1
|
Toppila‐Salmi S, Reitsma S, Hox V, Gane S, Eguiluz‐Gracia I, Shamji M, Maza‐Solano J, Jääskeläinen B, Väärä R, Escribese MM, Chaker A, Karavelia A, Rudenko M, Gevaert P, Klimek L. Endotyping in Chronic Rhinosinusitis-An EAACI Task Force Report. Allergy 2025; 80:132-147. [PMID: 39641584 PMCID: PMC11724251 DOI: 10.1111/all.16418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 11/12/2024] [Accepted: 11/18/2024] [Indexed: 12/07/2024]
Abstract
Chronic rhinosinusitis (CRS) is a clinical syndrome defined by typical sinonasal symptoms persisting for at least 12 weeks. CRS is divided into two distinct phenotypes, CRS with nasal polyps (CRSwNP) and without (CRSsNP). The aim of the review is to provide an update on the current knowledge in CRS endotypes. The prevailing hypothesis regarding the pathogenesis of CRS suggests that dysfunctional interactions between the host and environmental stressors at the mucosal surface drive the diverse inflammatory mechanisms. Genetic and epigenetic variations in the mucosal immune system are believed to play a significant role in the pathomechanisms of CRS. Various environmental agents (such as microbes and irritants) have been implicated in CRS. In a healthy state, the sinonasal mucosa acts as a barrier, modulating environmental stimulation and mounting appropriate immune responses against pathogens with minimal tissue damage. Different endotypes may exist based on the specific mechanistic pathways driving the chronic tissue inflammation of CRS. There is a need to understand endotypes in order to better predict, diagnose, and treat CRS. This literature review provides an update on the role of the endotypes in CRS and the limitations of endotyping CRS in clinical practice. Understanding of the pathogenesis and optimal management of CRS has progressed significantly in the last decades; however, there still are several unmet needs in endotype research.
Collapse
Affiliation(s)
- Sanna Toppila‐Salmi
- Department of OtorhinolaryngologyUniversity of Eastern FinlandKuopioFinland
- Department of OtorhinolaryngologyWellbeing Services County of Pohjois‐SavoKuopioFinland
- Inflammation Center, Department of AllergologyHelsinki University Hospital and University of HelsinkiHelsinkiFinland
| | - Sietze Reitsma
- Department of Otorhinolaryngology/Head‐Neck SurgeryAmsterdam University Medical Center, University of AmsterdamAmsterdamThe Netherlands
| | - Valérie Hox
- Department of Otorhinolaryngology, Head and Neck SurgeryCliniques Universitaires Saint‐LucBrusselsBelgium
| | - Simon Gane
- Royal National Ear, Nose and Throat and Eastman Dental HospitalUniversity College London Hospitals NHS TrustLondonUK
| | - Ibon Eguiluz‐Gracia
- Allergy UnitHospital Regional Universitario de Malaga. IBIMA‐Plataforma BIONAND. RICORS Enfermedades InflamatoriasMalagaSpain
| | - Mohamed Shamji
- National Heart and Lung InstituteImperial College LondonLondonUK
| | - Juan Maza‐Solano
- Rhinology and Skull Base Unit, Department of OtolaryngologyUniversity Hospital Virgen MacarenaSevilleSpain
- Department of SurgeryUniversity of SevilleSevilleSpain
| | | | - Risto Väärä
- Department of OtorhinolaryngologyUniversity of Eastern FinlandKuopioFinland
| | - Maria M. Escribese
- Institute of Applied Molecular Medicine Instituto de Medicina Molecular Aplicada Nemesio Díez (IMMA), Department of Basic Medical Sciences, Facultad de MedicinaUniversidad San Pablo‐CEU, CEU UniversitiesMadridSpain
| | - Adam Chaker
- Department of Otorhinolaryngology and Center for Allergy and EnvironmentTechnische Universität MünchenMünchenGermany
| | - Aspasia Karavelia
- Department of OtorhinolaryngologyGeneral Hospital of NafplioNafplioGreece
| | | | - Philippe Gevaert
- Upper Airways Research Laboratory, Department of Head and SkinGhent UniversityGhentBelgium
| | - Ludger Klimek
- Center for Rhinology and AllergologyWiesbadenGermany
| |
Collapse
|
2
|
Qiu H, Liu J, Wu Q, Ong H, Zhang Y, Huang X, Yuan T, Zheng R, Deng H, Wang W, Kong W, Wang X, Wang D, Yang Q. An in vitro study of the impact of IL-17A and IL-22 on ciliogenesis in nasal polyps epithelium via the Hippo-YAP pathway. J Allergy Clin Immunol 2024; 154:1180-1194. [PMID: 39033934 DOI: 10.1016/j.jaci.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 07/01/2024] [Accepted: 07/08/2024] [Indexed: 07/23/2024]
Abstract
BACKGROUND Cilia loss and impaired motile ciliary functions are among the typical pathological features of chronic rhinosinusitis with nasal polyps (CRSwNP). IL17A and IL22 are the canonical cytokines of type 3 inflammation, exhibiting similar functional effects on epithelial cells. In this study, we sought to examine the effects of IL17A and IL22 on ciliated cells and investigate the potential involvement of Hippo-YAP signaling in their influence on ciliogenesis. METHODS We assessed both the mRNA and protein expression levels of IL17A and IL22 in nasal tissues obtained from patients with CRSwNP and compared them to those from healthy controls. To further explore the impact of IL17A and IL22, we established a primary human nasal epithelial cell model using different concentrations (2 ng/mL, 10 ng/mL, 50 ng/mL) for a duration of 28 days in an air-liquid interface culture. Additionally, we employed the inhibitor verteporfin to investigate whether IL17A and IL22 exert their effects on ciliated cells via the Hippo-YAP pathway. RESULTS The mRNA and protein levels of IL17A and IL22 in CRSwNP were significantly higher than those in healthy controls, revealing a robust correlation between IL17A and IL22. YAP was highly expressed in the nucleus of ciliated cells in CRSwNP and displayed a positive correlation with clinical symptoms. Both IL17A and IL22 were found to reduce the number of ciliated cells. IL17A, but not IL22, suppressed ciliogenesis by disrupting the proper development and docking of the basal body of ciliated cells, resulting in motile ciliary dysfunctions. Furthermore, the expression of YAP within the nucleus of ciliated cells gradually declined as these cells reached the final stage of differentiation. However, this process was obstructed by IL17A only. YAP inhibitors, such as verteporfin, markedly reversed the effects of IL17A by increasing the proportion of ciliated cells, suppressing nuclear YAP expression in these cells, and enhancing ciliary beating frequency. CONCLUSIONS Both IL17A and IL22 are overexpressed in nasal epithelium of CRSwNP, which is associated with the impairment of epithelial cell differentiation. Furthermore, IL17A has been shown to exert a disruptive effect on morphogenesis of motile cilia via activation of YAP.
Collapse
Affiliation(s)
- Huijun Qiu
- Department of Otorhinolaryngology-Head and Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Allergy, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jing Liu
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Qingwu Wu
- Department of Otorhinolaryngology-Head and Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Allergy, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hsiaohui Ong
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Yana Zhang
- Department of Otorhinolaryngology-Head and Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Allergy, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xuekun Huang
- Department of Otorhinolaryngology-Head and Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Allergy, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tian Yuan
- Department of Otorhinolaryngology-Head and Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Allergy, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Rui Zheng
- Department of Otorhinolaryngology-Head and Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Allergy, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Huiyi Deng
- Department of Otorhinolaryngology-Head and Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Allergy, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Weihao Wang
- Department of Otorhinolaryngology-Head and Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Allergy, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Weifeng Kong
- Department of Otorhinolaryngology-Head and Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Allergy, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xinyue Wang
- Department of Otorhinolaryngology-Head and Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Allergy, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Deyun Wang
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| | - Qintai Yang
- Department of Otorhinolaryngology-Head and Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Allergy, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
3
|
Yang X, Liang H, Tang Y, Dong R, Liu Q, Pang W, Su L, Gu X, Liu M, Wu Q, Xue X, Zhan J. Soybean Extract Ameliorates Lung Injury induced by Uranium Inhalation: An integrated strategy of network pharmacology, metabolomics, and transcriptomics. Biomed Pharmacother 2024; 180:117451. [PMID: 39326101 DOI: 10.1016/j.biopha.2024.117451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/27/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024] Open
Abstract
AIM This study aimed to evaluate the protective effect of soybean extract (SE) against uranium-induced lung injury in rats. MATERIALS AND METHODS A rat lung injury model was established through nebulized inhalation of uranyl nitrate. Pretreatment with SE or sterile water (control group) by gavage for seven days before uranium exposure and until the experiment endpoints. The levels of uranium in lung tissues were detected by ICP-MS. Paraffin embedding-based hematoxylin & eosin staining and Masson's staining for the lung tissue were performed to observe the histopathological imaging features. A public database was utilized to analyze the network pharmacological association between SE and lung injury. The expression levels of proteins indicating fibrosis were measured by enzyme-linked immunosorbent assay. RNA-seq transcriptomic and LC-MS/MS targeted metabolomics were conducted in lung tissues. RESULTS Uranium levels in the lung tissues were lower in SE-pretreated rats than in the uranium-treated group. Inflammatory cell infiltration and the deposition of extracellular matrix were attenuated, and the levels of alpha-smooth muscle actin, transforming growth factor beta1, and hydroxyproline decreased in SE-pretreated rats compared to the uranium-treated group. Active ingredients of SE were related to inflammation, oxidative stress, and drug metabolism. A total of 67 differentially expressed genes and 39 differential metabolites were identified in the SE-pretreated group compared to the uranium-treated group, focusing on the drug metabolism-cytochrome P450, glutathione metabolism, IL-17 signaling pathway, complement, and coagulation cascades. CONCLUSIONS These findings suggest that SE may ameliorate uranium-induced pulmonary inflammation and fibrosis by regulating glutathione metabolism, chronic inflammation, and immune regulation.
Collapse
Affiliation(s)
- Xin Yang
- Division of Radiology and Environmental Medicine, China Institute for Radiation Protection, Taiyuan 030006, China
| | - Hongying Liang
- Division of Radiology and Environmental Medicine, China Institute for Radiation Protection, Taiyuan 030006, China
| | - Yufu Tang
- Division of Radiology and Environmental Medicine, China Institute for Radiation Protection, Taiyuan 030006, China
| | - Ruifeng Dong
- Division of Radiology and Environmental Medicine, China Institute for Radiation Protection, Taiyuan 030006, China
| | - Qimiao Liu
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
| | - Wanqing Pang
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
| | - Lixia Su
- Division of Radiology and Environmental Medicine, China Institute for Radiation Protection, Taiyuan 030006, China
| | - Xiaona Gu
- Division of Radiology and Environmental Medicine, China Institute for Radiation Protection, Taiyuan 030006, China
| | - Mengya Liu
- Division of Radiology and Environmental Medicine, China Institute for Radiation Protection, Taiyuan 030006, China
| | - Qingdong Wu
- Division of Radiology and Environmental Medicine, China Institute for Radiation Protection, Taiyuan 030006, China
| | - Xiangming Xue
- Division of Radiology and Environmental Medicine, China Institute for Radiation Protection, Taiyuan 030006, China.
| | - Jingming Zhan
- Division of Radiology and Environmental Medicine, China Institute for Radiation Protection, Taiyuan 030006, China.
| |
Collapse
|
4
|
Fieux M, Carsuzaa F, Bellanger Y, Bartier S, Fournier V, Lecron JC, Bainaud M, Louis B, Tringali S, Dufour X, Coste A, Favot L, Bequignon E. Dupilumab prevents nasal epithelial function alteration by IL-4 in vitro: Evidence for its efficacy. Int Forum Allergy Rhinol 2024; 14:1337-1349. [PMID: 38465788 DOI: 10.1002/alr.23343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/05/2024] [Accepted: 02/22/2024] [Indexed: 03/12/2024]
Abstract
BACKGROUND Chronic rhinosinusitis with nasal polyp (CRSwNP) is a typical type 2 inflammation involving interleukin (IL)-4 and IL-13. Dupilumab is a fully human monoclonal antibody targeting IL-4 receptor α subunit, thereby blocking signaling by both cytokines. Our hypothesis was that IL-4 and IL-13, by inducing a severe epithelial dysregulation, are involved in CRSwNP pathogenesis. This study aimed to evaluate the in vitro direct effect of IL-4, IL-13, and dupilumab on nasal epithelial functions. METHODS Nasal polyps and control mucosa from 28 patients, as well as human nasal epithelial cells (HNEC) from 35 patients with CRSwNP were used. Three major epithelial functions were investigated: the epithelial barrier function (characterized by transepithelial electrical resistance measurements and tight junction protein expression), the ciliary motion (characterized by the ciliary beating efficiency index), and wound healing (characterized by the wound repair rate) under various stimulations (IL-4, IL-13, and dupilumab). The main outcome was a significant change in epithelial functions following exposure to IL-4, IL-13, and dupilumab for 48 h in the basal media. RESULTS IL-4 (1, 10, and 100 ng/mL) but not IL-13 induced a significant decrease in occludin and zonula-occludens protein expression, ciliary beating efficiency, and wound repair rate in HNEC. Dupilumab (0.04 mg/mL) had no effect on HNEC and specifically restored all epithelial functions altered when cells were exposed to a 48-h IL-4 stimulation. CONCLUSION Dupilumab, in vitro, restored epithelial integrity by counteracting the effect of IL-4 on the epithelial barrier (increased epithelial permeability, decreased ciliary beating efficiency, and decreased wound repair rate).
