1
|
Abril AG, Carrera M, Pazos M. Immunomodulatory effect of marine lipids on food allergy. Front Nutr 2023; 10:1254681. [PMID: 38035353 PMCID: PMC10683508 DOI: 10.3389/fnut.2023.1254681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/24/2023] [Indexed: 12/02/2023] Open
Abstract
Seafood is highly enriched in n-3 long-chain polyunsaturated fatty acids (n-3 LCPUFAs), particularly eicosapentaenoic acid (EPA, 20:5 n-3) and docosahexaenoic acid (DHA, 22:6 n-3), in contrast to the ultra-processed foods included in the modern Western diet that have high levels of n-6 linoleic acid (LA, 18:2 n-6), precursor for the pro-inflammatory n-6 arachidonic acid (ARA, 20:4 n-6). The capacity of marine lipids to reduce plasmatic triglycerides and blood pressure have been well-described. Moreover, recent studies have also raised evidence of a potential regulatory action of marine lipids on inflammation, the immune system, and food allergy (FA). FA is considered one of the main concerns to become life threatening in food safety. The prevalence of this emerging global problem has been increasing during the last two decades, especially in industrialized countries. About a 6-8% of young children and 2-4% of adults is estimated to be affected by FA. The main objective of the current study is to update the existing knowledge, but also the limitations, on the potential impact of marine lipids and their lipid mediators in regulating immunity, inflammation, and ultimately, food allergies. In particular, the focus is on the effect of marine lipids in modulating the key factors that control the sensitization and effector phases of FA, including gut microbiota (GM), inflammation, and immune system response. Results in animal models highlight the positive effect that consuming marine lipids, whether as a supplement or through seafood consumption, may have a relevant role in improving gut dysbiosis and inflammation, and preventing or reducing the severity of FA. However, more systematic studies in humans are needed to optimize such beneficial actions to each particular FA, age, and medical condition to reach an effective clinical application of marine lipids to improve FAs and their outcomes.
Collapse
Affiliation(s)
- Ana G. Abril
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, Spain
- Department of Food Technology, Institute of Marine Research (IM-CSIC), Spanish National Research Council (CSIC), Vigo, Spain
| | - Mónica Carrera
- Department of Food Technology, Institute of Marine Research (IM-CSIC), Spanish National Research Council (CSIC), Vigo, Spain
| | - Manuel Pazos
- Department of Food Technology, Institute of Marine Research (IM-CSIC), Spanish National Research Council (CSIC), Vigo, Spain
| |
Collapse
|
2
|
Dijk W, Villa C, Benedé S, Vassilopoulou E, Mafra I, Garrido-Arandia M, Martínez Blanco M, Bouchaud G, Hoppenbrouwers T, Bavaro SL, Giblin L, Knipping K, Castro AM, Delgado S, Costa J, Bastiaan-Net S. Critical features of an in vitro intestinal absorption model to study the first key aspects underlying food allergen sensitization. Compr Rev Food Sci Food Saf 2023; 22:971-1005. [PMID: 36546415 DOI: 10.1111/1541-4337.13097] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/23/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022]
Abstract
New types of protein sources will enter our diet in a near future, reinforcing the need for a straightforward in vitro (cell-based) screening model to test and predict the safety of these novel proteins, in particular their potential risk for de novo allergic sensitization. The Adverse Outcome Pathway (AOP) for allergen sensitization describes the current knowledge of key events underlying the complex cellular interactions that proceed allergic food sensitization. Currently, there is no consensus on the in vitro model to study the intestinal translocation of proteins as well as the epithelial activation, which comprise the first molecular initiation events (ME1-3) and the first key event of the AOP, respectively. As members of INFOGEST, we have highlighted several critical features that should be considered for any proposed in vitro model to study epithelial protein transport in the context of allergic sensitization. In addition, we defined which intestinal cell types are indispensable in a consensus model of the first steps of the AOP, and which cell types are optional or desired when there is the possibility to create a more complex cell model. A model of these first key aspects of the AOP can be used to study the gut epithelial translocation behavior of known hypo- and hyperallergens, juxtaposed to the transport behavior of novel proteins as a first screen for risk management of dietary proteins. Indeed, this disquisition forms a basis for the development of a future consensus model of the allergic sensitization cascade, comprising also the other key events (KE2-5).
Collapse
Affiliation(s)
| | - Caterina Villa
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Sara Benedé
- Department of Bioactivity and Food Analysis, Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM), Madrid, Spain
| | - Emilia Vassilopoulou
- Nutritional Sciences and Dietetics, International Hellenic University, Thessaloniki, Greece
| | - Isabel Mafra
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - María Garrido-Arandia
- Centro de Biotecnología y Genómica de Plantas (CBGP), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Universidad Politécnica de Madrid (UPM), Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Mónica Martínez Blanco
- Department of Bioactivity and Food Analysis, Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM), Madrid, Spain
- Division of Immunology, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Tamara Hoppenbrouwers
- Food Quality & Design, Wageningen University & Research, Wageningen, The Netherlands
- Wageningen Food and Biobased Research, Wageningen University & Research, Wageningen, The Netherlands
| | - Simona Lucia Bavaro
- Institute of Sciences of Food Production, National Research Council (Ispa-Cnr), Campus Universitario Ecotekne, Lecce, Italy
| | - Linda Giblin
- Teagasc Food Research Centre, Moorepark, Fermoy, Ireland
| | | | - Ana Maria Castro
- Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Spain
- Functionality and Ecology of Beneficial Microbes, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Susana Delgado
- Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Spain
- Functionality and Ecology of Beneficial Microbes, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Joana Costa
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Shanna Bastiaan-Net
- Wageningen Food and Biobased Research, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
3
|
Lewis SA, Peters B. T-cell epitope discovery and single-cell technologies to advance food allergy research. J Allergy Clin Immunol 2023; 151:15-20. [PMID: 36411114 PMCID: PMC9825656 DOI: 10.1016/j.jaci.2022.10.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/13/2022] [Accepted: 10/06/2022] [Indexed: 11/19/2022]
Abstract
There is good evidence for a role of T cells in food allergy, but there is a lack of mechanistic understanding and phenotypic markers of the specific T cells contributing to pathology. Recent technologic advancements have allowed for a new experimental paradigm where we can find and pull out rare antigen-specific T cells and characterize them at the single-cell level. However, studies in infectious disease and broader allergy have shown that these techniques benefit greatly from precisely defined T-cell epitopes. Food allergens have fewer epitopes currently available, but it is growing and promises to overcome this gap. With growing use of this experimental design, it will be important to unbiasedly map T-cell phenotypes across food allergy and look for commonalities and contrasts to other allergic and infectious diseases. Once a pathologic phenotype for T cells has been established, the frequencies of these cells can be monitored with simpler techniques that could be applied to the clinic and used in diagnosis, prediction of treatment responsiveness, and discovery of targets for new treatments.
