1
|
Rubino V, Carriero F, Palatucci AT, Giovazzino A, Salemi F, Carrano R, Sabbatini M, Ruggiero G, Terrazzano G. T R3-56 and Treg Regulatory T Cell Subsets as Potential Indicators of Graft Tolerance Control in Kidney Transplant Recipients. Int J Mol Sci 2024; 25:10610. [PMID: 39408939 PMCID: PMC11477056 DOI: 10.3390/ijms251910610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/24/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Identification of early signatures of immune rejection represents a key challenge in the clinical management of kidney transplant. To address such an issue, we enrolled 53 kidney transplant recipients without signs of graft rejection, no infectious episodes and no change in the immunosuppressive regimen in the last 6 months. An extensive immune profile revealed increased activation of the T cells, a decreased amount and growth ability of the Treg and a higher level of the TR3-56 regulatory T cell subset, described by us as involved in the preferential control of cytotoxic T lymphocytes. In renal transplant recipients, the high level of the TR3-56 cells associates with a reduction in both the amount and the growth ability of the Treg. Moreover, when the transplanted subjects were categorised according to their stable or unstable disease status, as defined by changes in serum creatinine ≥0.2 mg/dL in two consecutive detections, a higher TR3-56 level and defective Treg growth ability were observed to characterise patients with unstable graft control. Further studies are required to substantiate the hypothesis that immune profiling, including TR3-56 evaluation, might represent a valuable diagnostic tool to identify patients at risk of developing significant anti-donor allo-immune responses.
Collapse
Affiliation(s)
- Valentina Rubino
- Dipartimento di Scienze Mediche Traslazionali, Università di Napoli “Federico II”, 80131 Napoli, Italy; (V.R.); (A.G.)
| | - Flavia Carriero
- Dipartimento di Scienze Della Salute, Università Della Basilicata, 85100 Potenza, Italy; (F.C.); (A.T.P.); (G.T.)
| | - Anna Teresa Palatucci
- Dipartimento di Scienze Della Salute, Università Della Basilicata, 85100 Potenza, Italy; (F.C.); (A.T.P.); (G.T.)
| | - Angela Giovazzino
- Dipartimento di Scienze Mediche Traslazionali, Università di Napoli “Federico II”, 80131 Napoli, Italy; (V.R.); (A.G.)
| | - Fabrizio Salemi
- Percorso Clinico Assistenziale in Nefrologia e Trapianto Renale, Azienda Ospedaliera Universitaria “Federico II”, 80131 Napoli, Italy; (F.S.); (R.C.)
| | - Rosa Carrano
- Percorso Clinico Assistenziale in Nefrologia e Trapianto Renale, Azienda Ospedaliera Universitaria “Federico II”, 80131 Napoli, Italy; (F.S.); (R.C.)
| | - Massimo Sabbatini
- Dipartimento di Sanità Pubblica, Sezione di Nefrologia, Università di Napoli “Federico II”, 80131 Napoli, Italy;
| | - Giuseppina Ruggiero
- Dipartimento di Scienze Mediche Traslazionali, Università di Napoli “Federico II”, 80131 Napoli, Italy; (V.R.); (A.G.)
| | - Giuseppe Terrazzano
- Dipartimento di Scienze Della Salute, Università Della Basilicata, 85100 Potenza, Italy; (F.C.); (A.T.P.); (G.T.)
| |
Collapse
|
2
|
Martin J, Hollowood Z, Chorlton J, Dyer C, Marelli-Berg F. Modulating regulatory T cell migration in the treatment of autoimmunity and autoinflammation. Curr Opin Pharmacol 2024; 77:102466. [PMID: 38906084 DOI: 10.1016/j.coph.2024.102466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 06/23/2024]
Abstract
Treatment of autoimmunity and autoinflammation with regulatory T cells has received much attention in the last twenty years. Despite the well-documented clinical benefit of Treg therapy, a large-scale application has proven elusive, mainly due to the extensive culture facilities required and associated costs. A possible way to overcome these hurdles in part is to target Treg migration to inflammatory sites using a small molecule. Here we review recent advances in this strategy and introduce the new concept of pharmacologically enhanced delivery of endogenous Tregs to control inflammation, which has been recently validated in humans.
Collapse
Affiliation(s)
- John Martin
- Division of Medicine, University College London, London, WC1E 6JF, UK; St George Street Capital, London, EC4R 1BE, UK.
| | | | | | - Carlene Dyer
- William Harvey Research Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Federica Marelli-Berg
- William Harvey Research Institute, Queen Mary University of London, London, EC1M 6BQ, UK.
| |
Collapse
|
3
|
Bes-Berlandier H, Coiffard B, Bermudez J, Demazes-Dufeu N, Coltey B, Boschi C, Colson P, Hraiech S, Reynaud-Gaubert M, Cassir N. Management of immunosuppression in lung transplant recipients and COVID-19 outcomes: an observational retrospective cohort-study. BMC Infect Dis 2024; 24:536. [PMID: 38807049 PMCID: PMC11134755 DOI: 10.1186/s12879-024-09269-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 03/28/2024] [Indexed: 05/30/2024] Open
Abstract
BACKGROUND The aim of this study was to assess the impact of immunosuppression management on coronavirus disease 2019 (COVID-19) outcomes. METHODS We performed a single-center retrospective study in a cohort of 358 lung transplant recipients (LTx) over the period from March 2020 to April 2022. All included symptomatic patients had at least one positive SARS-CoV-2 rt-PCR. We used a composite primary outcome for COVID-19 including increased need for oxygen since the hospital admission, ICU transfer, and in-hospital mortality. We assessed by univariate and multivariate analyses the risk factors for poor outcomes. RESULTS Overall, we included 91 LTx who contracted COVID-19. The COVID-19 in-hospital mortality rate reached 4.4%. By hierarchical clustering, we found a strong and independent association between the composite poor outcome and the discontinuation of at least one immunosuppressive molecule among tacrolimus, cyclosporine, mycophenolate mofetil, and everolimus. Obesity (OR = 16, 95%CI (1.96; 167), p = 0.01) and chronic renal failure (OR = 4.6, 95%CI (1.4; 18), p = 0.01) were also independently associated with the composite poor outcome. Conversely, full vaccination was protective (OR = 0.23, 95%CI (0.046; 0.89), p = 0.047). CONCLUSION The administration of immunosuppressive drugs such as tacrolimus, cyclocporine or everolimus can have a protective effect in LTx with COVID-19, probably related to their intrinsic antiviral capacity.