Collapse
Affiliation(s)
- Maxime Fieux
- Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Service d'ORL, d'Otoneurochirurgie et de Chirurgie Cervico-Faciale, Pierre Bénite, France
- Faculté de Médecine et de Maïeutique Lyon Sud-Charles Mérieux, Université de Lyon, Université Lyon 1, Lyon, France
- CNRS EMR 7000, Créteil, France
- INSERM, IMRB, Univ Paris Est Créteil, Créteil, France
| | - Florent Carsuzaa
- Laboratoire Inflammation Tissus Epithéliaux et Cytokines, UR15560, Université de Poitiers, Poitiers, France
- Service ORL, Chirurgie Cervico-Maxillo-Faciale et Audiophonologie, Centre Hospitalier Universitaire de Poitiers, Poitiers, France
| | - Yvan Bellanger
- CNRS EMR 7000, Créteil, France
- INSERM, IMRB, Univ Paris Est Créteil, Créteil, France
- Centre Hospitalier Intercommunal de Créteil, Service d'Oto-Rhino-Laryngologie et de Chirurgie Cervico-Faciale, Créteil, France
| | - Sophie Bartier
- CNRS EMR 7000, Créteil, France
- INSERM, IMRB, Univ Paris Est Créteil, Créteil, France
- Centre Hospitalier Intercommunal de Créteil, Service d'Oto-Rhino-Laryngologie et de Chirurgie Cervico-Faciale, Créteil, France
- Service d'ORL, de Chirurgie Cervico Faciale, Hôpital Henri-Mondor, Assistance Publique des Hôpitaux de Paris, Créteil, France
| | - Virginie Fournier
- CNRS EMR 7000, Créteil, France
- INSERM, IMRB, Univ Paris Est Créteil, Créteil, France
| | - Jean Claude Lecron
- Laboratoire Inflammation Tissus Epithéliaux et Cytokines, UR15560, Université de Poitiers, Poitiers, France
- Service Immunologie et Inflammation, Centre Hospitalier Universitaire de Poitiers, Poitiers, France
| | - Matthieu Bainaud
- Laboratoire Inflammation Tissus Epithéliaux et Cytokines, UR15560, Université de Poitiers, Poitiers, France
- Service Immunologie et Inflammation, Centre Hospitalier Universitaire de Poitiers, Poitiers, France
| | - Bruno Louis
- CNRS EMR 7000, Créteil, France
- INSERM, IMRB, Univ Paris Est Créteil, Créteil, France
| | - Stéphane Tringali
- Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Service d'ORL, d'Otoneurochirurgie et de Chirurgie Cervico-Faciale, Pierre Bénite, France
- Faculté de Médecine et de Maïeutique Lyon Sud-Charles Mérieux, Université de Lyon, Université Lyon 1, Lyon, France
- UMR 5305, Laboratoire de Biologie Tissulaire et d'Ingénierie Thérapeutique, Institut de Biologie et Chimie des Protéines, CNRS, Université Claude Bernard Lyon 1, Lyon, France
| | - Xavier Dufour
- Laboratoire Inflammation Tissus Epithéliaux et Cytokines, UR15560, Université de Poitiers, Poitiers, France
- Service ORL, Chirurgie Cervico-Maxillo-Faciale et Audiophonologie, Centre Hospitalier Universitaire de Poitiers, Poitiers, France
| | - André Coste
- CNRS EMR 7000, Créteil, France
- INSERM, IMRB, Univ Paris Est Créteil, Créteil, France
- Centre Hospitalier Intercommunal de Créteil, Service d'Oto-Rhino-Laryngologie et de Chirurgie Cervico-Faciale, Créteil, France
| | - Laure Favot
- Laboratoire Inflammation Tissus Epithéliaux et Cytokines, UR15560, Université de Poitiers, Poitiers, France
| | - Emilie Bequignon
- CNRS EMR 7000, Créteil, France
- INSERM, IMRB, Univ Paris Est Créteil, Créteil, France
- Centre Hospitalier Intercommunal de Créteil, Service d'Oto-Rhino-Laryngologie et de Chirurgie Cervico-Faciale, Créteil, France
| |
Collapse
|
5
|
AlBloushi S, Al-Ahmad M. Exploring the immunopathology of type 2 inflammatory airway diseases. Front Immunol 2024; 15:1285598. [PMID: 38680486 PMCID: PMC11045947 DOI: 10.3389/fimmu.2024.1285598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 03/22/2024] [Indexed: 05/01/2024] Open
Abstract
Significant advancements have been achieved in understanding the roles of different immune cells, as well as cytokines and chemokines, in the pathogenesis of eosinophilic airway conditions. This review examines the pathogenesis of Chronic Rhinosinusitis with Nasal Polyps (CRSwNP), marked by complex immune dysregulation, with major contributions from type 2 inflammation and dysfunctional airway epithelium. The presence of eosinophils and the role of T-cell subsets, particularly an imbalance between Treg and Th17 cells, are crucial to the disease's pathogenesis. The review also investigates the pathogenesis of eosinophilic asthma, a unique asthma subtype. It is characterized by inflammation and high eosinophil levels, with eosinophils playing a pivotal role in triggering type 2 inflammation. The immune response involves Th2 cells, eosinophils, and IgE, among others, all activated by genetic and environmental factors. The intricate interplay among these elements, chemokines, and innate lymphoid cells results in airway inflammation and hyper-responsiveness, contributing to the pathogenesis of eosinophilic asthma. Another scope of this review is the pathogenesis of Eosinophilic Granulomatosis with Polyangiitis (EGPA); a complex inflammatory disease that commonly affects the respiratory tract and small to medium-sized blood vessels. It is characterized by elevated eosinophil levels in blood and tissues. The pathogenesis involves the activation of adaptive immune responses by antigens leading to T and B cell activation and eosinophil stimulation, which causes tissue and vessel damage. On the other hand, Allergic Bronchopulmonary Aspergillosis (ABPA) is a hypersensitive response that occurs when the airways become colonized by aspergillus fungus, with the pathogenesis involving activation of Th2 immune responses, production of IgE antibodies, and eosinophilic action leading to bronchial inflammation and subsequent lung damage. This analysis scrutinizes how an imbalanced immune system contributes to these eosinophilic diseases. The understanding derived from this assessment can steer researchers toward designing new potential therapeutic targets for efficient control of these disorders.
Collapse
Affiliation(s)
| | - Mona Al-Ahmad
- Al-Rashed Allergy Center, Ministry of Health, Kuwait City, Kuwait
- Microbiology Department, College of Medicine, Kuwait University, Kuwait City, Kuwait
| |
Collapse
|
6
|
Zhang J, Fan W, Wu H, Yao Y, Jin L, Chen R, Xu Z, Su W, Wang Y, Li P. Naringenin attenuated airway cilia structural and functional injury induced by cigarette smoke extract via IL-17 and cAMP pathways. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 126:155053. [PMID: 38359483 DOI: 10.1016/j.phymed.2023.155053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/07/2023] [Accepted: 08/24/2023] [Indexed: 02/17/2024]
Abstract
BACKGROUND Cigarette smoke impairs mucociliary clearance via mechanisms such as inflammatory response and oxidative injury, which in turn induces various respiratory diseases. Naringenin, a naturally occurring flavonoid in grapes and grapefruit, has exhibited pharmacological properties such as anti-inflammatory, expectorant, and antioxidant properties. However, it is still unclear whether naringenin protects airway cilia from injury caused by cigarette smoke. PURPOSE This study aimed to investigate the effect of naringenin on cigarette smoke extract (CSE)-induced structural and functional abnormalities in airway cilia and highlight the potential regulatory mechanism. METHODS Initially, network pharmacology was used to predict the mechanism of action of naringenin in ciliary disease. Next, HE staining, immunofluorescence, TEM, qRT-PCR, western blot, and ELISA were performed to assess the effects of naringenin on airway cilia in tracheal rings and air-liquid interface (ALI) cultures of Sprague Dawley rats after co-exposure to CSE (10% or 20%) and naringenin (0, 25, 50, 100 μM) for 24 h. Finally, transcriptomics and molecular biotechnology methods were conducted to elucidate the mechanism by which naringenin protected cilia from CSE-induced damage in ALI cultures. RESULTS The targets of ciliary diseases regulated by naringenin were significantly enriched in inflammation and oxidative stress pathways. Also, the CSE decreased the number of cilia in the tracheal rings and ALI cultures and reduced the ciliary beat frequency (CBF). However, naringenin prevented CSE-induced cilia damage via mechanisms such as the downregulation of cilia-related genes (e.g., RFX3, DNAI1, DNAH5, IFT88) and ciliary marker proteins such as DNAI2, FOXJ1, and β-tubulin IV, the upregulation of inflammatory factors (e.g., IL-6, IL-8, IL-13), ROS and MDA. IL-17 signaling pathway might be involved in the protective effect of naringenin on airway cilia. Additionally, the cAMP signaling pathway might also be related to the enhancement of CBF by naringenin. CONCLUSION In this study, we first found that naringenin reduces CSE-induced structural disruption of airway cilia in part via modulation of the IL-17 signaling pathway. Furthermore, we also found that naringenin enhances CBF by activating the cAMP signaling pathway. This is the first report to reveal the beneficial effects of naringenin on airway cilia and the potential underlying mechanisms.
Collapse
Affiliation(s)
- Jiashuo Zhang
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-evaluation of Post-marketed Traditional Chinese Medicine (TCM), State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Weiyang Fan
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-evaluation of Post-marketed Traditional Chinese Medicine (TCM), State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Hao Wu
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-evaluation of Post-marketed Traditional Chinese Medicine (TCM), State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yue Yao
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-evaluation of Post-marketed Traditional Chinese Medicine (TCM), State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Linlin Jin
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-evaluation of Post-marketed Traditional Chinese Medicine (TCM), State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ruiqi Chen
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-evaluation of Post-marketed Traditional Chinese Medicine (TCM), State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ziyan Xu
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-evaluation of Post-marketed Traditional Chinese Medicine (TCM), State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Weiwei Su
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-evaluation of Post-marketed Traditional Chinese Medicine (TCM), State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yonggang Wang
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-evaluation of Post-marketed Traditional Chinese Medicine (TCM), State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Peibo Li
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-evaluation of Post-marketed Traditional Chinese Medicine (TCM), State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
7
|
Zhai Z, Shao L, Lu Z, Yang Y, Wang J, Liu Z, Wang H, Zheng Y, Lu H, Song X, Zhang Y. Characteristics of mucin hypersecretion in different inflammatory patterns based on endotypes of chronic rhinosinusitis. Clin Transl Allergy 2024; 14:e12334. [PMID: 38282195 PMCID: PMC10802810 DOI: 10.1002/clt2.12334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/14/2023] [Accepted: 12/21/2023] [Indexed: 01/30/2024] Open
Abstract
BACKGROUND Chronic rhinosinusitis (CRS) is usually accompanied by mucin hypersecretion that can lead to mucus accumulation and impair nasal mucociliary clearance, thus exacerbating airway inflammation. Abnormal mucin hypersecretion is regulated by different T helper (Th) cytokines, which are associated with different endotype-driven inflammatory responses. Therefore, it is of great significance to understand how these factors regulate mucin hypersecretion to provide precise treatment strategies for different endotypes of CRS. BODY: Thus far, the most common endotypes of CRS are classified as type 1, type 2, or type 3 immune responses based on innate and adaptive cell-mediated effector immunity, and the representative Th cytokines in these immune responses, such as IFN-γ, TNF-α, IL-4, IL-5, IL-13, IL-10, IL-17, and IL-22, play an important regulatory role in mucin secretion. We reviewed all the related literature in the PubMed database to determine the expression of these Th cytokines in CRS and the role they play in the regulation of mucin secretion. CONCLUSION We believe that the main Th cytokines involved in specific endotypes of CRS play a key role in regulating abnormal mucin secretion, which contributes to better understanding of the pathogenesis of CRS and provides therapeutic targets for airway inflammatory diseases associated with mucin hypersecretion.
Collapse
Affiliation(s)
- Zhaoxue Zhai
- Second Clinical Medicine CollegeBinzhou Medical UniversityYantaiChina
- Department of OtolaryngologyHead and Neck Surgery, Yantai Yuhuangding HospitalQingdao UniversityYantaiChina
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic DiseasesYantaiChina
| | - Liting Shao
- Department of OtolaryngologyHead and Neck Surgery, Yantai Yuhuangding HospitalQingdao UniversityYantaiChina
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic DiseasesYantaiChina
| | - Zhaoyang Lu
- Second Clinical Medicine CollegeBinzhou Medical UniversityYantaiChina
- Department of OtolaryngologyHead and Neck Surgery, Yantai Yuhuangding HospitalQingdao UniversityYantaiChina
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic DiseasesYantaiChina
| | - Yujuan Yang
- Department of OtolaryngologyHead and Neck Surgery, Yantai Yuhuangding HospitalQingdao UniversityYantaiChina
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic DiseasesYantaiChina
- Yantai Key Laboratory of Otorhinolaryngologic DiseasesYantaiChina
| | - Jianwei Wang
- Department of OtolaryngologyHead and Neck Surgery, Yantai Yuhuangding HospitalQingdao UniversityYantaiChina
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic DiseasesYantaiChina
- Yantai Key Laboratory of Otorhinolaryngologic DiseasesYantaiChina
| | - Zhen Liu
- Department of OtolaryngologyHead and Neck Surgery, Yantai Yuhuangding HospitalQingdao UniversityYantaiChina
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic DiseasesYantaiChina
| | - Huikang Wang
- Department of OtolaryngologyHead and Neck Surgery, Yantai Yuhuangding HospitalQingdao UniversityYantaiChina
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic DiseasesYantaiChina
| | - Yang Zheng
- Department of OtolaryngologyHead and Neck Surgery, Yantai Yuhuangding HospitalQingdao UniversityYantaiChina
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic DiseasesYantaiChina
| | - Haoran Lu
- Department of OtolaryngologyHead and Neck Surgery, Yantai Yuhuangding HospitalQingdao UniversityYantaiChina
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic DiseasesYantaiChina
| | - Xicheng Song
- Department of OtolaryngologyHead and Neck Surgery, Yantai Yuhuangding HospitalQingdao UniversityYantaiChina
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic DiseasesYantaiChina
- Yantai Key Laboratory of Otorhinolaryngologic DiseasesYantaiChina
| | - Yu Zhang
- Department of OtolaryngologyHead and Neck Surgery, Yantai Yuhuangding HospitalQingdao UniversityYantaiChina
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic DiseasesYantaiChina
- Yantai Key Laboratory of Otorhinolaryngologic DiseasesYantaiChina
| |
Collapse
|
8
|
Carsuzaa F, Bequignon E, Bartier S, Coste A, Dufour X, Bainaud M, Lecron JC, Louis B, Tringali S, Favot L, Fieux M. Oncostatin M Contributes to Airway Epithelial Cell Dysfunction in Chronic Rhinosinusitis with Nasal Polyps. Int J Mol Sci 2023; 24:6094. [PMID: 37047067 PMCID: PMC10094365 DOI: 10.3390/ijms24076094] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 03/18/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
Chronic rhinosinusitis with nasal polyps (CRSwNP) is a typical type-2 inflammation involving several cytokines and is associated with epithelial cell dysfunction. Oncostatin M (OSM) (belonging to the interleukin(IL)-6 family) could be a key driver of epithelial barrier dysfunction. Therefore, we investigated the presence of OSM and IL-6 and the expression pattern of tight junctions (TJs) in the nasal tissue of CRSwNP patients and controls using reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) and Western blotting. Then, their potential role in the epithelial barrier was evaluated in vitro in 27 different primary cultures of human nasal epithelial cells (HNECs) by measuring TJ expression and transepithelial electric resistance (TEER) with or without OSM or IL-6 (1, 10, and 100 ng/mL). The effect on ciliary beating efficiency was evaluated by high-speed videomicroscopy and on repair mechanisms with a wound healing model with or without OSM. OSM and IL-6 were both overexpressed, and TJ (ZO-1 and occludin) expression was decreased in the nasal polyps compared to the control mucosa. OSM (100 ng/mL) but not IL-6 induced a significant decrease in TJ expression, TEER, and ciliary beating efficiency in HNECs. After 24 h, the wound repair rate was significantly higher in OSM-stimulated HNECs at 100 ng/mL. These results suggest that OSM could become a new target for monoclonal antibodies.
