable Immunotolerance in Allergic Airway Disease and Anaphylaxis as Nanoparticle-Delivering Pharmaceuticals. ACS NANO 2021; 15:1608-1626. [PMID: 33351586 PMCID: PMC7943028 DOI: 10.1021/acsnano.0c09206] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The targeting of natural tolerogenic liver sinusoidal endothelial cells (LSEC) by nanoparticles (NPs), decorated with a stabilin receptor ligand, is capable of generating regulatory T-cells (Tregs), which can suppress antigen-specific immune responses, including to ovalbumin (OVA), a possible food allergen. In this regard, we have previously demonstrated that OVA-encapsulating poly(lactic-co-glycolic acid) (PLGA) nanoparticles eliminate allergic airway inflammation in OVA-sensitized mice, prophylactically and therapeutically. A competing approach is a nanocarrier platform that incorporates pharmaceutical agents interfering in mTOR (rapamycin) or NF-κB (curcumin) pathways, with the ability to induce a tolerogenic state in nontargeted antigen-presenting cells system-wide. First, we compared OVA-encapsulating, LSEC-targeting tolerogenic nanoparticles (TNPs) with nontargeted NPs incorporating curcumin and rapamycin (Rapa) in a murine eosinophilic airway inflammation model, which is Treg-sensitive. This demonstrated roughly similar tolerogenic effects on allergic airway inflammation by stabilin-targeting NPOVAversus nontargeted NPs delivering OVA plus Rapa. Reduction in eosinophilic inflammation and TH2-mediated immune responses in the lung was accompanied by increased Foxp3+ Treg recruitment and TGF-β production in both platforms. As OVA incorporates IgE-binding as well as non-IgE-binding epitopes, the next experiment explored the possibility of obtaining immune tolerance by non-anaphylactic T-cell epitopes. This was accomplished by incorporating OVA323-339 and OVA257-264 epitopes in liver-targeting NPs to assess the prophylactic and therapeutic impact on allergic inflammation in transgenic OT-II mice. Importantly, we demonstrated that the major histocompatibility complex (MHC)-II binding (former) but not the MHC-I binding (latter) epitope interfered in allergic airway inflammation, improving TNPOVA efficacy. The epitope-specific effect was transduced by TGF-β-producing Tregs. In the final phase of experimentation, we used an OVA-induced anaphylaxis model to demonstrate that targeted delivery of OVA and its MHC-II epitope could significantly suppress the anaphylaxis symptom score, mast cell release, and the late-phase inflammatory response. In summary, these results demonstrate comparable efficacy of LSEC-targeting versus pharmaceutical PLGA nanoparticles, as well as the ability of T-cell epitopes to achieve response outcomes similar to those of the intact allergens.
Collapse
Affiliation(s)
- Qi Liu
- Center of Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Xiang Wang
- Center of Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Xiangsheng Liu
- Center of Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Yu-Pei Liao
- Center of Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Chong Hyun Chang
- Center of Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Kuo-Ching Mei
- Center of Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Jinhong Jiang
- Center of Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Shannon Tseng
- Center of Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Grant Gochman
- Center of Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Marissa Huang
- Center of Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Zoe Thatcher
- Center of Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Jiulong Li
- Center of Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Sean D. Allen
- Center of Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Luke Lucido
- Center of Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Tian Xia
- Center of Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, CA 90095, USA
- Corresponding author ;
| | - Andre E. Nel
- Center of Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, CA 90095, USA
- Corresponding author ;
| |
Collapse
|
21
|
Irani C, Haczku A. Grains of Wisdom: Transgenic Rice for Oral Allergen Immunotherapy in Japanese Cedar Pollen-Allergic Patients. Int Arch Allergy Immunol 2020; 182:106-108. [PMID: 33321507 DOI: 10.1159/000513627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 12/03/2020] [Indexed: 11/19/2022] Open
Affiliation(s)
- Carla Irani
- Internal Medicine and Clinical Immunology, Saint Joseph University, Beirut, Lebanon
| | - Angela Haczku
- Department of Internal Medicine, UC Davis Lung Center, University of California, Davis, California, USA,
| |
Collapse
|
22
|
Patra P, Bhattacharya M, Sharma AR, Ghosh P, Sharma G, Patra BC, Mallick B, Lee SS, Chakraborty C. Identification and Design of a Next-Generation Multi Epitopes Bases Peptide Vaccine Candidate Against Prostate Cancer: An In Silico Approach. Cell Biochem Biophys 2020; 78:495-509. [PMID: 32347457 DOI: 10.1007/s12013-020-00912-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/07/2020] [Indexed: 12/28/2022]
Abstract
Prostate cancer (PCa) is the second most diagnosed cancer in men and ranked fifth in overall cancer diagnosis. During the past decades, it has arisen as a significant life-threatening disease in men at an older age. At the early onset of illness when it is in localized form, radiation and surgical treatments are applied against this disease. In case of adverse situations androgen deprivation therapy, chemotherapy, hormonal therapy, etc. are widely used as a therapeutic element. However, studies found the occurrences of several side effects after applying these therapies. In current work, several immunoinformatic techniques were applied to formulate a multi-epitopic vaccine from the overexpressed antigenic proteins of PCa. A total of 13 epitopes were identified from the five prostatic antigenic proteins (PSA, PSMA, PSCA, STEAP, and PAP), after validation with several in silico tools. These epitopes were fused to form a vaccine element by (GGGGS)3 peptide linker. Afterward, 5, 6-dimethylxanthenone-4-acetic acid (DMXAA) was used as an adjuvant to initiate and induce STING-mediated cytotoxic cascade. In addition, molecular docking was performed between the vaccine element and HLA class I antigen with the low ACE value of -251 kcal/mol which showed a significant binding. Molecular simulation using normal mode analysis (NMA) illustrated the docking complex as a stable one. Therefore, this observation strongly indicated that our multi epitopes bases peptide vaccine molecule will be an effective candidate for the treatment of the PCa.
Collapse
Affiliation(s)
- Prasanta Patra
- Department of Zoology, Vidyasagar University, Midnapore, West Bengal, 721102, India
| | - Manojit Bhattacharya
- Department of Zoology, Vidyasagar University, Midnapore, West Bengal, 721102, India
- Institute for Skeletal Aging & Orthopedic Surgery, Chuncheon Sacred Heart Hospital, Hallym University, Chuncheon, 24252, Republic of Korea
| | - Ashish Ranjan Sharma
- Institute for Skeletal Aging & Orthopedic Surgery, Chuncheon Sacred Heart Hospital, Hallym University, Chuncheon, 24252, Republic of Korea
| | - Pratik Ghosh
- Department of Zoology, Vidyasagar University, Midnapore, West Bengal, 721102, India
| | - Garima Sharma
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Bidhan Chandra Patra
- Department of Zoology, Vidyasagar University, Midnapore, West Bengal, 721102, India
| | - Bidyut Mallick
- Departments of Applied Science, Galgotias College of Engineering and Technology, Greater Noida, India
| | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopedic Surgery, Chuncheon Sacred Heart Hospital, Hallym University, Chuncheon, 24252, Republic of Korea.
| | - Chiranjib Chakraborty
- Institute for Skeletal Aging & Orthopedic Surgery, Chuncheon Sacred Heart Hospital, Hallym University, Chuncheon, 24252, Republic of Korea.