Collapse
Affiliation(s)
- Hugo Bes-Berlandier
- Department of Infectious Diseases, University Hospital Institute -Méditerranée Infection (IHU), Marseille, France
| | - Benjamin Coiffard
- Department of Respiratory Medicine and Lung Transplantation, Aix Marseille Univ, APHM, Hôpital Nord, Marseille, France
| | - Julien Bermudez
- Department of Respiratory Medicine and Lung Transplantation, Aix Marseille Univ, APHM, Hôpital Nord, Marseille, France
| | - Nadine Demazes-Dufeu
- Department of Respiratory Medicine and Lung Transplantation, Aix Marseille Univ, APHM, Hôpital Nord, Marseille, France
| | - Bérengère Coltey
- Department of Respiratory Medicine and Lung Transplantation, Aix Marseille Univ, APHM, Hôpital Nord, Marseille, France
| | - Céline Boschi
- Department of Infectious Diseases, University Hospital Institute -Méditerranée Infection (IHU), Marseille, France
- Microbes, Evolution, Phylogeny and Infection (MEΦI), Hôpitaux de Marseille (AP-HM), Aix-Marseille Université, Institut de Recherche Pour le Développement IRD, Assistance Publique, Institut Hospitalo-Universitaire (IHU), Méditerranée Infection, 19-21 Boulevard Jean Moulin, Marseille, Cedex 05 13385, France
| | - Philippe Colson
- Department of Infectious Diseases, University Hospital Institute -Méditerranée Infection (IHU), Marseille, France
- Microbes, Evolution, Phylogeny and Infection (MEΦI), Hôpitaux de Marseille (AP-HM), Aix-Marseille Université, Institut de Recherche Pour le Développement IRD, Assistance Publique, Institut Hospitalo-Universitaire (IHU), Méditerranée Infection, 19-21 Boulevard Jean Moulin, Marseille, Cedex 05 13385, France
| | - Sami Hraiech
- Service de Médecine Intensive - Réanimation, AP-HM, Hôpital Nord, Marseille, France
- Faculté de médecine, Centre d'Etudes et de Recherches sur les Services de Santé et qualité de vie EA 3279, Aix-Marseille Université, Marseille, 13005, France
| | - Martine Reynaud-Gaubert
- Department of Respiratory Medicine and Lung Transplantation, Aix Marseille Univ, APHM, Hôpital Nord, Marseille, France
- Microbes, Evolution, Phylogeny and Infection (MEΦI), Hôpitaux de Marseille (AP-HM), Aix-Marseille Université, Institut de Recherche Pour le Développement IRD, Assistance Publique, Institut Hospitalo-Universitaire (IHU), Méditerranée Infection, 19-21 Boulevard Jean Moulin, Marseille, Cedex 05 13385, France
| | - Nadim Cassir
- Department of Infectious Diseases, University Hospital Institute -Méditerranée Infection (IHU), Marseille, France.
- Microbes, Evolution, Phylogeny and Infection (MEΦI), Hôpitaux de Marseille (AP-HM), Aix-Marseille Université, Institut de Recherche Pour le Développement IRD, Assistance Publique, Institut Hospitalo-Universitaire (IHU), Méditerranée Infection, 19-21 Boulevard Jean Moulin, Marseille, Cedex 05 13385, France.
| |
Collapse
|
4
|
Halvorson T, Tuomela K, Levings MK. Targeting regulatory T cell metabolism in disease: Novel therapeutic opportunities. Eur J Immunol 2023; 53:e2250002. [PMID: 36891988 DOI: 10.1002/eji.202250002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/28/2023] [Accepted: 03/06/2023] [Indexed: 03/10/2023]
Abstract
Regulatory T cells (Tregs) are essential for immune homeostasis and suppression of pathological autoimmunity but can also play a detrimental role in cancer progression via inhibition of anti-tumor immunity. Thus, there is broad applicability for therapeutic Treg targeting, either to enhance function, for example, through adoptive cell therapy (ACT), or to inhibit function with small molecules or antibody-mediated blockade. For both of these strategies, the metabolic state of Tregs is an important consideration since cellular metabolism is intricately linked to function. Mounting evidence has shown that targeting metabolic pathways can selectively promote or inhibit Treg function. This review aims to synthesize the current understanding of Treg metabolism and discuss emerging metabolic targeting strategies in the contexts of transplantation, autoimmunity, and cancer. We discuss approaches to gene editing and cell culture to manipulate Treg metabolism during ex vivo expansion for ACT, as well as in vivo nutritional and pharmacological interventions to modulate Treg metabolism in disease states. Overall, the intricate connection between metabolism and phenotype presents a powerful opportunity to therapeutically tune Treg function.
Collapse
Affiliation(s)
- Torin Halvorson
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Karoliina Tuomela
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Megan K Levings
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
5
|
Tomita Y, Uehara S, Takiguchi S, Nakamura M. Effect of Mammalian Target of Rapamycin Inhibition on Activated Regulatory T-Cell Expansion in Kidney Transplantation. Transplant Proc 2023:S0041-1345(23)00204-X. [PMID: 37100735 DOI: 10.1016/j.transproceed.2023.03.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 03/12/2023] [Accepted: 03/27/2023] [Indexed: 04/28/2023]
Abstract
BACKGROUND The mammalian target of rapamycin (mTOR) plays a critical role in the host immune response in organ transplantation. This study evaluates the regulatory benefits of mTOR inhibitors in kidney transplant recipients (KTRs). METHODS The mTOR-dependent immune-regulating effects in KTRs were evaluated by examining T-cell subsets among peripheral blood mononuclear cells from 79 KTRs. Recipients included an early introduction of everolimus (EVR) and reduced-exposure tacrolimus group (n = 46) and a standard tacrolimus-based without EVR (non-EVR) group (n = 33). RESULTS Trough concentrations of tacrolimus at 3 months and 1 year were significantly lower in the EVR group than the non-EVR group (both P < .001). In addition, the respective proportions of patients without estimated glomerular filtration rate < 20% in the EVR and non-EVR groups were 100% and 93.3% at 1 year, 96.3% and 89.7% at 2 years, and 96.3% and 89.7% at 3 years after blood collection, respectively (P = .079). The frequencies of CD3+ T cells and CD4+ T cells among peripheral blood mononuclear cells were comparable between groups. Total CD25highCD127-CD4+ regulatory T (Treg) cells were similar in the EVR and non-EVR groups. In contrast, circulating CD45RA-CD25highCD127-CD4+ activated Treg cells were significantly higher in the EVR group (P= .008). CONCLUSION These results suggest that the early introduction of mTOR benefits long-term kidney graft function and circulating activated Treg-cell expansion in KTRs.
Collapse
Affiliation(s)
- Yusuke Tomita
- Department of Transplant Surgery, Tokai University School of Medicine, Kanagawa, Japan.
| | - Saeko Uehara
- Department of Transplant Surgery, Tokai University School of Medicine, Kanagawa, Japan
| | - Shinya Takiguchi
- Department of Transplant Surgery, Tokai University School of Medicine, Kanagawa, Japan
| | - Michio Nakamura
- Department of Transplant Surgery, Tokai University School of Medicine, Kanagawa, Japan
| |
Collapse
|
6
|
Cheung J, Zahorowska B, Suranyi M, Wong JKW, Diep J, Spicer ST, Verma ND, Hodgkinson SJ, Hall BM. CD4 +CD25 + T regulatory cells in renal transplantation. Front Immunol 2022; 13:1017683. [PMID: 36426347 PMCID: PMC9681496 DOI: 10.3389/fimmu.2022.1017683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/13/2022] [Indexed: 09/14/2023] Open
Abstract
The immune response to an allograft activates lymphocytes with the capacity to cause rejection. Activation of CD4+CD25+Foxp3+T regulatory cells (Treg) can down-regulate allograft rejection and can induce immune tolerance to the allograft. Treg represent <10% of peripheral CD4+T cells and do not markedly increase in tolerant hosts. CD4+CD25+Foxp3+T cells include both resting and activated Treg that can be distinguished by several markers, many of which are also expressed by effector T cells. More detailed characterization of Treg to identify increased activated antigen-specific Treg may allow reduction of non-specific immunosuppression. Natural thymus derived resting Treg (tTreg) are CD4+CD25+Foxp3+T cells and only partially inhibit alloantigen presenting cell activation of effector cells. Cytokines produced by activated effector cells activate these tTreg to more potent alloantigen-activated Treg that may promote a state of operational tolerance. Activated Treg can be distinguished by several molecules they are induced to express, or whose expression they have suppressed. These include CD45RA/RO, cytokine receptors, chemokine receptors that alter pathways of migration and transcription factors, cytokines and suppression mediating molecules. As the total Treg population does not increase in operational tolerance, it is the activated Treg which may be the most informative to monitor. Here we review the methods used to monitor peripheral Treg, the effect of immunosuppressive regimens on Treg, and correlations with clinical outcomes such as graft survival and rejection. Experimental therapies involving ex vivo Treg expansion and administration in renal transplantation are not reviewed.