Collapse
Affiliation(s)
- Florent Carsuzaa
- Laboratoire Inflammation Tissus Epithéliaux et Cytokines (LITEC), UR15560, Université de Poitiers, F-86000 Poitiers, France
- Service ORL, Chirurgie Cervico-Maxillo-Faciale et Audiophonologie, Centre Hospitalier Universitaire de Poitiers, F-86000 Poitiers, France
| | - Emilie Bequignon
- Centre Hospitalier Intercommunal de Créteil, Service d’Oto-Rhino-Laryngologie et de Chirurgie Cervico-Faciale, F-94010 Créteil, France
- CNRS EMR 7000, F-94010 Créteil, France
- INSERM, IMRB, Univ Paris Est Creteil, F-94010 Créteil, France
| | - Sophie Bartier
- CNRS EMR 7000, F-94010 Créteil, France
- INSERM, IMRB, Univ Paris Est Creteil, F-94010 Créteil, France
- Service d’ORL, de Chirurgie Cervico Faciale, Hôpital Henri-Mondor, Assistance Publique des Hôpitaux de Paris, F-94010 Créteil, France
| | - André Coste
- Centre Hospitalier Intercommunal de Créteil, Service d’Oto-Rhino-Laryngologie et de Chirurgie Cervico-Faciale, F-94010 Créteil, France
- CNRS EMR 7000, F-94010 Créteil, France
- INSERM, IMRB, Univ Paris Est Creteil, F-94010 Créteil, France
| | - Xavier Dufour
- Laboratoire Inflammation Tissus Epithéliaux et Cytokines (LITEC), UR15560, Université de Poitiers, F-86000 Poitiers, France
- Service ORL, Chirurgie Cervico-Maxillo-Faciale et Audiophonologie, Centre Hospitalier Universitaire de Poitiers, F-86000 Poitiers, France
| | - Matthieu Bainaud
- Laboratoire Inflammation Tissus Epithéliaux et Cytokines (LITEC), UR15560, Université de Poitiers, F-86000 Poitiers, France
- Service Immunologie et Inflammation, Centre Hospitalier Universitaire de Poitiers, F-86021 Poitiers, France
| | - Jean Claude Lecron
- Laboratoire Inflammation Tissus Epithéliaux et Cytokines (LITEC), UR15560, Université de Poitiers, F-86000 Poitiers, France
- Service Immunologie et Inflammation, Centre Hospitalier Universitaire de Poitiers, F-86021 Poitiers, France
| | - Bruno Louis
- CNRS EMR 7000, F-94010 Créteil, France
- INSERM, IMRB, Univ Paris Est Creteil, F-94010 Créteil, France
| | - Stéphane Tringali
- Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Service d’ORL, d’Otoneurochirurgie et de Chirurgie Cervico-Faciale, F-69310 Pierre Bénite, France
- Faculté de Médecine et de Maïeutique Lyon Sud-Charles Mérieux, Université de Lyon, Université Lyon 1, F-69003 Lyon, France
- UMR 5305, Laboratoire de Biologie Tissulaire et d’Ingénierie Thérapeutique, Institut de Biologie et Chimie des Protéines, CNRS, Université Claude Bernard Lyon 1, 7 Passage du Vercors, CEDEX 07, F-69367 Lyon, France
| | - Laure Favot
- Laboratoire Inflammation Tissus Epithéliaux et Cytokines (LITEC), UR15560, Université de Poitiers, F-86000 Poitiers, France
| | - Maxime Fieux
- CNRS EMR 7000, F-94010 Créteil, France
- INSERM, IMRB, Univ Paris Est Creteil, F-94010 Créteil, France
- Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Service d’ORL, d’Otoneurochirurgie et de Chirurgie Cervico-Faciale, F-69310 Pierre Bénite, France
- Faculté de Médecine et de Maïeutique Lyon Sud-Charles Mérieux, Université de Lyon, Université Lyon 1, F-69003 Lyon, France
| |
Collapse
|
9
|
He Y, Fu Y, Wu Y, Zhu T, Li H. Pathogenesis and treatment of chronic rhinosinusitis from the perspective of sinonasal epithelial dysfunction. Front Med (Lausanne) 2023; 10:1139240. [PMID: 37138733 PMCID: PMC10149833 DOI: 10.3389/fmed.2023.1139240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/13/2023] [Indexed: 05/05/2023] Open
Abstract
Background Chronic rhinosinusitis (CRS) is a clinical syndrome primarily characterized by long-term mucosal inflammation of the nasal cavity and sinuses. The pathogenesis of CRS is still unclear due to its high heterogeneity. A number of studies have recently focused on the sinonasal epithelium. Thus, there has been a quantum leap in awareness of the role of the sinonasal epithelium, which is now understood as an active functional organ rather than simply an inert mechanical barrier. Undoubtedly, epithelial dysfunction plays a vital role in the onset and development of CRS. Objective In this article, we discuss the potential contribution of sinonasal epithelium dysfunction to CRS pathogenesis and explore a few current and developing therapeutic options targeting the sinonasal epithelium. Results Impaired mucociliary clearance (MCC) and an abnormal sinonasal epithelial barrier are usually considered to be the main causative factors in CRS. Epithelial-derived bioactive substances, such as cytokines, exosomes, and complements, play a vital role in the regulation of innate and adaptive immunity and contribute to the pathophysiological alterations of CRS. The phenomena of epithelial-mesenchymal transition (EMT), mucosal remodeling, and autophagy observed in CRS offer some novel insights into the pathogenesis of this disease. In addition, existing treatment options targeting disorder of sinonasal epithelium can help to relieve the main symptoms associated with CRS to some extent. Conclusion The presence of a normal epithelium is fundamental for maintaining homeostasis in the nasal and paranasal sinuses. Here, we describe various aspects of the sinonasal epithelium and highlight the contributions of epithelial dysfunction to CRS pathogenesis. Our review provides sound evidence of the need for in-depth study of the pathophysiological alterations of this disease and for the development of novel epithelium-targeting alternative treatments.
Collapse
Affiliation(s)
- Yuanqiong He
- School of Heath Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yijie Fu
- School of Preclinical Medicine, Chengdu University, Chengdu, China
| | - Yuqi Wu
- School of Heath Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tianmin Zhu
- School of Heath Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hui Li
- School of Preclinical Medicine, Chengdu University, Chengdu, China
- *Correspondence: Hui Li
| |
Collapse
|
10
|
Esnault S, Jarjour NN. Development of Adaptive Immunity and Its Role in Lung Remodeling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1426:287-351. [PMID: 37464127 DOI: 10.1007/978-3-031-32259-4_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Asthma is characterized by airflow limitations resulting from bronchial closure, which can be either reversible or fixed due to changes in airway tissue composition and structure, also known as remodeling. Airway remodeling is defined as increased presence of mucins-producing epithelial cells, increased thickness of airway smooth muscle cells, angiogenesis, increased number and activation state of fibroblasts, and extracellular matrix (ECM) deposition. Airway inflammation is believed to be the main cause of the development of airway remodeling in asthma. In this chapter, we will review the development of the adaptive immune response and the impact of its mediators and cells on the elements defining airway remodeling in asthma.
Collapse
|
11
|
Czerwaty K, Piszczatowska K, Brzost J, Ludwig N, Szczepański MJ, Dżaman K. Immunological Aspects of Chronic Rhinosinusitis. Diagnostics (Basel) 2022; 12:diagnostics12102361. [PMID: 36292050 PMCID: PMC9600442 DOI: 10.3390/diagnostics12102361] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
Chronic rhinosinusitis (CRS) is related to persistent inflammation with a dysfunctional relationship between environmental agents and the host immune system. Disturbances in the functioning of the sinus mucosa lead to common clinical symptoms. The major processes involved in the pathogenesis of CRS include airway epithelial dysfunctions that are influenced by external and host-derived factors which activate multiple immunological mechanisms. The molecular bases for CRS remain unclear, although some factors commonly correspond to the disease: bacterial, fungal and viral infections, comorbidity diseases, genetic dysfunctions, and immunodeficiency. Additionally, air pollution leads increased severity of symptoms. CRS is a heterogeneous group of sinus diseases with different clinical courses and response to treatment. Immunological pathways vary depending on the endotype or genotype of the patient. The recent knowledge expansion into mechanisms underlying the pathogenesis of CRS is leading to a steadily increasing significance of precision medicine in the treatment of CRS. The purpose of this review is to summarize the current state of knowledge regarding the immunological aspects of CRS, which are essential for ensuring more effective treatment strategies.
Collapse
Affiliation(s)
- Katarzyna Czerwaty
- Department of Otolaryngology, The Medical Centre of Postgraduate Education, 01-813 Warsaw, Poland
| | | | - Jacek Brzost
- The Children’s Memorial Health Institute, 04-730 Warsaw, Poland
| | - Nils Ludwig
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Mirosław J. Szczepański
- Department of Otolaryngology, The Medical Centre of Postgraduate Education, 01-813 Warsaw, Poland
- Department of Biochemistry, Medical University of Warsaw, 02-097 Warsaw, Poland
- Correspondence:
| | - Karolina Dżaman
- Department of Otolaryngology, The Medical Centre of Postgraduate Education, 01-813 Warsaw, Poland
| |
Collapse
|
12
|
Jiao J, Hu P, Zhuang M, Li Y, Cai C, Wang X, Zhang L. Transcriptome sequencing reveals altered ciliogenesis under hypoxia in nasal epithelial cells from chronic rhinosinusitis with nasal polyps. Clin Transl Allergy 2022; 12:e12168. [PMID: 35702726 PMCID: PMC9174880 DOI: 10.1002/clt2.12168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/19/2022] [Accepted: 05/22/2022] [Indexed: 11/06/2022] Open
Abstract
Background Hypoxia is considered a key factor in the pathogenesis of chronic rhinosinusitis with nasal polyps (CRSwNP). However, the specific mechanism driving polypogenesis under hypoxic conditions is unclear. This study aimed to explore hypoxia-induced alterations in the transcriptome of human nasal epithelial cells (HNECs) in vitro. Methods HNECs derived from the tissue of patients with CRSwNP were established as air-liquid interface (ALI) cultures. Confluent cultures were kept submerged or treated with cobalt chloride (CoCl2) to induce hypoxia. Transcriptome analysis was used to identify key mRNAs involved in this process. Real-time PCR (RT-PCR), Western blotting, and immunofluorescence were used to observe the effects of hypoxia on ciliogenesis. Results Numerous genes, biological processes and pathways were altered under submerged culture conditions or after CoCl2 treatment. Analysis of the results under both hypoxic conditions revealed that the transcriptional program responsible for ciliogenesis was significantly impaired. Downregulation of cilia-related genes and inhibition of ciliated cell differentiation under hypoxia were confirmed by RT-PCR, Western blot and immunofluorescence analyses. Conclusion Hypoxia impairs ciliogenesis and ciliary function in HNECs, which might play a role in the pathogenesis of CRSwNP.