- Adamas University, North, 24 Parganas, Kolkata, West Bengal, 700126, India.
| |
Collapse
|
23
|
Endo T, Asaka D, Nakayama T, Saito S, Kodama H, Mitsuyoshi R, Takaishi S, Sugimoto N, Omae S, Takagi H, Wakasa Y, Ozawa K, Takano M, Takaiwa F, Kojima H, Saito S. Immunological and Symptomatic Effects of Oral Intake of Transgenic Rice Containing 7 Linked Major T-Cell Epitopes from Japanese Cedar Pollen Allergens. Int Arch Allergy Immunol 2020; 182:109-119. [PMID: 32854094 DOI: 10.1159/000509996] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/08/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND A rice-based peptide vaccine containing 7 linked human predominant T-cell epitopes (7Crp) derived from Japanese cedar (JC) pollen allergens, Cry j 1 and Cry j 2, was developed. Here, we examined the efficacy and safety of this transgenic rice in JC pollinosis patients. METHODS Transgenic rice (5, 20, and 80 g) was administered orally. We measured the T-cell proliferative activity against 7Crp, Cry j 1, and Cry j 2; the cytokine expression levels; and specific IgE and IgG4 production levels. In addition, the symptom and medication scores were monitored during the pollen season, and quality of life (QOL) was evaluated. RESULTS T-cell proliferative activities to Cry j 1, Cry j 2, and 7Crp were significantly depressed in a dose-dependent manner. Oral intake of 80 g transgenic rice for 20 weeks resulted in significant suppression of allergen-specific T-cell proliferation with downregulation of IL-13 and upregulation of IL-10 levels but no changes to specific IgE and IgG4 levels. The QOL symptom scores for allergic rhinitis were not significantly improved. CONCLUSIONS Allergen-specific T-cell responses were significantly reduced by oral intake of transgenic rice in a dose-dependent manner. However, neither medication score nor QOL symptom scores could be improved during the JC pollen season with oral intake of transgenic rice for 20 weeks.
Collapse
Affiliation(s)
- Tomonori Endo
- Department of Otorhinolaryngology, Jikei University School of Medicine, Tokyo, Japan, .,Department of Otorhinolaryngology, Federation of National Public Service Personnel Mutual Aid Associations, Tokyo Kyosai Hospital, Tokyo, Japan,
| | - Daiya Asaka
- Department of Otorhinolaryngology, Jikei University School of Medicine, Tokyo, Japan
| | - Tsuguhisa Nakayama
- Department of Otorhinolaryngology, Jikei University School of Medicine, Tokyo, Japan
| | - Shota Saito
- Department of Otorhinolaryngology, Jikei University School of Medicine, Tokyo, Japan
| | - Hiroki Kodama
- Department of Otorhinolaryngology, Jikei University School of Medicine, Tokyo, Japan
| | - Ryoto Mitsuyoshi
- Department of Otorhinolaryngology, Jikei University School of Medicine, Tokyo, Japan
| | - Shinya Takaishi
- Department of Otorhinolaryngology, Jikei University School of Medicine, Tokyo, Japan
| | - Naoki Sugimoto
- Department of Otorhinolaryngology, Jikei University School of Medicine, Tokyo, Japan
| | - Sachiko Omae
- Department of Otorhinolaryngology, Jikei University School of Medicine, Tokyo, Japan
| | - Hidenori Takagi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Ibaraki, Japan
| | - Yuhya Wakasa
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Ibaraki, Japan
| | - Kenjiro Ozawa
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Ibaraki, Japan
| | - Makoto Takano
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Ibaraki, Japan
| | - Fumio Takaiwa
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Ibaraki, Japan
| | - Hiromi Kojima
- Department of Otorhinolaryngology, Jikei University School of Medicine, Tokyo, Japan
| | - Saburo Saito
- Division of Molecular Immunology, Research Center for Medical Science, Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
24
|
Maurer-Stroh S, Krutz NL, Kern PS, Gunalan V, Nguyen MN, Limviphuvadh V, Eisenhaber F, Gerberick GF. AllerCatPro-prediction of protein allergenicity potential from the protein sequence. Bioinformatics 2020; 35:3020-3027. [PMID: 30657872 PMCID: PMC6736023 DOI: 10.1093/bioinformatics/btz029] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 12/18/2018] [Accepted: 01/14/2019] [Indexed: 12/22/2022] Open
Abstract
Motivation Due to the risk of inducing an immediate Type I (IgE-mediated) allergic response, proteins intended for use in consumer products must be investigated for their allergenic potential before introduction into the marketplace. The FAO/WHO guidelines for computational assessment of allergenic potential of proteins based on short peptide hits and linear sequence window identity thresholds misclassify many proteins as allergens. Results We developed AllerCatPro which predicts the allergenic potential of proteins based on similarity of their 3D protein structure as well as their amino acid sequence compared with a data set of known protein allergens comprising of 4180 unique allergenic protein sequences derived from the union of the major databases Food Allergy Research and Resource Program, Comprehensive Protein Allergen Resource, WHO/International Union of Immunological Societies, UniProtKB and Allergome. We extended the hexamer hit rule by removing peptides with high probability of random occurrence measured by sequence entropy as well as requiring 3 or more hexamer hits consistent with natural linear epitope patterns in known allergens. This is complemented with a Gluten-like repeat pattern detection. We also switched from a linear sequence window similarity to a B-cell epitope-like 3D surface similarity window which became possible through extensive 3D structure modeling covering the majority (74%) of allergens. In case no structure similarity is found, the decision workflow reverts to the old linear sequence window rule. The overall accuracy of AllerCatPro is 84% compared with other current methods which range from 51 to 73%. Both the FAO/WHO rules and AllerCatPro achieve highest sensitivity but AllerCatPro provides a 37-fold increase in specificity. Availability and implementation https://allercatpro.bii.a-star.edu.sg/ Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Sebastian Maurer-Stroh
- Biomolecular Function Discovery Division, Bioinformatics Institute, Agency for Science, Technology and Research, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore
| | - Nora L Krutz
- The Procter & Gamble Services Company, Strombeek-Bever, Belgium
| | - Petra S Kern
- The Procter & Gamble Services Company, Strombeek-Bever, Belgium
| | - Vithiagaran Gunalan
- Biomolecular Function Discovery Division, Bioinformatics Institute, Agency for Science, Technology and Research, Singapore
| | - Minh N Nguyen
- Biomolecular Function Discovery Division, Bioinformatics Institute, Agency for Science, Technology and Research, Singapore
| | - Vachiranee Limviphuvadh
- Biomolecular Function Discovery Division, Bioinformatics Institute, Agency for Science, Technology and Research, Singapore
| | - Frank Eisenhaber
- Biomolecular Function Discovery Division, Bioinformatics Institute, Agency for Science, Technology and Research, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore
| | | |
Collapse
|
25
|
Larsen JM, Bang-Berthelsen CH, Qvortrup K, Sancho AI, Hansen AH, Andersen KIH, Thacker SSN, Eiwegger T, Upton J, Bøgh KL. Production of allergen-specific immunotherapeutic agents for the treatment of food allergy. Crit Rev Biotechnol 2020; 40:881-894. [PMID: 32515236 DOI: 10.1080/07388551.2020.1772194] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Allergen-specific immunotherapy (IT) is emerging as a viable avenue for the treatment of food allergies. Clinical trials currently investigate raw or slightly processed foods as therapeutic agents, as trials using food-grade agents can be performed without the strict regulations to which conventional drugs are subjected. However, this limits the ability of standardization and may affect clinical trial outcomes and reproducibility. Herein, we provide an overview of methods used in the production of immunotherapeutic agents for the treatment of food allergies, including processed foods, allergen extracts, recombinant allergens, and synthetic peptides, as well as the physical and chemical processes for the reduction of protein allergenicity. Commercial interests currently favor producing standardized drug-grade allergen extracts for therapeutic use, and clinical trials are ongoing. In the near future, recombinant production could replace purification strategies since it allows the manufacturing of pure, native allergens or sequence-modified allergens with reduced allergenicity. A recurring issue within this field is the inadequate reporting of production procedures, quality control, product physicochemical characteristics, allergenicity, and immunological properties. This information is of vital importance in assessing therapeutic standardization and clinical safety profile, which are central parameters for the development of future therapeutic agents.