Collapse
Affiliation(s)
- Jason Cheung
- Renal Unit, Liverpool Hospital, Sydney, NSW, Australia
| | | | - Michael Suranyi
- Renal Unit, Liverpool Hospital, Sydney, NSW, Australia
- South Western Sydney Clinical School, University of New South Wales (UNSW), Sydney, NSW, Australia
| | | | - Jason Diep
- Renal Unit, Liverpool Hospital, Sydney, NSW, Australia
- South Western Sydney Clinical School, University of New South Wales (UNSW), Sydney, NSW, Australia
| | - Stephen T. Spicer
- Renal Unit, Liverpool Hospital, Sydney, NSW, Australia
- South Western Sydney Clinical School, University of New South Wales (UNSW), Sydney, NSW, Australia
| | - Nirupama D. Verma
- South Western Sydney Clinical School, University of New South Wales (UNSW), Sydney, NSW, Australia
- Immune Tolerance Laboratory, Ingham Institute for Applied Medical Research, University of New South Wales (UNSW), Sydney, NSW, Australia
| | - Suzanne J. Hodgkinson
- South Western Sydney Clinical School, University of New South Wales (UNSW), Sydney, NSW, Australia
- Immune Tolerance Laboratory, Ingham Institute for Applied Medical Research, University of New South Wales (UNSW), Sydney, NSW, Australia
| | - Bruce M. Hall
- Renal Unit, Liverpool Hospital, Sydney, NSW, Australia
- South Western Sydney Clinical School, University of New South Wales (UNSW), Sydney, NSW, Australia
- Immune Tolerance Laboratory, Ingham Institute for Applied Medical Research, University of New South Wales (UNSW), Sydney, NSW, Australia
| |
Collapse
|
7
|
Pinzon Grimaldos A, Bini S, Pacella I, Rossi A, Di Costanzo A, Minicocci I, D’Erasmo L, Arca M, Piconese S. The role of lipid metabolism in shaping the expansion and the function of regulatory T cells. Clin Exp Immunol 2021; 208:181-192. [PMID: 35020862 PMCID: PMC9188345 DOI: 10.1093/cei/uxab033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/05/2021] [Accepted: 12/10/2021] [Indexed: 12/16/2022] Open
Abstract
Metabolic inflammation, defined as a chronic low-grade inflammation, is implicated in numerous metabolic diseases. In recent years, the role of regulatory T cells (Tregs) as key controllers of metabolic inflammation has emerged, but our comprehension on how different metabolic pathways influence Treg functions needs a deeper understanding. Here we focus on how circulating and intracellular lipid metabolism, in particular cholesterol metabolism, regulates Treg homeostasis, expansion, and functions. Cholesterol is carried through the bloodstream by circulating lipoproteins (chylomicrons, very low-density lipoproteins, low-density lipoproteins). Tregs are equipped with a wide array of metabolic sensors able to perceive and respond to changes in the lipid environment through the activation of different intracellular pathways thus conferring to these cells a crucial metabolic and functional plasticity. Nevertheless, altered cholesterol transport, as observed in genetic dyslipidemias and atherosclerosis, impairs Treg proliferation and function through defective cellular metabolism. The intracellular pathway devoted to the cholesterol synthesis is the mevalonate pathway and several studies have shown that this pathway is essential for Treg stability and suppressive activity. High cholesterol concentrations in the extracellular environment may induce massive accumulation of cholesterol inside the cell thus impairing nutrients sensors and inhibiting the mevalonate pathway. This review summarizes the current knowledge regarding the role of circulating and cellular cholesterol metabolism in the regulation of Treg metabolism and functions. In particular, we will discuss how different pathological conditions affecting cholesterol transport may affect cellular metabolism in Tregs.
Collapse
Affiliation(s)
| | | | - Ilenia Pacella
- Department of Internal Clinical, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Alessandra Rossi
- Department of Internal Clinical, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Alessia Di Costanzo
- Department of Translational and Precision Medicine, Sapienza University of Rome, Policlinico Umberto I, Rome, Italy
| | - Ilenia Minicocci
- Department of Translational and Precision Medicine, Sapienza University of Rome, Policlinico Umberto I, Rome, Italy
| | - Laura D’Erasmo
- Department of Translational and Precision Medicine, Sapienza University of Rome, Policlinico Umberto I, Rome, Italy
| | - Marcello Arca
- Department of Translational and Precision Medicine, Sapienza University of Rome, Policlinico Umberto I, Rome, Italy
| | - Silvia Piconese
- Correspondence: Silvia Piconese, Department of Internal Clinical, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
8
|
Superoxide Dismutase-1 Intracellular Content in T Lymphocytes Associates with Increased Regulatory T Cell Level in Multiple Sclerosis Subjects Undergoing Immune-Modulating Treatment. Antioxidants (Basel) 2021; 10:antiox10121940. [PMID: 34943042 PMCID: PMC8750574 DOI: 10.3390/antiox10121940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 11/17/2022] Open
Abstract
Reactive oxygen species (ROS) participate in the T-cell activation processes. ROS-dependent regulatory networks are usually mediated by peroxides, which are more stable and able to freely migrate inside cells. Superoxide dismutase (SOD)-1 represents the major physiological intracellular source of peroxides. We found that antigen-dependent activation represents a triggering element for SOD-1 production and secretion by human T lymphocytes. A deranged T-cell proinflammatory response characterizes the pathogenesis of multiple sclerosis (MS). We previously observed a decreased SOD-1 intracellular content in leukocytes of MS individuals at diagnosis, with increasing amounts of such enzyme after interferon (IFN)-b 1b treatment. Here, we analyzed in depth SOD-1 intracellular content in T cells in a cohort of MS individuals undergoing immune-modulating treatment. Higher amounts of the enzyme were associated with increased availability of regulatory T cells (Treg) preferentially expressing Foxp3-exon 2 (Foxp3-E2), as described for effective Treg. In vitro administration of recombinant human SOD-1 to activated T cells, significantly increased their IL-17 production, while SOD-1 molecules lacking dismutase activity were unable to interfere with cytokine production by activated T cells in vitro. Furthermore, hydrogen peroxide addition was observed to mimic, in vitro, the SOD-1 effect on IL-17 production. These data add SOD-1 to the molecules involved in the molecular pathways contributing to re-shaping the T-cell cytokine profile and Treg differentiation.