Collapse
Affiliation(s)
- Sloan A Lewis
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, Calif
| | - Bjoern Peters
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, Calif; Department of Medicine, University of California San Diego, La Jolla, Calif.
| |
Collapse
|
4
|
Hu X, Fan R, Song W, Qing J, Yan X, Li Y, Duan Q, Li Y. Landscape of intestinal microbiota in patients with IgA nephropathy, IgA vasculitis and Kawasaki disease. Front Cell Infect Microbiol 2022; 12:1061629. [PMID: 36590596 PMCID: PMC9800820 DOI: 10.3389/fcimb.2022.1061629] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
Objective To explore the common differential flora of IgAN, Kawasaki disease and IgA vasculitis by screening and analyzing the differential intestinal flora between the three disease groups of IgAN, Kawasaki disease and IgA vasculitis and their healthy controls. Methods Papers on 16srRNA sequencing-related intestinal flora of IgAN, Kawasaki disease and IgA vasculitis were searched in databases, the literature was systematically collated and analysed, the original data was download from the relevant databases, and then the operational taxonomic unit and species classification analysis were performed. Besides, Alpha diversity analysis and Beta diversity analysis were performed to screen for IgAN, Kawasaki disease and I1gA vasculitis groups and finally compare the common intestinal differential flora among the three groups. Results Among the common differential flora screened, Lachnospiracea_incertae_sedis was lower in both the IgAN and Kawasaki disease groups than in the respective healthy controls; Coprococcus was low in the IgAN group but high in the IgA vasculitis group. Fusicatenibacter was lower in both the Kawasaki disease and IgA vasculitis groups than in their respective healthy controls, and Intestinibacter was low in the Kawasaki disease group, but its expression was high in the IgA vasculitis group. Conclusion The dysbiosis of the intestinal flora in the three groups of patients with IgAN, Kawasaki disease and IgA vasculitis, its effect on the immunity of the organism and its role in the development of each disease group remain unclear, and the presence of their common differential flora may further provide new ideas for the association of the pathogenesis of the three diseases.
Collapse
Affiliation(s)
- Xueli Hu
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ru Fan
- Department of Nephrology, Shanxi Provincial People’s Hospital (Fifth Hospital) of Shanxi Medical University, Taiyuan, China
| | - Wenzhu Song
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jianbo Qing
- Department of Nephrology, Shanxi Provincial People’s Hospital (Fifth Hospital) of Shanxi Medical University, Taiyuan, China
| | - Xiaoyan Yan
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yaheng Li
- Core Laboratory, Shanxi Provincial People’s Hospital (Fifth Hospital) of Shanxi Medical University, Taiyuan, China
| | - Qi Duan
- Core Laboratory, Shanxi Provincial People’s Hospital (Fifth Hospital) of Shanxi Medical University, Taiyuan, China
| | - Yafeng Li
- Department of Nephrology, Shanxi Provincial People’s Hospital (Fifth Hospital) of Shanxi Medical University, Taiyuan, China,Core Laboratory, Shanxi Provincial People’s Hospital (Fifth Hospital) of Shanxi Medical University, Taiyuan, China,Shanxi Provincial Key Laboratory of Kidney Disease, Taiyuan, China,Academy of Microbial Ecology, Shanxi Medical University, Taiyuan, China,*Correspondence: Yafeng Li,
| |
Collapse
|
5
|
Hussein H, Boeckxstaens GE. Immune-mediated food reactions in irritable bowel syndrome. Curr Opin Pharmacol 2022; 66:102285. [PMID: 36063569 DOI: 10.1016/j.coph.2022.102285] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/23/2022] [Accepted: 08/03/2022] [Indexed: 11/03/2022]
Abstract
Irritable bowel syndrome (IBS) is a chronic functional gastrointestinal disorder characterized by recurrent abdominal pain and an altered defecation pattern. Depending on the criteria used, it affects between 5 and 10% of the general population and has a serious impact on quality of life. Most patients with IBS show an induction or exacerbation of their symptoms, particularly abdominal pain, after eating certain foods. This raises the question of the role played by food in IBS pathophysiology. In this review, we describe the multiple risk factors of IBS, and we give an overview of the role of food as a trigger of IBS, distinguishing between immune and non-immune reactions to food. We finally highlight recent findings identifying an immune-mediated mechanism underlying food-induced abdominal pain in IBS.
Collapse
Affiliation(s)
- Hind Hussein
- KU Leuven Department of Chronic Diseases, Metabolism and Ageing, Leuven, Belgium; Translational Research Centre for Gastrointestinal Disorders, Center for Intestinal Neuroimmune Interaction, Leuven, Belgium
| | - Guy E Boeckxstaens
- KU Leuven Department of Chronic Diseases, Metabolism and Ageing, Leuven, Belgium; Translational Research Centre for Gastrointestinal Disorders, Center for Intestinal Neuroimmune Interaction, Leuven, Belgium.
| |
Collapse
|
6
|
Aguilera-Lizarraga J, Hussein H, Boeckxstaens GE. Immune activation in irritable bowel syndrome: what is the evidence? Nat Rev Immunol 2022; 22:674-686. [PMID: 35296814 DOI: 10.1038/s41577-022-00700-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2022] [Indexed: 12/15/2022]
Abstract
Irritable bowel syndrome (IBS) is a chronic functional gastrointestinal disorder that is characterized by abdominal pain and an altered defecation pattern. It affects between 5 and 20% of the general population and can seriously impact quality of life. The pathophysiology of IBS is rather complex and multifactorial including, for example, altered signalling by the gut-brain axis, dysbiosis, abnormal visceral pain signalling and intestinal immune activation. The latter has gained particular interest in recent years, with growing insight into the bidirectional communication between the nervous system and the immune system. In this Review, we detail the current evidence suggesting that immune activation contributes to the pathology seen in patients with IBS and discuss the potential mechanisms involved. Moreover, we describe how immune mediators, particularly those released by mast cells, can directly activate or sensitize pain-transmitting nerves, leading to increased pain signalling and abdominal pain. Finally, we discuss the potential of interventions targeting immune activation as a new therapeutic strategy for patients suffering from IBS.