Collapse
Affiliation(s)
- Jeppe Madura Larsen
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | | | - Katrine Qvortrup
- Department of Chemistry, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Ana Isabel Sancho
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | | | | | | | - Thomas Eiwegger
- Division of Immunology and Allergy, Food Allergy and Anaphylaxis Program, The Department of Pediatrics, The Hospital for Sick Children, Toronto, Canada.,Research Institute, The Hospital for Sick Children, Translational Medicine Program, Toronto, Canada.,Department of Immunology, The University of Toronto, Toronto, Canada
| | - Julia Upton
- Division of Immunology and Allergy, Food Allergy and Anaphylaxis Program, The Department of Pediatrics, The Hospital for Sick Children, Toronto, Canada
| | | |
Collapse
|
26
|
Zahirović A, Luzar J, Molek P, Kruljec N, Lunder M. Bee Venom Immunotherapy: Current Status and Future Directions. Clin Rev Allergy Immunol 2020; 58:326-341. [PMID: 31240545 DOI: 10.1007/s12016-019-08752-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Bee venom immunotherapy is the main treatment option for bee sting allergy. Its major limitations are the high percentage of allergic side effects and long duration, which are driving the development of novel therapeutic modalities. Three general approaches have been evaluated including the use of hypoallergenic allergen derivatives, adjunctive therapy, and alternative delivery routes. This article reviews preclinical and clinical evidence on the therapeutic potential of these new therapies. Among hypoallergenic derivatives, hybrid allergens showed a markedly reduced IgE reactivity in mouse models. Whether they will offer therapeutic benefit over extract, it is still not known since clinical trials have not been carried out yet. T cell epitope peptides have proven effective in small clinical trials. Major histocompatibility complex class II restriction was circumvented by using long overlapping or promiscuous T cell epitope peptides. However, the T cell-mediated late-phase adverse events have been reported with both short and longer peptides. Application of mimotopes could potentially overcome both T cell- and IgE-mediated adverse events. During this evolution of vaccine, there has been a gain in safety. The efficacy was further improved with the use of Toll-like receptor-activating adjuvants and delivery systems. In murine models, the association of allergen Api m 1 with cytosine-guanosine rich oligonucleotides stimulated strong T-helper type-1 response, whereas its encapsulation into microbubbles protected mice against allergen challenge. An intralymphatic administration of low-dose vaccine has shown the potential to decrease treatment from 5 years to only 12 weeks. Bigger clinical trials are needed to follow up on these results.
Collapse
Affiliation(s)
- Abida Zahirović
- Faculty of Pharmacy, Department of Pharmaceutical Biology, University of Ljubljana, Aškerčeva 7, SI-1000, Ljubljana, Slovenia.
| | - Jernej Luzar
- Faculty of Pharmacy, Department of Pharmaceutical Biology, University of Ljubljana, Aškerčeva 7, SI-1000, Ljubljana, Slovenia
| | - Peter Molek
- Faculty of Pharmacy, Department of Pharmaceutical Biology, University of Ljubljana, Aškerčeva 7, SI-1000, Ljubljana, Slovenia
| | - Nika Kruljec
- Faculty of Pharmacy, Department of Pharmaceutical Biology, University of Ljubljana, Aškerčeva 7, SI-1000, Ljubljana, Slovenia
| | - Mojca Lunder
- Faculty of Pharmacy, Department of Pharmaceutical Biology, University of Ljubljana, Aškerčeva 7, SI-1000, Ljubljana, Slovenia
| |
Collapse
|
27
|
Johnson L, Duschl A, Himly M. Nanotechnology-Based Vaccines for Allergen-Specific Immunotherapy: Potentials and Challenges of Conventional and Novel Adjuvants under Research. Vaccines (Basel) 2020; 8:vaccines8020237. [PMID: 32443671 PMCID: PMC7349961 DOI: 10.3390/vaccines8020237] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/16/2020] [Accepted: 05/16/2020] [Indexed: 12/12/2022] Open
Abstract
The increasing prevalence of allergic diseases demands efficient therapeutic strategies for their mitigation. Allergen-specific immunotherapy (AIT) is the only causal rather than symptomatic treatment method available for allergy. Currently, AIT is being administered using immune response modifiers or adjuvants. Adjuvants aid in the induction of a vigorous and long-lasting immune response, thereby improving the efficiency of AIT. The successful development of a novel adjuvant requires a thorough understanding of the conventional and novel adjuvants under development. Thus, this review discusses the potentials and challenges of these adjuvants and their mechanism of action. Vaccine development based on nanoparticles is a promising strategy for AIT, due to their inherent physicochemical properties, along with their ease of production and ability to stimulate innate immunity. Although nanoparticles have provided promising results as an adjuvant for AIT in in vivo studies, a deeper insight into the interaction of nanoparticle-allergen complexes with the immune system is necessary. This review focuses on the methods of harnessing the adjuvant effect of nanoparticles by detailing the molecular mechanisms underlying the immune response, which includes allergen uptake, processing, presentation, and induction of T cell differentiation.
Collapse
|
28
|
Rauber MM, Möbs C, Campana R, Henning R, Schulze‐Dasbeck M, Greene B, Focke‐Tejkl M, Weber M, Valenta R, Pfützner W. Allergen immunotherapy with the hypoallergenic B-cell epitope-based vaccine BM32 modifies IL-10- and IL-5-secreting T cells. Allergy 2020; 75:450-453. [PMID: 31330050 DOI: 10.1111/all.13996] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Michèle Myriam Rauber
- Clinical & Experimental Allergology, Department of Dermatology and Allergology Philipps‐Universität Marburg Marburg Germany
- Experimental Dermatology and Allergy Research Justus‐Liebig‐University Giessen Giessen Germany
| | - Christian Möbs
- Clinical & Experimental Allergology, Department of Dermatology and Allergology Philipps‐Universität Marburg Marburg Germany
| | - Raffaela Campana
- Department of Pathophysiology and Allergy Research Medical University Vienna Vienna Austria
| | | | - Manuel Schulze‐Dasbeck
- Clinical & Experimental Allergology, Department of Dermatology and Allergology Philipps‐Universität Marburg Marburg Germany
| | - Brandon Greene
- Institute of Medical Biometry and Epidemiology Philipps‐Universität Marburg Marburg Germany
| | - Margarete Focke‐Tejkl
- Department of Pathophysiology and Allergy Research Medical University Vienna Vienna Austria
| | - Milena Weber
- Department of Pathophysiology and Allergy Research Medical University Vienna Vienna Austria
| | - Rudolf Valenta
- Department of Pathophysiology and Allergy Research Medical University Vienna Vienna Austria
- NRC Institute of Immunology FMBA of Russia Moscow Russia
- Laboratory of Immunopathology, Department of Clinical Immunology and Allergy Sechenov First Moscow State Medical University Moscow Russia
| | - Wolfgang Pfützner
- Clinical & Experimental Allergology, Department of Dermatology and Allergology Philipps‐Universität Marburg Marburg Germany
| |
Collapse
|
29
|
Komlósi ZI, Kovács N, Sokolowska M, van de Veen W, Akdis M, Akdis CA. Highlights of Novel Vaccination Strategies in Allergen Immunotherapy. Immunol Allergy Clin North Am 2019; 40:15-24. [PMID: 31761116 DOI: 10.1016/j.iac.2019.09.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Increasing safety while maintaining or even augmenting efficiency are the main goals of research for novel vaccine development and improvement of treatment schemes in allergen immunotherapy (AIT). To increase the efficacy of AIT, allergens have been coupled to innate immunostimulatory substances and new adjuvants have been introduced. Allergens have been modified to increase their uptake and presentation. Hypoallergenic molecules have been developed to improve the safety profile of the vaccines. Administration of recombinant IgG4 antibodies is a new, quick, passive immunization strategy with remarkable efficiency. Results of some current investigations aiming at further improvement of AIT vaccines have been summarized.