Collapse
|
9
|
Bayati F, Mohammadi M, Valadi M, Jamshidi S, Foma AM, Sharif-Paghaleh E. The Therapeutic Potential of Regulatory T Cells: Challenges and Opportunities. Front Immunol 2021; 11:585819. [PMID: 33519807 PMCID: PMC7844143 DOI: 10.3389/fimmu.2020.585819] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 11/27/2020] [Indexed: 12/22/2022] Open
Abstract
Regulatory T cells (Tregs) are an immunosuppressive subgroup of CD4+ T cells which are identified by the expression of forkhead box protein P3 (Foxp3). The modulation capacity of these immune cells holds an important role in both transplantation and the development of autoimmune diseases. These cells are the main mediators of self-tolerance and are essential for avoiding excessive immune reactions. Tregs play a key role in the induction of peripheral tolerance that can prevent autoimmunity, by protecting self-reactive lymphocytes from the immune reaction. In contrast to autoimmune responses, tumor cells exploit Tregs in order to prevent immune cell recognition and anti-tumor immune response during the carcinogenesis process. Recently, numerous studies have focused on unraveling the biological functions and principles of Tregs and their primary suppressive mechanisms. Due to the promising and outstanding results, Tregs have been widely investigated as an alternative tool in preventing graft rejection and treating autoimmune diseases. On the other hand, targeting Tregs for the purpose of improving cancer immunotherapy is being intensively evaluated as a desirable and effective method. The purpose of this review is to point out the characteristic function and therapeutic potential of Tregs in regulatory immune mechanisms in transplantation tolerance, autoimmune diseases, cancer therapy, and also to discuss that how the manipulation of these mechanisms may increase the therapeutic options.
Collapse
Affiliation(s)
- Fatemeh Bayati
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Research & Development Department, Aryogen Pharmed, Karaj, Iran
| | - Mahsa Mohammadi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| | - Maryam Valadi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeid Jamshidi
- Research & Development Department, Aryogen Pharmed, Karaj, Iran
| | - Arron Munggela Foma
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ehsan Sharif-Paghaleh
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| |
Collapse
|
10
|
Franzin R, Netti GS, Spadaccino F, Porta C, Gesualdo L, Stallone G, Castellano G, Ranieri E. The Use of Immune Checkpoint Inhibitors in Oncology and the Occurrence of AKI: Where Do We Stand? Front Immunol 2020; 11:574271. [PMID: 33162990 PMCID: PMC7580288 DOI: 10.3389/fimmu.2020.574271] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 09/17/2020] [Indexed: 12/12/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) are a novel class of immunotherapy drugs that have improved the treatment of a broad spectrum of cancers as metastatic melanoma, non-small lung cancer or renal cell carcinoma. These humanized monoclonal antibodies target inhibitory receptors (e.g. CTLA-4, PD-1, LAG-3, TIM-3) and ligands (PD-L1) expressed on T lymphocytes, antigen presenting cells and tumor cells and elicit an anti-tumor response by stimulating immune system. Nevertheless, the improved overall survival is complicated by the manifestation of Immune-related Adverse Effects (irAEs). During treatment with ICIs, the most common adverse kidney effect is represented by the development of acute kidney injury (AKI) with the acute tubulointerstitial nephritis as recurrent histological feature. The mechanisms involved in ICIs-induced AKI include the re-activation of effector T cells previously stimulated by nephrotoxic drugs (i.e. by antibiotics), the loss of tolerance versus self-renal antigens, the increased PD-L1 expression by tubular cells or the establishment of a pro-inflammatory milieu with the release of self-reactive antibodies. For renal transplant recipient treated with ICIs, the increased incidence of rejection is a serious concern. Therefore, the combination of ICIs with mTOR inhibitors represents an emerging strategy. Finally, it is relevant to anticipate which patients under ICIs would experience severe irAEs and from a kidney perspective, to predict patients with higher risk of AKI. Here, we provide a detailed overview of ICIs-related nephrotoxicity and the recently described multicenter studies. Several factors have been reported as biomarkers of ICIs-irAEs, in this review we speculate on potential biomarkers for ICIs-associated AKI.
Collapse
Affiliation(s)
- Rossana Franzin
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Giuseppe Stefano Netti
- Clinical Pathology, Center of Molecular Medicine, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Federica Spadaccino
- Clinical Pathology, Center of Molecular Medicine, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Camillo Porta
- Oncology, Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Loreto Gesualdo
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Giovanni Stallone
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Giuseppe Castellano
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Elena Ranieri
- Clinical Pathology, Center of Molecular Medicine, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| |
Collapse
|
11
|
Schettini F, Sobhani N, Ianza A, Triulzi T, Molteni A, Lazzari MC, Strina C, Milani M, Corona SP, Sirico M, Bernocchi O, Giudici F, Cappelletti MR, Ciruelos E, Jerusalem G, Loi S, Fox SB, Generali D. Immune system and angiogenesis-related potential surrogate biomarkers of response to everolimus-based treatment in hormone receptor-positive breast cancer: an exploratory study. Breast Cancer Res Treat 2020; 184:421-431. [PMID: 32770287 PMCID: PMC7599144 DOI: 10.1007/s10549-020-05856-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 07/31/2020] [Indexed: 01/08/2023]
Abstract
Purpose mTOR inhibitor everolimus is used for hormone receptor-positive (HR+)/HER2-negative metastatic breast cancer (mBC). No reliable predictive biomarker of response is available. Following evidences from other solid tumors, we aimed to assess the association between treatment-associated immune system features and everolimus activity. Methods We retrospectively explored a correlation with the therapeutic activity of everolimus and tumor-associated immune pathways with ingenuity pathway analysis (IPA), neutrophil-to-lymphocyte ratio (NLR), circulating lymphocytes, and endothelial cells (CECs) in 3 different HR+ mBC studies, including the BALLET phase IIIb study. Results The circulating levels of CD3+/CD8+, CD3+/CD4+, and overall T lymphocytes were higher in responders versus non-responders at baseline (p = 0.017, p < 0.001, p = 0.034) and after treatment (p = 0.01, p = 0.003, p = 0.023). Reduced CECs, a tumor neoangiogenesis marker, were observed in responders after treatment (p < 0.001). Patients with low NLR (≤ 4.4) showed a better progression-free survival compared to patients with high NLR (> 4.4) (p = 0.01). IPA showed that the majority of immunity-related genes were found upregulated in responders compared to non-responders before treatment, but not after. Conclusions Lymphocytes subpopulations, CECs and NLR could be interesting biomarkers predictive of response to everolimus-based regimens, potentially useful in daily clinical practice to select/monitor everolimus-based treatment in mBC. Further studies to confirm such hypotheses are warranted.