Collapse
Affiliation(s)
- Jian Jiao
- Department of Otolaryngology Head and Neck SurgeryBeijing TongRen HospitalCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of Nasal DiseasesBeijing Institute of OtolaryngologyBeijingChina
| | - Puqi Hu
- Department of Otolaryngology Head and Neck SurgeryBeijing TongRen HospitalCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of Nasal DiseasesBeijing Institute of OtolaryngologyBeijingChina
- Department of OtolaryngologyBeijing You'an HospitalCapital Medical UniversityBeijingChina
| | - Mengyan Zhuang
- Department of Otolaryngology Head and Neck SurgeryBeijing TongRen HospitalCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of Nasal DiseasesBeijing Institute of OtolaryngologyBeijingChina
| | - Ying Li
- Department of Otolaryngology Head and Neck SurgeryBeijing TongRen HospitalCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of Nasal DiseasesBeijing Institute of OtolaryngologyBeijingChina
| | - Chao Cai
- Department of OtolaryngologyBeijing You'an HospitalCapital Medical UniversityBeijingChina
| | - Xiangdong Wang
- Department of Otolaryngology Head and Neck SurgeryBeijing TongRen HospitalCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of Nasal DiseasesBeijing Institute of OtolaryngologyBeijingChina
| | - Luo Zhang
- Department of Otolaryngology Head and Neck SurgeryBeijing TongRen HospitalCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of Nasal DiseasesBeijing Institute of OtolaryngologyBeijingChina
| |
Collapse
|
13
|
Lux CA, Johnston JJ, Waldvogel-Thurlow S, Dassi C, Douglas RG, Cho DY, Taylor MW, Biswas K. Unilateral Intervention in the Sinuses of Rabbits Induces Bilateral Inflammatory and Microbial Changes. Front Cell Infect Microbiol 2021; 11:585625. [PMID: 34595125 PMCID: PMC8477012 DOI: 10.3389/fcimb.2021.585625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 08/23/2021] [Indexed: 11/13/2022] Open
Abstract
Background Chronic rhinosinusitis (CRS) is a globally prevalent inflammatory condition of the paranasal sinuses which severely impairs patients' quality of life. An animal model of unilateral sinusitis by transient sinus occlusion has been described previously in rabbits. The aim of this study was to characterise the sinusitis rabbit model by investigating temporal and bilateral changes in the bacterial community and mucosal inflammation. Methods Development of sinusitis was achieved by endoscopically placing Merocel ® , a sterile nasal packing material, in the left middle meatus of six New Zealand white rabbits for four weeks. After a total period of 14 weeks, rabbits were assessed for sinusitis by endoscopic examination, magnetic resonance imaging (MRI) and histology. Swabs from the left and right middle meatus were obtained for bacterial community analysis at three time points (week 0, week 4, week 14) during the study. Results Endoscopic evaluation showed unilateral inflammation in all animals examined after the 4-week blocking period and at week 14. Notably, inflammatory changes were also seen in the contralateral sinus of all animals at week 4. MRI images demonstrated unilateral sinus opacification at week 4 in two rabbits, and partial unilateral sinus opacification at week 14 in one rabbit only. Histological analyses revealed substantial spatial heterogeneity of mucosal inflammation with inconsistent findings across all animals. No significant differences in mucosal inflammatory markers (such as goblet cell hyperplasia, epithelial denudation and oedema) could be identified between nostrils at week 14. The bacterial community in the rabbit sinuses was heavily dominated by Helicobacter at week 0 (baseline). At the end of the blocking period (week 4), bacterial alpha and beta diversity were significantly increased in both nostrils. The bacterial community composition at week 14 had primarily returned to baseline, reflecting the endoscopic and radiological results. Conclusion This study reaffirmed the ability for development of sinusitis without inoculation of any pathogens in a rabbit model. We were able to demonstrate bilateral sinonasal mucosal inflammation, by inducing unilateral sinus blockage, which resulted in significant changes to the sinonasal bacterial community. These findings may explain some of the clinical observations seen in CRS and warrant further research to reveal potential implications for its therapeutic management.
Collapse
Affiliation(s)
- Christian A Lux
- School of Biological Sciences, University of Auckland, Auckland, New Zealand.,Department of Surgery, School of Medicine, University of Auckland, Auckland, New Zealand
| | - James J Johnston
- Department of Surgery, School of Medicine, University of Auckland, Auckland, New Zealand
| | | | - Camila Dassi
- Department of Otorhinolaryngology, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Brazil
| | - Richard G Douglas
- Department of Surgery, School of Medicine, University of Auckland, Auckland, New Zealand
| | - Do-Yeon Cho
- Department of Otolaryngology-Head and Neck Surgery, University of Alabama at Birmingham and Veteran Affairs Medical Center, Birmingham, AL, United States
| | - Michael W Taylor
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Kristi Biswas
- Department of Surgery, School of Medicine, University of Auckland, Auckland, New Zealand
| |
Collapse
|
14
|
Orlandi RR, Kingdom TT, Smith TL, Bleier B, DeConde A, Luong AU, Poetker DM, Soler Z, Welch KC, Wise SK, Adappa N, Alt JA, Anselmo-Lima WT, Bachert C, Baroody FM, Batra PS, Bernal-Sprekelsen M, Beswick D, Bhattacharyya N, Chandra RK, Chang EH, Chiu A, Chowdhury N, Citardi MJ, Cohen NA, Conley DB, DelGaudio J, Desrosiers M, Douglas R, Eloy JA, Fokkens WJ, Gray ST, Gudis DA, Hamilos DL, Han JK, Harvey R, Hellings P, Holbrook EH, Hopkins C, Hwang P, Javer AR, Jiang RS, Kennedy D, Kern R, Laidlaw T, Lal D, Lane A, Lee HM, Lee JT, Levy JM, Lin SY, Lund V, McMains KC, Metson R, Mullol J, Naclerio R, Oakley G, Otori N, Palmer JN, Parikh SR, Passali D, Patel Z, Peters A, Philpott C, Psaltis AJ, Ramakrishnan VR, Ramanathan M, Roh HJ, Rudmik L, Sacks R, Schlosser RJ, Sedaghat AR, Senior BA, Sindwani R, Smith K, Snidvongs K, Stewart M, Suh JD, Tan BK, Turner JH, van Drunen CM, Voegels R, Wang DY, Woodworth BA, Wormald PJ, Wright ED, Yan C, Zhang L, Zhou B. International consensus statement on allergy and rhinology: rhinosinusitis 2021. Int Forum Allergy Rhinol 2021; 11:213-739. [PMID: 33236525 DOI: 10.1002/alr.22741] [Citation(s) in RCA: 490] [Impact Index Per Article: 122.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023]
Abstract
I. EXECUTIVE SUMMARY BACKGROUND: The 5 years since the publication of the first International Consensus Statement on Allergy and Rhinology: Rhinosinusitis (ICAR-RS) has witnessed foundational progress in our understanding and treatment of rhinologic disease. These advances are reflected within the more than 40 new topics covered within the ICAR-RS-2021 as well as updates to the original 140 topics. This executive summary consolidates the evidence-based findings of the document. METHODS ICAR-RS presents over 180 topics in the forms of evidence-based reviews with recommendations (EBRRs), evidence-based reviews, and literature reviews. The highest grade structured recommendations of the EBRR sections are summarized in this executive summary. RESULTS ICAR-RS-2021 covers 22 topics regarding the medical management of RS, which are grade A/B and are presented in the executive summary. Additionally, 4 topics regarding the surgical management of RS are grade A/B and are presented in the executive summary. Finally, a comprehensive evidence-based management algorithm is provided. CONCLUSION This ICAR-RS-2021 executive summary provides a compilation of the evidence-based recommendations for medical and surgical treatment of the most common forms of RS.
Collapse
Affiliation(s)
| | | | | | | | | | - Amber U Luong
- University of Texas Medical School at Houston, Houston, TX
| | | | - Zachary Soler
- Medical University of South Carolina, Charleston, SC
| | - Kevin C Welch
- Feinberg School of Medicine, Northwestern University, Chicago, IL
| | | | | | | | | | - Claus Bachert
- Ghent University, Ghent, Belgium.,Karolinska Institute, Stockholm, Sweden.,Sun Yatsen University, Gangzhou, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - David A Gudis
- Columbia University Irving Medical Center, New York, NY
| | - Daniel L Hamilos
- Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | | | - Richard Harvey
- University of New South Wales and Macquarie University, Sydney, New South Wales, Australia
| | | | | | | | | | - Amin R Javer
- University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | | | | | | | | | | - Valerie Lund
- Royal National Throat Nose and Ear Hospital, UCLH, London, UK
| | - Kevin C McMains
- Uniformed Services University of Health Sciences, San Antonio, TX
| | | | - Joaquim Mullol
- IDIBAPS Hospital Clinic, University of Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | - Alkis J Psaltis
- University of Adelaide, Adelaide, South Australia, Australia
| | | | | | | | - Luke Rudmik
- University of Calgary, Calgary, Alberta, Canada
| | - Raymond Sacks
- University of New South Wales, Sydney, New South Wales, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | - De Yun Wang
- National University of Singapore, Singapore, Singapore
| | | | | | | | - Carol Yan
- University of California San Diego, La Jolla, CA
| | - Luo Zhang
- Capital Medical University, Beijing, China
| | - Bing Zhou
- Capital Medical University, Beijing, China
| |
Collapse
|
15
|
Alekseenko S, Karpischenko S, Barashkova S. Comparative Analysis of Mucociliary Clearance and Mucosal Morphology Using High-Speed Videomicroscopy in Children With Acute and Chronic Rhinosinusitis. Am J Rhinol Allergy 2021; 35:656-663. [PMID: 33467866 DOI: 10.1177/1945892420988804] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE evaluation of mucociliary clearance and mucosal morphology using high-speed videomicroscopy, and their association with markers of disease severity in children with acute (ARS) and chronic rhinosinusitis (CRS). METHODS A total of 67 children aged from 6 to 17 years including 15 healthy children, 20 pediatric patients with acute rhinosinusitis, and 32 cases with chronic rhinosinusitis were enrolled in the present study. SNOT20, Lund-Kennedy, and Lund-Mackay scores were also evaluated. RESULTS Children with rhinosinusitis were characterized by significantly lower number of cells with motile cilia, ciliary beat frequency, cilia length, and cell viability, as well as ciliary beat asynchrony, epithelia dystrophy and reduced epithelial cell height, being more severe in ARS group. Neutrophil infiltration of sinonasal mucosa was more profound in children with ARS, whereas the number of lymphocytes was significantly reduced. Markers of ciliary function were characterized by a significant correlation with epithelia dystrophia and neutrophil infiltration. Discriminant analysis demonstrated significant group separation based on the parameters of mucociliary clearance and mucosal morphology. In regression models mucociliary function was also associated with SNOT20, Lund-Kennedy, and Lund-Mackay scores. CONCLUSION The results of the present study demonstrate significant alteration of mucociliary clearance and mucosal morphology and its association with sinonasal inflammation and disease severity in patients with rhinosinusitis. Given a tight association between altered mucociliary clearance and severity of the disease, modulation of inflammation and ciliary function both in acute and chronic rhinosinusitis may be considered as the potential tool in therapeutic and surgical management of the disease.
Collapse
Affiliation(s)
- Svetlana Alekseenko
- Saint-Petersburg Research Institute of Ear, Throat, Nose and Speech, St. Petersburg, Russia.,I.I. Mechnikov North-Western State Medical University, St. Petersburg, Russia.,K.A. Rauhfus Children's City Multidisciplinary Clinical Center for High Medical Technologies, St. Petersburg, Russia
| | - Sergey Karpischenko
- Saint-Petersburg Research Institute of Ear, Throat, Nose and Speech, St. Petersburg, Russia.,K.A. Rauhfus Children's City Multidisciplinary Clinical Center for High Medical Technologies, St. Petersburg, Russia.,First Pavlov State Medical University of Saint Petersburg, St. Petersburg, Russia
| | - Svetlana Barashkova
- K.A. Rauhfus Children's City Multidisciplinary Clinical Center for High Medical Technologies, St. Petersburg, Russia.,National Center of morphological diagnostic, St. Petersburg, Russia
| |
Collapse
|
16
|
Lee K, Tai J, Lee SH, Kim TH. Advances in the Knowledge of the Underlying Airway Remodeling Mechanisms in Chronic Rhinosinusitis Based on the Endotypes: A Review. Int J Mol Sci 2021; 22:E910. [PMID: 33477617 PMCID: PMC7831322 DOI: 10.3390/ijms22020910] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 12/24/2022] Open
Abstract
Chronic rhinosinusitis (CRS) is a chronic inflammatory condition of the nasal and paranasal sinus mucosa that affects up to 10% of the population worldwide. CRS is the most representative disease of the upper respiratory tract where airway remodeling occurs, including epithelial damage, thickening of the basement membrane, fibrosis, goblet cell hyperplasia, subepithelial edema, and osteitis. CRS is divided into two phenotypes according to the presence or absence of nasal polyps: CRS with nasal polyp (CRSwNP) and CRS without nasal polyps (CRSsNP). Based on the underlying pathophysiologic mechanism, CRS is also classified as eosinophilic CRS and non-eosinophilic CRS, owing to Type 2 T helper (Th2)-based inflammation and Type 1 T helper (Th1)/Type 17 T helper (Th17) skewed immune response, respectively. Differences in tissue remodeling in CRS are suggested to be based on the clinical phenotype and endotypes; this is because fibrosis is prominent in CRSsNP, whereas edematous changes occur in CRSwNP, especially in the eosinophilic type. This review aims to summarize the latest information on the different mechanisms of airway remodeling in CRS according to distinct endotypes.