Collapse
Affiliation(s)
- Zsolt István Komlósi
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Nagyvárad Sqr. 4, Budapest 1089, Hungary.
| | - Nóra Kovács
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Nagyvárad Sqr. 4, Budapest 1089, Hungary; Lung Health Hospital, Munkácsy Mihály Str. 70, Törökbálint 2045, Hungary
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF), Hermann-Burchard Strasse 9, Davos Wolfgang CH7265, Switzerland; Christine Kühne - Center for Allergy Research and Education, Hermann-Burchard Strasse 1, Davos Wolfgang CH7265, Switzerland
| | - Willem van de Veen
- Swiss Institute of Allergy and Asthma Research (SIAF), Hermann-Burchard Strasse 9, Davos Wolfgang CH7265, Switzerland; Christine Kühne - Center for Allergy Research and Education, Hermann-Burchard Strasse 1, Davos Wolfgang CH7265, Switzerland
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), Hermann-Burchard Strasse 9, Davos Wolfgang CH7265, Switzerland; Christine Kühne - Center for Allergy Research and Education, Hermann-Burchard Strasse 1, Davos Wolfgang CH7265, Switzerland
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), Hermann-Burchard Strasse 9, Davos Wolfgang CH7265, Switzerland; Christine Kühne - Center for Allergy Research and Education, Hermann-Burchard Strasse 1, Davos Wolfgang CH7265, Switzerland
| |
Collapse
|
30
|
Calzada D, Cremades-Jimeno L, Pedro MÁD, Baos S, Rial M, Sastre J, Quiralte J, Florido F, Lahoz C, Cárdaba B. Therapeutic potential of peptides from Ole e 1 in olive-pollen allergy. Sci Rep 2019; 9:15942. [PMID: 31685862 PMCID: PMC6828773 DOI: 10.1038/s41598-019-52286-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 10/11/2019] [Indexed: 01/16/2023] Open
Abstract
Olive-pollen allergy is one of the leading causes of respiratory allergy in Mediterranean countries and some areas of North America. Currently, allergen-specific immunotherapy is the only etiophatogenic treatment. However, this approach is not fully optimal, safe, or effective. Thus, efforts continue in the search for novel immunotherapy strategies, being one of the most promising the use of peptides derived from major allergens. This work tries to determine the therapeutic potential and safety of 5 dodecapeptides derived from the main allergen of olive-pollen allergy, Ole e 1. The immunomodulatory capacity of these peptides was studied using peripheral blood mononuclear cells (PBMCs) obtained from 19 olive-pollen-allergic patients and 10 healthy controls. We determined the capacity of these peptides to inhibit the proliferative response toward olive-pollen allergenic extract and to induce the regulatory cytokines, IL-10 and IL-35. To test the safety and absence of allergenicity of the peptides, the basophil activation was analyzed by flow-cytometry, using peripheral blood. The results showed that two of five peptides inhibited near to 30% the proliferative response against the total olive-pollen allergenic extract in olive-pollen-allergic patients. Inhibition increased to nearly 35% when the 5 peptides were used in combination. In both cases, a statistically significant induction of IL-10 and IL-35 secretion was observed in the supernatants of allergic patients PBMCs cultures. None of the 5 peptides induced basophil activation and cross-link inflammatory cell-bound IgE. In conclusion, these results open up new possibilities in the treatment of olive-pollen allergy, which could solve some of the problems facing current therapy approaches.
Collapse
Affiliation(s)
- David Calzada
- Immunology Department, IIS-Fundación Jiménez Díaz, UAM, Madrid, Spain
| | | | | | - Selene Baos
- Immunology Department, IIS-Fundación Jiménez Díaz, UAM, Madrid, Spain
| | - Manuel Rial
- Allergy Department, Fundación Jiménez Díaz, Madrid, Spain.,CIBERES, CIBER of Respiratory Diseases, Madrid, Spain
| | - Joaquín Sastre
- Allergy Department, Fundación Jiménez Díaz, Madrid, Spain.,CIBERES, CIBER of Respiratory Diseases, Madrid, Spain
| | - Joaquín Quiralte
- Allergy Department, Vírgen del Rocío University Hospital, Seville, Spain
| | - Fernando Florido
- Allergy Department, San Cecilio University Hospital, Granada, Spain
| | - Carlos Lahoz
- Immunology Department, IIS-Fundación Jiménez Díaz, UAM, Madrid, Spain.,CIBERES, CIBER of Respiratory Diseases, Madrid, Spain
| | - Blanca Cárdaba
- Immunology Department, IIS-Fundación Jiménez Díaz, UAM, Madrid, Spain. .,CIBERES, CIBER of Respiratory Diseases, Madrid, Spain.
| |
Collapse
|
31
|
Kong Q, Higasijima K, Wakabayashi R, Tahara Y, Kitaoka M, Obayashi H, Hou Y, Kamiya N, Goto M. Transcutaneous Delivery of Immunomodulating Pollen Extract-Galactomannan Conjugate by Solid-in-Oil Nanodispersions for Pollinosis Immunotherapy. Pharmaceutics 2019; 11:E563. [PMID: 31671640 PMCID: PMC6920820 DOI: 10.3390/pharmaceutics11110563] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/24/2019] [Accepted: 10/27/2019] [Indexed: 01/23/2023] Open
Abstract
Japanese cedar pollinosis is a type I allergic disease and has already become a major public health problem in Japan. Conventional subcutaneous immunotherapy (SCIT) and sublingual immunotherapy (SLIT) cannot meet patients' needs owing to the side effects caused by both the use of conventional whole antigen molecules in the pollen extract and the administration routes. To address these issues, a surface-modified antigen and transcutaneous administration route are introduced in this research. First, the pollen extract (PE) was conjugated to galactomannan (PE-GM) to mask immunoglobulin E (IgE)-binding epitopes in the PE to avoid side effects. Second, as a safer alternative to SCIT and SLIT, transcutaneous immunotherapy (TCIT) with a solid-in-oil (S/O) nanodispersion system carrying PE-GM was proposed. Hydrophilic PE-GM was efficiently delivered through mouse skin using S/O nanodispersions, reducing the antibody secretion and modifying the type 1 T helper (Th1)/ type 2 T helper (Th2) balance in the mouse model, thereby demonstrating the potential to alleviate Japanese cedar pollinosis.
Collapse
Affiliation(s)
- Qingliang Kong
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka 819-0395, Japan.
| | - Kouki Higasijima
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka 819-0395, Japan.
| | - Rie Wakabayashi
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka 819-0395, Japan.
| | - Yoshiro Tahara
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka 819-0395, Japan.
| | - Momoko Kitaoka
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka 819-0395, Japan.
| | - Hiroki Obayashi
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka 819-0395, Japan.
| | - Yanting Hou
- School of Pharmacy, Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang 110016, China.
| | - Noriho Kamiya
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka 819-0395, Japan.
- Advanced Transdermal Drug Delivery System Center, Kyushu University, Fukuoka 819-0395, Japan;.
- Center for Future Chemistry, Kyushu University, Fukuoka 819-0395, Japan.
| | - Masahiro Goto
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka 819-0395, Japan.
- Advanced Transdermal Drug Delivery System Center, Kyushu University, Fukuoka 819-0395, Japan;.