Collapse
Affiliation(s)
- Francesco Schettini
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy.,Translational Genomics and Targeted Therapeutics in Solid Tumors, August Pi I Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain.,SOLTI Breast Cancer Research Group, Barcelona, Spain
| | - Navid Sobhani
- Department of Medical, Surgery & Health Sciences, University of Trieste, Piazza Ospitale 1, 34129, Trieste, Italy
| | - Anna Ianza
- Department of Medical, Surgery & Health Sciences, University of Trieste, Piazza Ospitale 1, 34129, Trieste, Italy
| | - Tiziana Triulzi
- Molecular Targeting Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Alfredo Molteni
- UO Ematologia e CTMO, ASST di Cremona, Viale Concordia 1, 26100, Cremona, Italy
| | | | - Carla Strina
- UO Multidisciplinare di Patologia Mammaria e Ricerca Traslazionale, ASST di Cremona, Viale Concordia 1, 26100, Cremona, Italy
| | - Manuela Milani
- UO Multidisciplinare di Patologia Mammaria e Ricerca Traslazionale, ASST di Cremona, Viale Concordia 1, 26100, Cremona, Italy
| | - Silvia Paola Corona
- Department of Medical, Surgery & Health Sciences, University of Trieste, Piazza Ospitale 1, 34129, Trieste, Italy
| | - Marianna Sirico
- UO Multidisciplinare di Patologia Mammaria e Ricerca Traslazionale, ASST di Cremona, Viale Concordia 1, 26100, Cremona, Italy
| | - Ottavia Bernocchi
- Department of Medical, Surgery & Health Sciences, University of Trieste, Piazza Ospitale 1, 34129, Trieste, Italy.,UO Multidisciplinare di Patologia Mammaria e Ricerca Traslazionale, ASST di Cremona, Viale Concordia 1, 26100, Cremona, Italy
| | - Fabiola Giudici
- Department of Medical, Surgery & Health Sciences, University of Trieste, Piazza Ospitale 1, 34129, Trieste, Italy
| | - Maria Rosaria Cappelletti
- UO Multidisciplinare di Patologia Mammaria e Ricerca Traslazionale, ASST di Cremona, Viale Concordia 1, 26100, Cremona, Italy
| | - Eva Ciruelos
- SOLTI Breast Cancer Research Group, Barcelona, Spain.,Department of Medical Oncology, Breast Cancer Unit, University Hospital, 12 de Octubre, Avda de Córdoba s/n, Madrid, Spain
| | - Guy Jerusalem
- Department of Medical Oncology, Centre Hospitalier Universitaire de Liège and Liège University, Avenue de L'Hòpital 1, 4000, Liège, Belgium
| | - Sherine Loi
- Peter MacCallum Cancer Center, 305 Grattan Street, Melbourne, VIC, Australia.,University of Melbourne, Melbourne, VIC, Australia
| | - Stephen B Fox
- Peter MacCallum Cancer Center, 305 Grattan Street, Melbourne, VIC, Australia.,University of Melbourne, Melbourne, VIC, Australia
| | - Daniele Generali
- Department of Medical, Surgery & Health Sciences, University of Trieste, Piazza Ospitale 1, 34129, Trieste, Italy. .,UO Multidisciplinare di Patologia Mammaria e Ricerca Traslazionale, ASST di Cremona, Viale Concordia 1, 26100, Cremona, Italy.
| |
Collapse
|
12
|
Terrazzano G, Rubino V, Palatucci AT, Giovazzino A, Carriero F, Ruggiero G. An Open Question: Is It Rational to Inhibit the mTor-Dependent Pathway as COVID-19 Therapy? Front Pharmacol 2020; 11:856. [PMID: 32574238 PMCID: PMC7273850 DOI: 10.3389/fphar.2020.00856] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 05/25/2020] [Indexed: 12/12/2022] Open
Affiliation(s)
- Giuseppe Terrazzano
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Department of Science, University of Basilicata, Potenza, Italy
| | - Valentina Rubino
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | | | | | - Flavia Carriero
- Department of Science, University of Basilicata, Potenza, Italy
| | | |
Collapse
|
13
|
Long-Term Redistribution of Peripheral Lymphocyte Subpopulations after Switching from Calcineurin to mTOR Inhibitors in Kidney Transplant Recipients. J Clin Med 2020; 9:jcm9041088. [PMID: 32290462 PMCID: PMC7230655 DOI: 10.3390/jcm9041088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/08/2020] [Accepted: 04/08/2020] [Indexed: 01/04/2023] Open
Abstract
Classical immunosuppression based on steroids, calcineurin inhibitors, and mycophenolate results in several unwanted effects and unsatisfactory long-term outcomes in kidney transplantation (KT). New immunosuppressors search for fewer adverse events and increased graft survival but may have a distinct impact on graft function and immunological biomarkers according to their mechanism of action. This prospective study evaluates the immunological effect of tacrolimus to serine/threonine protein kinase mechanistic target of rapamycin inhibitors (mTORi) conversion in 29 KT recipients compared with 16 controls maintained on tacrolimus. We evaluated renal function, human leukocyte antigen (HLA) antibodies and peripheral blood lymphocyte subsets at inclusion and at 3, 12, and 24 months later. Twenty immunophenotyped healthy subjects served as reference. Renal function remained stable in both groups with no significant change in proteinuria. Two patients in the mTORi group developed HLA donor-specific antibodies and none in the control group (7% vs. 0%, p = 0.53). Both groups showed a progressive increase in regulatory T cells, more prominent in patients converted to mTORi within the first 18 months post-KT (p < 0.001). All patients showed a decrease in naïve B cells (p < 0.001), excepting those converted to mTORi without receiving steroids (p = 0.31). Transitional B cells significantly decreased in mTORi patients (p < 0.001), independently of concomitant steroid treatment. Finally, CD56bright and CD94/NK group 2 member A receptor positive (NKG2A+) Natural Killer (NK) cell subsets increased in mTORi- compared to tacrolimus-treated patients (both p < 0.001). Patients switched to mTORi displayed a significant redistribution of peripheral blood lymphocyte subpopulations proposed to be associated with graft outcomes. The administration of steroids modified some of these changes.
Collapse
|
14
|
Passerini L, Barzaghi F, Curto R, Sartirana C, Barera G, Tucci F, Albarello L, Mariani A, Testoni PA, Bazzigaluppi E, Bosi E, Lampasona V, Neth O, Zama D, Hoenig M, Schulz A, Seidel MG, Rabbone I, Olek S, Roncarolo MG, Cicalese MP, Aiuti A, Bacchetta R. Treatment with rapamycin can restore regulatory T-cell function in IPEX patients. J Allergy Clin Immunol 2020; 145:1262-1271.e13. [PMID: 31874182 DOI: 10.1016/j.jaci.2019.11.043] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 11/08/2019] [Accepted: 11/15/2019] [Indexed: 12/23/2022]
Abstract
BACKGROUND Immune-dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome is a lethal disease caused by mutations in a transcription factor critical for the function of thymus-derived regulatory T (Treg) cells (ie, FOXP3), resulting in impaired Treg function and autoimmunity. At present, hematopoietic stem cell transplantation is the therapy of choice for patients with IPEX syndrome. If not available, multiple immunosuppressive regimens have been used with poor disease-free survival at long-term follow-up. Rapamycin has been shown to suppress peripheral T cells while sparing Treg cells expressing wild-type FOXP3, thereby proving beneficial in the clinical setting of immune dysregulation. However, the mechanisms of immunosuppression selective to Treg cells in patients with IPEX syndrome are unclear. OBJECTIVE We sought to determine the cellular and molecular basis of the clinical benefit observed under rapamycin treatment in 6 patients with IPEX syndrome with different FOXP3 mutations. METHODS Phenotype and function of FOXP3-mutated Treg cells from rapamycin-treated patients with IPEX syndrome were tested by flow cytometry and in vitro suppression assays, and the gene expression profile of rapamycin-conditioned Treg cells by droplet-digital PCR. RESULTS Clinical and histologic improvements in patients correlated with partially restored Treg function, independent of FOXP3 expression or Treg frequency. Expression of TNF-receptor-superfamily-member 18 (TNFRSF18, glucocorticoid-induced TNF-receptor-related) and EBV-induced-3 (EBI3, an IL-35 subunit) in patients' Treg cells increased during treatment as compared with that of Treg cells from untreated healthy subjects. Furthermore inhibition of glucocorticoid-induced TNF-receptor-related and Ebi3 partially reverted in vitro suppression by in vivo rapamycin-conditioned Treg cells. CONCLUSIONS Rapamycin is able to affect Treg suppressive function via a FOXP3-independent mechanism, thus sustaining the clinical improvement observed in patients with IPEX syndrome under rapamycin treatment.