Collapse
Affiliation(s)
- Javier Aguilera-Lizarraga
- Laboratory for Intestinal Neuroimmune Interactions, Translational Research Centre for Gastrointestinal Disorders, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Hind Hussein
- Laboratory for Intestinal Neuroimmune Interactions, Translational Research Centre for Gastrointestinal Disorders, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Guy E Boeckxstaens
- Laboratory for Intestinal Neuroimmune Interactions, Translational Research Centre for Gastrointestinal Disorders, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium.
| |
Collapse
|
7
|
Berzosa M, Nemeskalova A, Zúñiga-Ripa A, Salvador-Bescós M, Larrañeta E, Donnelly RF, Gamazo C, Irache JM. Immune Response after Skin Delivery of a Recombinant Heat-Labile Enterotoxin B Subunit of Enterotoxigenic Escherichia coli in Mice. Pharmaceutics 2022; 14:pharmaceutics14020239. [PMID: 35213971 PMCID: PMC8875158 DOI: 10.3390/pharmaceutics14020239] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/18/2022] [Accepted: 01/18/2022] [Indexed: 02/07/2023] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) infections have been identified as a major cause of acute diarrhoea in children in developing countries, associated with substantial morbidity and mortality rates. Additionally, ETEC remains the most common cause of acute diarrhea of international travellers to endemic areas. The heat-labile toxin (LT) is a major virulence factor of ETEC, with a significant correlation between the presence of antibodies against LT and protection in infected patients. In the present work, we constructed a recombinant LTB unit (rLTB) and studied the capacity of this toxoid incorporated in microneedles (rLTB-MN) to induce a specific immune response in mice. MN were prepared from aqueous blends of the polymer Gantrez AN® [poly (methyl vinyl ether-co-maleic anhydride)], which is not cytotoxic and has been shown to possess immunoadjuvant properties. The mechanical and dissolution properties of rLTB-MNs were evaluated in an in vitro Parafilm M® model and in mice and pig skin ex vivo models. The needle insertion ranged between 378 µm and 504 µm in Parafilm layers, and MNs fully dissolved within 15 min of application inside porcine skin. Moreover, female and male BALB/c mice were immunized through ear skin with one single dose of 5 μg·rLTB in MNs, eliciting significant fecal anti-LT IgA antibodies, higher in female than in male mice. Moreover, we observed an enhanced production of IL-17A by spleen cells in the immunized female mice, indicating a mucosal non-inflammatory and neutralizing mediated response. Further experiments will now be required to validate the protective capacity of this new rLTB-MN formulation against this deadly non-vaccine-preventable disease.
Collapse
Affiliation(s)
- Melibea Berzosa
- Department of Microbiology and Parasitology, Institute of Tropical Health, IDISNA, University of Navarra, 31008 Pamplona, Spain; (M.B.); (A.N.); (A.Z.-R.); (M.S.-B.)
| | - Alzbeta Nemeskalova
- Department of Microbiology and Parasitology, Institute of Tropical Health, IDISNA, University of Navarra, 31008 Pamplona, Spain; (M.B.); (A.N.); (A.Z.-R.); (M.S.-B.)
- Department of Analytical Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic
| | - Amaia Zúñiga-Ripa
- Department of Microbiology and Parasitology, Institute of Tropical Health, IDISNA, University of Navarra, 31008 Pamplona, Spain; (M.B.); (A.N.); (A.Z.-R.); (M.S.-B.)
| | - Miriam Salvador-Bescós
- Department of Microbiology and Parasitology, Institute of Tropical Health, IDISNA, University of Navarra, 31008 Pamplona, Spain; (M.B.); (A.N.); (A.Z.-R.); (M.S.-B.)
| | - Eneko Larrañeta
- Medical Biology Centre, School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (E.L.); (R.F.D.)
| | - Ryan F. Donnelly
- Medical Biology Centre, School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (E.L.); (R.F.D.)
| | - Carlos Gamazo
- Department of Microbiology and Parasitology, Institute of Tropical Health, IDISNA, University of Navarra, 31008 Pamplona, Spain; (M.B.); (A.N.); (A.Z.-R.); (M.S.-B.)
- Correspondence: (C.G.); (J.M.I.)
| | - Juan M. Irache
- Department of Pharmacy and Pharmaceutical Technology, University of Navarra, 31008 Pamplona, Spain
- Correspondence: (C.G.); (J.M.I.)
| |
Collapse
|
8
|
Memory and naïve gamma delta regulatory T-cell gene expression in the first 24-weeks of peanut oral immunotherapy. Clin Immunol 2021; 230:108820. [PMID: 34365017 DOI: 10.1016/j.clim.2021.108820] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/26/2021] [Accepted: 08/03/2021] [Indexed: 11/21/2022]
Abstract
BACKGROUND Peanut oral immunotherapy (POIT) has provided desensitization to peanut allergic individuals. Limited immunological evaluation exists during the first 24-weeks of POIT. OBJECTIVE Regulatory T-cells (Tregs) are antigen induced immunosuppressive T-cells important in establishing tolerance. Delineation of early immunologic changes contributing to the development of peanut desensitization would help clarify the mechanism of action in POIT. We performed single-cell RNA sequencing (scRNAseq) on Tregs in pediatric subjects undergoing POIT during the first 24-weeks of therapy to evaluate early immunological changes induced by POIT. METHODS PBMC samples from peanut allergic subjects between 5 and 12 years of age enrolled in a Phase 1/2a POIT study were collected and analyzed at 0, 6, and 24-weeks after POIT initiation and samples were compared to healthy non-peanut allergic controls. Tregs were enriched from PBMCs and scRNAseq analysis performed. Cell Ranger 3.1.0 (10× Genomics) was utilized to identify cell clusters and differentially expressed genes, and results were analyzed with Seurat suite version 3.0.0. RESULTS Gene analysis revealed 10 major clusters corresponding to different cell types observed to change during POIT when compared to the healthy, non-peanut-allergic state. scRNAseq analysis of Tregs revealed strong CD3G expression correlating with gdTregs. scRNAseq analysis of gdTregs revealed dynamic changes occurring within the first 6-weeks of treatment and cell frequencies of naïve and memory gdTregs at 24-weeks of treatment reducing to levels similar to healthy controls. Analysis of transcriptomic cell identity analysis using SingleR showed gene expression in gdTregs similar to healthy control after 24-weeks of POIT treatment. scRNAseq analysis revealed alterations in gene expression for memory and naïve gdTregs during this timeframe. Specifically, expression of OX40R (TNFRSF4), GITR (TNFRSF18), TGFB1, CTLA4, ISG20, CD69 were upregulated in memory gdTregs compared to naive gdTregs by 24-weeks of POIT, while IL7R and SELL were downregulated in memory gdTregs compared to naïve gdTregs. CONCLUSIONS There are specific expression profiles of peripheral naïve and mature gdTreg cells in peanut allergic patients undergoing POIT in the first 24-weeks of treatment implicating pathways involved in maintenance of immune homeostasis. gdTreg cells may contribute to the tolerogenic effect of POIT within the first 24-weeks of POIT treatment. These findings suggest that gdTregs cells may be an early marker of desensitization in subjects undergoing POIT.