Collapse
Affiliation(s)
| | | | | | - Tae Hoon Kim
- Department of Otorhinolaryngology-Head & Neck Surgery, College of Medicine, Korea University, Seoul 02841, Korea; (K.L.); (J.T.); (S.H.L.)
| |
Collapse
|
17
|
Marazzato M, Zicari AM, Aleandri M, Conte AL, Longhi C, Vitanza L, Bolognino V, Zagaglia C, De Castro G, Brindisi G, Schiavi L, De Vittori V, Reddel S, Quagliariello A, Del Chierico F, Putignani L, Duse M, Palamara AT, Conte MP. 16S Metagenomics Reveals Dysbiosis of Nasal Core Microbiota in Children With Chronic Nasal Inflammation: Role of Adenoid Hypertrophy and Allergic Rhinitis. Front Cell Infect Microbiol 2020; 10:458. [PMID: 32984078 PMCID: PMC7492700 DOI: 10.3389/fcimb.2020.00458] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 07/27/2020] [Indexed: 12/22/2022] Open
Abstract
Allergic rhinitis (AR) and adenoid hypertrophy (AH) are, in children, the main cause of partial or complete upper airway obstruction and reduction in airflow. However, limited data exist about the impact of the increased resistance to airflow, on the nasal microbial composition of children with AR end AH. Allergic rhinitis (AR) as well as adenoid hypertrophy (AH), represent extremely common pathologies in this population. Their known inflammatory obstruction is amplified when both pathologies coexist. In our study, the microbiota of anterior nares of 75 pediatric subjects with AR, AH or both conditions, was explored by 16S rRNA-based metagenomic approach. Our data show for the first time, that in children, the inflammatory state is associated to similar changes in the microbiota composition of AR and AH subjects respect to the healthy condition. Together with such alterations, we observed a reduced variability in the between-subject biodiversity on the other hand, these same alterations resulted amplified by the nasal obstruction that could constitute a secondary risk factor for dysbiosis. Significant differences in the relative abundance of specific microbial groups were found between diseased phenotypes and the controls. Most of these taxa belonged to a stable and quantitatively dominating component of the nasal microbiota and showed marked potentials in discriminating the controls from diseased subjects. A pauperization of the nasal microbial network was observed in diseased status in respect to the number of involved taxa and connectivity. Finally, while stable co-occurrence relationships were observed within both control- and diseases-associated microbial groups, only negative correlations were present between them, suggesting that microbial subgroups potentially act as maintainer of the eubiosis state in the nasal ecosystem. In the nasal ecosystem, inflammation-associated shifts seem to impact the more intimate component of the microbiota rather than representing the mere loss of microbial diversity. The discriminatory potential showed by differentially abundant taxa provide a starting point for future research with the potential to improve patient outcomes. Overall, our results underline the association of AH and AR with the impairment of the microbial interplay leading to unbalanced ecosystems.
Collapse
Affiliation(s)
- Massimiliano Marazzato
- Department of Public Health and Infectious Diseases, Microbiology Section, "Sapienza" University of Rome, Rome, Italy
| | - Anna Maria Zicari
- Department of Pediatrics, Faculty of Medicine and Odontology, "Sapienza" University of Rome, Rome, Italy
| | - Marta Aleandri
- Department of Public Health and Infectious Diseases, Microbiology Section, "Sapienza" University of Rome, Rome, Italy
| | - Antonietta Lucia Conte
- Department of Public Health and Infectious Diseases, Microbiology Section, "Sapienza" University of Rome, Rome, Italy
| | - Catia Longhi
- Department of Public Health and Infectious Diseases, Microbiology Section, "Sapienza" University of Rome, Rome, Italy
| | - Luca Vitanza
- Department of Public Health and Infectious Diseases, Microbiology Section, "Sapienza" University of Rome, Rome, Italy
| | - Vanessa Bolognino
- Department of Public Health and Infectious Diseases, Microbiology Section, "Sapienza" University of Rome, Rome, Italy
| | - Carlo Zagaglia
- Department of Public Health and Infectious Diseases, Microbiology Section, "Sapienza" University of Rome, Rome, Italy
| | - Giovanna De Castro
- Department of Pediatrics, Faculty of Medicine and Odontology, "Sapienza" University of Rome, Rome, Italy
| | - Giulia Brindisi
- Department of Pediatrics, Faculty of Medicine and Odontology, "Sapienza" University of Rome, Rome, Italy
| | - Laura Schiavi
- Department of Pediatrics, Faculty of Medicine and Odontology, "Sapienza" University of Rome, Rome, Italy
| | - Valentina De Vittori
- Department of Pediatrics, Faculty of Medicine and Odontology, "Sapienza" University of Rome, Rome, Italy
| | - Sofia Reddel
- Unit of Human Microbiome, Area of Genetics and Rare Diseases, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Andrea Quagliariello
- Unit of Human Microbiome, Area of Genetics and Rare Diseases, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Federica Del Chierico
- Unit of Human Microbiome, Area of Genetics and Rare Diseases, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Lorenza Putignani
- Unit of Parasitology and Area of Genetics and Rare Diseases, Unit of Human Microbiome, Department of Laboratories, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Marzia Duse
- Department of Pediatrics, Faculty of Medicine and Odontology, "Sapienza" University of Rome, Rome, Italy
| | - Anna Teresa Palamara
- Department of Public Health and Infectious Diseases, "Sapienza" University of Rome, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, San Raffaele Pisana, IRCCS, Rome, Italy
| | - Maria Pia Conte
- Department of Public Health and Infectious Diseases, Microbiology Section, "Sapienza" University of Rome, Rome, Italy
| |
Collapse
|
18
|
Jiao J, Zhang T, Zhang Y, Li J, Wang M, Wang M, Li Y, Wang X, Zhang L. Epidermal growth factor upregulates expression of MUC5AC via TMEM16A, in chronic rhinosinusitis with nasal polyps. Allergy Asthma Clin Immunol 2020; 16:40. [PMID: 32514271 PMCID: PMC7254766 DOI: 10.1186/s13223-020-00440-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 05/19/2020] [Indexed: 01/07/2023] Open
Abstract
Background Mucus hypersecretion and goblet cell upregulation are common features of chronic rhinosinusitis with nasal polyps (CRSwNP). Although epidermal growth factor (EGF) has been reported to stimulate the expression of MUC5AC, the major macro-molecular constituent of airway mucus, the precise mechanisms underlying the regulation of MUC5AC expression are still not fully understood. The aim of this study therefore was to investigate the role of EGF in regulation of mucin MUC5AC expression and define the involvement of transmembrane protein 16A (TMEM16A) in mediating the EGF-induced mucus overexpression. Methods Human nasal epithelial cells (HNECs) derived from tissue of patients with CRSwNP and control subjects were established as air-liquid interface (ALI) cultures. Differentiated cultures were treated with different concentrations of EGF for 4-24 h, and assessed for the expression of TMEM16A and MUC5AC by real-time RT-PCR, Western blotting, ELISA and immunofluorescence. Cultures pretreated for 30 min with T16Ainh-A01 (a specific TMEM16A inhibitor) or LY294002 (a phosphoinositide 3-kinase (PI3K) inhibitor) were also assessed similarly following EGF treatment. Results EGF treatment (10-100 ng/ml for 4-24 h) significantly increased the expression of both TMEM16A and MUC5AC mRNA and protein, as well as the percentage of TMEM16A-positive cells, MUC5AC-positive cells and cells coexpressing TMEM16A and MUC5AC in HNECs compared to control non-EGF-treated HNECs. Pretreatment of the HNECs with T16Ainh-A01 and LY294002 attenuated these EGF-induced effects. Conclusions This study demonstrated that EGF upregulates the expression of MUC5AC in HNECs from CRSwNP patients. Furthermore, the EGF-mediated regulation of MUC5AC expression is likely to involve a PI3K-TMEM16A signalling pathway in CRSwNP.
Collapse
Affiliation(s)
- Jian Jiao
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, 100730 People's Republic of China.,Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, No. 17, HouGouHuTong, DongCheng District, Beijing, 100005 People's Republic of China
| | - Tao Zhang
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, 100730 People's Republic of China.,Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, No. 17, HouGouHuTong, DongCheng District, Beijing, 100005 People's Republic of China.,Department of Otolaryngology, Head and Neck Surgery, Tianjin Union Medical Center, Tianjin, 300121 People's Republic of China
| | - Yu Zhang
- Department of Otolaryngology, Head and Neck Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000 People's Republic of China
| | - Jingyun Li
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, 100730 People's Republic of China.,Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, No. 17, HouGouHuTong, DongCheng District, Beijing, 100005 People's Republic of China
| | - Min Wang
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, 100730 People's Republic of China.,Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, No. 17, HouGouHuTong, DongCheng District, Beijing, 100005 People's Republic of China
| | - Ming Wang
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, 100730 People's Republic of China.,Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, No. 17, HouGouHuTong, DongCheng District, Beijing, 100005 People's Republic of China
| | - Ying Li
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, 100730 People's Republic of China.,Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, No. 17, HouGouHuTong, DongCheng District, Beijing, 100005 People's Republic of China
| | - Xiangdong Wang
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, 100730 People's Republic of China.,Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, No. 17, HouGouHuTong, DongCheng District, Beijing, 100005 People's Republic of China
| | - Luo Zhang
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, 100730 People's Republic of China.,Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, No. 17, HouGouHuTong, DongCheng District, Beijing, 100005 People's Republic of China
| |
Collapse
|
19
|
Laulajainen-Hongisto A, Toppila-Salmi SK, Luukkainen A, Kern R. Airway Epithelial Dynamics in Allergy and Related Chronic Inflammatory Airway Diseases. Front Cell Dev Biol 2020; 8:204. [PMID: 32292784 PMCID: PMC7118214 DOI: 10.3389/fcell.2020.00204] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 03/10/2020] [Indexed: 12/12/2022] Open
Abstract
Allergic rhinitis, chronic rhinosinusitis, and asthma are highly prevalent, multifactorial chronic airway diseases. Several environmental and genetic factors affect airway epithelial dynamics leading to activation of inflammatory mechanisms in the airways. This review links environmental factors to host epithelial immunity in airway diseases. Understanding altered homeostasis of the airway epithelium might provide important targets for diagnostics and therapy of chronic airway diseases.
Collapse
Affiliation(s)
- Anu Laulajainen-Hongisto
- Department of Otorhinolaryngology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland.,Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Sanna Katriina Toppila-Salmi
- Haartman Institute, Medicum, University of Helsinki, Helsinki, Finland.,Skin and Allergy Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Annika Luukkainen
- Haartman Institute, Medicum, University of Helsinki, Helsinki, Finland
| | - Robert Kern
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| |
Collapse
|
20
|
Bequignon E, Mangin D, Bécaud J, Pasquier J, Angely C, Bottier M, Escudier E, Isabey D, Filoche M, Louis B, Papon JF, Coste A. Pathogenesis of chronic rhinosinusitis with nasal polyps: role of IL-6 in airway epithelial cell dysfunction. J Transl Med 2020; 18:136. [PMID: 32209102 PMCID: PMC7092549 DOI: 10.1186/s12967-020-02309-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 03/16/2020] [Indexed: 12/20/2022] Open
Abstract
Background Chronic rhinosinusitis with nasal polyps (CRSwNP) is characterized by an alteration in airway epithelial cell functions including barrier function, wound repair mechanisms, mucociliary clearance. The mechanisms leading to epithelial cell dysfunction in nasal polyps (NPs) remain poorly understood. Our hypothesis was that among the inflammatory cytokines involved in NPs, IL-6 could alter epithelial repair mechanisms and mucociliary clearance. The aim of this study was to evaluate the in vitro effects of IL-6 on epithelial repair mechanisms in a wound repair model and on ciliary beating in primary cultures of Human Nasal Epithelial Cells (HNEC). Methods Primary cultures of HNEC taken from 38 patients during surgical procedures for CRSwNP were used in an in vitro model of wound healing. Effects of increasing concentrations of IL-6 (1 ng/mL, 10 ng/mL, and 100 ng/mL) and other ILs (IL-5, IL-9, IL-10) on wound closure kinetics were compared to cultures without IL-modulation. After wound closure, the differentiation process was characterized under basal conditions and after IL supplementation using cytokeratin-14, MUC5AC, and βIV tubulin as immunomarkers of basal, mucus, and ciliated cells, respectively. The ciliated edges of primary cultures were analyzed on IL-6 modulation by digital high-speed video-microscopy to measure: ciliary beating frequency (CBF), ciliary length, relative ciliary density, metachronal wavelength and the ciliary beating efficiency index. Results Our results showed that: (i) IL-6 accelerated airway wound repair in vitro, with a dose–response effect whereas no effect was observed after other ILs-stimulation. After 24 h, 79% of wounded wells with IL6-100 were fully repaired, vs 46% in the IL6-10 group, 28% in the IL6-1 group and 15% in the control group; (ii) specific migration analyses of closed wound at late repair stage (Day 12) showed IL-6 had the highest migration compared with other ILs (iii) The study of the IL-6 effect on ciliary function showed that CBF and metachronal wave increased but without significant modifications of ciliary density, length of cilia and efficiency index. Conclusion The up-regulated epithelial cell proliferation observed in polyps could be induced by IL-6 in the case of prior epithelial damage. IL-6 could be a major cytokine in NP physiopathology.