- Center for Future Chemistry, Kyushu University, Fukuoka 819-0395, Japan.
| |
Collapse
|
32
|
Volpicella M, Leoni C, Dileo MCG, Ceci LR. Progress in the Analysis of Food Allergens through Molecular Biology Approaches. Cells 2019; 8:E1073. [PMID: 31547388 PMCID: PMC6770348 DOI: 10.3390/cells8091073] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/04/2019] [Accepted: 09/10/2019] [Indexed: 01/29/2023] Open
Abstract
Food allergies associated with class E immunoglobulins (IgE) are a serious health problem that affects between 1% and 10% of the population of developing countries, with a variability that depends on the geographical area and age range considered. These allergies are caused by a cross-link reaction between a specific food protein (the allergen) and the host IgE. Allergic reactions can range from mild itching to anaphylactic shock and there are no clues to predict the effects of an allergen. Strict avoidance of allergenic food is the only way to avoid possible serious allergic reactions. In the last 30 years a growing number of molecular studies have been conducted to obtain information on the diffusion of food allergens and to establish the structural basis of their allergenicity. At the same time, these studies have also allowed the development of molecular tools (mainly based on synthetic peptides and recombinant allergens) that can be of great help for diagnostic and therapeutic approaches of food allergies. Accordingly, this review focuses on advances in the study of food allergens made possible by molecular technologies and how results and technologies can be integrated for the development of a systematic food molecular allergology. The review may be of interest both to scientists approaching this field of investigation and to physicians who wish to have an update on the progress of research in diagnosis and therapy of food allergies.
Collapse
Affiliation(s)
- Mariateresa Volpicella
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via Amendola 165/a, 70126 Bari, Italy.
- Institute of Bioenergetics, Biomembranes and Molecular Biotechnologies, Italian National Research Council, Via Amendola 165/a, 70126 Bari, Italy.
| | - Claudia Leoni
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via Amendola 165/a, 70126 Bari, Italy.
| | - Maria C G Dileo
- Department of Biology, University of Bari, Via Amendola 165/a, 70126 Bari, Italy.
| | - Luigi R Ceci
- Institute of Bioenergetics, Biomembranes and Molecular Biotechnologies, Italian National Research Council, Via Amendola 165/a, 70126 Bari, Italy.
| |
Collapse
|
33
|
Hong J, Xiao X, Gao Q, Li S, Jiang B, Sun X, Ran P, Yang P. Co-delivery of allergen epitope fragments and R848 inhibits food allergy by inducing tolerogenic dendritic cells and regulatory T cells. Int J Nanomedicine 2019; 14:7053-7064. [PMID: 31564865 PMCID: PMC6722440 DOI: 10.2147/ijn.s215415] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 07/29/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Food allergy (FA) is a significant public health problem. The therapeutic efficacy for FA is unsatisfactory currently. The breakdown of intestinal immune tolerance is associated with the pathogenesis of FA. Therefore, it is of great significance to develop novel therapeutic methods to restore immune tolerance in treating FA. METHODS We proposed an oral administration strategy to treat FA by co-delivering food allergen epitope fragment (peptide: IK) and adjuvant R848 (TLR7 ligand) in the mPEG-PDLLA nanoparticles (PPLA-IK/R848 NPs). The generation of tolerogenic dendritic cells (DCs) and regulatory T cells (Tregs) induced by PPLA-IK/R848 NPs were evaluated in vitro and in vivo. The therapeutic effects of PPLA-IK/R848 NPs were also assessed in an OVA-induced FA model. RESULTS PPLA-IK/R848 NPs could efficiently deliver IK to DCs to drive DCs into the tolerogenic phenotypes and promote the differentiation of Tregs in vitro and in vivo, significantly inhibited FA responses through the recovery of intestinal immune tolerance. CONCLUSION Oral administration of PPLA-IK/R848 NPs could efficiently deliver IK and R848 to intestinal DCs and stimulate DCs into allergen tolerogenic phenotype. These tolerogenic DCs could promote the differentiation of Tregs, which significantly protected mice from food allergic responses. This study provided an efficient formulation to alleviate FA through the recovery of immune tolerance.
Collapse
Affiliation(s)
- Jingyi Hong
- Department of Allergy, The Third Affiliated Hospital of Shenzhen University, Shenzhen518020, People’s Republic of China
- Research Center of Allergy & Immunology, Department of Medicine, Shenzhen University, Shenzhen518055, People’s Republic of China
- State Key Laboratory of Respiratory Disease, Department of Allergy and Clinical Immunology, Guangzhou Medical University, Guangzhou510006, People’s Republic of China
| | - Xiaojun Xiao
- Research Center of Allergy & Immunology, Department of Medicine, Shenzhen University, Shenzhen518055, People’s Republic of China
- State Key Laboratory of Respiratory Disease, Department of Allergy and Clinical Immunology, Guangzhou Medical University, Guangzhou510006, People’s Republic of China
| | - Qichan Gao
- Research Center of Allergy & Immunology, Department of Medicine, Shenzhen University, Shenzhen518055, People’s Republic of China
| | - Shanshan Li
- Research Center of Allergy & Immunology, Department of Medicine, Shenzhen University, Shenzhen518055, People’s Republic of China
| | - Bei Jiang
- Research Center of Allergy & Immunology, Department of Medicine, Shenzhen University, Shenzhen518055, People’s Republic of China
| | - Xizhuo Sun
- Department of Allergy, The Third Affiliated Hospital of Shenzhen University, Shenzhen518020, People’s Republic of China
| | - Pixin Ran
- State Key Laboratory of Respiratory Disease, Department of Allergy and Clinical Immunology, Guangzhou Medical University, Guangzhou510006, People’s Republic of China
| | - Pingchang Yang
- Research Center of Allergy & Immunology, Department of Medicine, Shenzhen University, Shenzhen518055, People’s Republic of China
| |
Collapse
|
34
|
Takaishi S, Saito S, Endo T, Asaka D, Wakasa Y, Takagi H, Ozawa K, Takaiwa F, Otori N, Kojima H. T-cell activation by transgenic rice seeds expressing the genetically modified Japanese cedar pollen allergens. Immunology 2019; 158:94-103. [PMID: 31323138 PMCID: PMC6742765 DOI: 10.1111/imm.13097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 06/23/2019] [Accepted: 06/25/2019] [Indexed: 12/31/2022] Open
Abstract
Transgenic rice seeds that contain genetically modified Cry j 1 and Cry j 2, the two major allergens of Cryptomeria japonica (Japanese cedar; JC), have been developed as immunotherapeutic candidates for JC pollinosis. Because the transgenic rice (TG-rice) seeds express allergens containing whole amino acid sequences of Cry j 1 and Cry j 2 in the endosperm tissue (edible part of rice grain), they can potentially target all Cry j 1- and Cry j 2-specific T-cells. However, it was unknown whether antigenicity of Cry j 1 and Cry j 2 could be completely preserved in TG-rice seeds. We verified the antigenicity of TG-rice seeds to T-cells through the analysis of the proliferative responses of T-cells in Cry j 1- or Cry j 2-immunized mice or T-cell lines to TG-rice seed extract. First, four mouse strains were immunized with Cry j 1 or Cry j 2. T-cells in the immunized mice proliferated on treatment with TG-rice seed extract, but not non-transgenic wild-type rice (WT-rice) seed extract. Furthermore, T-cell lines were established from the spleen cells of the immunized mice. Each T-cell line resulted in a proliferative response to TG-rice seed extract, but not to WT-rice seed extract, suggesting that TG-rice seeds certainly express T-cell epitopes corresponding to T-cell lines. Considering the modified amino acid sequences of Cry j 1 and Cry j 2 in TG-rice seeds, the expression of specific T-cell epitopes suggested that TG-rice seeds express all possible T-cell epitope repertoires of Cry j 1 and Cry j 2.