Collapse
|
9
|
Ma H, Qiu Y, Yang H. Intestinal intraepithelial lymphocytes: Maintainers of intestinal immune tolerance and regulators of intestinal immunity. J Leukoc Biol 2020; 109:339-347. [PMID: 32678936 PMCID: PMC7891415 DOI: 10.1002/jlb.3ru0220-111] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/20/2020] [Indexed: 12/19/2022] Open
Abstract
Intestinal immune tolerance is essential for the immune system, as it prevents abnormal immune responses to large quantities of antigens from the intestinal lumen, such as antigens from commensal microorganisms, and avoids self‐injury. Intestinal intraepithelial lymphocytes (IELs), a special group of mucosal T lymphocytes, play a significant role in intestinal immune tolerance. To accomplish this, IELs exhibit a high threshold of activation and low reactivity to most antigens from the intestinal lumen. In particular, CD8αα+TCRαβ+ IELs, TCRγδ+ IELs, and CD4+CD8αα+ IELs show great potential for maintaining intestinal immune tolerance and regulating intestinal immunity. However, if the intestinal microenvironment becomes abnormal or intestinal tolerance is broken, IELs may be activated abnormally and become pathogenic.
Collapse
Affiliation(s)
- Haitao Ma
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Yuan Qiu
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Hua Yang
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
10
|
Castan L, Bøgh KL, Maryniak NZ, Epstein MM, Kazemi S, O'Mahony L, Bodinier M, Smit JJ, Bilsen JHM, Blanchard C, Głogowski R, Kozáková H, Schwarzer M, Noti M, Wit N, Bouchaud G, Bastiaan‐Net S. Overview of in vivo and ex vivo endpoints in murine food allergy models: Suitable for evaluation of the sensitizing capacity of novel proteins? Allergy 2020; 75:289-301. [PMID: 31187876 PMCID: PMC7065134 DOI: 10.1111/all.13943] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/12/2019] [Accepted: 05/31/2019] [Indexed: 02/06/2023]
Abstract
Significant efforts are necessary to introduce new dietary protein sources to feed a growing world population while maintaining food supply chain sustainability. Such a sustainable protein transition includes the use of highly modified proteins from side streams or the introduction of new protein sources that may lead to increased clinically relevant allergic sensitization. With food allergy being a major health problem of increasing concern, understanding the potential allergenicity of new or modified proteins is crucial to ensure public health protection. The best predictive risk assessment methods currently relied on are in vivo models, making the choice of endpoint parameters a key element in evaluating the sensitizing capacity of novel proteins. Here, we provide a comprehensive overview of the most frequently used in vivo and ex vivo endpoints in murine food allergy models, addressing their strengths and limitations for assessing sensitization risks. For optimal laboratory‐to‐laboratory reproducibility and reliable use of predictive tests for protein risk assessment, it is important that researchers maintain and apply the same relevant parameters and procedures. Thus, there is an urgent need for a consensus on key food allergy parameters to be applied in future food allergy research in synergy between both knowledge institutes and clinicians.
Collapse
Affiliation(s)
| | - Katrine L. Bøgh
- National Food Institute Technical University of Denmark Kgs. Lyngby Denmark
| | | | - Michelle M. Epstein
- Experimental Allergy Laboratory, Department of Dermatology Medical University of Vienna Vienna Austria
| | - Sahar Kazemi
- Experimental Allergy Laboratory, Department of Dermatology Medical University of Vienna Vienna Austria
| | - Liam O'Mahony
- Department of Medicine, APC Microbiome Ireland National University of Ireland Cork Ireland
- Department of Microbiology, APC Microbiome Ireland National University of Ireland Cork Ireland
| | | | - Joost J. Smit
- Institute for Risk Assessment Sciences Utrecht University Utrecht The Netherlands
| | | | | | - Robert Głogowski
- Department of Animal Breeding and Production Warsaw University of Life Sciences Warsaw Poland
| | - Hana Kozáková
- Institute of Microbiology Czech Academy of Sciences Nový Hrádek Czech Republic
| | - Martin Schwarzer
- Institute of Microbiology Czech Academy of Sciences Nový Hrádek Czech Republic
| | - Mario Noti
- Institute of Pathology University of Bern Bern Switzerland
| | - Nicole Wit
- Wageningen Food and Biobased Research Wageningen The Netherlands
| | | | | |
Collapse
|
11
|
Sampath V, Nadeau KC. Newly identified T cell subsets in mechanistic studies of food immunotherapy. J Clin Invest 2019; 129:1431-1440. [PMID: 30932909 PMCID: PMC6436868 DOI: 10.1172/jci124605] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Allergen-specific immunotherapy has shown promise for the treatment of food allergy and is currently being evaluated in clinical trials. Although immunotherapy can induce desensitization, the mechanisms underlying this process are not completely understood. Recent advances in high-throughput technologies along with concomitant advances in data analytics have enabled monitoring of cells at the single-cell level and increased the research focus on upstream cellular factors involved in the efficacy of immunotherapy, particularly the role of T cells. As our appreciation of different T cell subsets and their plasticity increases, the initial simplistic view that restoring Th1/Th2 balance by decreasing Th2 or increasing Th1 responses can ameliorate food allergy is being enhanced by a more complex model involving other T cell subsets, particularly Tregs. In this Review, we focus on the current understanding of T cell functions in food allergy, tolerance, and immunotherapy.