Collapse
Affiliation(s)
- Emilie Bequignon
- Service d'Oto-Rhino-Laryngologie et de Chirurgie cervico-faciale, AP-HP, Hôpital Henri Mondor et Centre Hospitalier Intercommunal de Créteil, 94010, Créteil, France. .,INSERM, U955, Equipe 13, Faculte de Medecine, 8 rue du General Sarrail, 94010, Créteil, France. .,Faculté de Médecine, Université Paris-Est, 94010, Créteil, France. .,CNRS ERL 7000, 94010, Créteil, France.
| | - David Mangin
- Service d'Oto-Rhino-Laryngologie et de Chirurgie cervico-faciale, AP-HP, Hôpital Henri Mondor et Centre Hospitalier Intercommunal de Créteil, 94010, Créteil, France.,INSERM, U955, Equipe 13, Faculte de Medecine, 8 rue du General Sarrail, 94010, Créteil, France.,Faculté de Médecine, Université Paris-Est, 94010, Créteil, France.,CNRS ERL 7000, 94010, Créteil, France
| | - Justine Bécaud
- Service d'Oto-Rhino-Laryngologie et de Chirurgie cervico-faciale, AP-HP, Hôpital Henri Mondor et Centre Hospitalier Intercommunal de Créteil, 94010, Créteil, France.,INSERM, U955, Equipe 13, Faculte de Medecine, 8 rue du General Sarrail, 94010, Créteil, France.,Faculté de Médecine, Université Paris-Est, 94010, Créteil, France.,CNRS ERL 7000, 94010, Créteil, France
| | - Jennifer Pasquier
- Nice Breast Institute, 06000, Nice, France.,Stem Cell & Microenvironment Laboratory, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Christelle Angely
- INSERM, U955, Equipe 13, Faculte de Medecine, 8 rue du General Sarrail, 94010, Créteil, France.,Faculté de Médecine, Université Paris-Est, 94010, Créteil, France.,CNRS ERL 7000, 94010, Créteil, France
| | - Mathieu Bottier
- INSERM, U955, Equipe 13, Faculte de Medecine, 8 rue du General Sarrail, 94010, Créteil, France.,Faculté de Médecine, Université Paris-Est, 94010, Créteil, France.,CNRS ERL 7000, 94010, Créteil, France
| | - Estelle Escudier
- Inserm U933, Paris, France.,Université Pierre et Marie Curie, Paris, France.,Service de génétique et d'embryologie médicale, AP-HP Hôpital Armand-Trousseau, Paris, France
| | - Daniel Isabey
- INSERM, U955, Equipe 13, Faculte de Medecine, 8 rue du General Sarrail, 94010, Créteil, France.,Faculté de Médecine, Université Paris-Est, 94010, Créteil, France.,CNRS ERL 7000, 94010, Créteil, France
| | - Marcel Filoche
- INSERM, U955, Equipe 13, Faculte de Medecine, 8 rue du General Sarrail, 94010, Créteil, France.,Faculté de Médecine, Université Paris-Est, 94010, Créteil, France.,CNRS ERL 7000, 94010, Créteil, France
| | - Bruno Louis
- INSERM, U955, Equipe 13, Faculte de Medecine, 8 rue du General Sarrail, 94010, Créteil, France.,Faculté de Médecine, Université Paris-Est, 94010, Créteil, France.,CNRS ERL 7000, 94010, Créteil, France
| | - Jean-François Papon
- INSERM, U955, Equipe 13, Faculte de Medecine, 8 rue du General Sarrail, 94010, Créteil, France.,CNRS ERL 7000, 94010, Créteil, France.,Service d'Oto-Rhino-Laryngologie et de Chirurgie cervico-faciale, AP-HP, Hôpital Bicêtre, 94270, Le Kremlin-Bicêtre, France.,Faculté de Médecine, Université Paris-Sud, 94275, Le Kremlin-Bicêtre, France
| | - André Coste
- Service d'Oto-Rhino-Laryngologie et de Chirurgie cervico-faciale, AP-HP, Hôpital Henri Mondor et Centre Hospitalier Intercommunal de Créteil, 94010, Créteil, France.,INSERM, U955, Equipe 13, Faculte de Medecine, 8 rue du General Sarrail, 94010, Créteil, France.,Faculté de Médecine, Université Paris-Est, 94010, Créteil, France.,CNRS ERL 7000, 94010, Créteil, France
| |
Collapse
|
21
|
Li J, Jiao J, Gao Y, Zhang Y, Zhang L. Association between methylation in nasal epithelial TSLP gene and chronic rhinosinusitis with nasal polyps. Allergy Asthma Clin Immunol 2019; 15:71. [PMID: 31768185 PMCID: PMC6873565 DOI: 10.1186/s13223-019-0389-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 11/12/2019] [Indexed: 12/31/2022] Open
Abstract
Background This study was performed to determine whether there was any association between abnormal DNA methylation of a thymic stromal lymphopoietin (TSLP) locus and pathogenesis of chronic rhinosinusitis (CRS). Methods A total of 48 CRS patients with nasal polyps (CRSwNP), 28 CRS patients without nasal polyps (CRSsNP) and 21 control subjects were enrolled into the study; and evaluated for serum total IgE level, olfactory score and nasal resistance. Samples were obtained from nasal polyps of CRSwNP patients, ethmoid mucosae of CRSsNP patients and inferior turbinate (IT) mucosa of control subjects during surgery, and used to isolate purified primary human nasal epithelial cells (HNECs). Genomic DNA was extracted from purified primary HNECs of each subject and DNA methylation ratios for a selected region of the TSLP gene were screened the using MassARRAY EpiTYPER. Results A total of 17 CpG units were analyzed; of which two CpG units (CpG3 and 22:23:24) had increased methylation ratios in the CRSwNP patients compared to the CRSsNP and control subjects after correction for false discovery rate (FDR) (Q < 0.1). The methylation ratios at both CpG3 and CpG22:23:24 units were positively correlated with olfactory score (r = 0.41, P = 0.0001; r = 0.25, P = 0.021) and unilateral nasal resistance at 75 Pa (r = 0.24, P = 0.04; r = 0.24, P = 0.036) and 150 Pa (r = 0.34, P = 0.004; r = 0.25, P = 0.031). Total nasal resistance at 75 Pa/150 Pa or serum total IgE levels were not correlated with the methylation ratios at either CpG unit. Conclusions Increased DNA methylation at the TSLP locus is likely to be associated with CRSwNP pathogenesis; however these findings need to be confirmed in larger multicentre group studies.
Collapse
Affiliation(s)
- Jingyun Li
- 1Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, 100730 China.,2Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, No. 17 HouGouHuTong, DongCheng District, Beijing, 100005 China
| | - Jian Jiao
- 1Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, 100730 China.,2Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, No. 17 HouGouHuTong, DongCheng District, Beijing, 100005 China
| | - Yunbo Gao
- 1Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, 100730 China.,2Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, No. 17 HouGouHuTong, DongCheng District, Beijing, 100005 China
| | - Yuan Zhang
- 1Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, 100730 China.,2Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, No. 17 HouGouHuTong, DongCheng District, Beijing, 100005 China.,3Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, 100176 China
| | - Luo Zhang
- 1Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, 100730 China.,2Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, No. 17 HouGouHuTong, DongCheng District, Beijing, 100005 China.,3Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, 100176 China
| |
Collapse
|
22
|
Peng Y, Zi XX, Tian TF, Lee B, Lum J, Tang SA, Tan KS, Qiu QH, Ye J, Shi L, Guan WJ, Andiappan AK, Wang DY. Whole-transcriptome sequencing reveals heightened inflammation and defective host defence responses in chronic rhinosinusitis with nasal polyps. Eur Respir J 2019; 54:13993003.00732-2019. [PMID: 31439685 DOI: 10.1183/13993003.00732-2019] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 08/08/2019] [Indexed: 12/11/2022]
Abstract
INTRODUCTION The pathways underlying chronic rhinosinusitis with nasal polyps (CRSwNP) are unclear. We conducted genome-wide gene expression analysis to determine pathways and candidate gene sets associated with CRSwNP. METHODS We performed whole-transcriptome RNA sequencing on 42 polyp (CRSwNP-NP) and 33 paired nonpolyp inferior turbinate (CRSwNP-IT) tissues from patients with CRSwNP and 28 inferior turbinate samples from non-CRS controls (CS-IT). We analysed the differentially expressed genes (DEGs) and the gene sets that were enriched in functional pathways. RESULTS Principal component-informed analysis revealed cilium function and immune regulation as the two main Gene Ontology (GO) categories differentiating CRSwNP patients from controls. We detected 6182 and 1592 DEGs between CRSwNP-NP versus CS-IT and between CRSwNP-NP versus CRSwNP-IT tissues, respectively. Atopy status did not have a major impact on gene expression in various tissues. GO analysis on these DEGs implicated extracellular matrix (ECM) disassembly, O-glycan processing, angiogenesis and host viral response in CRSwNP pathogenesis. Ingenuity Pathway Analysis identified significant enrichment of type 1 interferon signalling and axonal guidance canonical pathways, angiogenesis, and collagen and fibrotic changes in CRSwNP (CRSwNP-NP and CRSwNP-IT) tissues compared with CS-IT. Finally, gene set enrichment analysis implicated sets of genes co-regulated in processes associated with inflammatory response and aberrant cell differentiation in polyp formation. CONCLUSIONS Gene signatures involved in defective host defences (including cilia dysfunction and immune dysregulation), inflammation and abnormal metabolism of ECM are implicated in CRSwNP. Functional validation of these gene expression patterns will open opportunities for CRSwNP therapeutic interventions such as biologics and immunomodulators.
Collapse
Affiliation(s)
- Yang Peng
- Dept of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Dept of Otolaryngology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China.,State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China.,These authors contributed equally to this work
| | - Xiao-Xue Zi
- Dept of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Shandong Provincial ENT Hospital Affiliated to Shandong University, Shandong University, Jinan, China.,These authors contributed equally to this work
| | - Teng-Fei Tian
- Dept of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Dept of Otolaryngology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.,These authors contributed equally to this work
| | - Bernett Lee
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Josephine Lum
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore
| | - See Aik Tang
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Kai Sen Tan
- Dept of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Qian-Hui Qiu
- Dept of Otolaryngology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China.,Dept of Otolaryngology Head and Neck Surgery, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jing Ye
- Dept of Otolaryngology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Li Shi
- Shandong Provincial ENT Hospital Affiliated to Shandong University, Shandong University, Jinan, China
| | - Wei-Jie Guan
- Dept of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Anand Kumar Andiappan
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore
| | - De Yun Wang
- Dept of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
23
|
Zi XX, Guan WJ, Peng Y, Tan KS, Liu J, He TT, Ong YK, Thong M, Shi L, Wang DY. An Integrated Analysis of Radial Spoke Head and Outer Dynein Arm Protein Defects and Ciliogenesis Abnormality in Nasal Polyps. Front Genet 2019; 10:1083. [PMID: 31798623 PMCID: PMC6863926 DOI: 10.3389/fgene.2019.01083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 10/09/2019] [Indexed: 01/25/2023] Open
Abstract
Background: Nasal polyp (NP) is a chronic upper airway inflammatory disease that is frequently triggered by defective host-defense. However, the mechanisms underlying the impaired barrier function such as cilia-mediated mucociliary clearance remain poorly understood. Objective: To assess ciliary ultrastructural and ciliogenesis marker expression and the phenotypes of ciliated cells in NP. Methods: NP biopsy samples were obtained from 97 NP patients and inferior turbinate from 32 healthy controls. Immunofluorescence staining, quantitative polymerase chain reaction, and single-cell cytospin staining were performed. We classified the patterns of radial spoke head protein (RSPH) 1, 4A (RSPH4A), 9 (RSPH9), and dynein axonemal heavy chain 5 (DNAH5) localization. A semi-quantitative scoring system was developed to assess their expression patterns and associations with ciliogenesis markers [centrosomal protein 110 (CP110) and forkhead box j1 (FOXJ1)]. Results: Median scores of RSPH1, RSPH4A, RSPH9, and DNAH5 were significantly higher in NP than in healthy controls, particularly in eosinophilic NPs. Expression pattern scores of RSPH1, RSPH4A, RSPH9, and DNAH5 correlated positively with each other in both groups. In primary-cell specimens, abnormal expression patterns were significantly more common in NP. The total fluorescence intensity of CP110 and FOXJ1 was significantly higher in NPs and correlated positively with expression pattern scores of RSPH1, RSPH4A, RSPH9, and DNAH5. A trend towards lengthened cilia was observed in NP. Conclusion: In the chronic airway inflammatory milieu, the up-regulated ciliogenesis correlates with the abnormal expression of ciliary ultrastructural markers (i.e., DNAH5) in NP (particularly eosinophilic NP).
Collapse
Affiliation(s)
- Xiao-Xue Zi
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital Affiliated to Shandong University, Jinan, China.,Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Wei-Jie Guan
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yang Peng
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Kai Sen Tan
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jing Liu
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ting-Ting He
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yew-Kwang Ong
- Department of Otolaryngology-Head and Neck Surgery, National University Hospital System (NUHS), Singapore, Singapore
| | - Mark Thong
- Department of Otolaryngology-Head and Neck Surgery, National University Hospital System (NUHS), Singapore, Singapore
| | - Li Shi
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital Affiliated to Shandong University, Jinan, China
| | - De-Yun Wang
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
24
|
Li J, Jiao J, Wang M, Gao Y, Li Y, Wang Y, Zhang Y, Wang X, Zhang L. Hypomethylation of the IL8 promoter in nasal epithelial cells of patients with chronic rhinosinusitis with nasal polyps. J Allergy Clin Immunol 2019; 144:993-1003.e12. [PMID: 31330222 DOI: 10.1016/j.jaci.2019.06.042] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 06/11/2019] [Accepted: 06/19/2019] [Indexed: 01/08/2023]
Abstract
BACKGROUND IL-8 is an important chemokine implicated in the pathogenesis of chronic rhinosinusitis (CRS), but little is known about epigenetic regulation of IL8 in the pathogenesis of CRS. OBJECTIVE We sought to investigate the relationship between the DNA methylation level in the IL8 proximal promoter and CRS in Han Chinese subjects. METHODS Patients with chronic rhinosinusitis with nasal polyps (CRSwNP; n = 187), patients with chronic rhinosinusitis without nasal polyps (CRSsNP; n = 89), and control subjects (n = 57) were enrolled in 2 independent cohorts. Purified human nasal epithelial cells from each participant were assessed for percentage DNA methylation of CpG sites in the IL8 proximal promoter by using bisulfite pyrosequencing and for functional aspects of methylation status by using in vitro assays. RESULTS DNA methylation of CpG sites 1, 2, and 3, respectively, in the IL8 proximal promoter was significantly decreased in human nasal epithelial cells of patients with CRSwNP compared with that in patients with CRSsNP (P < .001) and control subjects (P < .001). Percentage of DNA methylation of the CpG3 site was correlated negatively with both tissue eosinophilic cationic protein (P < .01) and myeloperoxidase (P < .05) levels. IL-1β (P < .001) and TNF-α (P < .01) significantly increased IL8 expression accompanied by a reduction in methylation at the CpG3 site (P < .001). Electrophoretic mobility shift assays demonstrated that methylation status of CpG3 changed the binding of octamer-binding transcription factor 1 and nuclear factor κB. CONCLUSION Decreased DNA methylation of particularly CpG sites in the IL8 proximal promoter might play a role in the pathogenesis of CRSwNP.