Collapse
Affiliation(s)
- Shinya Takaishi
- Department of Otorhinolaryngology, Jikei University School of Medicine, Tokyo, Japan.,Division of Molecular Immunology, Research Center for Medical Sciences, Jikei University School of Medicine, Tokyo, Japan
| | - Saburo Saito
- Division of Molecular Immunology, Research Center for Medical Sciences, Jikei University School of Medicine, Tokyo, Japan
| | - Tomonori Endo
- Department of Otorhinolaryngology, Jikei University School of Medicine, Tokyo, Japan
| | - Daiya Asaka
- Department of Otorhinolaryngology, Jikei University School of Medicine, Tokyo, Japan
| | - Yuhya Wakasa
- Plant Molecular Farming Unit, Division of Biotechnology, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Ibaraki, Japan
| | - Hidenori Takagi
- Plant Molecular Farming Unit, Division of Biotechnology, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Ibaraki, Japan
| | - Kenjiro Ozawa
- Plant Molecular Farming Unit, Division of Biotechnology, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Ibaraki, Japan
| | - Fumio Takaiwa
- Plant Molecular Farming Unit, Division of Biotechnology, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Ibaraki, Japan
| | - Nobuyoshi Otori
- Department of Otorhinolaryngology, Jikei University School of Medicine, Tokyo, Japan
| | - Hiromi Kojima
- Department of Otorhinolaryngology, Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
35
|
Negahdaripour M, Owji H, Eslami M, Zamani M, Vakili B, Sabetian S, Nezafat N, Ghasemi Y. Selected application of peptide molecules as pharmaceutical agents and in cosmeceuticals. Expert Opin Biol Ther 2019; 19:1275-1287. [PMID: 31382850 DOI: 10.1080/14712598.2019.1652592] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Peptide molecules are being vastly investigated as an emerging class of therapeutic molecules in recent years. Currently, 60 peptides have been approved by the US Food and Drug Administration (FDA), and more would enter the market in near future. Peptides have already opened their ways into cosmeceutical and food industries as well.Areas covered: Antibodies, vaccines, and antimicrobial agents are the major classes of therapeutic peptides. Additionally, peptides may be employed in drug development to support cell penetration or targeting. The interest in antimicrobial peptides is surging due to the increasing risk of antibiotic-resistant pathogens. Peptide vaccines with their significant advantages compared with traditional vaccines, are expected to find their place in coming years, especially for cancer, microbial and allergen-specific immunotherapy. The usage of peptides in cosmeceuticals is also growing rapidly.Expert opinion: Peptide synthesis has become accessible, and advances in peptide engineering, sequencing technologies, and structural bioinformatics have resulted in the rational designing of novel peptides. All these advancements would lead to the more prominent roles of peptides in the mentioned areas. In this review, we discuss applications of peptides in different fields including pharmaceuticals, cosmeceuticals, besides the critical factors in designing efficient peptide molecules.
Collapse
Affiliation(s)
- Manica Negahdaripour
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - Hajar Owji
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - Mahboobeh Eslami
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - Mozhdeh Zamani
- Colorectal Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Bahareh Vakili
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Science, Shiraz, Iran.,Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Soudabeh Sabetian
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - Navid Nezafat
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - Younes Ghasemi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Science, Shiraz, Iran
| |
Collapse
|
36
|
Ebrahimi N, Nezafat N, Esmaeilzadeh H, Ghasemi Y, Nabavizadeh SH, Alyasin S. In silico prediction of B-cell epitopes for twenty-five mite allergens: The therapeutic potentials for immunotherapy. Mol Cell Probes 2019; 46:101408. [DOI: 10.1016/j.mcp.2019.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/13/2019] [Accepted: 05/13/2019] [Indexed: 10/26/2022]
|
37
|
Abstract
PURPOSE OF REVIEW Food allergy is a growing health problem worldwide that impacts millions of individuals. Current treatment options are limited and strict dietary avoidance remains the standard of care. Immunotherapy using whole, native allergens is under active clinical investigation but harbors the risk of severe side effects including anaphylaxis. Newer food-specific therapies with hypoallergenic proteins may potentially offer safer treatment alternatives, and this review seeks to investigate the evidence supporting the use of these modalities. RECENT FINDINGS The utilization of different methods to alter allergen structure and IgE binding leads to reduced allergenicity and decreases the risk for systemic reactions, making the use of potential therapies including extensively heated egg/milk, peptide immunotherapy, recombinant allergen immunotherapy, and DNA vaccines safe and possibly efficacious forms of treatment in food allergy. However, for the majority of these treatment modalities, limited data currently exists looking at the safety and efficacy in human subjects with food allergy. This review provides a comprehensive overview of the current evidence examining the safety and efficacy of hypoallergenic proteins in the treatment of food allergies.
Collapse
Affiliation(s)
- Luanna Yang
- School of Medicine, Department of Pediatrics, University of North Carolina at Chapel Hill, 3330 Thurston Building, CB# 7280, Chapel Hill, NC, 27599-7280, USA.
| | - Mike Kulis
- School of Medicine, Department of Pediatrics, University of North Carolina at Chapel Hill, 3330 Thurston Building, CB# 7280, Chapel Hill, NC, 27599-7280, USA
| |
Collapse
|
38
|
Naydenova K, Velikova T, Dimitrov V. Interactions of allergic rhinitis and bronchial asthma at mucosal immunology level. AIMS ALLERGY AND IMMUNOLOGY 2019. [DOI: 10.3934/allergy.2019.1.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
39
|
Abstract
With the increased global awareness and rise in food allergies, a multifold interest in food allergens is evident. The presence of undeclared food allergens results in expensive food recalls and increased risks of anaphylaxis for the sensitive individuals. Regardless of the allergenic food, the immunogen needs to be identified and detected before making any efforts to inactivate/eliminate it. In type I food allergies, protein immunogen cross-links immunoglobulin E, leading to basophil/mast cell degranulation, resulting in the symptoms that range from mild irritation to anaphylaxis. A portion/part of the protein, known as the epitope, can interact with either antibodies to elicit allergic reactions or T-cell receptors to initiate allergic sensitization. Antibody-recognized epitopes can be either a linear sequence of amino acids (linear epitope) or a three-dimensional motif (conformational epitope), while T-cell-receptor-recognized epitopes are exclusively linear peptides. Identifying and characterizing human-allergy-relevant epitopes are important for allergy diagnosis/prognosis, immunotherapy, and developing food processing methods that can reduce/eliminate immunogencity/immunoreactivity of the allergen.
Collapse
Affiliation(s)
- Changqi Liu
- School of Exercise and Nutritional Sciences, College of Health and Human Services , San Diego State University , 308 ENS Building, 5500 Campanile Drive , San Diego , California 92182-7251 , United States
| | - Shridhar K Sathe
- Department of Nutrition, Food & Exercise Sciences, College of Human Sciences , Florida State University , 402 SAN, 120 Convocation Way , Tallahassee , Florida 32306-1493 , United States
| |
Collapse
|
40
|
Rolland JM, Varese NP, Abramovitch JB, Anania J, Nugraha R, Kamath S, Hazard A, Lopata AL, O'Hehir RE. Effect of Heat Processing on IgE Reactivity and Cross-Reactivity of Tropomyosin and Other Allergens of Asia-Pacific Mollusc Species: Identification of Novel Sydney Rock Oyster Tropomyosin Sac g 1. Mol Nutr Food Res 2018; 62:e1800148. [PMID: 29756679 PMCID: PMC6099307 DOI: 10.1002/mnfr.201800148] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/17/2018] [Indexed: 01/24/2023]
Abstract
SCOPE Shellfish allergy is an increasing global health priority, frequently affecting adults. Molluscs are an important shellfish group causing food allergy but knowledge of their allergens and cross-reactivity is limited. Optimal diagnosis of mollusc allergy enabling accurate advice on food avoidance is difficult. Allergens of four frequently ingested Asia-Pacific molluscs are characterized: Sydney rock oyster (Saccostrea glomerata), blue mussel (Mytilus edulis), saucer scallop (Amusium balloti), and southern calamari (Sepioteuthis australis), examining cross-reactivity between species and with blue swimmer crab tropomyosin, Por p 1. METHODS AND RESULTS IgE ELISA showed that cooking increased IgE reactivity of mollusc extracts and basophil activation confirmed biologically relevant IgE reactivity. Immunoblotting demonstrated strong IgE reactivity of several proteins including one corresponding to heat-stable tropomyosin in all species (37-40 kDa). IgE-reactive Sydney rock oyster proteins were identified by mass spectrometry, and the novel major oyster tropomyosin allergen was cloned, sequenced, and designated Sac g 1 by the IUIS. Oyster extracts showed highest IgE cross-reactivity with other molluscs, while mussel cross-reactivity was weakest. Inhibition immunoblotting demonstrated high cross-reactivity between tropomyosins of mollusc and crustacean species. CONCLUSION These findings inform novel approaches for reliable diagnosis and improved management of mollusc allergy.