Collapse
Affiliation(s)
- Laura Passerini
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federica Barzaghi
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy; Department of Paediatric Immunohematology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Rosalia Curto
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Claudia Sartirana
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Graziano Barera
- Department of Paediatrics, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesca Tucci
- Department of Paediatric Immunohematology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luca Albarello
- Pathology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alberto Mariani
- Gastroenterology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Elena Bazzigaluppi
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Emanuele Bosi
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita Salute San Raffaele University, Milan, Italy
| | - Vito Lampasona
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Olaf Neth
- Department of Paediatric Infectious Diseases, Rheumatology and Immunodeficiency, Instituto de Biomedicina de Sevilla/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, Seville, Spain
| | - Daniele Zama
- Department of Pediatrics, S. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Manfred Hoenig
- Clinic of Pediatrics and Adolescent Medicine, Ulm University, Ulm, Germany
| | - Ansgar Schulz
- Clinic of Pediatrics and Adolescent Medicine, Ulm University, Ulm, Germany
| | - Markus G Seidel
- Division of Pediatric Hematology/Oncology, Department of Pediatrics and Adolescent Medicine, Medical University Graz, Graz, Austria
| | - Ivana Rabbone
- Department of Pediatrics, University of Turin, Turin, Italy
| | | | - Maria G Roncarolo
- Department of Pediatrics, Division of Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, Calif
| | - Maria P Cicalese
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy; Department of Paediatric Immunohematology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Aiuti
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy; Department of Paediatric Immunohematology, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita Salute San Raffaele University, Milan, Italy
| | - Rosa Bacchetta
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy; Department of Pediatrics, Division of Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, Calif.
| |
Collapse
|
15
|
Terrazzano G, Bruzzaniti S, Rubino V, Santopaolo M, Palatucci AT, Giovazzino A, La Rocca C, de Candia P, Puca A, Perna F, Procaccini C, De Rosa V, Porcellini C, De Simone S, Fattorusso V, Porcellini A, Mozzillo E, Troncone R, Franzese A, Ludvigsson J, Matarese G, Ruggiero G, Galgani M. T1D progression is associated with loss of CD3 +CD56 + regulatory T cells that control CD8 + T cell effector functions. Nat Metab 2020; 2:142-152. [PMID: 32500117 PMCID: PMC7272221 DOI: 10.1038/s42255-020-0173-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
An unresolved issue in autoimmunity is the lack of surrogate biomarkers of immunological self-tolerance for disease monitoring. Here, we show that peripheral frequency of a regulatory T cell population, characterized by the co-expression of CD3 and CD56 molecules (TR3-56), is reduced in subjects with new-onset type 1 diabetes (T1D). In three independent T1D cohorts, we find that low frequency of circulating TR3-56 cells is associated with reduced β-cell function and with the presence of diabetic ketoacidosis. As autoreactive CD8+ T cells mediate disruption of insulin-producing β-cells1-3, we demonstrate that TR3-56 cells can suppress CD8+ T cell functions in vitro by reducing levels of intracellular reactive oxygen species. The suppressive function, phenotype and transcriptional signature of TR3-56 cells are also altered in T1D children. Together, our findings indicate that TR3-56 cells constitute a regulatory cell population that controls CD8+ effector functions, whose peripheral frequency may represent a traceable biomarker for monitoring immunological self-tolerance in T1D.
Collapse
Affiliation(s)
- Giuseppe Terrazzano
- Dipartimento di Scienze, Università degli Studi di Potenza, Potenza, Italy
- Dipartimento di Scienze Mediche Traslazionali, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Sara Bruzzaniti
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale G. Salvatore, Consiglio Nazionale delle Ricerche, Naples, Italy
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Valentina Rubino
- Dipartimento di Scienze, Università degli Studi di Potenza, Potenza, Italy
- Dipartimento di Scienze Mediche Traslazionali, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Marianna Santopaolo
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale G. Salvatore, Consiglio Nazionale delle Ricerche, Naples, Italy
| | | | - Angela Giovazzino
- Dipartimento di Scienze Mediche Traslazionali, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Claudia La Rocca
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale G. Salvatore, Consiglio Nazionale delle Ricerche, Naples, Italy
| | - Paola de Candia
- Istituto di Ricovero e Cura a Carattere Scientifico MultiMedica, Milan, Italy
| | - Annibale Puca
- Istituto di Ricovero e Cura a Carattere Scientifico MultiMedica, Milan, Italy
| | - Francesco Perna
- Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Claudio Procaccini
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale G. Salvatore, Consiglio Nazionale delle Ricerche, Naples, Italy
- Unità di Neuroimmunologia, Fondazione Santa Lucia, Rome, Italy
| | - Veronica De Rosa
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale G. Salvatore, Consiglio Nazionale delle Ricerche, Naples, Italy
- Unità di Neuroimmunologia, Fondazione Santa Lucia, Rome, Italy
| | - Chiara Porcellini
- Dipartimento di Scienze Mediche Traslazionali, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Salvatore De Simone
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale G. Salvatore, Consiglio Nazionale delle Ricerche, Naples, Italy
| | - Valentina Fattorusso
- Dipartimento di Scienze Mediche Traslazionali, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Antonio Porcellini
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Enza Mozzillo
- Dipartimento di Scienze Mediche Traslazionali, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Riccardo Troncone
- Dipartimento di Scienze Mediche Traslazionali, Università degli Studi di Napoli Federico II, Naples, Italy
- European Laboratory for the Investigation of Food-Induced Disease, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Adriana Franzese
- Dipartimento di Scienze Mediche Traslazionali, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Johnny Ludvigsson
- Division of Pediatrics, Department of Biomedical and Clinical Sciences, Linköping University and Crown Princess Victoria Children's Hospital, Linköping, Sweden
| | - Giuseppe Matarese
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale G. Salvatore, Consiglio Nazionale delle Ricerche, Naples, Italy.
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples, Italy.
| | - Giuseppina Ruggiero
- Dipartimento di Scienze Mediche Traslazionali, Università degli Studi di Napoli Federico II, Naples, Italy.
| | - Mario Galgani
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale G. Salvatore, Consiglio Nazionale delle Ricerche, Naples, Italy.