Collapse
Affiliation(s)
- Jingyun Li
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Jian Jiao
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Ming Wang
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Yunbo Gao
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Ying Li
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Yang Wang
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Yuan Zhang
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China; Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, China.
| | - Xiangdong Wang
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China; Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, China.
| | - Luo Zhang
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China; Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
25
|
Nakamura R, Katsuno T, Tateya I, Omori K. Evaluation of Cilia Function in Rat Trachea Reconstructed Using Collagen Sponge Scaffold Seeded with Adipose Tissue-Derived Stem Cells. Anat Rec (Hoboken) 2019; 303:471-477. [PMID: 30809962 DOI: 10.1002/ar.24104] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 06/08/2018] [Accepted: 08/23/2018] [Indexed: 11/09/2022]
Abstract
The tracheal lumen is essential for conducting air to the lung alveoli and for voice production. However, patients with severe tracheal stenosis and malignant tumors invading the trachea often require tracheal resection. Recently, various reported tissue engineering methods for tracheal reconstruction show that regeneration of ciliated epithelium in the reconstructed areas, as well as preservation of the luminal structure is possible. However, only few studies report on the mucociliary transport function in reconstructed tracheae. We investigated mucociliary transport function within rat tracheal epithelium, reorganized after autologous adipose tissue-derived stem cell (ASC) transplantation. Rat ASCs were expanded in culture, and then seeded in a collagen sponge, which was physically supported with a polypropylene framework. The ASC-seeded collagen sponge was transplanted into the rat tracheal defect. We then examined the motility and transport function of cilia generated in the transplanted area using ciliary beat frequency (CBF) and microsphere movement analyses. Our data suggested that autologous ASC transplantation promoted ciliogenesis, consistent with previous reports. The CBF analysis revealed that motility of the cilia generated in the ASC group was comparable to that observed in the normal rat tracheal epithelium. Transport function in the ASC group was higher than that in the control group. These data suggested that autologous ASC transplantation increased ciliated cells in the reconstructed area without significantly disrupting cilia motility, thereby promoting transport function regeneration. Autologous ASC transplantation is expected to be beneficial in morphological and functional regeneration of tracheal epithelium. Anat Rec, 303:471-477, 2020. © 2019 American Association for Anatomy.
Collapse
Affiliation(s)
- Ryosuke Nakamura
- Department of Otolaryngology, Head and Neck Surgery, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Tatsuya Katsuno
- Department of Otolaryngology, Head and Neck Surgery, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Ichiro Tateya
- Department of Otolaryngology, Head and Neck Surgery, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Koichi Omori
- Department of Otolaryngology, Head and Neck Surgery, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| |
Collapse
|
26
|
Alekseenko SI, Skalny AV, Ajsuvakova OP, Skalnaya MG, Notova SV, Tinkov AA. Mucociliary transport as a link between chronic rhinosinusitis and trace element dysbalance. Med Hypotheses 2019; 127:5-10. [PMID: 31088648 DOI: 10.1016/j.mehy.2019.03.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/01/2019] [Accepted: 03/20/2019] [Indexed: 12/21/2022]
Abstract
Chronis rhinosinusitis is considered as a widespread public health issue with a prevalence of 10%. The disease significantly reduces quality of life and increases the risk of cardiovascular diseases as well as certain forms of cancer. Alteration of mucociliary clearance frequently observed in the patients and plays a significant role in disease pathogenesis. Certain studies have demonstrated that patients with chronic rhinosinusitis are characterized by significant reduction of essential trace elements and toxic metal overload. However, the particular mechanisms of the role of trace element dysbalance in chronic rhinosinusitis are unclear. We hypothesize that exposure to toxic trace elements (arsenic, nickel, cadmium) damages ciliary mucosal epithelium thus affecting mucociliary transport. In turn, altered mucociliary transport results in reduced removal of the inhaled metal-containing particles from nasal mucosa leading to their absorption and further aggravation of toxicity. Essential trace elements (zinc, selenium) play a significant role in regulation of mucociliary transport and immunity, thus their deficiency (either dietary or due to antagonism with toxic metals) may be associated with impaired functions and increased toxic metal toxicity. Therefore, a vicious circle involving metal accumulation and toxicity, essential element deficiency, impairment of mucociliary transport and metal particle removal, resulting in further accumulation of metals and aggravation of toxic effects is formed. The present hypothesis is supported by the findings on the impact of trace elements especially zinc and arsenic on mucociliary clearance, the role of mucociliary transport in heavy metal particles elimination from the airways, trace element dysbalance in chronic rhinosinusitis, as well as toxic and essential metal antagonism. The data from hypothesis testing and its verification may be used for development of therapeutic approach for management of chronic rhinosinusitis. Particularly, the use of essential elements (zinc, selenium) may reduce toxic metal toxicity thus destroying the vicious circle of heavy metal exposure, toxicity, alteration of mucociliary clearance, and aggravation of chronic rhinosinusitis. Essential element supplementation may be considered as a tool for management of chronic refractory rhinosinusitis. In addition, analysis of essential and toxic trace element status may provide an additional diagnostic approach to risk assessment of chronic rhinosinusitis in highly polluted environments.
Collapse
Affiliation(s)
- Svetlana I Alekseenko
- K. A. Raukhfuss Children's Municipal Multidisciplinary Clinical Center of High Medical Technologies, St. Petersburg, Russia; Mechnikov North-West State Medical University, St Petersburg, Russia
| | - Anatoly V Skalny
- Yaroslavl State University, Yaroslavl, Russia; Peoples' Friendship University of Russia (RUDN University), Moscow, Russia; I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Olga P Ajsuvakova
- Yaroslavl State University, Yaroslavl, Russia; Peoples' Friendship University of Russia (RUDN University), Moscow, Russia; I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Margarita G Skalnaya
- Peoples' Friendship University of Russia (RUDN University), Moscow, Russia; I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Svetlana V Notova
- Federal Research Centre of Biological Systems and Agro-technologies of the Russian Academy of Sciences, Orenburg, Russia; Orenburg State University, Orenburg, Russia
| | - Alexey A Tinkov
- Yaroslavl State University, Yaroslavl, Russia; Peoples' Friendship University of Russia (RUDN University), Moscow, Russia; I.M. Sechenov First Moscow State Medical University, Moscow, Russia.
| |
Collapse
|
27
|
Kato K, Song BH, Howe CL, Chang EH. A Comprehensive Systematic Review of the Association Between Airway Mucins and Chronic Rhinosinusitis. Am J Rhinol Allergy 2019; 33:433-448. [PMID: 30892914 DOI: 10.1177/1945892419837042] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Objective Airway mucins are the major constituents of mucus and one of the first lines of host defense against inhaled pathogens. However, aberrant expression of mucins is associated with mucus hypersecretion resulting in chronic nasal drainage, a common complaint from patients with chronic rhinosinusitis (CRS). Our goal in this systematic review was to determine (1) expression profiles, (2) regulatory mechanisms, and (3) the pathologic roles of mucins associated with CRS. Methods MEDLINE, Cochrane Library, Embase, Scopus, Web of Science, and ClinicalTrials.gov were searched for studies focused on the role of mucins in CRS. Quality was assessed using the Cochrane Risk of Bias tool. The full text articles selected were then categorized into 3 study groups: (1) clinical, (2) animal, and (3) in vitro cultures. Data regarding study design, population/setting, methods, and bias were extracted and synthesized. Results Our initial search generated 392 titles/abstracts. After the primary review, 111 articles underwent secondary review. The final review included 53 articles, including 34 articles (64%) in the clinical study group, 3 articles (6%) in the animal study group, and 16 articles (30%) in the in vitro study group. In total, aberrant expression of 8 mucins—6 secreted-mucins (MUC2, -5AC, -5B, -6, -7, and -8) and 2 membrane-bound mucins (MUC1 and -4)—were identified in CRS tissues compared to healthy controls. Mucin expression was associated with bacterial sinusitis, inflammatory markers, and the response to steroid therapy in patients with CRS with nasal polyposis. Conclusion There is a strong correlation between alterations in mucin expression profiles and CRS. This systematic review highlights the most recent literature on the role of mucins in CRS. The analysis of these studies is limited by the heterogeneity in study designs, relatively few numbers of clinical samples, and lack of mechanistic studies in animal models and in vitro cultures.
Collapse
Affiliation(s)
- Kosuke Kato
- 1 Department of Otolaryngology-Head and Neck Surgery, The University of Arizona College of Medicine, Tucson, Arizona
| | - Brian H Song
- 1 Department of Otolaryngology-Head and Neck Surgery, The University of Arizona College of Medicine, Tucson, Arizona
| | - Carol L Howe
- 2 Health Sciences Library, The University of Arizona College of Medicine, Tucson, Arizona
| | - Eugene H Chang
- 1 Department of Otolaryngology-Head and Neck Surgery, The University of Arizona College of Medicine, Tucson, Arizona
| |
Collapse
|
28
|
Zhang Y, Derycke L, Holtappels G, Wang XD, Zhang L, Bachert C, Zhang N. Th2 cytokines orchestrate the secretion of MUC5AC and MUC5B in IL-5-positive chronic rhinosinusitis with nasal polyps. Allergy 2019; 74:131-140. [PMID: 29802623 DOI: 10.1111/all.13489] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND Mucin over-secretion is a significant characteristic of chronic rhinosinusitis with nasal polyps (CRSwNP). This study aimed to investigate the relationship between Th2 cytokines and MUC5AC or MUC5B, and the mechanism of mucin over-secretion in the type-2 inflammatory endotype of CRSwNP. METHODS Main Th-cell cytokines, associated mediators, and mucins were determined in the homogenates of nasal polyp samples from 21 CRSwNP patients and inferior turbinate samples from 8 controls, by ELISA or UniCAP system. Secretion of MUC5AC and MUC5B was measured in the supernatants of IL-5, IL-4, or IL-13 primed nasal polyp fragments. Co-localization of MUC5AC, MUC5B, and IL-4 receptor α (IL-4Rα) in CRSwNP and controls was evaluated by immunohistochemistry. Gene expression of IL-4Rα in the samples was measured by real-time reverse transcription-polymerase chain reaction. RESULTS Baseline protein levels of the Th2-cytokines IL-4, IL-5, and IL-13, and mucins MUC5AC and MUC5B were significantly higher in the IL-5(+) CRSwNP group, compared to control and IL-5(-) CRSwNP groups. MUC5AC and MUC5B secretions were significantly increased in IL-4- or IL-13-primed, but not IL-5-primed fragments of nasal polyps. Immuno-stained serial sections demonstrated that IL-4Rα was widely expressed in the epithelium and submucosal glands in control and nasal polyp tissues. Gene expression of IL-4Rα was elevated in nasal polyp tissues, specifically in the IL-5(+) CRSwNP group. CONCLUSIONS In type-2 inflammatory nasal polyps, characterized by the tissue expression of IL-5, MUC5AC and MUC5B are overexpressed. Both IL-4 and IL-13 may upregulate mucin expression via IL-4Rα, which is also overexpressed in IL-5(+) CRSwNP.
Collapse
Affiliation(s)
- Y. Zhang
- Department of Otolaryngology, Head and Neck Surgery The Affiliated Yantai Yuhuangding Hospital of Qingdao University Yantai China
| | - L. Derycke
- Upper Airways Research Laboratory Department of Oto‐Rhino‐Laryngology Ghent University Hospital Ghent Belgium
| | - G. Holtappels
- Upper Airways Research Laboratory Department of Oto‐Rhino‐Laryngology Ghent University Hospital Ghent Belgium
| | - X. D. Wang
- Department of Otolaryngology Head and Neck Surgery Beijing Tongren Hospital Capital Medical University Beijing China
- Beijing Key Laboratory of Nasal Diseases Beijing Institute of Otolaryngology Beijing China
| | - L. Zhang
- Department of Otolaryngology Head and Neck Surgery Beijing Tongren Hospital Capital Medical University Beijing China
- Beijing Key Laboratory of Nasal Diseases Beijing Institute of Otolaryngology Beijing China
| | - C. Bachert
- Upper Airways Research Laboratory Department of Oto‐Rhino‐Laryngology Ghent University Hospital Ghent Belgium
| | - N. Zhang
- Upper Airways Research Laboratory Department of Oto‐Rhino‐Laryngology Ghent University Hospital Ghent Belgium
| |
Collapse
|
29
|
Heffler E, Malvezzi L, Boita M, Brussino L, De Virgilio A, Ferrando M, Puggioni F, Racca F, Stomeo N, Spriano G, Canonica GW. Immunological mechanisms underlying chronic rhinosinusitis with nasal polyps. Expert Rev Clin Immunol 2018; 14:731-737. [PMID: 30107759 DOI: 10.1080/1744666x.2018.1512407] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Chronic rhinosinusitis with nasal polyps (CRSwNP) is a common and quality-of-life impacting disorder, with an underlying immunological mechanism similar to other conditions such as eosinophilic asthma or atopic eczema. Areas covered: This review article summarizes the most recent evidence on the main immunological mechanisms involved in the pathogenesis and the perpetuation of CRSwNP, with a particular focus on the key role of epithelium-derived inflammation as a consequence of the interaction with the airborne environment. Expert commentary: The increase in knowledge of the immunology of CRSwNP leads to the development of therapeutical strategies based upon the use of biologic agents that, according to a personalized and precision medicine approach, will provide each single patient with the most suitable immunological treatment.