Collapse
Affiliation(s)
- Jennifer M. Rolland
- Department of Immunology and PathologyMonash UniversityMelbourneVictoriaAustralia,Department of AllergyClinical Immunology and Respiratory MedicineCentral Clinical SchoolMonash UniversityMelbourneVictoriaAustralia
| | - Nirupama P. Varese
- Department of Immunology and PathologyMonash UniversityMelbourneVictoriaAustralia,Department of AllergyClinical Immunology and Respiratory MedicineCentral Clinical SchoolMonash UniversityMelbourneVictoriaAustralia
| | - Jodie B. Abramovitch
- Department of Immunology and PathologyMonash UniversityMelbourneVictoriaAustralia,Department of AllergyClinical Immunology and Respiratory MedicineCentral Clinical SchoolMonash UniversityMelbourneVictoriaAustralia
| | - Jessica Anania
- Department of Immunology and PathologyMonash UniversityMelbourneVictoriaAustralia,Department of AllergyClinical Immunology and Respiratory MedicineCentral Clinical SchoolMonash UniversityMelbourneVictoriaAustralia
| | - Roni Nugraha
- Centre for Biodiscovery and Molecular Development of TherapeuticsMolecular Allergy Research LaboratoryJames Cook UniversityTownsvilleAustralia,Department of Aquatic Product TechnologyBogor Agricultural UniversityBogorIndonesia
| | - Sandip Kamath
- Centre for Biodiscovery and Molecular Development of TherapeuticsMolecular Allergy Research LaboratoryJames Cook UniversityTownsvilleAustralia
| | - Anita Hazard
- Department of AllergyClinical Immunology and Respiratory MedicineCentral Clinical SchoolMonash UniversityMelbourneVictoriaAustralia
| | - Andreas L. Lopata
- Centre for Biodiscovery and Molecular Development of TherapeuticsMolecular Allergy Research LaboratoryJames Cook UniversityTownsvilleAustralia
| | - Robyn E. O'Hehir
- Department of Immunology and PathologyMonash UniversityMelbourneVictoriaAustralia,Department of AllergyClinical Immunology and Respiratory MedicineCentral Clinical SchoolMonash UniversityMelbourneVictoriaAustralia
| |
Collapse
|
41
|
Lund G, Brand S, Ramos T, Jimeno L, Boissy P, Vega F, Arina M, Christensen LH, Hoof I, Meno KH, Barber D, Blanco C, Würtzen PA, Andersen PS. Strong and frequent T-cell responses to the minor allergen Phl p 12 in Spanish patients IgE-sensitized to Profilins. Allergy 2018; 73:1013-1021. [PMID: 29121407 DOI: 10.1111/all.13351] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2017] [Indexed: 01/17/2023]
Abstract
BACKGROUND Profilins are dominant pan-allergens known to cause cross-sensitization, leading to clinical symptoms such as pollen-food syndrome. This study aimed to determine the T-cell response to Phl p 12 in profilin-sensitized patients, by measuring the prevalence, strength and cross-reactivity to clinically relevant profilins. METHODS The release of Phl p allergens from pollen was determined by mass spectrometry and immunochemistry. T-cell responses, epitope mapping and cross-reactivity to profilins (Phl p 12, Ole e 2, Bet v 2 and Mal d 4) were measured in vitro using PBMCs from 26 Spanish grass-allergic donors IgE-sensitized to profilin. Cross-reactivity was addressed in vivo using 2 different mouse strains (BALB/c and C3H). RESULTS Phl p 12 and Phl p 1 are released from pollen simultaneously and in similar amounts. Both T-cell response frequency (17/26 donors) and strength were comparable between Phl p 12 and Phl p 1. T-cell cross-reactivity to other profilins correlated with overall sequence homology, and 2 immunodominant epitope regions of Phl p 12 were identified. Data from mice immunized with Phl p 12 showed that cross-reactivity to Bet v 2 was mediated by conserved epitopes and further influenced by additional genetic factors, likely to be MHC II. CONCLUSION The strength, prevalence and cross-reactivity of T-cell responses towards Phl p 12 are comparable to the major allergen Phl p 1, which supports the hypothesis that T cells to Phl p 12 can play an important role in development of allergic symptoms, such as those associated with pollen-food syndrome.
Collapse
Affiliation(s)
- G. Lund
- Global Research; ALK-Abelló; Hørsholm Denmark
| | - S. Brand
- Global Research; ALK-Abelló; Hørsholm Denmark
| | - T. Ramos
- Servicio de Alergia; Hospital Universitario de La Princesa; Instituto de Investigación Sanitaria Princesa (IP); Madrid Spain
| | - L. Jimeno
- Global Research; ALK-Abelló; Madrid Spain
| | - P. Boissy
- Global Research; ALK-Abelló; Madrid Spain
| | - F. Vega
- Servicio de Alergia; Hospital Universitario de La Princesa; Instituto de Investigación Sanitaria Princesa (IP); Madrid Spain
| | - M. Arina
- Global Research; ALK-Abelló; Madrid Spain
| | | | - I. Hoof
- Global Research; ALK-Abelló; Hørsholm Denmark
| | - K. H. Meno
- Global Research; ALK-Abelló; Hørsholm Denmark
| | - D. Barber
- IMMA School of Medicine; Universidad CEU San Pablo; Madrid Spain
| | - C. Blanco
- Servicio de Alergia; Hospital Universitario de La Princesa; Instituto de Investigación Sanitaria Princesa (IP); Madrid Spain
| | | | | |
Collapse
|
42
|
Abstract
PURPOSE OF REVIEW During the past few decades, modified allergens have been developed for use in allergen-specific immunotherapy (AIT) with the aim to improve efficacy and reduce adverse effects. This review aims to provide an overview of the different types of modified allergens, their mechanism of action and their potential for improving AIT. RECENT FINDINGS In-depth research in the field of allergen modifications as well as the advance of recombinant DNA technology have paved the way for improved diagnosis and research on human allergic diseases. A wide range of structurally modified allergens has been generated including allergen peptides, chemically altered allergoids, adjuvant-coupled allergens, and nanoparticle-based allergy vaccines. These modified allergens show promise for the development of AIT regimens with improved safety and long-term efficacy. Certain modifications ensure reduced IgE reactivity and retained T cell reactivity, which facilities induction of immune tolerance to the allergen. To date, multiple clinical trials have been performed using modified allergens. Promising results were obtained for the modified cat, grass and birch pollen, and house dust mite allergens. The use of modified allergens holds promise for improving AIT efficacy and safety. There is however a need for larger clinical studies to reliably assess the added benefit for the patient of using modified allergens for AIT.
Collapse
|
43
|
D'Auria E, Mameli C, Piras C, Cococcioni L, Urbani A, Zuccotti GV, Roncada P. Precision medicine in cow's milk allergy: proteomics perspectives from allergens to patients. J Proteomics 2018; 188:173-180. [PMID: 29408543 DOI: 10.1016/j.jprot.2018.01.018] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/20/2018] [Accepted: 01/30/2018] [Indexed: 02/07/2023]
Abstract
Cow's milk allergy (CMA) is one of the most common food allergies, especially during childhood. CMA is an immunological mediated adverse reaction to one or more cow's milk proteins, which are normally harmless to a non-allergic individual, as the result of a failure of oral tolerance. To make a correct diagnosis of CMA and a proper treatment is critical in clinical practice. Application of proteomics along with new bio-informatics tools in the field of food allergy is one of the hot topics presented in recent years. In the present review, we focus on recent applications of proteomics to the field of cow's milk allergy, from allergens quantification to the diagnosis, treatment and prognosis. Furthermore, we also shed a light on potential future directions and developments, that are parts of personalized medicine but also of the One Health approach. SIGNIFICANCE The field of food allergies is becoming a milestone in public health. Food allergies, in fact, can cause life-threatening reactions and profoundly influence the quality of life. Precise, fast and reliable diagnosis of food allergies, and in particular milk allergies is essential to avoid severe allergic reactions and also to prevent dangerous and eventually unnecessary dietary restrictions; but this can be difficult also due to a complex interaction of genetic background, environment, and microbiota. In this sense, proteomics represents steps toward researching food and milk allergy integrated with the clinic to improve pathophysiology, diagnosis, therapy, and prognosis.