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples, Italy.
| |
Collapse
|
16
|
Díaz-Molina B, Diaz-Bulnes P, Carvajal Palao R, Bernardo MJ, Rodriguez RM, Corte-Iglesias V, Moris de la Tassa C, Lambert JL, Suarez-Alvarez B. Early Everolimus Initiation Fails to Counteract the Cytotoxic Response Mediated by CD8 + T and NK Cells in Heart Transplant Patients. Front Immunol 2018; 9:2181. [PMID: 30319636 PMCID: PMC6168668 DOI: 10.3389/fimmu.2018.02181] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 09/04/2018] [Indexed: 12/22/2022] Open
Abstract
The positive long-term effects of conversion to everolimus (EVL) after heart transplantation (HT) have been evaluated in several studies. However, the timing of EVL initiation, the best way to combine it with other immunosuppressive treatments, and the impact of these combinations on the immune response are poorly understood aspects. Here, we analyzed the immune phenotype and function of HT patients (n = 56) at short and long terms (prospective and retrospective cohorts), taking into account the time of EVL initiation: early (3 months post-transplant, EVL-E group) or late (>1 year post-transplant, EVL-L group) compared with mycophenolate mofetil treatment (MMF group). We show that early EVL conversion from MMF allows the increase of cytotoxic (CD56dim CD16+) NK and effector-memory (EM, CD45RA− CCR7−) CD8+ T cell subsets, which show a significantly higher level of expression of cytotoxic molecules, IFN-γ production and degranulation ability under activation. NK cell expansion is accompanied by an altered balance of receptor expression, increasing the activation state, and lytic activity of those cells. Those changes are detected after as little as 1 month after EVL conversion in association with the expansion of regulatory T cells and the decrease in B cell frequency. However, no changes in the immune cells subsets were observed after late EVL initiation (EVL-L) compared with the MMF group. Our results imply that only early EVL conversion induces key changes in the post-transplant immune response, preserving an efficient anti-viral response, but simultaneously showing a limited ability to counteract the cytotoxic response to the allograft.
Collapse
Affiliation(s)
- Beatriz Díaz-Molina
- Advanced Heart Failure and Transplant Service, Department of Cardiology, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Paula Diaz-Bulnes
- Translational Immunology Laboratory, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Reyes Carvajal Palao
- Translational Immunology Laboratory, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Maria José Bernardo
- Advanced Heart Failure and Transplant Service, Department of Cardiology, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Ramón M Rodriguez
- Translational Immunology Laboratory, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Viviana Corte-Iglesias
- Translational Immunology Laboratory, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Oviedo, Spain
| | | | - Jose Luis Lambert
- Advanced Heart Failure and Transplant Service, Department of Cardiology, Hospital Universitario Central de Asturias, Oviedo, Spain.,Faculty of Health Sciences, Universidad Católica San Antonio de Murcia, Murcia, Spain
| | - Beatriz Suarez-Alvarez
- Translational Immunology Laboratory, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Oviedo, Spain
| |
Collapse
|
17
|
Metabolic pressure and the breach of immunological self-tolerance. Nat Immunol 2017; 18:1190-1196. [DOI: 10.1038/ni.3851] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 09/05/2017] [Indexed: 12/12/2022]
|
18
|
Spatola R, Nadelstein B, Berdoulay A, English RV. The effects of topical aqueous sirolimus on tear production in normal dogs and dogs with refractory dry eye. Vet Ophthalmol 2017; 21:255-263. [DOI: 10.1111/vop.12503] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
19
|
Galgani M, De Rosa V, La Cava A, Matarese G. Role of Metabolism in the Immunobiology of Regulatory T Cells. THE JOURNAL OF IMMUNOLOGY 2017; 197:2567-75. [PMID: 27638939 DOI: 10.4049/jimmunol.1600242] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 06/25/2016] [Indexed: 02/06/2023]
Abstract
Intracellular metabolism is central to cell activity and function. CD4(+)CD25(+) regulatory T cells (Tregs) that express the transcription factor FOXP3 play a pivotal role in the maintenance of immune tolerance to self. Recent studies showed that the metabolism and function of Tregs are influenced significantly by local environmental conditions and the availability of certain metabolites. It also was reported that defined metabolic programs associate with Treg differentiation, expression of FOXP3, and phenotype stabilization. This article reviews how metabolism modulates FOXP3 expression and Treg function, what environmental factors are involved, and how metabolic manipulation could alter Treg frequency and function in physiopathologic conditions.
Collapse
Affiliation(s)
- Mario Galgani
- Istituto di Endocrinologia e Oncologia Sperimentale, Consiglio Nazionale delle Ricerche, 80131 Naples, Italy
| | - Veronica De Rosa
- Istituto di Endocrinologia e Oncologia Sperimentale, Consiglio Nazionale delle Ricerche, 80131 Naples, Italy; Unità di NeuroImmunologia, Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia, 00179 Rome, Italy
| | - Antonio La Cava
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095; and
| | - Giuseppe Matarese
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, 80131 Naples, Italy
| |
Collapse
|
20
|
He X, Koenen HJ, Slaats JH, Joosten I. Stabilizing human regulatory T cells for tolerance inducing immunotherapy. Immunotherapy 2017; 9:735-751. [PMID: 28771099 DOI: 10.2217/imt-2017-0017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Many autoimmune diseases develop as a consequence of an altered balance between autoreactive immune cells and suppressive FOXP3+ Treg. Restoring this balance through amplification of Treg represents a promising strategy to treat disease. However, FOXP3+ Treg might become unstable especially under certain inflammatory conditions, and might transform into proinflammatory cytokine-producing cells. The issue of heterogeneity and instability of Treg has caused considerable debate in the field and has important implications for Treg-based immunotherapy. In this review, we discuss how Treg stability is defined and what the molecular mechanisms underlying the maintenance of FOXP3 expression and the regulation of Treg stability are. Also, we elaborate on current strategies used to stabilize human Treg for clinical purposes. This review focuses on human Treg, but considering that cell-intrinsic mechanisms to regulate Treg stability in mice and in humans might be similar, data derived from mice studies are also discussed in this paper.
Collapse
Affiliation(s)
- Xuehui He
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.,College of Computer Science, Qinghai Normal University, Xining, Qinghai, China
| | - Hans Jpm Koenen
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jeroen Hr Slaats
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Irma Joosten
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
21
|
Uchinaka A, Yoneda M, Yamada Y, Murohara T, Nagata K. Effects of mTOR inhibition on cardiac and adipose tissue pathology and glucose metabolism in rats with metabolic syndrome. Pharmacol Res Perspect 2017; 5. [PMID: 28805979 PMCID: PMC5684863 DOI: 10.1002/prp2.331] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 05/18/2017] [Indexed: 12/12/2022] Open
Abstract
The mammalian target of rapamycin (mTOR) is a regulator of metabolism and is implicated in pathological conditions such as obesity and diabetes. We aimed to investigate the role of mTOR in obesity. A new animal model of metabolic syndrome (MetS), named DahlS.Z-Leprfa /Leprfa (DS/obese) rats was established previously in our laboratory. In this study, we used this model to evaluate the effects of mTOR inhibition on cardiac and adipose tissue pathology and glucose metabolism. DS/obese rats were treated with the mTOR inhibitor, everolimus, (0.83 mg/kg per day, per os) for 4 weeks at 9 weeks of age. Age-matched homozygous lean (DahlS.Z-Lepr+ /Lepr+ or DS/lean) littermates of DS/obese rats were used as controls. Treatment with everolimus ameliorated hypertension, left ventricular (LV) hypertrophy and fibrosis, and LV diastolic dysfunction, and attenuated cardiac oxidative stress and inflammation in DS/obese rats, but had no effect on these parameters in DS/lean rats. Treatment with everolimus reduced Akt Thr308 phosphorylation in the heart of DS/obese rats. It also alleviated obesity, hyperphagia, adipocyte hypertrophy, and adipose tissue inflammation in DS/obese rats. Everolimus treatment exacerbated glucose intolerance, but did not affect Akt phosphorylation levels in the fat or liver in these rats. Pancreatic β-cell mass was increased in DS/obese rats compared with that in DS/lean rats and this effect was attenuated by everolimus. Activation of mTOR signaling contributes to the pathophysiology of MetS and its associated complications. And mTOR inhibition with everolimus ameliorated obesity as well as cardiac and adipose tissue pathology, but exacerbated glucose metabolism in rats with MetS.