Collapse
Affiliation(s)
| | - Kari C. Nadeau
- Sean N. Parker Center for Allergy and Asthma Research and
- Division of Pulmonary and Critical Care Medicine, Stanford University, Stanford, California, USA
| |
Collapse
|
12
|
Kim YS, Kim MN, Lee KE, Hong JY, Oh MS, Kim SY, Kim KW, Sohn MH. Activated leucocyte cell adhesion molecule (ALCAM/CD166) regulates T cell responses in a murine model of food allergy. Clin Exp Immunol 2018; 192:151-164. [PMID: 29363753 DOI: 10.1111/cei.13104] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2018] [Indexed: 12/14/2022] Open
Abstract
Food allergy is a major public health problem. Studies have shown that long-term interactions between activated leucocyte cell adhesion molecule (ALCAM/CD166) on the surface of antigen-presenting cells, and CD6, a co-stimulatory molecule, influence immune responses. However, there are currently no studies on the functions of ALCAM in food allergy. Therefore, we aimed to identify the functions of ALCAM in ovalbumin (OVA)-induced food allergy using ALCAM-deficient mice. Wild-type (WT) and ALCAM-deficient (ALCAM-/- ) mice were sensitized intraperitoneally and with orally fed OVA. The mice were killed, and parameters related to food allergy and T helper type 2 (Th2) immune responses were analysed. ALCAM serum levels increased and mRNA expression decreased in OVA-challenged WT mice. Serum immunoglobulin (Ig)E levels, Th2 cytokine mRNA and histological injuries were higher in OVA-challenged WT mice than in control mice, and these were attenuated in ALCAM-/- mice. T cell proliferation of total cells, CD3+ CD4+ T cells and activated T cells in immune tissues were diminished in OVA-challenged ALCAM-/- mice. Proliferation of co-cultured T cells and dendritic cells (DCs) was decreased by the anti-CD6 antibody. In addition, WT mice sensitized by adoptive transfer of OVA-pulsed ALCAM-/- BM-derived DCs showed reduced immune responses. Lastly, serum ALCAM levels were higher in children with food allergy than in control subjects. In this study, serum levels of ALCAM were elevated in food allergy-induced WT mice and children with food allergy. Moreover, immune responses and T cell activation were attenuated in OVA-challenged ALCAM-/- mice. These results indicate that ALCAM regulates food allergy by affecting T cell activation.
Collapse
Affiliation(s)
- Y S Kim
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - M N Kim
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - K E Lee
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - J Y Hong
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - M S Oh
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - S Y Kim
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - K W Kim
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - M H Sohn
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
13
|
Remington B, Broekman HCH, Blom WM, Capt A, Crevel RWR, Dimitrov I, Faeste CK, Fernandez-Canton R, Giavi S, Houben GF, Glenn KC, Madsen CB, Kruizinga AK, Constable A. Approaches to assess IgE mediated allergy risks (sensitization and cross-reactivity) from new or modified dietary proteins. Food Chem Toxicol 2017; 112:97-107. [PMID: 29258956 DOI: 10.1016/j.fct.2017.12.025] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 11/03/2017] [Accepted: 12/15/2017] [Indexed: 11/16/2022]
Abstract
The development and introduction of new dietary protein sources has the potential to improve food supply sustainability. Understanding the potential allergenicity of these new or modified proteins is crucial to ensure protection of public health. Exposure to new proteins may result in de novo sensitization, with or without clinical allergy, or clinical reactions through cross-reactivity. In this paper we review the potential of current methodologies (in silico, in vitro degradation, in vitro IgE binding, animal models and clinical studies) to address these outcomes for risk assessment purposes for new proteins, and especially to identify and characterise the risk of sensitization for IgE mediated allergy from oral exposure. Existing tools and tests are capable of assessing potential crossreactivity. However, there are few possibilities to assess the hazard due to de novo sensitization. The only methods available are in vivo models, but many limitations exist to use them for assessing risk. We conclude that there is a need to understand which criteria adequately define allergenicity for risk assessment purposes, and from these criteria develop a more suitable battery of tests to distinguish between proteins of high and low allergenicity, which can then be applied to assess new proteins with unknown risks.
Collapse
Affiliation(s)
| | - H C H Broekman
- Dep. Dermatology/Allergology, University Medical Centre Utrecht (UMCU), P.O. Box 85500, The Netherlands
| | | | - A Capt
- Bayer SAS, Sophia Antipolis, France
| | - R W R Crevel
- Safety & Environmental Assurance Centre, Unilever, Bedford, UK
| | - I Dimitrov
- Faculty of Pharmacy, Medical University of Sofia, Sofia, 1000 Bulgaria
| | - C K Faeste
- Norwegian Veterinary Institute, Oslo, Norway
| | - R Fernandez-Canton
- Monsanto Europe S.A., Avenue de Tervuren 270-272, B-1150 Brussels, Belgium
| | - S Giavi
- Allergy Department, 2nd Paediatric Clinic, University of Athens, Athens, Greece
| | | | - K C Glenn
- Monsanto Company, 800 N. Lindbergh Boulevard, St. Louis, MO 63017, USA
| | - C B Madsen
- National Food Institute, Technical University of Denmark, Søborg, Denmark
| | | | - A Constable
- Nestec Ltd, P.O. Box 44, CH-1000 Lausanne 26, Switzerland
| |
Collapse
|
14
|
Howard J, Loizon S, Tyler CJ, Duluc D, Moser B, Mechain M, Duvignaud A, Malvy D, Troye-Blomberg M, Moreau JF, Eberl M, Mercereau-Puijalon O, Déchanet-Merville J, Behr C, Mamani-Matsuda M. The Antigen-Presenting Potential of Vγ9Vδ2 T Cells During Plasmodium falciparum Blood-Stage Infection. J Infect Dis 2017; 215:1569-1579. [PMID: 28368498 DOI: 10.1093/infdis/jix149] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 03/24/2017] [Indexed: 11/14/2022] Open
Abstract
During Plasmodium falciparum infections, erythrocyte-stage parasites inhibit dendritic cell maturation and function, compromising effective antimalarial adaptive immunity. Human Vγ9Vδ2 T cells can act in vitro as antigen-presenting cells (APCs) and induce αβ T-cell activation. However, the relevance of this activity in vivo has remained elusive. Because Vγ9Vδ2 T cells are activated during the early immune response against P. falciparum infection, we investigated whether they could contribute to the instruction of adaptive immune responses toward malaria parasites. In P. falciparum-infected patients, Vγ9Vδ2 T cells presented increased surface expression of APC-associated markers HLA-DR and CD86. In response to infected red blood cells in vitro, Vγ9Vδ2 T cells upregulated surface expression of HLA-DR, HLA-ABC, CD40, CD80, CD83, and CD86, induced naive αβ T-cell responses, and cross- presented soluble prototypical protein to antigen-specific CD8+ T cells. Our findings qualify Vγ9Vδ2 T cells as alternative APCs, which could be harnessed for therapeutic interventions and vaccine design.