Collapse
Affiliation(s)
- Enza D'Auria
- Department of Pediatrics, Ospedale dei Bambini V. Buzzi, Università degli Studi di Milano, Milano, Italy
| | - Chiara Mameli
- Department of Pediatrics, Ospedale dei Bambini V. Buzzi, Università degli Studi di Milano, Milano, Italy
| | - Cristian Piras
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, 20133 Milano, Italy
| | - Lucia Cococcioni
- Department of Pediatrics, Ospedale dei Bambini V. Buzzi, Università degli Studi di Milano, Milano, Italy
| | - Andrea Urbani
- Università Cattolica del Sacro Cuore, Policlinico Gemelli, Roma, Italy; Fondazione Santa Lucia, Roma, Italy
| | - Gian Vincenzo Zuccotti
- Department of Pediatrics, Ospedale dei Bambini V. Buzzi, Università degli Studi di Milano, Milano, Italy
| | - Paola Roncada
- Istituto Sperimentale Italiano Lazzaro Spallanzani, 20133 Milano, Italy.
| |
Collapse
|
44
|
Cook QS, Burks AW. Peptide and Recombinant Allergen Vaccines for Food Allergy. Clin Rev Allergy Immunol 2018; 55:162-171. [DOI: 10.1007/s12016-018-8673-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
45
|
The role of regulatory T cells and genes involved in their differentiation in pathogenesis of selected inflammatory and neoplastic skin diseases. Part II: The Treg role in skin diseases pathogenesis. Postepy Dermatol Alergol 2017; 34:405-417. [PMID: 29507554 PMCID: PMC5835974 DOI: 10.5114/ada.2017.71105] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 01/10/2017] [Indexed: 12/22/2022] Open
Abstract
Regulatory FOXP3+ T cells (Tregs) constitute 5% to 10% of T cells in the normal human skin. They play an important role in the induction and maintenance of immunological tolerance. The suppressive effects of these cells are exerted by various mechanisms including the direct cytotoxic effect, anti-inflammatory cytokines, metabolic disruption, and modulation of the dendritic cells function. The deficiency of Treg cells number or function are one of the basic elements of the pathogenesis of many skin diseases, such as psoriasis, atopic dermatitis, bacterial and viral infections. They also play a role in the pathogenesis of T cell lymphomas of the skin (cutaneous T cell lymphomas - CTCL), skin tumors and mastocytosis. Here, in the second part of the cycle, we describe dysfunctions of Tregs in selected skin diseases.
Collapse
|
46
|
Lozano-Ojalvo D, López-Fandiño R. Immunomodulating peptides for food allergy prevention and treatment. Crit Rev Food Sci Nutr 2017; 58:1629-1649. [PMID: 28102702 DOI: 10.1080/10408398.2016.1275519] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Among the most promising strategies currently assayed against IgE-mediated allergic diseases stands the possibility of using immunomodulating peptides to induce oral tolerance toward offending food allergens or even to prevent allergic sensitization. This review focuses on the beneficial effects of food derived immunomodulating peptides on food allergy, which can be directly exerted in the intestinal tract or once being absorbed through the intestinal epithelial barrier to interact with immune cells. Food peptides influence intestinal homeostasis by maintaining and reinforcing barrier function or affecting intestinal cell-signalling to nearby immune cells and mucus secretion. In addition, they can stimulate cells of the innate and adaptive immune system while supressing inflammatory responses. Peptides represent an attractive alternative to whole allergens to enhance the safety and efficacy of immunotherapy treatments. The conclusions drawn from curative and preventive experiments in murine models are promising, although there is a need for more pre-clinical studies to further explore the immunomodulating strategy and its mechanisms and for a deeper knowledge of the peptide sequence and structural requirements that determine the immunoregulatory function.
Collapse
Affiliation(s)
- Daniel Lozano-Ojalvo
- a Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM) , Madrid , Spain
| | - Rosina López-Fandiño
- a Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM) , Madrid , Spain
| |
Collapse
|
47
|
Coppieters K, von Herrath M. Antigen-Specific Peptide Immunotherapy for Type 1 Diabetes: Proof of Safety, Hope for Efficacy. Cell Metab 2017; 26:595-597. [PMID: 28978425 DOI: 10.1016/j.cmet.2017.09.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Antigen-specific immunotherapy has long been hailed as the ideal disease-modifying approach for type 1 diabetes, both for disease prevention and reversal. A small phase 1 trial now demonstrates safety of a peptide-based treatment in recently diagnosed adults.
Collapse
Affiliation(s)
- Ken Coppieters
- Global Research Project Management, Novo Nordisk A/S, Måløv, Denmark
| | - Matthias von Herrath
- Type 1 Diabetes Research Center, Novo Nordisk, Seattle, WA, USA; Type 1 Diabetes Center, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92014, USA.
| |
Collapse
|
48
|
|
49
|
Lozano-Ojalvo D, Pérez-Rodríguez L, Pablos-Tanarro A, Molina E, López-Fandiño R. Hydrolysed ovalbumin offers more effective preventive and therapeutic protection against egg allergy than the intact protein. Clin Exp Allergy 2017; 47:1342-1354. [DOI: 10.1111/cea.12989] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 07/18/2017] [Accepted: 07/24/2017] [Indexed: 12/31/2022]
Affiliation(s)
- D. Lozano-Ojalvo
- Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM); Madrid Spain
| | - L. Pérez-Rodríguez
- Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM); Madrid Spain
| | - A. Pablos-Tanarro
- Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM); Madrid Spain
| | - E. Molina
- Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM); Madrid Spain
| | - R. López-Fandiño
- Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM); Madrid Spain
| |
Collapse
|
50
|
Smole U, Schabussova I, Pickl WF, Wiedermann U. Murine models for mucosal tolerance in allergy. Semin Immunol 2017; 30:12-27. [PMID: 28807539 DOI: 10.1016/j.smim.2017.07.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 07/21/2017] [Indexed: 02/07/2023]
Abstract
Immunity is established by a fine balance to discriminate between self and non-self. In addition, mucosal surfaces have the unique ability to establish and maintain a state of tolerance also against non-self constituents such as those represented by the large numbers of commensals populating mucosal surfaces and food-derived or air-borne antigens. Recent years have seen a dramatic expansion in our understanding of the basic mechanisms and the involved cellular and molecular players orchestrating mucosal tolerance. As a direct outgrowth, promising prophylactic and therapeutic models for mucosal tolerance induction against usually innocuous antigens (derived from food and aeroallergen sources) have been developed. A major theme in the past years was the introduction of improved formulations and novel adjuvants into such allergy vaccines. This review article describes basic mechanisms of mucosal tolerance induction and contrasts the peculiarities but also the interdependence of the gut and respiratory tract associated lymphoid tissues in that context. Particular emphasis is put on delineating the current prophylactic and therapeutic strategies to study and improve mucosal tolerance induction in allergy.
Collapse
Affiliation(s)
- Ursula Smole
- Institute of Immunology, Center for Pathophysiology, Infectiology, and Immunology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Irma Schabussova
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Winfried F Pickl
- Institute of Immunology, Center for Pathophysiology, Infectiology, and Immunology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.
| | - Ursula Wiedermann
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|