Collapse
Affiliation(s)
- Ayako Uchinaka
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mamoru Yoneda
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuichiro Yamada
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Toyoaki Murohara
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kohzo Nagata
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
22
|
|
23
|
Roles of mTOR complexes in the kidney: implications for renal disease and transplantation. Nat Rev Nephrol 2016; 12:587-609. [PMID: 27477490 DOI: 10.1038/nrneph.2016.108] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The mTOR pathway has a central role in the regulation of cell metabolism, growth and proliferation. Studies involving selective gene targeting of mTOR complexes (mTORC1 and mTORC2) in renal cell populations and/or pharmacologic mTOR inhibition have revealed important roles of mTOR in podocyte homeostasis and tubular transport. Important advances have also been made in understanding the role of mTOR in renal injury, polycystic kidney disease and glomerular diseases, including diabetic nephropathy. Novel insights into the roles of mTORC1 and mTORC2 in the regulation of immune cell homeostasis and function are helping to improve understanding of the complex effects of mTOR targeting on immune responses, including those that impact both de novo renal disease and renal allograft outcomes. Extensive experience in clinical renal transplantation has resulted in successful conversion of patients from calcineurin inhibitors to mTOR inhibitors at various times post-transplantation, with excellent long-term graft function. Widespread use of this practice has, however, been limited owing to mTOR-inhibitor- related toxicities. Unique attributes of mTOR inhibitors include reduced rates of squamous cell carcinoma and cytomegalovirus infection compared to other regimens. As understanding of the mechanisms by which mTORC1 and mTORC2 drive the pathogenesis of renal disease progresses, clinical studies of mTOR pathway targeting will enable testing of evolving hypotheses.
Collapse
|
24
|
Levitsky J, Miller J, Huang X, Gallon L, Leventhal JR, Mathew JM. Immunoregulatory Effects of Everolimus on In Vitro Alloimmune Responses. PLoS One 2016; 11:e0156535. [PMID: 27275747 PMCID: PMC4898829 DOI: 10.1371/journal.pone.0156535] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/16/2016] [Indexed: 01/14/2023] Open
Abstract
Everolimus (EVL) is a novel mTOR-inhibitor similar to sirolimus (SRL) that is used in organ transplant recipients, often in combination with tacrolimus (TAC) or mycophenolate (MPA). The current study aims to determine its effects on regulatory T cells. Increasing concentrations of EVL, MPA and TAC alone or in combination were added to MLRs of healthy volunteers. Lymphoproliferation by 3H-TdR incorporation and the percentage of newly generated CD4+CD127-CD25+FOXP3+ (total Treg) and CD4+CD127-CD25HighFOXP3+ (natural Treg) in CFSE labeled responder cells were assessed by flow cytometry. In comparison to medium controls, EVL and other agents dose-dependently inhibited 3H-TdR incorporation in HLA-2DR-matched and HLA-mismatched MLRs (n = 3-10). However, EVL significantly amplified newly generated total and natural Tregs in CFSE labeled responder cells (p<0.05) at all concentrations, while MPA and SRL did this only at sub-therapeutic concentrations and inhibited at therapeutic levels. In contrast, TAC inhibited newly generated Tregs at all concentrations. When tested in combination with TAC, EVL failed to reverse TAC inhibition of Treg generation. Combinations of EVL and low concentrations of MPA inhibited proliferation and amplified Treg generation in an additive manner when compared to medium controls or each drug tested alone (p<0.05). The relative tolerogenic effect from high to low was EVL > SRL> MPA > TAC. If the results from these in vitro studies are extrapolated to clinical transplantation, it would suggest EVL plus low concentrations of MPA may be the most tolerogenic combination.
Collapse
Affiliation(s)
- Josh Levitsky
- Division of Gastroenterology & Hepatology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
- Comprehensive Transplant Center, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Joshua Miller
- Comprehensive Transplant Center, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Xuemei Huang
- Comprehensive Transplant Center, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Lorenzo Gallon
- Comprehensive Transplant Center, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
- Division of Nephrology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Joseph R. Leventhal
- Comprehensive Transplant Center, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - James M. Mathew
- Comprehensive Transplant Center, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
25
|
Sirt1-Positive Lymphocytes in Acute Cellular Cardiac Allograft Rejection: Contributor to Pathogenesis and a Therapeutic Target. ASAIO J 2016; 62:349-53. [DOI: 10.1097/mat.0000000000000338] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
26
|
Perdigoto AL, Chatenoud L, Bluestone JA, Herold KC. Inducing and Administering Tregs to Treat Human Disease. Front Immunol 2016; 6:654. [PMID: 26834735 PMCID: PMC4722090 DOI: 10.3389/fimmu.2015.00654] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 12/21/2015] [Indexed: 12/17/2022] Open
Abstract
Regulatory T cells (Tregs) control unwanted immune responses, including those that mediate tolerance to self as well as to foreign antigens. Their mechanisms of action include direct and indirect effects on effector T cells and important functions in tissue repair and homeostasis. Tregs express a number of cell surface markers and transcriptional factors that have been instrumental in defining their origins and potentially their function. A number of immune therapies, such as rapamycin, IL-2, and anti-T cell antibodies, are able to induce Tregs and are being tested for their efficacy in diverse clinical settings with exciting preliminary results. However, a balance exists with the use of some, such as IL-2, that may have effects on unwanted populations as well as promoting expansion and survival of Tregs requiring careful selection of dose for clinical use. The use of cell surface markers has enabled investigators to isolate and expand ex vivo Tregs more than 500-fold routinely. Clinical trials have begun, administering these expanded Tregs to patients as a means of suppressing autoimmune and alloimmune responses and potentially inducing immune tolerance. Studies in the future are likely to build on these initial technical achievements and use combinations of agents to improve the survival and functional capacity of Tregs.
Collapse
Affiliation(s)
- Ana Luisa Perdigoto
- Department of Immunobiology, Yale University, New Haven, CT, USA; Department of Internal Medicine, Yale University, New Haven, CT, USA
| | - Lucienne Chatenoud
- Université Paris Descartes, Sorbonne Paris Cité, F-75475, Paris, France; INSERM U1151, CNRS UMR 8253, Hôpital Necker-Enfants Malades, Paris, France
| | - Jeffrey A Bluestone
- Diabetes Center, University of California San Francisco , San Francisco, CA , USA
| | - Kevan C Herold
- Department of Immunobiology, Yale University, New Haven, CT, USA; Department of Internal Medicine, Yale University, New Haven, CT, USA
| |
Collapse
|