Collapse
Affiliation(s)
| | | | | | | | - Bernhard Moser
- Division of Infection and Immunity, School of Medicine, and
| | - Matthieu Mechain
- Interdepartmental Section Tropical Medicine and Clinical International Health, Division of Infectious and Tropical Diseases, Department of Medicine, University Hospital Centre, Bordeaux.,INSERM 897 & Centre René-Labusquière (Tropical Medicine Branch), Faculty of Medicine, University of Bordeaux
| | - Alexandre Duvignaud
- Interdepartmental Section Tropical Medicine and Clinical International Health, Division of Infectious and Tropical Diseases, Department of Medicine, University Hospital Centre, Bordeaux.,INSERM 897 & Centre René-Labusquière (Tropical Medicine Branch), Faculty of Medicine, University of Bordeaux
| | - Denis Malvy
- Interdepartmental Section Tropical Medicine and Clinical International Health, Division of Infectious and Tropical Diseases, Department of Medicine, University Hospital Centre, Bordeaux.,INSERM 897 & Centre René-Labusquière (Tropical Medicine Branch), Faculty of Medicine, University of Bordeaux
| | - Marita Troye-Blomberg
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, Sweden
| | - Jean-Francois Moreau
- ImmunoConcEpt, CNRS UMR 5164, Bordeaux University.,CHU de Bordeaux, Immunology and Immunogenetic Laboratory, and
| | - Matthias Eberl
- Division of Infection and Immunity, School of Medicine, and.,Systems Immunity Research Institute, Cardiff University, United Kingdom ; and
| | | | | | | | | |
Collapse
|
15
|
Camps-Bossacoma M, Franch À, Pérez-Cano FJ, Castell M. Influence of Hesperidin on the Systemic and Intestinal Rat Immune Response. Nutrients 2017; 9:nu9060580. [PMID: 28587283 PMCID: PMC5490559 DOI: 10.3390/nu9060580] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 05/30/2017] [Accepted: 06/03/2017] [Indexed: 12/02/2022] Open
Abstract
Polyphenols, widely found in edible plants, influence the immune system. Nevertheless, the immunomodulatory properties of hesperidin, the predominant flavanone in oranges, have not been deeply studied. To establish the effect of hesperidin on in vivo immune response, two different conditions of immune system stimulations in Lewis rats were applied. In the first experimental design, rats were intraperitoneally immunized with ovalbumin (OVA) plus Bordetella pertussis toxin and alum as the adjuvants, and orally given 100 or 200 mg/kg hesperidin. In the second experimental design, rats were orally sensitized with OVA together with cholera toxin and fed a diet containing 0.5% hesperidin. In the first approach, hesperidin administration changed mesenteric lymph node lymphocyte (MLNL) composition, increasing the TCRαβ+ cell percentage and decreasing that of B lymphocytes. Furthermore, hesperidin enhanced the interferon (IFN)-γ production in stimulated MLNL. In the second approach, hesperidin intake modified the lymphocyte composition in the intestinal epithelium (TCRγδ+ cells) and the lamina propria (TCRγδ+, CD45RA+, natural killer, natural killer T, TCRαβ+CD4+, and TCRαβ+CD8+ cells). Nevertheless, hesperidin did not modify the level of serum anti-OVA antibodies in either study. In conclusion, hesperidin does possess immunoregulatory properties in the intestinal immune response, but this effect is not able to influence the synthesis of specific antibodies.
Collapse
Affiliation(s)
- Mariona Camps-Bossacoma
- Section of Physiology, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona (UB), 08028 Barcelona, Spain.
- Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain.
| | - Àngels Franch
- Section of Physiology, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona (UB), 08028 Barcelona, Spain.
- Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain.
| | - Francisco J Pérez-Cano
- Section of Physiology, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona (UB), 08028 Barcelona, Spain.
- Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain.
| | - Margarida Castell
- Section of Physiology, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona (UB), 08028 Barcelona, Spain.
- Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain.
| |
Collapse
|
16
|
Mycobacterium avium Subsp. paratuberculosis Induces Specific IgE Production in Japanese People with Allergies. Int J Inflam 2017; 2017:7959154. [PMID: 28523203 PMCID: PMC5421096 DOI: 10.1155/2017/7959154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 04/02/2017] [Indexed: 12/16/2022] Open
Abstract
Background. The prevalence of allergies is steadily increasing worldwide; however, the pathogenesis is still unclear. We hypothesized that Mycobacterium avium subsp. paratuberculosis (MAP) may contribute to allergy development. This organism can be present in dairy foods, it can elicit an immunomodulatory switch from a Th1 to a Th2 response, and it has been speculated that it is linked to several human autoimmune diseases. To determine the contribution, sera from 99 individuals with various atopic disorders and 45 healthy nonallergic controls were assessed for total IgE levels and successively for MAP-specific IgE by ELISA. Results. The mean total serum IgE level in allergic patients was 256 ± 235 IU/mL, and in the healthy controls it was 62 ± 44 IU/mL (AUC = 0.88; p < 0.0001). Among the patient groups, 50 of the 99 subjects had increased IgE total level ≥ 150 IU/mL, while 49 subjects had IgE ≤ 150 IU/mL (mean level: 407 ± 256 IU/mL versus 106 ± 16 IU/mL; p < 0.0001). Additionally, 6 out of 50 subjects (12%) with IgE ≥ 150 IU/mL and none (0%) with IgE ≤ 150 IU/mL were positive for specific MAP IgE (AUC = 0.63; p = 0.03). Conclusion. The present study revealed that MAP has the ability to induce specific IgE and might contribute to the induction of allergic inflammation in genetically predisposed individuals.
Collapse
|
17
|
Biljes D, Hammerschmidt-Kamper C, Merches K, Esser C. The aryl hydrocarbon receptor in T cells contributes to sustaining oral tolerance against ovalbumin in a mouse model. EXCLI JOURNAL 2017; 16:291-301. [PMID: 30233276 PMCID: PMC6141817 DOI: 10.17179/excli2017-168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 03/04/2017] [Indexed: 12/15/2022]
Abstract
Oral tolerance (OT) towards antigens encountered in the gut is a vital immune function of gut immunity. Experimental models can demonstrate OT efficacy by feeding of a protein followed by peripheral immunization and measuring the specific antibody titer. We had previously shown that exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a xenobiotic high-affinity aryl hydrocarbon receptor (AhR)-ligand, destabilized OT against ovalbumin (OVA) in mice. AhR is involved in the development, differentiation and function of immune cells, and highly expressed in gut epithelial cells and gut immune cells. We here used AhR-deficient mice to study the role of AhR in OT further. We show that complete AhR-deficiency undermines the stability of oral tolerance against OVA upon multiple immunizations, despite no renewed oral encounter with the antigen. This OT destabilization is accompanied by significant changes in IL10 and TGFβ RNA in the gut tissue. Using conditional AhR-deficient mouse lines, we identify T cells as the major responsible immune cell type in this context. Our findings add to knowledge that lack of AhR signaling in the gut impairs important gut immune functions.