Collapse
Affiliation(s)
- Enrico Heffler
- a Personalized Medicine , Asthma and Allergy - Humanitas Research Hospital , Milan , Italy.,b Department of Biomedical Sciences , Humanitas University , Milan , Italy
| | - Luca Malvezzi
- c Department of Otorhinolaryngology , Humanitas Research Hospital , Milan , Italy
| | - Monica Boita
- d Allergy and Clinical Immunology , University of Torino , Torino , Italy
| | - Luisa Brussino
- d Allergy and Clinical Immunology , University of Torino , Torino , Italy
| | - Armando De Virgilio
- c Department of Otorhinolaryngology , Humanitas Research Hospital , Milan , Italy
| | - Matteo Ferrando
- e Allergy and Respiratory Diseases , University of Genova , Genova , Italy
| | - Francesca Puggioni
- a Personalized Medicine , Asthma and Allergy - Humanitas Research Hospital , Milan , Italy.,b Department of Biomedical Sciences , Humanitas University , Milan , Italy
| | - Francesca Racca
- a Personalized Medicine , Asthma and Allergy - Humanitas Research Hospital , Milan , Italy
| | - Niccolò Stomeo
- a Personalized Medicine , Asthma and Allergy - Humanitas Research Hospital , Milan , Italy.,b Department of Biomedical Sciences , Humanitas University , Milan , Italy
| | - Giuseppe Spriano
- c Department of Otorhinolaryngology , Humanitas Research Hospital , Milan , Italy
| | - Giorgio Walter Canonica
- a Personalized Medicine , Asthma and Allergy - Humanitas Research Hospital , Milan , Italy.,b Department of Biomedical Sciences , Humanitas University , Milan , Italy
| |
Collapse
|
30
|
Kim HJ, Nam YR, Nam JH. Flos Magnoliae Inhibits Chloride Secretion via ANO1 Inhibition in Calu-3 Cells. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2018; 46:1079-1092. [PMID: 29976084 DOI: 10.1142/s0192415x18500568] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Flos Magnoliae (FM, Chinese name: Xin-yi) is an oriental medicinal herb commonly used for symptomatic relief from allergic rhinitis, sinusitis, and headache, including in traditional Chinese and Korean medicine formulations. FM inhibits histamine release from mast cells and cytokine secretion from T cells. However, the mechanism of action of FM on the anoctamin-1 (ANO1) ion channel, which is responsible for nasal hypersecretion in allergic rhinitis, has not been elucidated. Therefore, in this study, we investigated the effect of a 30% ethanolic extract of FM (FMEtOH) and its chemical constituents on ANO1 activity. We used high-performance liquid chromatography analysis to identify five major chemical constituents of FMEtOH: vanillic acid, tiliroside, eudesmin, magnolin, and fargesin. Using a conventional whole-cell patch clamp method, we found that FMEtOH (30, 100, and 300[Formula: see text][Formula: see text]g/mL) and its chemical constituent tiliroside inhibited ANO1 activity in ANO1-overexpressing HEK293T cells. In addition, we found that the treatment of the airway epithelial cell line Calu-3 with interleukin 4 significantly increased Ca[Formula: see text] activated Cl[Formula: see text] current (ICaCC), but not cystic fibrosis transmembrane conductance regulator (CFTR)-mediated chloride current (ICFTR). FMEtOH and tiliroside specifically inhibited ICaCC. Thus, in this study, we identified a novel mechanism underlying the alleviation of allergic rhinitis by FMEtOH. Our results indicate that FMEtOH and its chemical constituent tiliroside are promising and potent agents for the prevention and treatment of allergic rhinitis.
Collapse
Affiliation(s)
- Hyun Jong Kim
- 1 Department of Physiology, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea.,2 Channelopathy Research Center (CRC), Dongguk University College of Medicine, Gyeonggi-do 10326, Republic of Korea
| | - Yu Ran Nam
- 1 Department of Physiology, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea.,2 Channelopathy Research Center (CRC), Dongguk University College of Medicine, Gyeonggi-do 10326, Republic of Korea
| | - Joo Hyun Nam
- 1 Department of Physiology, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea.,2 Channelopathy Research Center (CRC), Dongguk University College of Medicine, Gyeonggi-do 10326, Republic of Korea
| |
Collapse
|
31
|
De Rudder C, Calatayud Arroyo M, Lebeer S, Van de Wiele T. Modelling upper respiratory tract diseases: getting grips on host-microbe interactions in chronic rhinosinusitis using in vitro technologies. MICROBIOME 2018; 6:75. [PMID: 29690931 PMCID: PMC5913889 DOI: 10.1186/s40168-018-0462-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 04/17/2018] [Indexed: 05/27/2023]
Abstract
Chronic rhinosinusitis (CRS) is a chronic inflammation of the mucosa of the nose and paranasal sinuses affecting approximately 11% of the adult population in Europe. Inadequate immune responses, as well as a dysbiosis of the sinonasal microbiota, have been put forward as aetiological factors of the disease. However, despite the prevalence of this disease, there is no consensus on the aetiology and mechanisms of pathogenesis of CRS. Further research requires in vitro models mimicking the healthy and diseased host environment along with the sinonasal microbiota. This review aims to provide an overview of CRS model systems and proposes in vitro modelling strategies to conduct mechanistic research in an ecological framework on the sinonasal microbiota and its interactions with the host in health and CRS.
Collapse
Affiliation(s)
- Charlotte De Rudder
- Center for Microbial Ecology and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Marta Calatayud Arroyo
- Center for Microbial Ecology and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Sarah Lebeer
- Research Group of Environmental Ecology and Applied Microbiology, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Tom Van de Wiele
- Center for Microbial Ecology and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium.
| |
Collapse
|
32
|
Jiao J, Wang M, Duan S, Meng Y, Meng N, Li Y, Fan E, Akdis CA, Zhang L. Transforming growth factor-β1 decreases epithelial tight junction integrity in chronic rhinosinusitis with nasal polyps. J Allergy Clin Immunol 2017; 141:1160-1163.e9. [PMID: 29132958 DOI: 10.1016/j.jaci.2017.08.045] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 07/30/2017] [Accepted: 08/31/2017] [Indexed: 01/08/2023]
Affiliation(s)
- Jian Jiao
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Ming Wang
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Su Duan
- Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, China
| | - Yifan Meng
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
| | - Na Meng
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Ying Li
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Erzhong Fan
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Luo Zhang
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China; Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
33
|
Al-Sayed AA, Agu RU, Massoud E. Models for the study of nasal and sinus physiology in health and disease: A review of the literature. Laryngoscope Investig Otolaryngol 2017; 2:398-409. [PMID: 29299515 PMCID: PMC5743156 DOI: 10.1002/lio2.117] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 08/04/2017] [Accepted: 10/02/2017] [Indexed: 12/25/2022] Open
Abstract
Objective Chronic sinusitis is a very common yet poorly understood medical condition with significant morbidity. Hence, it remains an entity that is difficult to treat with unsatisfactory outcomes of current management options. This necessitates research into the etiology and pathophysiology of the condition to enhance our knowledge and the therapeutic options. Unfortunately, this kind of research is not always feasible on human subjects due to practical and ethical limitations. Therefore, an alternative model that simulates the disease had to be found in order to overcome these limitations. These models could either be in vivo or in vitro. The aim of our review is to summarize the research findings and key discoveries of both in vivo and in vitro models of chronic sinusitis that have enhanced our understanding of the condition today and have paved the way for the future research of tomorrow. Data Sources: PubMed literature review. Methods A review of the literature was conducted to identify the main successful in vivo and in vitro models for chronic sinusitis. Results Creating a successful model for chronic sinusitis is no easy task. Over the years, both in vivo animal models and in vitro tissue culture models were proposed, with each model having its accolades and pitfalls, with the ideal model remaining elusive to this day. However, advancing three‐dimensional cell culturing techniques seems to be a promising new way to find a more accurate model. Conclusion None of the current models is perfect for a thorough study of chronic sinusitis. However, three‐dimensional cell cultures have the potential to bridge the gap between in vivo and in vitro studies. Level of Evidence NA
Collapse
Affiliation(s)
- Ahmed A Al-Sayed
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine King Saud University Riyadh Kingdom of Saudi Arabia.,Division of Otolaryngology-Head & Neck Surgery, Department of Surgery Dalhousie University Halifax Nova Scotia Canada
| | - Remigius U Agu
- College of Pharmacy Dalhousie University, 5968 College Street, PO Box 1500 Halifax NS B3H4R2 Canada
| | - Emad Massoud
- Division of Otolaryngology-Head & Neck Surgery, Department of Surgery Dalhousie University Halifax Nova Scotia Canada
| |
Collapse
|
34
|
Kaneko Y, Kohno T, Kakuki T, Takano KI, Ogasawara N, Miyata R, Kikuchi S, Konno T, Ohkuni T, Yajima R, Kakiuchi A, Yokota SI, Himi T, Kojima T. The role of transcriptional factor p63 in regulation of epithelial barrier and ciliogenesis of human nasal epithelial cells. Sci Rep 2017; 7:10935. [PMID: 28883651 PMCID: PMC5589951 DOI: 10.1038/s41598-017-11481-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 08/24/2017] [Indexed: 12/14/2022] Open
Abstract
Disruption of nasal epithelial tight junctions (TJs) and ciliary dysfunction are found in patients with chronic rhinosinusitis (CRS) and nasal polyps (NPs), along with an increase of p63-positive basal cells and histone deacetylase (HDAC) activity. To investigate these mechanisms, primary cultures of HNECs transfected with human telomerase reverse transcriptase (hTERT-HNECs) were transfected with siRNAs of TAp63 and ΔNp63, treated with the NF-kB inhibitor curucumin and inhibitors of HDACs, and infected with respiratory syncytial virus (RSV). In TERT-HNECs, knockdown of p63 by siRNAs of TAp63 and ΔNp63, induced claudin-1 and -4 with Sp1 activity and enhanced barrier and fence functions. The knockdown of p63 enhanced the number of microvilli with the presence of cilia-like structures. Treatment with curcumin and inhibitors of HDACs, or infection with RSV prevented expression of p63 with an increase of claudin-4 and the number of microvilli. The knockdown or downregulation of p63 inhibited phospho-p38MAPK, and the p38MAPK inhibitor downregulated p63 and upregulated the barrier function. Thus, epithelial barrier and ciliogenesis of nasal epithelium are regulated in a p63-negative manner in normal and upper airway diseases. Understanding of the regulation of p63/p38 MAPK/NF-κB may be important in the therapy for airway allergy and its drug delivery system.
Collapse
Affiliation(s)
- Yakuto Kaneko
- Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan.,Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Takayuki Kohno
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Takuya Kakuki
- Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Ken-Ichi Takano
- Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Noriko Ogasawara
- Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan.,Department of Microbiology, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Ryo Miyata
- Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Shin Kikuchi
- Department of Anatomy, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Takumi Konno
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Tsuyoshi Ohkuni
- Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Ryoto Yajima
- Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan.,Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Akito Kakiuchi
- Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan.,Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Shin-Ichi Yokota
- Department of Microbiology, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Tetsuo Himi
- Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Takashi Kojima
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan.
| |
Collapse
|
35
|
Gong GQ, Ren FF, Wang YJ, Wan L, Chen S, Yuan J, Yang CM, Liu BH, Kong WJ. Expression of IL-17 and syndecan-1 in nasal polyps and their correlation with nasal polyps. ACTA ACUST UNITED AC 2017; 37:412-418. [DOI: 10.1007/s11596-017-1749-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 04/25/2017] [Indexed: 01/13/2023]
|
36
|
Yu L, Li N, Zhang J, Jiang Y. IL-13 regulates human nasal epithelial cell differentiation via H3K4me3 modification. J Inflamm Res 2017; 10:181-188. [PMID: 29386911 PMCID: PMC5767096 DOI: 10.2147/jir.s149156] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Introduction Epigenetic regulation has been shown to play an important role in the development of inflammatory diseases, including chronic rhinosinusitis and nasal polyps. The latter are characterized by epithelial mis-differentiation and infiltration of inflammatory cytokines. H3K4me3 has been shown to be involved in regulating lineage commitment. However, the underlying mechanisms, especially in human nasal epithelial cells (HNEpC), remain underexplored. The objective of this study was to investigate the role of H3K4me3 in HNEpC differentiation treated with the Th2 cytokine IL-13. Patients and methods The expression levels of mRNA and proteins were investigated using reverse transcription-polymerase chain reaction (RT-PCR) assays and Western blot in nasal polyp tissues and human nasal epithelial cells respectively. We measured these levels of H3K4me3, MLL1 and targeted genes compared with control subjects. Results We demonstrate that expression of H3K4me3 and its methyltransferase MLL1 was significantly upregulated in IL-13-treated HNEpC. This elevation was also observed in nasal polyps. Expression of cilia-related transcription factors FOXJ1 and DNAI2 decreased, while goblet cell-derived genes CLCA1 and MUC5a increased upon IL-13 treatment. Mechanistically, knockdown of MLL1 restored expression of these four genes induced by IL-13. Conclusion These findings suggest that H3K4me3 is a critical regulator in control of nasal epithelial cell differentiation. MLL1 may be a potential therapeutic target for nasal inflammatory diseases.
Collapse
Affiliation(s)
- Lei Yu
- Department of Otorhinolaryngology
| | - Na Li
- Department of Otorhinolaryngology
| | - Jisheng Zhang
- Key Laboratory of Otolaryngology-Head and Neck Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | | |
Collapse
|
37
|
Abstract
Chronic rhinosinusitis (CRS) is a common inflammatory disease that results in a significant decrease in patient quality of life and a large economic burden. However, the lack of population-based epidemiologic studies and robust model systems has made it difficult to fully elucidate the key inflammatory pathways that drive the chronic inflammatory responses observed in CRS. This review will highlight the wide variety of factors that likely contribute to CRS disease pathogenesis. Defects in the innate immune function of the airway epithelium, including decreases in barrier function, mucociliary clearance, and production of antimicrobial peptides, all likely play a role in the initial inflammatory response. Subsequent recruitment and activation of eosinophils, mast cells, and innate lymphoid cells (ILCs) further contributes to the chronic inflammatory response and directly activates adaptive immune cells, including T and B cells. However, development of new tools and model systems is still needed to further understand the chronicity of this inflammatory response and which specific factors are necessary or sufficient to drive CRS pathogenesis. Such studies will be critical for the development of improved therapeutic strategies aimed at treating this highly prevalent and costly disease.
Collapse
Affiliation(s)
- Kathryn E Hulse
- Division of Allergy-Immunology, Department of Medicine, Feinberg School of Medicine, Northwestern University, 240 E. Huron St., McGaw Rm M-302, Chicago, IL, 60611, USA.
| |
Collapse
|