Collapse
Affiliation(s)
- Daniel Biljes
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, D-40225 Düsseldorf
| | | | - Katja Merches
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, D-40225 Düsseldorf
| | - Charlotte Esser
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, D-40225 Düsseldorf
| |
Collapse
|
18
|
Abstract
Food allergy is a pathological, potentially deadly, immune reaction triggered by normally innocuous food protein antigens. The prevalence of food allergies is rising and the standard of care is not optimal, consisting of food-allergen avoidance and treatment of allergen-induced systemic reactions with adrenaline. Thus, accurate diagnosis, prevention and treatment are pressing needs, research into which has been catalysed by technological advances that are enabling a mechanistic understanding of food allergy at the cellular and molecular levels. We discuss the diagnosis and treatment of IgE-mediated food allergy in the context of the immune mechanisms associated with healthy tolerance to common foods, the inflammatory response underlying most food allergies, and immunotherapy-induced desensitization. We highlight promising research advances, therapeutic innovations and the challenges that remain.
Collapse
Affiliation(s)
- Wong Yu
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Stanford University
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, California 94305, USA
| | - Deborah M Hussey Freeland
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Stanford University
| | - Kari C Nadeau
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Stanford University
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
19
|
Bol-Schoenmakers M, Braber S, Akbari P, de Graaff P, van Roest M, Kruijssen L, Smit JJ, van Esch BCAM, Jeurink PV, Garssen J, Fink-Gremmels J, Pieters RHH. The mycotoxin deoxynivalenol facilitates allergic sensitization to whey in mice. Mucosal Immunol 2016; 9:1477-1486. [PMID: 26883726 DOI: 10.1038/mi.2016.13] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 01/13/2016] [Indexed: 02/04/2023]
Abstract
Intestinal epithelial stress or damage may contribute to allergic sensitization against certain food antigens. Hence, the present study investigated whether impairment of intestinal barrier integrity by the mycotoxin deoxynivalenol (DON) contributes to the development of whey-induced food allergy in a murine model. C3H/HeOuJ mice, orally exposed to DON plus whey once a week for 5 consecutive weeks, showed whey-specific IgG1 and IgE in serum and an acute allergic skin response upon intradermal whey challenge, although early initiating mechanisms of sensitization in the intestine appeared to be different compared with the widely used mucosal adjuvant cholera toxin (CT). Notably, DON exposure modulated tight-junction mRNA and protein levels, and caused an early increase in IL-33, whereas CT exposure affected intestinal γδ T cells. On the other hand, both DON- and CT-sensitized mice induced a time-dependent increase in the soluble IL-33 receptor ST2 (IL-1R1) in serum, and enhanced local innate lymphoid cells type 2 cell numbers. Together, these results demonstrate that DON facilitates allergic sensitization to food proteins and that development of sensitization can be induced by different molecular mechanisms and local immune responses. Our data illustrate the possible contribution of food contaminants in allergic sensitization in humans.
Collapse
Affiliation(s)
- M Bol-Schoenmakers
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - S Braber
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - P Akbari
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands.,Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - P de Graaff
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - M van Roest
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - L Kruijssen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - J J Smit
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - B C A M van Esch
- Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.,Nutricia Research, Utrecht, The Netherlands
| | - P V Jeurink
- Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.,Nutricia Research, Utrecht, The Netherlands
| | - J Garssen
- Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.,Nutricia Research, Utrecht, The Netherlands
| | - J Fink-Gremmels
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - R H H Pieters
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
20
|
Tafalla C, Leal E, Yamaguchi T, Fischer U. T cell immunity in the teleost digestive tract. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 64:167-177. [PMID: 26905634 DOI: 10.1016/j.dci.2016.02.019] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 02/10/2016] [Accepted: 02/16/2016] [Indexed: 06/05/2023]
Abstract
Fish (along with cyclostomes) constitute the most ancient animal group in which an acquired immune system is present. As in higher vertebrates, both B and T lymphocytes cooperate in implementing an adequate response. Although there is still a debate on whether fish possess a true gut associated lymphoid tissue (GALT), the presence of diffuse B and T lymphocytes throughout all mucosal surfaces has been demonstrated in a wide variety of fish species. The lack of antibodies against T lymphocyte markers has hampered the performance of functional assays in both systemic and mucosal compartments. However, most components associated with T lymphocyte function have been identified in fish through extensive genomic research, suggesting similar functionalities for fish and mammalian T lymphocytes. Thus, the aim of this review is to briefly summarize what is known in teleost concerning the characteristics and functionalities of the different T cell subsets, to then focus on what is known to date regarding their presence and role in the gastrointestinal tract, through either direct functional assays or indirectly by conclusions drawn from transcriptomic analysis.
Collapse
Affiliation(s)
- Carolina Tafalla
- Centro de Investigación en Sanidad Animal (CISA-INIA), Valdeolmos, Madrid, Spain.
| | - Esther Leal
- Centro de Investigación en Sanidad Animal (CISA-INIA), Valdeolmos, Madrid, Spain
| | - Takuya Yamaguchi
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Uwe Fischer
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| |
Collapse
|
21
|
Bøgh KL, van Bilsen J, Głogowski R, López-Expósito I, Bouchaud G, Blanchard C, Bodinier M, Smit J, Pieters R, Bastiaan-Net S, de Wit N, Untersmayr E, Adel-Patient K, Knippels L, Epstein MM, Noti M, Nygaard UC, Kimber I, Verhoeckx K, O'Mahony L. Current challenges facing the assessment of the allergenic capacity of food allergens in animal models. Clin Transl Allergy 2016; 6:21. [PMID: 27313841 PMCID: PMC4910256 DOI: 10.1186/s13601-016-0110-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 05/09/2016] [Indexed: 01/16/2023] Open
Abstract
Food allergy is a major health problem of increasing concern. The insufficiency of protein sources for human nutrition in a world with a growing population is also a significant problem. The introduction of new protein sources into the diet, such as newly developed innovative foods or foods produced using new technologies and production processes, insects, algae, duckweed, or agricultural products from third countries, creates the opportunity for development of new food allergies, and this in turn has driven the need to develop test methods capable of characterizing the allergenic potential of novel food proteins. There is no doubt that robust and reliable animal models for the identification and characterization of food allergens would be valuable tools for safety assessment. However, although various animal models have been proposed for this purpose, to date, none have been formally validated as predictive and none are currently suitable to test the allergenic potential of new foods. Here, the design of various animal models are reviewed, including among others considerations of species and strain, diet, route of administration, dose and formulation of the test protein, relevant controls and endpoints measured.
Collapse
Affiliation(s)
| | | | | | - Iván López-Expósito
- Department of Bioactivity and Food Analysis, Institute for Food Science Research (CIAL) (CSIC-UAM), Madrid, Spain
| | | | | | | | - Joost Smit
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Raymond Pieters
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Shanna Bastiaan-Net
- Food and Biobased Research, Wageningen University and Research Centre, Wageningen, The Netherlands
| | - Nicole de Wit
- Food and Biobased Research, Wageningen University and Research Centre, Wageningen, The Netherlands
| | - Eva Untersmayr
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Karine Adel-Patient
- UMR-INRA-CEA, Service de Pharmacologie et d'Immunoanalyse, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Leon Knippels
- Danone Nutricia Research, Utrecht, The Netherlands ; Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Michelle M Epstein
- Experimental Allergy Laboratory, DIAID, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Mario Noti
- Institute of Pathology, University of Bern, Bern, Switzerland
| | | | - Ian Kimber
- University of Manchester, Manchester, UK
| | | | - Liam O'Mahony
- Swiss Institute of Allergy and Asthma Research, University of Zürich, Obere Strasse 22, 7270 Davos Platz, Switzerland
| |
Collapse
|
22
|
Gamma/delta intraepithelial lymphocytes in the mouse small intestine. Anat Sci Int 2016; 91:301-12. [PMID: 27056578 DOI: 10.1007/s12565-016-0341-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 03/18/2016] [Indexed: 12/30/2022]
Abstract
Although many studies of intraepithelial lymphocytes (IELs) have been reported, most of them have focused on αβ-IELs; little attention has been paid to γδ-IELs. The function of γδ-IELs remains largely unclear. In this article, we briefly review a number of reports on γδ-IELs, especially those in the small intestine, along with our recent studies. We found that γδ-IELs are the most abundant (comprising >70 % of the) IELs in the duodenum and the jejunum, implying that it is absolutely necessary to investigate the function(s) of γδ-IELs when attempting to delineate the in vivo defense system of the small intestine. Intraperitoneal injection of anti-CD3 mAb stimulated the γδ-IELs and caused rapid degranulation of them. Granzyme B released from their granules induced DNA fragmentation of duodenal and jejunal epithelial cells (paracrine) and of the IELs themselves (autocrine). However, perforin (Pfn) was not detected, and DNA fragmentation was induced even in Pfn-knockout mice; our system was therefore found to present a novel type of in vivo Pfn-independent DNA fragmentation. We can therefore consider γδ-IELs to be a novel type of large granular lymphocyte without Pfn. Fragmented DNA was repaired in the cells, indicating that DNA fragmentation alone cannot be regarded as an unambiguous marker of cell death or apoptosis. Finally, since the response was so rapid and achieved without the need for accessory cells, it seems that γδ-IELs respond readily to various stimuli, are activated only once, and die 2-3 days after activation in situ without leaving their site. Taken together, these results suggest that γδ-IELs are not involved in the recognition of specific antigen(s) and are not involved in the resulting specific killing or exclusion of the relevant antigen(s).
Collapse
|
23
|
Costa RA, Matos LBO, Cantaruti TA, de Souza KS, Vaz NM, Carvalho CR. Systemic effects of oral tolerance reduce the cutaneous scarring. Immunobiology 2015; 221:475-85. [PMID: 26652243 DOI: 10.1016/j.imbio.2015.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Revised: 11/06/2015] [Accepted: 11/07/2015] [Indexed: 02/06/2023]
Abstract
BACKGROUND Immunological tolerance refer to the inhibition of specific immune responsiveness and the ingestion of proteins previous to immunization is a reliable method to induce (oral) tolerance. Parenteral exposure to tolerated antigens, in adjuvant, trigger indirect and systemic effects that inhibits concomitant immune responses to other unrelated antigens and also decrease unrelated inflammatory responses. Interesting, intraperitoneal (i.p.) exposure to orally-tolerated proteins soon before an incisional linear skin wound improves the healing by primary intention in mice. An important clinical and surgical objective is to identify strategies to improve wound healing and reduce scarring. OBJECTIVE To evaluate whether i.p. injection of an orally-tolerated protein improves wound healing by secondary intention and reduce scarring of full-thickness excisional skin injury. METHODS C57Bl/6 mice were turned tolerant to ovalbumin (OVA) by drinking a solution containing OVA; seven days later, they received an i.p. injection of OVA plus Al(OH)3 adjuvant immediately before two full-thickness excisional skin wounds, under anesthesia. The wound healing process was evaluated macro and microscopically after H&E, toluidine blue and Gomori's Trichrome staining. The presence of granulocytes, macrophages, miofibroblasts, fibronectin, collagen I and collagen III was investigated by immunofluorescence and the levels of cytokines by flow cytometry or ELISA. Mice not tolerant to OVA were included as controls. RESULTS The i.p. injection of OVA+Al(OH)3 in mice orally tolerant to OVA reduced the subsequent inflammatory response in the wound bed and the cutaneous scarring. There was a change in the pattern of collagen deposition making it more similar to the pattern observed in intact skin. In tolerant mice, mast cells and granulocytes (Ly-6C/G+), were reduced, while lymphocytes (CD3+) were increased in the wound bed. Time course analysis of Th1/Th2/Th17 cytokines and growth factors showed slightly differences between tolerant and control groups. CONCLUSION Parenteral injection of an orally-tolerated protein has systemic consequences that impair the inflammatory response triggered by skin injury and reduce the cutaneous scarring.
Collapse
Affiliation(s)
- Raquel Alves Costa
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Pampulha, Belo Horizonte, MG CEP: 31270-901, Brazil
| | - Liana Biajoli Otoni Matos
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Pampulha, Belo Horizonte, MG CEP: 31270-901, Brazil
| | - Thiago Anselmo Cantaruti
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Pampulha, Belo Horizonte, MG CEP: 31270-901, Brazil
| | - Kênia Soares de Souza
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Pampulha, Belo Horizonte, MG CEP: 31270-901, Brazil
| | - Nelson Monteiro Vaz
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Pampulha, Belo Horizonte, MG CEP: 31270-901, Brazil
| | - Cláudia Rocha Carvalho
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Pampulha, Belo Horizonte, MG CEP: 31270-901, Brazil.
| |
Collapse
|